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3.2 Stateof theArt at the Time of the Proposal

Modularization and decentralization are aspects thaeasingly influenced the design of
modern mathematical assistance environments in the |&@80 since then this trend gained
on impact. The OMEGA group has been a driving force of this enov

Several research projects and international networks heee initiated during this period
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that concentrate on frameworks and infrastructure for tibegration of heterogeneous rea-
soning tools (e.g. &L.cuLEMUS! and RROSPER), the vision of a mathematical semantic
web (e.g. MONET® and MOWGLI#) and the transition from pen and paper-based mathemati-
cal practice to modern computer-based environments (ekd Rj. Most research teams who
develop mathematical assistant systems follow a bottorapgpoach: system integration or
the development of the user interface usually start wittfuhetionalities of the existing sys-
tem.

At the time of our original proposal a majority of proof asaigt systems constructed explicit
proof objects, where representation formats range froriptioefs as types’ paradigm to more
ad hoc representations. The proof data structure of2theGA system is not only one of the
first, but also one of the most elaborate proof-object regrdions as it maintains the proof
at different levels of granularity and abstraction.

Proof planning as a cognitively motivated, abstract apgnda mathematical theorem prov-
ing is investigated mainly in Edinburgh, Birmingham, ané®aiicken. With its strengths on
domain-specific meta-reasoning and on the exploitationr@dfgplanning functionalities to
guide the integration of external reasoning systems, th&aGK group has taken the lead-
ership in this small, albeit important subarea and dematestrthat proof planning offers a
suitable platform for the integration of mathematical sys$ into the process of computer-
supported theorem proving. The external components casdxt either inside of a method
(for example, a computer algebra system for simplificatmmfor the instantiation of meta-
variables (for example, the constraint solgesSZE (Zimmer & Melis, 2004) to solve inequal-
ities over real numbers). However, improving the flexilgibf meta-reasoning was still a key
research issue at the time of the proposal. And both the grbédgan Bundy in Edinburgh
and our group analyzed shortcomings and problems of praoiyhg, e.g., its brittleness and
the dependency of proof planning on the rigid influence ofuthé@erlying logic layer (Bundy,
2002; Benzmuller, Meier, Melis, Pollet, & Sorge, 2001a).

As an alternative to deliberative proof planning, reactwel agent-based theorem proving
gained interest in the proof assistant community and agaséd theorem proving has also
been investigated since the early 90’s for traditional enzited theorem provers.

Ihitp://www.calculemus.net
2http://www.dcs.gla.ac.uk/prosper
3http://monet.nag.co.uk
4http://www.mowgli.cs.unibo.it
Shttp://monet.nag.co.uk/mkm
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Learning techniques were used to acquire control knowledghe context of equational
and superposition-based theorem proving (Schulz, 200h$-& Fuchs, 1998; Denzinger &
Schulz, 1996). The knowledge gained from the analysis ofthen proofs is expressed in
heuristic evaluation functions which then guide the seardtess for a new problem. Sil-
ver (1984) and Desimone (1987) used precondition analgdesarn new inference schemas
from the pre- and postconditions of given inference stepsesé inference steps are com-
pletely specified as a terminating expansion into formabpsteps of the underlying calculus,
whereas methods fIMEGA may contain arbitrary function calls, for example, the coimap
tion of a computer algebra system.

In cooperation with the University of Birmingham, we deygda a first approach to learning
in proof planning (Jamnik, Kerber, & Benzmiller, 2001),ialhwas used as a starting point
for the learning of control knowledge as reported in SecBah5.

3.3 Methods

The scientific method in our research in the OMEGA projectr@op planning driven by
empirical case studies. These case studies are used tatevidumer models and their im-
plementation, and the analysis of case studies gives infigkthe extension of a model and
the development of new models. In addition, more often tl@maw applications give rise to
new requirements which have to be integrated into the ergbntbdel. Successive extension
and evaluation of models was applied in the reported perigzhrticular with respect to the
improvement of proof planning in tHeMEGA system (Siekmann et al., 2003).

However, the result of a critical and more principled anialyd (XQMEGA’s overall design
showed more fundamental shortcomings of its logical bastsgher-order natural deduction
calculus so far) and we developed therE calculus as an alternative. On top of this new
logical basis, we are building tHeMEGA-CORE system (Hubner, Autexier, Benzmdller, &
Meier, 2004). Case studies are currently carried out tauatalthe anticipated benefits of this
decision. Strong evidence for the anticipated benefit oh#the system comes also from the
empirical data on human-constructed proofs in a tutoriatex as obtained in the DIALOG
project.
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34 Results
3.4.1 Integration of Proof Planning and Agent-Based Theorem Proving (AP1)

Deliberative automated proof planning as realized inuvl (Meier, 2004), which i$2MEGA’s
new multi-strategy proof planner, originated separatebmf pro-active agent-based tech-
niques for interactive theorem proving (as realized in $R&NTS system (Sorge, 2001,
Benzmiller & Sorge, 2000)). Because of the complementgngths and weaknesses of
both approaches, we now started their integration intotgpiictotypical implementation (Pol-
let, Melis, & Meier, 2003; Meier, Melis, & Pollet, 2004): usén standard mode, the proof
planner MULTI makes all decisions at choice points automatically. Wheplieg in the in-
teractive mode however, the user can make these decisidnsoastruct the proof plan in-
teractively with MULTI. This requires detailed knowledge about the underlyingfpptanner
which the user may not always have, soM1 employs now2-ANTS as one of its strategies.
-ANTS agents compute suggestions for possible proof steps, @héctinen presented to the
user for a selection of an appropriate next step. This is g@mawement over the prior inter-
action mode of MUILTI because suggestions are now generated pro-actively By-HeTs
system. This is particularly valuable for interactive grptanning in a tutoring system for
mathematical proofs (see (Melis, 2002; Melis & G. Gogua@63; Melis, 2003)).

Furthermore we have started to unify the basic conceptsrlymlg both approaches. Auto-
mated proof planning and interactive agent-based theoremng used different data struc-
tures (i.e., methods and tactics) to represent the knowlatlgut an inference step as well as
different formalisms (i.e., tasks and foci) to represernt araintain the proof plan under con-
struction. We unified methods and tactics into a common dedatsre, and we defined tasks
as a uniform representation for these new methods. Formasglys and foci were generated
from the actual proof and from annotations of the proof, amdedhod or tactic application
acted on the proof itself. Now, the new task level exists aalmtraction separately from the
proof level and the application of methods acts on tasksjshthey add new tasks or remove
tasks. The task level will serve as a common interface betwaeous proof construction
components of thé)2MEGA-CORE system and support a synergetic interplay of automated
and interactive proof construction (Hubner, Benzmillfartexier, & Meier, 2003). The new
specification of the task level is currently implemented am of the GRE system and it is
now tested in first experiments on interactive proof corcston in the DIALOG project.

The GoRE system (Autexier, 2001, 2003) provides a communicatiorastfucture that me-
diates between the user and the automatic reasoning presediuis based on a new uniform
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meta proof theory for contextual reasoning and encompasessaspects of communication
from the presentation of the proof state and the supply eteglt contextual information about
possible proof continuations to the support for a hieraahproof development. The proof
theory is uniform for a variety of logics and admits the esien to choice-expressions (Wirth,
2002) and human-oriented inductive theorem proving (Wi2004). It exploits proof theo-
retic annotations in formulas for a contextual reasonigteshat is as far as possible intuitive
for the user while at the same time still adequate for autmmaasoning procedures. Fur-
thermore, concepts are defined to accommodate both the ddbeaexplicit representation
of hierarchies that are inherent in problem solving in gaher

3.4.2 Proof Planning (AP2)

This workpackage consists of the following independentspar

M eta-Reasoning and Proof Planning

One of the advantageous features of proof planning is thecex@presentation of control
rules that encode mathematically motivated heuristicdHertraversal of the search space.
With control rules it is not only possible to reason about tuerent goals and the cur-
rent assumptions, but also about the proof planning histad/the proof planning context
(e.g., about the theory within which the problem is statedlmut the collected constraints),
see (Meier, 2004).

Some important features of meta-reasoning iovl are the following:

1. Meta-reasoning is used to analyze failed proof attempdsta use the failure for guid-
ance of backtracking or plan modification. For instance,eadized control rules to guide
case-splits and lemma speculation, two “eureka’-stepsse/inecessity in a proof is dif-
ficult to spot and whose introduction is difficult to guide iargeral. Some theorems in
the limit domain, for instance, require a case split, sucthadollowing theorem, which
states that functiorf is continuous at poin, if it has a derivativef’ at pointa, or more
formally

Theorem:cont(f, a) follows from Assumptionderiv(f,a) = f'.
When tackling this problem, MLTI reduces the theorem to the goAlc.) — f(a)| < .,
which could be solved by derividd%:ﬁ“‘) — f'| < M., from the initial assumptiof.

6c, and M, respectively, denote the skolem constant and the metab¥areplacing the universally and
existentially quantified variablesandy.
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However, in this derivation the conditiga, — a| > 0 has been derived as a new goal and
then MuLTI fails to prove this goal. The partial success, i.e., thetgwiwf the initial
goal, suggests a patch for this proof attempt, introducimgse splifc, — a| > 0V
=(|e, — al > 0) on the failing condition. Then, MLTI has to solvéf(c,) — f(a)| < c.
twice: once withjc, — a| > 0 and once with~(|c, — a| > 0) as an additional condition,
which is now successful.

In general, the failure and its patch follow the pattern: réhie a goal&, which MuULTI
can solve with support nodé&s under conditionsConds which are introduced as new
goals. Now suppose the system fails to prove one of these oalg §; € Conds
This can now be used productively to introduce a case-splihe failing condition, i.e.,
C; vV =(C;, and the main goals is proved twice: once with the hypothesis and once
with the hypothesis:C;. This reasoning pattern is implemented in a strategic obnite
that analyzes failing search branches, guides the bag&ktiggand introduces the above
case split.

With a similar goal, Ireland and Bundy discuss failure asaylIreland & Bundy, 1995;
Ireland, 1992) using the so-calledtics. Critics in the Edinburgh system &M are asso-
ciated with a method and capture patchable exceptions tapplkcation of that method
rather than a general modification of reasoning. This leadsrather ad hoc addition of
“patching code” for specific methods, and for that reason eatized failure reasoning
in the more general formalism of control rules. These arenroessarily associated with
a single method and can analyze the whole plan history, rsbtgoe application of a
method.

While reasoning about failure was abstracted from limitgbeans, the speculation of case
splits is a general meta-reasoning pattern and it is usefther domains, too.

Meta-reasoning queries the constraint sdheproof planning fails to compute an in-

stantiation for a meta-variable. For instance, considectnstraints on the meta-variable

M,: [z — ]

< M, andM, < |c, * c|. These constraints are consistent, but solvable
Ce

ez — €|

only if < |ex * ¢|. In other words, to compute an instantiation, further con-
straints are necessary. The continuation of proof planbyngpllecting more constraints

is realized in a strategic control rule.

Two subgoals are dependent if they share some meta-larkady instance, suppose that
there are two subgoafs andG’ sharing a meta-variabl#,. If M uLTI first closes> and
M, is now constrained to, sayit may fail to solveG’ with . Should the system backtrack

’Constraint solver acts as an external system in proof ptansee (Zimmer & Melis, 2004)).
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G’ in this situation? Not necessarily, because it is also ptesshat backtracking ot/
may lead to another constraint fof,,, for which G’ can be closed.

This meta-reasoning is encoded into control rules thabreabout dependencies between
subgoals (by shared meta-variables) and lead to differktbacking strategies.

Multiple-Strategy Proof Planning

MULTI provides a general framework for the incorporation of hegeneous, parameterized
algorithms for proof plan refinements and modifications.r€utty, the following algorithms
are available in MILTI's implementation:

PPlanner  refines a proof plan by introducing method applications.
InstMeta  refines a proof plan by instantiating meta-variables.
BackTrack  modifies a proof plan by deletion of steps.

Exp refines a proof plan by expanding complex steps.

ATP  refines a proof plan by solving subproblems with approprattomated theorem
provers.

CPlanner refines a proof plan by transferring steps from a source pptanf or proof
fragment.

Instances of these algorithms define (different) stragediechnically, a strategy is a condition-
action pair. The condition part describes when the strate@pplicable. The action part
consists of a modification or refinement algorithm and aramsation of its parameters. Sim-
ilar to the applicability of methods we separate the legal e heuristic knowledge about
the applicability of strategies. The condition part of aattgy states the legal conditions of
applicability, whereas strategic control rules reasoruébite heuristic expected utility of the
application of the strategy.

MULTI was tested in several case studies (see Section 3.4.4) foh we developed new
strategies as well as new strategic meta-reasoning psttékmong others, we developed
strategies for different kinds of backtracking and difféaréorms of meta-variable instantia-
tion.

In some of the strategies employed by, external systems are called to provide addi-
tional functionalities. One of the external systems that mwooperates with proof planning
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is the theory formation system HR (Colton, 2002) (see (Meé@rge, & Colton, 2002)). It
instantiates meta-variables in a similar manner to thahefdonstraint solvefoSZE. HR
was used, for example, for an instantiation strategy in #s&due class case study to prove
non-isomorphism theorems: To prove that two given strestare non-isomorphic it suf-
fices to find an invariant under isomorphism and to show thdiffeers for the two structures.
Finding an invariant for two structures is the key step i girioof and usually involves some
creativity in the problem solving process. HR is used to auatically invent suitable invari-
ants. The instantiation strategy invoking HR introducesitivariant as an instantiation for
the meta-variable. Afterwards, B TI completes a proof plan for a non-isomorphism theorem
by proving that the invariant holds for one structure, whsrg does not hold for the other.
For example, consider the pairwise non-isomorphic quesifgsS®, 52, S* whose respective
multiplication tables are depicted in Figure 1. When corimgathe tables of5! and S?, one
suitable invariant is fairly obvious: whilé! has only0; on the main diagonal, all elements on
the main diagonal of? are distinct. Thus, the properfit. Vy.x = y oy is a suitable invariant
that differs for the two structures! andS?. A discriminating criterion is less obvious for the
multiplication tables of5? and S3. Here, one property of®, which does not hold fof?, is
VeVy.(xox =y) = (yoy = x).

St = (Zs,—) 8% = (Zs, Ay (25%x)+y)  S° = (Zs, Avy. (35%7)+y)
S110s5 15 25 35 45 S2 |05 15 25 35 45 S3105 15 25 35 45
Os [05 45 35 25 1s 05 |05 1s 25 35 45 05 |05 1s 25 35 45
I; |15 05 45 35 25 I5 {25 35 45 05 1s Is |35 45 05 15 25
22 15 05 45 35 25|45 05 15 25 35 25|15 25 35 45 Os
35035 25 15 05 45 35|15 25 35 45 Os 35|45 05 15 25 35
45145 35 25 15 Os 45|35 45 05 15 25 45125 35 45 05 1s

Figure 1. Some quasi-group multiplication tables.

We also developed and appliechaw type of methodSince the expansion of a method is
usually specified by a sequence of tactic applications tcabget out once the proof plan is

completed, we needed a different kind of method, which wectaical methods. For these

methods the expansion is done already within the proof phgnprocess. Critical methods

contain only minor and efficient conditions for their applion and they lead to backtracking
of the whole proof plan, if their expansion fails.
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There are several reasons for the introduction of criticathods. The expansion of methods
is now more robust, because it does not always depend on atlyegpecified sequence of

tactics. Critical methods make proof planning more hidraal, especially the extension

of strategies to new theorems, which contain former simgpleorems as subproblems. The
resulting top-level proof plan becomes shorter. The appba of critical methods distributes

the resources of the proof search to the main problem anddesampler subproblems for later

expansion.

More Abstract Proof Planning

Proof planning aims at an abstract proof object, which wallduccessively refined and ex-
panded until a logic-level proof is reached. However, asaage studies showed, the proof
planning level is still far too much influenced by the undertycalculus (Benzmdiller, Meier,
Melis, Pollet, & Sorge, 2001b). The peculiarities of theurat deduction calculus used in the
QMEGA system, that is, the treatment of hypotheses, and the ofderneard and backward
steps, and the elimination and introduction of quantifiets, are propagated to the planning
level. This conflicts with the conceptual view that the pliagrievel is to represent the reason-
ing of a working mathematician, which may influence the pwifstruction in the underlying
logic formalism but not vice versa.

These restrictions are now overcome ioRE (Autexier, 2003), the new basic reasoning cal-
culus engine we developed.OBE supports reasoning at the assertion-level in a contextual
rewriting proof style and provides a uniform mechanism fa application of assertions that
abstracts from logical details. The calculus @ik now provides the new logic-layer below
the task-layer, which is used for proof planning (see Sa@id.1).

Proof planning methods and strategies operate on statsitiatitare expressed in a uniform
formal logical language. The representation of conceisgiver, is often a key issue in math-
ematical textbooks. There is usually a wide variety of ddfe representations for the same
concept and the choice of a representation is often a keyirstepthematical problem solv-
ing (Kerber & Pollet, 2002a, 2002b). As a first step towardsaeradequate mathematical
vernacular we introduced annotated constants (Pollet §&@003) in order to encode math-
ematical concepts that are difficult to express in formaidoBor instance, a sét, ..., a,}
can be expressed in logic by a lambda term. This representdiowever, results in lengthy
logical lambda expressions that are difficult to analyze aratess. Constants are now an-
notated with special data-structures comprising the nmadtieal information for which the
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constant stands. For example, an annotated constant feetHe, ..., a,} is a constant
annotated with a duplicate-free ordered list containirggdlements of the set. Control rules
and methods access the mathematical content of annotatstants via these data-structures
and operate on these annotations.

Each annotated constant is also associated with its forefalition in QMEGA’s logic lan-
guage (e.g., a lambda expression for sets), and annotatethots are later replaced by their
definition during the expansion of a proof plan. The correstns finally checked by the con-
struction of a logic-level proof including the expanded diions. So far, we have annotated
constants for integers, variable-free finite sets, listg] eycles of permutations. Input and
pretty-printing functions enable a presentation confogrthe standard notation found in a
textbook.

Island Proof Planning

Island Proof Planning was used inter alia in a case study@irtitionality of /2 (Wiedijk,
2003), where it turned out to be crucial (see Section 3.4./mfare information).

Cognitive Adequacy of Proof Planning M ethods

Teaching of mathematics, in particular the teaching of m@tical proof techniques, is usu-
ally implicit in the sense that the student is shown exam(itea textbook or on the board in
the class room). An interesting question is: Would studpatform better if taught explicitly
the tricks of the trade?

The knowledge encapsulated in the proof planning methodspairticular field contains ex-

actly this kind of knowledge. For that and other reasons, aredacted psychological tests
and experiments, involving instructions for simpté proofs, a typical bottleneck in educa-
tion (Melis, Glasmacher, Ullrich, & Gerjets, 2001; Meli)@B). These experiments were
conducted in collaboration with the psychology departna¢i@aarland University. They sug-
gested a statistically significantly improved performaat#e students who were instructed
with proof planning methods instead of learning in a tradial way.
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3.4.3 Agent-based Theorem Proving (AP3)

Encapsulating external reasoning systems, such as spedidigher-order theorem provers,
model generators, and computer algebra systems, into @wasefiagent and exploiting the
2-ANTS blackboard mechanism of tHeMEGA environment was evaluated on several case
studies (Benzmiller, Jamnik, Kerber, & Sorge, 2001). Enchitecture offers a flexible way
to integrate each single external system in the form of aggtore (software) agent with
focus on those parts of the problem it is designed for, witlibe need to specify a priori
a hierarchy of calls. All agents pick up and investigate teetial proof object, given in a
higher-order natural deduction style augmented with smithd facilities abstracted from the
pure calculus. In case they are applicable in the currerdfgrontext, they carry out their
task by calling the external system they encapsulate. lettiernal system succeeds, the
job is done. Otherwise the agent consumes the availablenesand returns control, for
example, to make a bid in terms of a (probably) modified prdgéct. A bid is accepted
and executed by the central system based on heuristiciatisrd the remaining ones are
stored for backtracking purposes. The agent paradigm n@scomes many limitations of
an otherwise static and hard-wired integration. Accesskigrnal systems is orchestrated by
MATHWEB.

The agent approach was also used for the task of finding seikabwledge in a mathemat-
ical database (Benzmdiiller, Meier, & Sorge, 2003). Theitagcture comprises in that case a
(very large) mathematical database specialized in stpragtgeving and administrating the-
orems, definitions, and theories and a theorem proving sy&ie proof construction. The
communication between the two systems is carried out byiagpeediator agents. A first
prototype was implemented with BASE (Franke & Kohlhase, 2000; Franke, 2003) as the
mathematical databas@MEGA as the theorem proving system, and mediators in form of
Q-ANTS agents (Franke, Moschner, & Pollet, 2002)BA&E is a mathematical database for
any kind of mathematical documents based ond®c (Kohlhase, 2000), an extension of the
OPENMATH standard. MBASE provides a query mechanism based on tR&EKM ATH syntax

for terms, but has no predefined semantics, i.e., the chéiteegarticular underlying logic
and its semantics is open to the user to define.

There are currently two kinds of agents which assist theingateractive proof construction:
the first kind of agents searches for applicable theorem&oong equations or equivalences
for possible rewriting-steps, the second kind searchesuable assertion applications, i.e.,

8For instance, bids with closed (sub)goals are preferredpastial results and big steps in the search space
are preferred over calculus level steps.
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theorems, definitions and lemmas involving non-equivadsrand non-equations. Both agents
take the current open line, and transform the formula inteexyjto MBASE. Different queries
are sent in parallel, for example, those whose only the hgaatbgl has to match and those
whose the formula has to match except local constants. T8weaarirom the databaseBASE

is filtered according to certain applicability conditionsfdre the resulting suggestions are
presented to the user.

We proposed a distributed mediator between a theorem greyistem and the mathematical
knowledge bases, which is independent of the particulasfand knowledge representation
formats of the theorem proving system and the mathematitabdses. The mediator module
is again based on a multi-agent system architecture soghabning agents can be assigned
to assertions. These agents, cabedertion agentévo, Benzmdiller, & Autexier, 2003; Vo,
2003), operate in parallel with the theorem proving systathapply a resolution-based algo-
rithm to analyze the logical consequences of the assigresttams for the proof context at
hand. The assertion agents have been developed in the DIAMD®) project. In the con-
text of the DIALOG project, there is an additional motivatjcnamely to support resolution
of under-specification in proof step utterances.

An important advantage of the proposed mediator moduleaisttie whole system, i.e. the
theorem proving system plus the mediator plus the mathealatatabase, may pursue dif-
ferent proving strategies at the same time: While the thegueover, for instance a proof
planner, tries to apply its most promising proving strajegyg. refining the goal of the proof
task, assertion agents might follow other strategies otlatt by their own set of heuristics,
e.g. a forward derivation on the premises or a simplificatifocomplex expression, etc. (Vo,
2004).

3.4.4 CaseStudies (AP4)

Our original case study af- proofs was largely extended beyond the problems from Bled-
soe’s challenges (Bledsoe, 1990). Furthermore we provedtdld conjectures from the
core chapters in the analysis textbook Bartle and Sherb@82) including theorems involv-
ing limit of sequences, limit of functions, continuity ofrfations, and derivative of func-
tions (Meier, 2004). The newly solved problems require rietsoning patterns at the plan-
ning levelandat the strategy level, for instance, failure reasoningsThaise study stimulated
the development of new strategies and generic meta-reagasnidiscussed in Section 3.4.2.

We also extended our case study on the classification of igebtructures. The goal of



Ml 4 — Page 14

Siekmann / Benzmiiller / Meli

this case study is to classify given residue class strust(ire., a set of residue classes and
a binary operatior) in terms of their basic algebraic properties and to clgsié given
residue class with respect to isomorphic structures. Médawe classified about8, 000
structures, including a large set of structures with the&zgt(Meier, Pollet, & Sorge, 2002).
The integration of the automatic theory formation system (d& Section 3.4.2) turned out
to be particularly valuable for the classification of stures into isomorphism classes (Meier,
Pollet, & Sorge, 2001; Meier et al., 2002).

Another case study deals with the verification of the comipariaof the computer algebra
system (CAS) @Gpr (Cohen, Murray, Pollet, & Sorge, 2003). The computationsisted of
eight queries for the membership and the non-membershigefrautation to a group, the
orbit and the stabilizer of a group, and the order of a grougpopposed to another and earlier
approach to the verification of algebraic computations, reithe CAS provides the trace
which is used to create a sequence of tactic applicationd@feKohlhase, & Sorge, 1998),
this new case study points to a more flexible coupling betwleeorem prover and CAS: there
is no need for the tight correspondence between traces aticktan proof planning because
search is used to find a sequence of methods justifying th@atation.

We also participated in Freek Wiedijk’s international cat&ly to prove the irrationality of
V2 (Wiedijk, 2003). This well known theorem was used for a corigam of fifteen (mostly
interactive) theorem proving systems, whose solution efgioblem had to be documented
and submitted to a jury. This case study is particularlyigicant as it represents an important
shift of emphasis in the field of automated deduction awamftibe somehow artificial prob-
lems of the past (e.g. the TPTP contest) back to real matheahehallenges. In (Siekmann
et al., 2003) we show three different solutions of the prnotbieth QMEGA.

The first solution is based on the most elementary usemtGA, namely as a traditional
tactical theorem prover, where the proof is constructeerautively by the application of our
existing tactics, just as in saydd (?) or ISABELLE (Paulson & Nipkow, 1990).

The second solution is still interactive, but it is based sland proof planning, where the
user states the main proof islands, i.e., he freely stateprbof sketch without reference to
pre-defined tactics. TheMEGA proves the gaps between the islands, involving a computer
algebra system (MPLE) and two traditional automated theorem provers, nameatyeE® and
Spass The final result is a verified calculus-level proof startirgm the proof sketch of the
user. The island proof planning idea has stimulated theldpreent of the task interface for
proof planning and theorem proving (see (Hubner et al.4200
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The third solution is fully automated with WL.TI. To achieve this, we implemented special
but still generic methods and control rules that simulagectieative steps of the user. Because
of the general concepts, BATI can not only prove the irrationality of/2, but also other
v/l1-problems for natural numbegsand!.

Further experiments and case studies are:

e An evaluation of the learning of control knowledge is ddsed in (Jamnik, Kerber, Pol-
let, & Benzmuiller, 2003; Jamnik, Kerber, & Pollet, 2002sg¢ also Section 3.4.5.

e Examples for agent-based reasoning with external reag@yisiems are presented and
discussed in (Benzmiller et al., 2001).

e Assertion application in naive set theory with tfi@EGA-CORE system is described in
(Vo etal., 2003; Vo, 2003) and (Vo, 2004); this work has besmied out in collaboration
with the DIALOG project.

e Diagonalization proofs (Cheikhrouhou, 1997; CheikhrauBoSiekmann, 1998).

3.4.5 Learning of Control Knowledge (AP5)

Learning of control knowledge amounts to learning the skafihow to prove a new theorem
given several related proofs (and possibly failed pro@rafits). The possible sources for this
knowledge are contained in previous proof plans, in the fofthe formulas in the proof, the
concepts within these formulas, the applied methods, theér@orules, the history and time
span of the proof search, and the probability distributmnfihding a proof. Hence the items
to learn from are complex objects and comparing differeabpplans is even more complex.
One of our approaches focused on learning sequences of dnagpipdications.

Figure 2 shows the structure of this approach: first, the basrto choose “typical” exam-
ples of proof plans. The proof plans are then abstractedpalydthe sequences of method
specifiers remain. A generalization of the sequences igedewhich is a pattern of all the
input sequences in a language containing operators famsigpn, branching points, arbitrary
number of repetitions, and also a fixed number of repetitafrsequences of methods.

The system, which is calledHARNQMATIC, was evaluated in three domains: group theory,
set theory, and residue classes. The results corroboesiateld methods can make the search
for a proof plan more directed, that is, less methods aredesir applicability if the new
methods are preferred. In group theory, it was possibledegtheorems which could not be
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Figure 2. Approach to learning control knowledge for pro@thods

proved without the learned methods. The length of the praafs shorter with the learned
methods in all domains. The work was reported in (Jamnik.e2803, 2002a) and a system
description was given in (Jamnik, Kerber, & Pollet, 2002b).

Another approach (Meier, Gomes, & Melis, 2001) focused onomization and restart tech-
niques for learning strategic control rules. These tealscare truly resource-adaptive ones,
where the resource considered is time. The mathematicaladtaackground of randomiza-
tion and restart makes it a methodologically sound methat ths been applied for other
Al-problems as well, but has not yet been used for learnimgrobrules.

3.4.6 Thelnfrastructure of OMEGA (AP6)

To enhance the communication GMEGA with other systems by a standardized format, an
XML-RPC protocol interface was added®EGA. The protocol is also used for the commu-
nication with the ALTIVEMATH tutoring system in proof exercises and for the communica-
tion with the mathematical knowledge basesME. Communication with all other external
systems is based on theAVHWEB Software Bus that has been improved in several ways.
MATHWEB-SB is now based on a dynamic network of brokers that reg{stsp. unregis-
ter from) each other (Zimmer & Kohlhase, 2002). This drasdlycincreased scalability and
availability of the MATHWEB-SB and, therefore, deMEGA with sometimes several thousand
theorems or small lemmas proved each day by external userdheInternet. Furthermore,
we integrated new reasoning systems intaTMWEB-SB which are thus available also to
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QMEGA: The theory formation system HR supports the instantiatibthe meta-variables
in QMEGA (Colton, 2002), the tptp2X utility supports a uniform ingatmat for automated
theorem provers (ATPs) which are employed(imEGA. All ATPs now return one of 22
well-defined states which unambiguously describe the psovesults.

The mathematical services available viatiWEB-SB are:

e Proof assistant$2MEGA, CORE, Pvs.
e Mathematical database: BASE.
e Theory formation system: HR.

e Constraint solverCoSZE.

e Proof explanation systen®.rex an external system developed by the OMEGA group (Fiedler,

2001).
e Generalization module of FARNSIMATIC.
e Proof planners: MLTI, A\CIAM.
e Computer algebra systems:A¥LE, GAP, COCOA, MAGMA.
e Automated higher-order theorem prover®sILEO.
e Automated first-order theorem provers.iIBSEM, OTTER, PROTEIN, SPASS VAMPIRE.
e Automated equational provers: EQE, WALDMEISTER.
e Model generators/checkerse®, FINDER, MACE, SATCHMO.
e Proof transformation system:REMP.

e Translators for mDoc and TPTP.

Further related work: The completeness of the higher-order natural deductioculted,

which is employed within the proof planner of thEGA system, has been proved by Benzmdiller,

Brown, and Kohlhase (2004).

3.5 Comparison With Research Outside of the Collabor ative Resear ch
Center

The OMEGA group has become a leading force in the field of nma#ttieal assistance sys-
tems, as evidenced inter alia by its role as coordinator ®&b research training network
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CALCULEMUS-I (Benzmiller, 2003b, 2003a), as coordinator of the fagdoroposal for a
successor network ALCULEMUS-II, as the main organizer of theALCULEMUS Autumn
School in Pisa in 2002, as organizer of two workshops at ttexriational Joint Conference
on Automated Reasoning (IJCAR 2004), as a driving force ea@merging Mathematical
Knowledge Management community, and by its many internatioesearch collaborations,
the most important ones are:

With joint publications:  Deutsches Forschungszentrum fiir Kiinstliche IntelligédFKI), Germany; De-
partment of Computer Science, Yale University, USA (Saméimn); Department of Mathematics, Carnegie
Mellon University, Pittsburgh, USA (Brown); Departmentloformatics, The University of Edinburgh,
UK (Dennis, Bundy); RIACA, Eindhoven Technical UniversiBindhoven, Netherlands (Cohen); Depart-
ment of Computer Science, The University of Birmingham, WKeiber, Sorge); Computer Laboratory
of the University of Cambridge, Cambridge, UK (Jamnik)gmtational University of Bremen, Germany
(Kohlhase); Department of Informatics, University of Kaislautern, Germany (Avenhaus, Madlener);
Department of Computer Science, Technical University MhnGermany (Schulz); Department of Com-
puter Science, University of Miami, USA (Sutcliff); Deparént of Computing, Imperial College London,
UK (Colton).

With joint funding, but no publicationsso far:  Institut fur Informatik, Universitat Potsdam, Germahyr¢-
itz); Uniwersytet w Bialymstoku, Bialystok, Poland (Trylba); Universita degli Studi di Genova, Genova,
Italy (Armando); Department of Computer Science, Uniwgrsf Karlsruhe, Germany (Calmet); Research
Institute for Symbolic Computation, Linz, Austria (Buchiber); Instituto per la Ricerca Scientifica e Tec-
nologica, Trento, Italy (Giunchiglia).

The collaboration with the University of Birmingham (M. Kmr and V. Sorge, who also
employQ2MEGA), and with the University of Edinburgh (A. Bundy et. al., yteollaborate in
the development of MTHWEB), has been particularly fruitful. Under the leadershiptad t
International University of Bremen (M. Kohlhase) our grazgntributed to the development
of MBASE and QuDoc, and a joint workshop serigsiith RISC Linz has been set up.

The international recognition of the group’s achievemésntiso reflected in the recent ap-
pointment of M. Kohlhase as full professor at the InternaioUniversity Bremen, Volker
Sorge’s appointment as a lecturer at the University in Bagham, the invited talks at highly
recognized international workshops and conferences arlkdeogumber of high quality pub-
lications in international journals and international fmences (Siekmann et al., 2003, 2002;
Kerber & Pollet, 2002a; Jamnik et al., 2002b, 2002a; Meiel e2002; Hubner et al., 2004;
Vo, 2004; Vo et al., 2003; Wirth, 2002; Melis et al., 2001, 20@enzmiller et al., 2004,
Benzmiller, 2002; Meier et al., 2001; Zimmer & Melis, 2004)

Cooperations within the Collaborative Research Centdud®

e DIALOG (Ml 4): empirical data in DIALOG are fertilizing theuwrrent redevelopment of

Shttp://www.ags.uni-sb.de/"omega/workshops/TheoremaO mega03/



Ml 4 — Page 19

Siekmann / Benzmiiller / Melis

QMEGA on top of @RE and vice versa the capabilities and features oftkieGA/CORE
environment are a crucial factor for the DIALOG system.

e NEP (MI7): Constraint solving and the general computatiomadel.

3.6 Open Issues

Not applicable
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