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3.2 State of the Art at the Time of the Proposal

Modularization and decentralization are aspects that increasingly influenced the design of

modern mathematical assistance environments in the late 90’s and since then this trend gained

on impact. The OMEGA group has been a driving force of this move.

Several research projects and international networks havebeen initiated during this period
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that concentrate on frameworks and infrastructure for the integration of heterogeneous rea-

soning tools (e.g. CALCULEMUS1 and PROSPER2), the vision of a mathematical semantic

web (e.g. MONET3 and MOWGLI4) and the transition from pen and paper-based mathemati-

cal practice to modern computer-based environments (e.g. MKM 5). Most research teams who

develop mathematical assistant systems follow a bottom-upapproach: system integration or

the development of the user interface usually start with thefunctionalities of the existing sys-

tem.

At the time of our original proposal a majority of proof assistant systems constructed explicit

proof objects, where representation formats range from the‘proofs as types’ paradigm to more

ad hoc representations. The proof data structure of theΩMEGA system is not only one of the

first, but also one of the most elaborate proof-object representations as it maintains the proof

at different levels of granularity and abstraction.

Proof planning as a cognitively motivated, abstract approach to mathematical theorem prov-

ing is investigated mainly in Edinburgh, Birmingham, and Saarbrücken. With its strengths on

domain-specific meta-reasoning and on the exploitation of proof planning functionalities to

guide the integration of external reasoning systems, the OMEGA group has taken the lead-

ership in this small, albeit important subarea and demonstrated that proof planning offers a

suitable platform for the integration of mathematical systems into the process of computer-

supported theorem proving. The external components can be used either inside of a method

(for example, a computer algebra system for simplification)or for the instantiation of meta-

variables (for example, the constraint solverCoSIE (Zimmer & Melis, 2004) to solve inequal-

ities over real numbers). However, improving the flexibility of meta-reasoning was still a key

research issue at the time of the proposal. And both the groupof Alan Bundy in Edinburgh

and our group analyzed shortcomings and problems of proof planning, e.g., its brittleness and

the dependency of proof planning on the rigid influence of theunderlying logic layer (Bundy,

2002; Benzmüller, Meier, Melis, Pollet, & Sorge, 2001a).

As an alternative to deliberative proof planning, reactiveand agent-based theorem proving

gained interest in the proof assistant community and agent-based theorem proving has also

been investigated since the early 90’s for traditional automated theorem provers.

1http://www.calculemus.net
2http://www.dcs.gla.ac.uk/prosper
3http://monet.nag.co.uk
4http://www.mowgli.cs.unibo.it
5http://monet.nag.co.uk/mkm
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Learning techniques were used to acquire control knowledgein the context of equational

and superposition-based theorem proving (Schulz, 2000; Fuchs & Fuchs, 1998; Denzinger &

Schulz, 1996). The knowledge gained from the analysis of thegiven proofs is expressed in

heuristic evaluation functions which then guide the searchprocess for a new problem. Sil-

ver (1984) and Desimone (1987) used precondition analysis to learn new inference schemas

from the pre- and postconditions of given inference steps. These inference steps are com-

pletely specified as a terminating expansion into formal proof steps of the underlying calculus,

whereas methods inΩMEGA may contain arbitrary function calls, for example, the computa-

tion of a computer algebra system.

In cooperation with the University of Birmingham, we developed a first approach to learning

in proof planning (Jamnik, Kerber, & Benzmüller, 2001), which was used as a starting point

for the learning of control knowledge as reported in Section3.4.5.

3.3 Methods

The scientific method in our research in the OMEGA project is proof planning driven by

empirical case studies. These case studies are used to evaluate former models and their im-

plementation, and the analysis of case studies gives insight for the extension of a model and

the development of new models. In addition, more often than not new applications give rise to

new requirements which have to be integrated into the extended model. Successive extension

and evaluation of models was applied in the reported period in particular with respect to the

improvement of proof planning in theΩMEGA system (Siekmann et al., 2003).

However, the result of a critical and more principled analysis of ΩMEGA’s overall design

showed more fundamental shortcomings of its logical basis (a higher-order natural deduction

calculus so far) and we developed the CORE calculus as an alternative. On top of this new

logical basis, we are building theΩMEGA-CORE system (Hübner, Autexier, Benzmüller, &

Meier, 2004). Case studies are currently carried out to evaluate the anticipated benefits of this

decision. Strong evidence for the anticipated benefit of thenew system comes also from the

empirical data on human-constructed proofs in a tutorial context as obtained in the DIALOG

project.
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3.4 Results

3.4.1 Integration of Proof Planning and Agent-Based Theorem Proving (AP1)

Deliberative automated proof planning as realized in MULTI (Meier, 2004), which isΩMEGA’s

new multi-strategy proof planner, originated separately from pro-active agent-based tech-

niques for interactive theorem proving (as realized in theΩ-ANTS system (Sorge, 2001;

Benzmüller & Sorge, 2000)). Because of the complementary strengths and weaknesses of

both approaches, we now started their integration into a first prototypical implementation (Pol-

let, Melis, & Meier, 2003; Meier, Melis, & Pollet, 2004): used in standard mode, the proof

planner MULTI makes all decisions at choice points automatically. When applied in the in-

teractive mode however, the user can make these decisions and construct the proof plan in-

teractively with MULTI . This requires detailed knowledge about the underlying proof planner

which the user may not always have, so MULTI employs nowΩ-ANTS as one of its strategies.

Ω-ANTS agents compute suggestions for possible proof steps, whichare then presented to the

user for a selection of an appropriate next step. This is an improvement over the prior inter-

action mode of MULTI because suggestions are now generated pro-actively by theΩ-ANTS

system. This is particularly valuable for interactive proof planning in a tutoring system for

mathematical proofs (see (Melis, 2002; Melis & G. Goguadse,2003; Melis, 2003)).

Furthermore we have started to unify the basic concepts underlying both approaches. Auto-

mated proof planning and interactive agent-based theorem proving used different data struc-

tures (i.e., methods and tactics) to represent the knowledge about an inference step as well as

different formalisms (i.e., tasks and foci) to represent and maintain the proof plan under con-

struction. We unified methods and tactics into a common data structure, and we defined tasks

as a uniform representation for these new methods. Formerly, tasks and foci were generated

from the actual proof and from annotations of the proof, and amethod or tactic application

acted on the proof itself. Now, the new task level exists as anabstraction separately from the

proof level and the application of methods acts on tasks, that is, they add new tasks or remove

tasks. The task level will serve as a common interface between various proof construction

components of theΩMEGA-CORE system and support a synergetic interplay of automated

and interactive proof construction (Hübner, Benzmüller, Autexier, & Meier, 2003). The new

specification of the task level is currently implemented on top of the CORE system and it is

now tested in first experiments on interactive proof construction in the DIALOG project.

The CORE system (Autexier, 2001, 2003) provides a communication infrastructure that me-

diates between the user and the automatic reasoning procedures. It is based on a new uniform
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meta proof theory for contextual reasoning and encompassesmost aspects of communication

from the presentation of the proof state and the supply of relevant contextual information about

possible proof continuations to the support for a hierarchical proof development. The proof

theory is uniform for a variety of logics and admits the extension to choice-expressions (Wirth,

2002) and human-oriented inductive theorem proving (Wirth, 2004). It exploits proof theo-

retic annotations in formulas for a contextual reasoning style that is as far as possible intuitive

for the user while at the same time still adequate for automatic reasoning procedures. Fur-

thermore, concepts are defined to accommodate both the use and the explicit representation

of hierarchies that are inherent in problem solving in general.

3.4.2 Proof Planning (AP2)

This workpackage consists of the following independent parts:

Meta-Reasoning and Proof Planning

One of the advantageous features of proof planning is the explicit representation of control

rules that encode mathematically motivated heuristics forthe traversal of the search space.

With control rules it is not only possible to reason about thecurrent goals and the cur-

rent assumptions, but also about the proof planning historyand the proof planning context

(e.g., about the theory within which the problem is stated orabout the collected constraints),

see (Meier, 2004).

Some important features of meta-reasoning in MULTI are the following:

1. Meta-reasoning is used to analyze failed proof attempts and to use the failure for guid-

ance of backtracking or plan modification. For instance, we realized control rules to guide

case-splits and lemma speculation, two “eureka”-steps whose necessity in a proof is dif-

ficult to spot and whose introduction is difficult to guide in general. Some theorems in

the limit domain, for instance, require a case split, such asthe following theorem, which

states that functionf is continuous at pointa, if it has a derivativef ′ at pointa, or more

formally

Theorem:cont(f, a) follows from Assumption:deriv(f, a) = f ′.

When tackling this problem, MULTI reduces the theorem to the goal|f(cx)− f(a)| < cǫ,

which could be solved by deriving| f(Mx1
)−f(a)

Mx1
−x

− f ′| < Mǫ1 from the initial assumption.6

6cx andMy, respectively, denote the skolem constant and the meta-variable replacing the universally and
existentially quantified variablesx andy.
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However, in this derivation the condition|cx − a| > 0 has been derived as a new goal and

then MULTI fails to prove this goal. The partial success, i.e., the solution of the initial

goal, suggests a patch for this proof attempt, introducing acase split|cx − a| > 0 ∨
¬(|cx − a| > 0) on the failing condition. Then, MULTI has to solve|f(cx) − f(a)| < cǫ

twice: once with|cx − a| > 0 and once with¬(|cx − a| > 0) as an additional condition,

which is now successful.

In general, the failure and its patch follow the pattern: There is a goalG, which MULTI

can solve with support nodesS under conditionsConds, which are introduced as new

goals. Now suppose the system fails to prove one of these new goals Ci ∈ Conds.

This can now be used productively to introduce a case-split on the failing condition, i.e.,

Ci ∨ ¬Ci, and the main goalG is proved twice: once with the hypothesisCi and once

with the hypothesis¬Ci. This reasoning pattern is implemented in a strategic control rule

that analyzes failing search branches, guides the backtracking, and introduces the above

case split.

With a similar goal, Ireland and Bundy discuss failure analysis (Ireland & Bundy, 1995;

Ireland, 1992) using the so-calledcritics. Critics in the Edinburgh system CLAM are asso-

ciated with a method and capture patchable exceptions to theapplication of that method

rather than a general modification of reasoning. This leads to a rather ad hoc addition of

“patching code” for specific methods, and for that reason we realized failure reasoning

in the more general formalism of control rules. These are notnecessarily associated with

a single method and can analyze the whole plan history, not just one application of a

method.

While reasoning about failure was abstracted from limit problems, the speculation of case

splits is a general meta-reasoning pattern and it is useful in other domains, too.

2. Meta-reasoning queries the constraint solver7 if proof planning fails to compute an in-

stantiation for a meta-variable. For instance, consider the constraints on the meta-variable

Mv:
|cx − c|

cǫ

< Mv andMv < |cx ∗ c|. These constraints are consistent, but solvable

only if
|cx − c|

cǫ

< |cx ∗ c|. In other words, to compute an instantiation, further con-

straints are necessary. The continuation of proof planningby collecting more constraints

is realized in a strategic control rule.

3. Two subgoals are dependent if they share some meta-variable. For instance, suppose that

there are two subgoalsG andG′ sharing a meta-variableMv. If M ULTI first closesG and

Mv is now constrained to, sayt, it may fail to solveG′ with t. Should the system backtrack

7Constraint solver acts as an external system in proof planning (see (Zimmer & Melis, 2004)).
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G′ in this situation? Not necessarily, because it is also possible that backtracking onG

may lead to another constraint forMv, for whichG′ can be closed.

This meta-reasoning is encoded into control rules that reason about dependencies between

subgoals (by shared meta-variables) and lead to different backtracking strategies.

Multiple-Strategy Proof Planning

MULTI provides a general framework for the incorporation of heterogeneous, parameterized

algorithms for proof plan refinements and modifications. Currently, the following algorithms

are available in MULTI ’s implementation:

PPlanner refines a proof plan by introducing method applications.

InstMeta refines a proof plan by instantiating meta-variables.

BackTrack modifies a proof plan by deletion of steps.

Exp refines a proof plan by expanding complex steps.

ATP refines a proof plan by solving subproblems with appropriateautomated theorem

provers.

CPlanner refines a proof plan by transferring steps from a source proofplan or proof

fragment.

Instances of these algorithms define (different) strategies. Technically, a strategy is a condition-

action pair. The condition part describes when the strategyis applicable. The action part

consists of a modification or refinement algorithm and an instantiation of its parameters. Sim-

ilar to the applicability of methods we separate the legal and the heuristic knowledge about

the applicability of strategies. The condition part of a strategy states the legal conditions of

applicability, whereas strategic control rules reason about the heuristic expected utility of the

application of the strategy.

MULTI was tested in several case studies (see Section 3.4.4) for which we developed new

strategies as well as new strategic meta-reasoning patterns. Among others, we developed

strategies for different kinds of backtracking and different forms of meta-variable instantia-

tion.

In some of the strategies employed by MULTI , external systems are called to provide addi-

tional functionalities. One of the external systems that now cooperates with proof planning
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is the theory formation system HR (Colton, 2002) (see (Meier, Sorge, & Colton, 2002)). It

instantiates meta-variables in a similar manner to that of the constraint solverCoSIE . HR

was used, for example, for an instantiation strategy in the residue class case study to prove

non-isomorphism theorems: To prove that two given structures are non-isomorphic it suf-

fices to find an invariant under isomorphism and to show that itdiffers for the two structures.

Finding an invariant for two structures is the key step in this proof and usually involves some

creativity in the problem solving process. HR is used to automatically invent suitable invari-

ants. The instantiation strategy invoking HR introduces the invariant as an instantiation for

the meta-variable. Afterwards, MULTI completes a proof plan for a non-isomorphism theorem

by proving that the invariant holds for one structure, whereas it does not hold for the other.

For example, consider the pairwise non-isomorphic quasi-groupsS1, S2, S3 whose respective

multiplication tables are depicted in Figure 1. When comparing the tables ofS1 andS2, one

suitable invariant is fairly obvious: whileS1 has onlȳ05 on the main diagonal, all elements on

the main diagonal ofS2 are distinct. Thus, the property∃x ∀y x = y ◦y is a suitable invariant

that differs for the two structuresS1 andS2. A discriminating criterion is less obvious for the

multiplication tables ofS2 andS3. Here, one property ofS3, which does not hold forS2, is

∀x ∀y (x ◦ x = y) ⇒ (y ◦ y = x).

S1 = (ZZ5, −̄) S2 = (ZZ5, λxy (2̄5∗̄x)+̄y) S3 = (ZZ5, λxy (3̄5∗̄x)+̄y)

S1
0̄5 1̄5 2̄5 3̄5 4̄5

0̄5 0̄5 4̄5 3̄5 2̄5 1̄5

1̄5 1̄5 0̄5 4̄5 3̄5 2̄5

2̄5 2̄5 1̄5 0̄5 4̄5 3̄5

3̄5 3̄5 2̄5 1̄5 0̄5 4̄5

4̄5 4̄5 3̄5 2̄5 1̄5 0̄5

S2
0̄5 1̄5 2̄5 3̄5 4̄5

0̄5 0̄5 1̄5 2̄5 3̄5 4̄5

1̄5 2̄5 3̄5 4̄5 0̄5 1̄5

2̄5 4̄5 0̄5 1̄5 2̄5 3̄5

3̄5 1̄5 2̄5 3̄5 4̄5 0̄5

4̄5 3̄5 4̄5 0̄5 1̄5 2̄5

S3
0̄5 1̄5 2̄5 3̄5 4̄5

0̄5 0̄5 1̄5 2̄5 3̄5 4̄5

1̄5 3̄5 4̄5 0̄5 1̄5 2̄5

2̄5 1̄5 2̄5 3̄5 4̄5 0̄5

3̄5 4̄5 0̄5 1̄5 2̄5 3̄5

4̄5 2̄5 3̄5 4̄5 0̄5 1̄5

Figure 1. Some quasi-group multiplication tables.

We also developed and applied anew type of method. Since the expansion of a method is

usually specified by a sequence of tactic applications to be carried out once the proof plan is

completed, we needed a different kind of method, which we call critical methods. For these

methods the expansion is done already within the proof planning process. Critical methods

contain only minor and efficient conditions for their application and they lead to backtracking

of the whole proof plan, if their expansion fails.
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There are several reasons for the introduction of critical methods. The expansion of methods

is now more robust, because it does not always depend on an exactly specified sequence of

tactics. Critical methods make proof planning more hierarchical, especially the extension

of strategies to new theorems, which contain former simplertheorems as subproblems. The

resulting top-level proof plan becomes shorter. The application of critical methods distributes

the resources of the proof search to the main problem and leaves simpler subproblems for later

expansion.

More Abstract Proof Planning

Proof planning aims at an abstract proof object, which will be successively refined and ex-

panded until a logic-level proof is reached. However, as ourcase studies showed, the proof

planning level is still far too much influenced by the underlying calculus (Benzmüller, Meier,

Melis, Pollet, & Sorge, 2001b). The peculiarities of the natural deduction calculus used in the

ΩMEGA system, that is, the treatment of hypotheses, and the order of forward and backward

steps, and the elimination and introduction of quantifiers,etc. are propagated to the planning

level. This conflicts with the conceptual view that the planning level is to represent the reason-

ing of a working mathematician, which may influence the proofconstruction in the underlying

logic formalism but not vice versa.

These restrictions are now overcome in CORE (Autexier, 2003), the new basic reasoning cal-

culus engine we developed. CORE supports reasoning at the assertion-level in a contextual

rewriting proof style and provides a uniform mechanism for the application of assertions that

abstracts from logical details. The calculus of CORE now provides the new logic-layer below

the task-layer, which is used for proof planning (see Section 3.4.1).

Proof planning methods and strategies operate on statements that are expressed in a uniform

formal logical language. The representation of concepts, however, is often a key issue in math-

ematical textbooks. There is usually a wide variety of different representations for the same

concept and the choice of a representation is often a key stepin mathematical problem solv-

ing (Kerber & Pollet, 2002a, 2002b). As a first step towards a more adequate mathematical

vernacular we introduced annotated constants (Pollet & Sorge, 2003) in order to encode math-

ematical concepts that are difficult to express in formal logic. For instance, a set{a1, . . . , an}
can be expressed in logic by a lambda term. This representation, however, results in lengthy

logical lambda expressions that are difficult to analyze andprocess. Constants are now an-

notated with special data-structures comprising the mathematical information for which the
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constant stands. For example, an annotated constant for theset{a1, . . . , an} is a constant

annotated with a duplicate-free ordered list containing the elements of the set. Control rules

and methods access the mathematical content of annotated constants via these data-structures

and operate on these annotations.

Each annotated constant is also associated with its formal definition in ΩMEGA’s logic lan-

guage (e.g., a lambda expression for sets), and annotated constants are later replaced by their

definition during the expansion of a proof plan. The correctness is finally checked by the con-

struction of a logic-level proof including the expanded definitions. So far, we have annotated

constants for integers, variable-free finite sets, lists, and cycles of permutations. Input and

pretty-printing functions enable a presentation conforming the standard notation found in a

textbook.

Island Proof Planning

Island Proof Planning was used inter alia in a case study on the irrationality of
√

2 (Wiedijk,

2003), where it turned out to be crucial (see Section 3.4.4 for more information).

Cognitive Adequacy of Proof Planning Methods

Teaching of mathematics, in particular the teaching of mathematical proof techniques, is usu-

ally implicit in the sense that the student is shown examples(in a textbook or on the board in

the class room). An interesting question is: Would studentsperform better if taught explicitly

the tricks of the trade?

The knowledge encapsulated in the proof planning methods ofa particular field contains ex-

actly this kind of knowledge. For that and other reasons, we conducted psychological tests

and experiments, involving instructions for simpleǫ-δ proofs, a typical bottleneck in educa-

tion (Melis, Glasmacher, Ullrich, & Gerjets, 2001; Melis, 2003). These experiments were

conducted in collaboration with the psychology departmentat Saarland University. They sug-

gested a statistically significantly improved performanceof the students who were instructed

with proof planning methods instead of learning in a traditional way.
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3.4.3 Agent-based Theorem Proving (AP3)

Encapsulating external reasoning systems, such as specialized higher-order theorem provers,

model generators, and computer algebra systems, into a software agent and exploiting the

Ω-ANTS blackboard mechanism of theΩMEGA environment was evaluated on several case

studies (Benzmüller, Jamnik, Kerber, & Sorge, 2001). Thisarchitecture offers a flexible way

to integrate each single external system in the form of a pro-active (software) agent with

focus on those parts of the problem it is designed for, without the need to specify a priori

a hierarchy of calls. All agents pick up and investigate the central proof object, given in a

higher-order natural deduction style augmented with additional facilities abstracted from the

pure calculus. In case they are applicable in the current proof context, they carry out their

task by calling the external system they encapsulate. If theexternal system succeeds, the

job is done. Otherwise the agent consumes the available resources and returns control, for

example, to make a bid in terms of a (probably) modified proof object. A bid is accepted

and executed by the central system based on heuristic criteria8 and the remaining ones are

stored for backtracking purposes. The agent paradigm now overcomes many limitations of

an otherwise static and hard-wired integration. Accessingexternal systems is orchestrated by

MATHWEB.

The agent approach was also used for the task of finding suitable knowledge in a mathemat-

ical database (Benzmüller, Meier, & Sorge, 2003). The architecture comprises in that case a

(very large) mathematical database specialized in storing, retrieving and administrating the-

orems, definitions, and theories and a theorem proving system for proof construction. The

communication between the two systems is carried out by special mediator agents. A first

prototype was implemented with MBASE (Franke & Kohlhase, 2000; Franke, 2003) as the

mathematical database,ΩMEGA as the theorem proving system, and mediators in form of

Ω-ANTS agents (Franke, Moschner, & Pollet, 2002). MBASE is a mathematical database for

any kind of mathematical documents based on OMDOC (Kohlhase, 2000), an extension of the

OPENMATH standard. MBASE provides a query mechanism based on the OPENMATH syntax

for terms, but has no predefined semantics, i.e., the choice of the particular underlying logic

and its semantics is open to the user to define.

There are currently two kinds of agents which assist the userin interactive proof construction:

the first kind of agents searches for applicable theorems containing equations or equivalences

for possible rewriting-steps, the second kind searches forsuitable assertion applications, i.e.,

8For instance, bids with closed (sub)goals are preferred over partial results and big steps in the search space
are preferred over calculus level steps.
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theorems, definitions and lemmas involving non-equivalences and non-equations. Both agents

take the current open line, and transform the formula into a query to MBASE. Different queries

are sent in parallel, for example, those whose only the head symbol has to match and those

whose the formula has to match except local constants. The answer from the database MBASE

is filtered according to certain applicability conditions before the resulting suggestions are

presented to the user.

We proposed a distributed mediator between a theorem proving system and the mathematical

knowledge bases, which is independent of the particular proof and knowledge representation

formats of the theorem proving system and the mathematical databases. The mediator module

is again based on a multi-agent system architecture so that reasoning agents can be assigned

to assertions. These agents, calledassertion agents(Vo, Benzmüller, & Autexier, 2003; Vo,

2003), operate in parallel with the theorem proving system and apply a resolution-based algo-

rithm to analyze the logical consequences of the assigned assertions for the proof context at

hand. The assertion agents have been developed in the DIALOG(MI 3) project. In the con-

text of the DIALOG project, there is an additional motivation, namely to support resolution

of under-specification in proof step utterances.

An important advantage of the proposed mediator module is that the whole system, i.e. the

theorem proving system plus the mediator plus the mathematical database, may pursue dif-

ferent proving strategies at the same time: While the theorem prover, for instance a proof

planner, tries to apply its most promising proving strategy, e.g. refining the goal of the proof

task, assertion agents might follow other strategies controlled by their own set of heuristics,

e.g. a forward derivation on the premises or a simplificationof a complex expression, etc. (Vo,

2004).

3.4.4 Case Studies (AP4)

Our original case study ofǫ–δ proofs was largely extended beyond the problems from Bled-

soe’s challenges (Bledsoe, 1990). Furthermore we proved about 60 conjectures from the

core chapters in the analysis textbook Bartle and Sherbert (1982) including theorems involv-

ing limit of sequences, limit of functions, continuity of functions, and derivative of func-

tions (Meier, 2004). The newly solved problems require meta-reasoning patterns at the plan-

ning levelandat the strategy level, for instance, failure reasoning. This case study stimulated

the development of new strategies and generic meta-reasoning as discussed in Section 3.4.2.

We also extended our case study on the classification of algebraic structures. The goal of
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this case study is to classify given residue class structures (i.e., a set of residue classes and

a binary operation◦) in terms of their basic algebraic properties and to classify the given

residue class with respect to isomorphic structures. Meanwhile we classified about18, 000

structures, including a large set of structures with the setZZ10 (Meier, Pollet, & Sorge, 2002).

The integration of the automatic theory formation system HR(see Section 3.4.2) turned out

to be particularly valuable for the classification of structures into isomorphism classes (Meier,

Pollet, & Sorge, 2001; Meier et al., 2002).

Another case study deals with the verification of the computation of the computer algebra

system (CAS) GAP (Cohen, Murray, Pollet, & Sorge, 2003). The computation consisted of

eight queries for the membership and the non-membership of apermutation to a group, the

orbit and the stabilizer of a group, and the order of a group. As opposed to another and earlier

approach to the verification of algebraic computations, where the CAS provides the trace

which is used to create a sequence of tactic applications (Kerber, Kohlhase, & Sorge, 1998),

this new case study points to a more flexible coupling betweentheorem prover and CAS: there

is no need for the tight correspondence between traces and tactics in proof planning because

search is used to find a sequence of methods justifying the computation.

We also participated in Freek Wiedijk’s international casestudy to prove the irrationality of√
2 (Wiedijk, 2003). This well known theorem was used for a comparison of fifteen (mostly

interactive) theorem proving systems, whose solution of the problem had to be documented

and submitted to a jury. This case study is particularly significant as it represents an important

shift of emphasis in the field of automated deduction away from the somehow artificial prob-

lems of the past (e.g. the TPTP contest) back to real mathematical challenges. In (Siekmann

et al., 2003) we show three different solutions of the problem with ΩMEGA.

The first solution is based on the most elementary use ofΩMEGA, namely as a traditional

tactical theorem prover, where the proof is constructed interactively by the application of our

existing tactics, just as in say HOL (?) or ISABELLE (Paulson & Nipkow, 1990).

The second solution is still interactive, but it is based on island proof planning, where the

user states the main proof islands, i.e., he freely states his proof sketch without reference to

pre-defined tactics. Then,ΩMEGA proves the gaps between the islands, involving a computer

algebra system (MAPLE) and two traditional automated theorem provers, namely OTTER and

SPASS. The final result is a verified calculus-level proof startingfrom the proof sketch of the

user. The island proof planning idea has stimulated the development of the task interface for

proof planning and theorem proving (see (Hübner et al., 2004)).
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The third solution is fully automated with MULTI . To achieve this, we implemented special

but still generic methods and control rules that simulate the creative steps of the user. Because

of the general concepts, MULTI can not only prove the irrationality of
√

2, but also other
j
√

l-problems for natural numbersj andl.

Further experiments and case studies are:

• An evaluation of the learning of control knowledge is described in (Jamnik, Kerber, Pol-

let, & Benzmüller, 2003; Jamnik, Kerber, & Pollet, 2002a);see also Section 3.4.5.

• Examples for agent-based reasoning with external reasoning systems are presented and

discussed in (Benzmüller et al., 2001).

• Assertion application in naive set theory with theΩMEGA-CORE system is described in

(Vo et al., 2003; Vo, 2003) and (Vo, 2004); this work has been carried out in collaboration

with the DIALOG project.

• Diagonalization proofs (Cheikhrouhou, 1997; Cheikhrouhou & Siekmann, 1998).

3.4.5 Learning of Control Knowledge (AP5)

Learning of control knowledge amounts to learning the skills of how to prove a new theorem

given several related proofs (and possibly failed proof attempts). The possible sources for this

knowledge are contained in previous proof plans, in the formof the formulas in the proof, the

concepts within these formulas, the applied methods, the control rules, the history and time

span of the proof search, and the probability distribution for finding a proof. Hence the items

to learn from are complex objects and comparing different proof plans is even more complex.

One of our approaches focused on learning sequences of method applications.

Figure 2 shows the structure of this approach: first, the userhas to choose “typical” exam-

ples of proof plans. The proof plans are then abstracted, andonly the sequences of method

specifiers remain. A generalization of the sequences is created, which is a pattern of all the

input sequences in a language containing operators for disjunction, branching points, arbitrary

number of repetitions, and also a fixed number of repetitionsof sequences of methods.

The system, which is called LEARNΩMATIC , was evaluated in three domains: group theory,

set theory, and residue classes. The results corroborated learned methods can make the search

for a proof plan more directed, that is, less methods are tested for applicability if the new

methods are preferred. In group theory, it was possible to prove theorems which could not be
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Figure 2. Approach to learning control knowledge for proof methods

proved without the learned methods. The length of the proofswas shorter with the learned

methods in all domains. The work was reported in (Jamnik et al., 2003, 2002a) and a system

description was given in (Jamnik, Kerber, & Pollet, 2002b).

Another approach (Meier, Gomes, & Melis, 2001) focused on randomization and restart tech-

niques for learning strategic control rules. These techniques are truly resource-adaptive ones,

where the resource considered is time. The mathematical statical background of randomiza-

tion and restart makes it a methodologically sound method that has been applied for other

AI-problems as well, but has not yet been used for learning control rules.

3.4.6 The Infrastructure of ΩMEGA (AP6)

To enhance the communication ofΩMEGA with other systems by a standardized format, an

XML-RPC protocol interface was added toΩMEGA. The protocol is also used for the commu-

nication with the ACTIVEMATH tutoring system in proof exercises and for the communica-

tion with the mathematical knowledge base MBASE. Communication with all other external

systems is based on the MATHWEB Software Bus that has been improved in several ways.

MATHWEB-SB is now based on a dynamic network of brokers that register(resp. unregis-

ter from) each other (Zimmer & Kohlhase, 2002). This drastically increased scalability and

availability of the MATHWEB-SB and, therefore, ofΩMEGA with sometimes several thousand

theorems or small lemmas proved each day by external users over the Internet. Furthermore,

we integrated new reasoning systems into MATHWEB-SB which are thus available also to
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ΩMEGA: The theory formation system HR supports the instantiationof the meta-variables

in ΩMEGA (Colton, 2002), the tptp2X utility supports a uniform inputformat for automated

theorem provers (ATPs) which are employed inΩMEGA. All ATPs now return one of 22

well-defined states which unambiguously describe the provers’ results.

The mathematical services available via MATHWEB-SB are:

• Proof assistants:ΩMEGA, CORE, PVS.

• Mathematical database: MBASE.

• Theory formation system: HR.

• Constraint solver:CoSIE .

• Proof explanation system:P.rex; an external system developed by the OMEGA group (Fiedler,

2001).

• Generalization module of LEARNΩMATIC .

• Proof planners: MULTI , λCLAM.

• Computer algebra systems: MAPLE, GAP, COCOA, MAGMA .

• Automated higher-order theorem provers: TPS, LEO.

• Automated first-order theorem provers: BLIKSEM, OTTER, PROTEIN, SPASS, VAMPIRE.

• Automated equational provers: E, EQP, WALDMEISTER.

• Model generators/checkers: SEM, FINDER, MACE, SATCHMO.

• Proof transformation system: TRAMP.

• Translators for OMDOC and TPTP.

Further related work: The completeness of the higher-order natural deduction calculus,

which is employed within the proof planner of theΩMEGA system, has been proved by Benzmüller,

Brown, and Kohlhase (2004).

3.5 Comparison With Research Outside of the Collaborative Research
Center

The OMEGA group has become a leading force in the field of mathematical assistance sys-

tems, as evidenced inter alia by its role as coordinator of the EU research training network
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CALCULEMUS-I (Benzmüller, 2003b, 2003a), as coordinator of the funding proposal for a

successor network CALCULEMUS-II, as the main organizer of the CALCULEMUS Autumn

School in Pisa in 2002, as organizer of two workshops at the International Joint Conference

on Automated Reasoning (IJCAR 2004), as a driving force in the emerging Mathematical

Knowledge Management community, and by its many international research collaborations,

the most important ones are:

With joint publications: Deutsches Forschungszentrum für Künstliche Intelligenz (DFKI), Germany; De-
partment of Computer Science, Yale University, USA (Schürmann); Department of Mathematics, Carnegie
Mellon University, Pittsburgh, USA (Brown); Department ofInformatics, The University of Edinburgh,
UK (Dennis, Bundy); RIACA, Eindhoven Technical University, Eindhoven, Netherlands (Cohen); Depart-
ment of Computer Science, The University of Birmingham, UK (Kerber, Sorge); Computer Laboratory
of the University of Cambridge, Cambridge, UK (Jamnik); International University of Bremen, Germany
(Kohlhase); Department of Informatics, University of Kaiserslautern, Germany (Avenhaus, Madlener);
Department of Computer Science, Technical University Munich, Germany (Schulz); Department of Com-
puter Science, University of Miami, USA (Sutcliff); Department of Computing, Imperial College London,
UK (Colton).

With joint funding, but no publications so far: Institut für Informatik, Universität Potsdam, Germany (Kre-
itz); Uniwersytet w Bialymstoku, Bialystok, Poland (Trybulec); Universita degli Studi di Genova, Genova,
Italy (Armando); Department of Computer Science, University of Karlsruhe, Germany (Calmet); Research
Institute for Symbolic Computation, Linz, Austria (Buchberger); Instituto per la Ricerca Scientifica e Tec-
nologica, Trento, Italy (Giunchiglia).

The collaboration with the University of Birmingham (M. Kerber and V. Sorge, who also

employΩMEGA), and with the University of Edinburgh (A. Bundy et. al., they collaborate in

the development of MATHWEB), has been particularly fruitful. Under the leadership of the

International University of Bremen (M. Kohlhase) our groupcontributed to the development

of MBASE and OMDOC, and a joint workshop series9 with RISC Linz has been set up.

The international recognition of the group’s achievementsis also reflected in the recent ap-

pointment of M. Kohlhase as full professor at the International University Bremen, Volker

Sorge’s appointment as a lecturer at the University in Birmingham, the invited talks at highly

recognized international workshops and conferences and bythe number of high quality pub-

lications in international journals and international conferences (Siekmann et al., 2003, 2002;

Kerber & Pollet, 2002a; Jamnik et al., 2002b, 2002a; Meier etal., 2002; Hübner et al., 2004;

Vo, 2004; Vo et al., 2003; Wirth, 2002; Melis et al., 2001, 2003; Benzmüller et al., 2004;

Benzmüller, 2002; Meier et al., 2001; Zimmer & Melis, 2004).

Cooperations within the Collaborative Research Center include:

• DIALOG (MI 4): empirical data in DIALOG are fertilizing the current redevelopment of

9http://www.ags.uni-sb.de/˜omega/workshops/TheoremaO mega03/
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ΩMEGA on top of CORE and vice versa the capabilities and features of theΩMEGA/CORE

environment are a crucial factor for the DIALOG system.

• NEP (MI 7): Constraint solving and the general computational model.

3.6 Open Issues

Not applicable
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