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Abstract

In this paper we present a framework for automated learning within

mathematical reasoning systems. In particular, this framework enables

proof planning systems to automatically learn new proof methods from well

chosen examples of proofs which use a similar reasoning pattern to prove

related theorems. Our framework consists of a representation formalism

for methods and a machine learning technique which can learn methods

using this representation formalism. We present the implementation of this

framework within the 
mega proof planning system { we call our system

Learn
matic, and some experiments we ran on this implementation to

evaluate the validity of our approach.

Keywords: automated reasoning, theorem proving, proof planning, knowledge
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1 Introduction

Proof planning [Bun88] is an approach to theorem proving which uses so-called
proof methods rather than low level logical inference rules to �nd a proof of a
theorem at hand. A proof method speci�es a general reasoning pattern that can
be used in a proof, and typically expands to a number of individual inference rules.
For example, an induction strategy can be encoded as a proof method. Proof
planners search for a proof plan of a theorem which consists of applications of
several methods. An object level logical proof may be generated from a successful
proof plan. Proof planning is a powerful technique because it often dramatically
reduces the search space, since the search is done on the level of abstract methods
rather than on the level of several inference rules that make up a method [Bun00,
MS99]. The advantage is that search with methods can be much better structured
according to the particular requirements of mathematical domains.

Proof planning also allows reuse of the same proof methods for di�erent proofs,
and moreover generates proofs where the reasoning patterns of proofs are trans-
parent, so they may have an intuitive appeal to a human mathematician. Indeed,
the communication of proofs amongst mathematicians can be viewed to be on
the level of proof plans.

One of the ways to extend the power of a proof planning system is to enlarge
the set of available proof methods. This is particularly bene�cial when a class of
theorems can be proved in a similar way, hence a new proof method can encap-
sulate the general reasoning pattern of a proof for such theorems. A diÆculty in
applying a proof pattern to many domains is that in the current proof planning
systems new methods have to be implemented and added by the developer of
a system. The development and encoding of proof methods by hand, however,
is a laborious task. In this work, we show how a system can learn new meth-
ods automatically given a number of well chosen examples of related proofs of
theorems. This is a signi�cant improvement, since examples (e.g., in the form
of classroom example proofs) exist typically in abundance, while the extraction
of methods from these examples can be considered as a major bottleneck of the
proof planning methodology. In this paper we therefore present a hybrid proof
planning system Learn
matic [JKP02b], which uses the existing proof plan-
ner 
mega [BCF+97], and combines it with our own machine learning system
[JKP02a]. This enhances the 
mega system with an automatic capability to
learn new proof methods.

Automatic learning by reasoning systems is a diÆcult and ambitious problem.
Our work demonstrates one way of starting to address this problem, and by doing
so, it presents several contributions to the �eld.

� First, although machine learning techniques have been around for a while,
they have been relatively little used in reasoning systems. Making a reason-
ing system learn proving patterns from examples, much like students learn
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to solve problems from examples demonstrated to them by the teacher, is
hard. Our work makes an important step in a specialised domain towards
a proof planning system that can reason and learn.

� Second, proof methods have complex structures, and are hence very hard
to learn by the existing machine learning techniques. We approach this
problem by abstracting as much information from the proof method repre-
sentation as needed, so that the machine learning techniques can tackle it.
Later, after the reasoning pattern is learnt, the abstracted information is
restored as much as possible.

� Third, unlike in some of the existing related work, we are not aiming
to improve ways of directing proof search within a �xed set of primi-
tives [FF98, Sch00] or to patch failed proof plans [Ire92]. In theorem proving
systems these primitives are typically inference steps or tactics, and in proof
planning systems these primitives are typically proof methods. Rather, we
aim to learn the primitives themselves, and to investigate whether this im-
proves the framework and reduces the search space within the proof plan-
ning environment. Instead of searching amongst numerous low level proof
methods, a proof planner can now search with a newly learnt proof method
which encapsulates several of these low level primitive methods.

Sequences of

Examples Proofs of other

New compound

Common rep. of all

method specifiers

theorems

method

examples − method outlines

abstract
apply

learn method
full

create

method     language
extend

of proofs

Figure 1: Approach to learning proof methods.

Fig. 1 gives a structure of our approach to learning proof methods, and hence
an outline of the rest of this paper. In Section 2 we examine what needs to be
learnt and give some examples of proofs that use a similar reasoning pattern.
Then, in Section 3, we present the entire learning process. First, in Section 3.1,
we simplify the method representation to ease the learning task. Second, we
present our machine learning algorithm in Section 3.2. Third, in Section 3.3 we
revisit our method representation and enrich it so that the newly learnt methods
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can be used in the 
mega proof planner for proofs of other theorems. In order to
assess the success of our approach, we go on in Section 4 to present some results
of the evaluation tests that we ran on Learn
matic. Finally, we relate our
work to that of others in Section 5, and conclude with some future directions in
Section 6.

2 Motivation with Examples

A proof method in proof planning basically consists of a triple { preconditions,
postconditions and a tactic. A tactic is a program which given that the precondi-
tions are satis�ed transforms an expression representing a subgoal in a way that
the postconditions are satis�ed by the transformed subgoal. If no method on an
appropriate level is available in a given planning state, then a number of lower
level methods (with inference rules corresponding to the lowest level methods)
have to be applied in order to prove a given theorem. It often happens that a
pattern of lower level methods is applied time and time again in proofs of di�er-
ent problems. In this case it is sensible and useful to encapsulate this reasoning
pattern in a new proof method. Such a higher level proof method based on lower
level methods can either be implemented and added to the system by the user
or the developer of the system. However, this is a very knowledge intensive task
and hence, presents a diÆculty in applying a proof strategy to many domains.
Hence, we present an alternative, namely a framework in which these methods
can be learnt by the system automatically.

The idea is that the system starts with learning simple proof methods. As the
database of available proof methods grows, the system can learn more complex
proof methods. Inference rules can be treated as methods by assigning to them
pre- and postconditions. Thus, from the learning perspective we can have a
uni�ed view of inference rules and methods as given sequences of primitives from
which the system is learning a pattern. We will refer to all the existing methods
available for the construction of proofs as primitive methods. As new methods
are learnt from primitive methods, these too become primitive methods from
which yet more new methods can be learnt. Clearly, there is a trade-o� between
the increased search space due to a larger number of methods, and increasingly
better directed search possibilities for subproofs covered by the learnt methods.
Namely, on the one hand, if there are more methods, then the search space is
potentially larger. On the other hand, the organisation of a planning search space
can be arranged so that the newly learnt, more complex methods are searched
with �rst. If a learnt method is found to be applicable, then instead of a number
of planning steps (that correspond to the lower level methods encapsulated by
the learnt method), a proof planner needs to make one step only. On the other
hand, if a learnt method is applicable only seldom, then this may have negative
e�ects on some performance criteria of the system (e.g., run time behaviour),
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but may not a�ect others (e.g., even in the worst case, when a learnt method
is not applicable, the length of the generated proof plan does not increase, but
remains unchanged). Generally, proof plans consisting of higher level methods
will be shorter than their corresponding plans that consist of lower level methods.
Hence, the search for a complete proof plan can be expected to be performed
in a shallower, but also bushier search space. In order to measure this trade-o�
between the increased search space and better directed search, an empirical study
is carried out in Section 4. However, shorter proofs have a general advantage,
since they are better suited for a user-adaptive presentation. We discuss this in
Section 4.5.

We demonstrate our ideas with examples that we used to develop and test
Learn
matic. Most of the example conjectures can be automatically planned
for in 
mega with the Multi proof planner [MM00]. Throughout this paper,
we give a general account of the framework exempli�ed with the existing imple-
mentation. Although some of our examples are trivial and can be proved by the
existing proof planning systems, they demonstrate our approach. We remind the
reader that our main motivation is not to prove more theorems using the existing
machine-oriented reasoners, but to enable proof planners to prove theorems using
more human-oriented proof methods. That is, the methods that Learn
matic
learns are on a higher level than the existing ones. Hence, the proofs constructed
using them are not overwhelmed with unintuitive low-level proof steps, and can
be argued to be more intuitive.

2.1 Group theory examples

The proofs of our �rst set of examples consist of simplifying an expression using a
number of primitive simpli�cation methods such as both (left and right) axioms
of identity, both axioms of inverse, and the axioms of associativity (where e is the
identity element, i is the inverse function, and LHS ) RHS stands for rewriting
LHS to RHS).

(X Æ Y ) Æ Z ) X Æ (Y Æ Z) (assoc-r)

X Æ (Y Æ Z) ) (X Æ Y ) Æ Z (assoc-l)

e ÆX ) X (id-l)

X Æ e ) X (id-r)

X ÆX i ) e (inv-r)

X i ÆX ) e (inv-l)

Here are two examples of proof steps which simplify given expressions and the
inferences that are used:
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a Æ ((ai Æ c) Æ b)

+ (assoc-l)

(a Æ (ai Æ c)) Æ b

+ (assoc-l)

((a Æ ai) Æ c) Æ b

+ (inv-r)

(e Æ c) Æ b

+ (id-l)

c Æ b

ai Æ (a Æ b)

+ (assoc-l)

(ai Æ a) Æ b

+ (inv-l)

e Æ b

+ (id-l)

b

Other examples include proofs for theorems such as (a Æ (((ai Æ b)Æ (cÆd)) Æ f)) =
(b Æ (c Æ d)) Æ f . All of these three examples can be summarised in the following
proof traces which are lists of method identi�ers:

1. [assoc-l; assoc-l; inv-r; id-l ],

2. [assoc-l; inv-l; id-l ],

3. [assoc-l; assoc-l; assoc-l; inv-r; id-l ].

It is clear that all three examples have a similar structure which could be
captured in a new simpli�cation method. Informally, one application of such a
simpli�cation method could be described as follows:

Precondition: There are subterms in the initial term that are inverses of each
other, and that are not separated by other subterms, but only by brackets.

Tactic:

1. Apply associativity (assoc-l) for as many times as necessary (includ-
ing 0 times) to bring the subterms which are inverses of each other
together, and then

2. apply inverse inference rule (inv-r) or (inv-l) to reduce the expression,
and then

3. apply the identity inference rule (id-l).

Postcondition: The initial term is reduced, i.e., it consists of fewer subterms.

Note that this is not the most general simpli�cation method, because it does not
use methods such as (assoc-r) and (id-r), but it is the one that is the least general
generalisation of the given examples above. Note also that the application of this
method may fail if the precondition is not strong enough. For instance, two terms
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may have to be brought together by the application of the (assoc-r) rule, which
is not covered by the learnt method, since no example of this type has been
provided. Also, should we want our system to learn a recursive application of
this simpli�cation method, then this can be achieved in another round of learning
with suitable examples and methods. Alternatively, our set of initial examples
that the system is learning from needs to include proofs of theorems such as
(c Æ (b Æ (ai Æ (a Æ bi)))) Æ (((d Æ a) Æ ai) Æ f) = c Æ (d Æ f) which applies the above
described simpli�cation method three times.

2.2 Residue classes conjectures

There is a large class of residue class theorems in group theory that can be proved
using the same pattern of reasoning. Their use is well documented in [MS01].
Here are examples of three residue class theorems (where ZZi is the residue class
of integers modulo i, and the lambda expression is the operation over this set):

1. commutative-under(ZZ2; (�x; y (x�+y)))

2. associative-under(ZZ3; (�x; y (x��y)))

3. commutative-under(ZZ3; (�x; y (x�+y)))

The pattern of reasoning to prove them is as follows. First, the de�nitions (e.g.,
commutative-under, associative-under,) are expanded (defn-exp), and quanti�ers
eliminated (8i-sort). Then, all of the statements on residue classes are rewritten
into corresponding statements on integers by transferring the residue class set
into a set of corresponding integers (convert-resclass-to-num). Then, the proofs
diverge: if the statements are universally quanti�ed, then an exhaustive case anal-
ysis over all elements of the set is carried out (using a combination of elimination
of disjuncts (or-e-rec), simpli�cation (simp-num-exp), and reexivity (reex)). If
the statements are existentially quanti�ed, then all elements of the set are ex-
amined until one is found for which the statements hold (using a combination
of disjunction introduction from left or right (ori-r, ori-l), simpli�cation and re-
exivity; see choose method on page 14). Note that the three example theorems
above are all universally quanti�ed, but the set of theorems used in the evaluation
tests (see Section 4) contains the existentially quanti�ed theorems as well.

The proof trace for the above three theorems consist of a list of method
identi�ers used in the proof plans:

1. [defn-exp, 8i-sort, 8i-sort, convert-resclass-to-num, or-e-rec, simp-num-exp,
simp-num-exp, simp-num-exp, simp-num-exp, reex, reex, reex, reex]

2. [defn-exp, 8i-sort, 8i-sort, 8i-sort, convert-resclass-to-num, or-e-rec, simp-
num-exp, simp-num-exp, simp-num-exp, simp-num-exp, simp-num-exp, simp-
num-exp, simp-num-exp, simp-num-exp, simp-num-exp, simp-num-exp, simp-
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num-exp, simp-num-exp, simp-num-exp, simp-num-exp, simp-num-exp, simp-
num-exp, simp-num-exp, simp-num-exp, simp-num-exp, simp-num-exp, simp-
num-exp, simp-num-exp, simp-num-exp, simp-num-exp, simp-num-exp, simp-
num-exp, simp-num-exp, reex, : : : , reex]

3. [defn-exp, 8i-sort, 8i-sort, convert-resclass-to-num, defn-exp, or-e-rec, simp-
num-exp, simp-num-exp, simp-num-exp, simp-num-exp, simp-num-exp, simp-
num-exp, simp-num-exp, simp-num-exp, simp-num-exp, reex, reex, re-
ex, reex, reex, reex, reex, reex, reex]

2.3 Set theory conjectures

Another problem domain that we experimented with includes some theorems and
non-theorems from set theory:

1. 8x; y; z ((x [ y) \ z) = (x \ z) [ (y \ z)

2. 8x; y; z (x [ y) \ z) = (x [ z) \ (y [ z)

3. 8x; y; z ((x \ y) \ z) = (xn(y [ z))

Although these problems are not very hard for automated theorem provers if a
suitable representation is chosen, they may be hard to prove or disprove for exist-
ing automated theorem provers if attempted in a naive way. Their proofs consist
of eliminating (introducing, in backwards reasoning) the universal quanti�ers
(8i), then applying set extensionality (set-ex) and de�nition expansions (defni)
in order to get propositional or �rst order clauses (i.e., transforming statements
about sets to statement about elements of sets), and then proving (with the
Otter theorem prover, atp-otter) or disproving (with the Satchmo model gener-
ator, counterex-satchmo) these clauses. Here are the abstracted lists of method
identi�ers that describe these proofs:

1. [8i; 8i; 8i; set-ext; 8i; defni; defni; atp-otter]

2. [8i; 8i; 8i; set-ext; 8i; defni; defni; counterex-satchmo]

3. [8i; 8i; 8i; set-ext; 8i; defni; defni; defni; counterex-satchmo]

3 Learning

The representation of a problem is of crucial importance for the ability to solve
it { a good representation of a problem often renders the search for its solution
easy [P�45]. The diÆculty is in �nding a good representation. Our problem is to
devise a mechanism for learning methods. Hence, the representation of a method
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is important and should make the learning process easy enough that we can learn
useful information.

We start by presenting in Section 3.1 a simple representation formalism which
abstracts away some detailed information in order to ease the learning process.
Then, in Section 3.2 we describe the learning algorithm. Finally, we show in
Section 3.3 how the necessary information is restored as much as possible so that
the proof planner can use the newly learnt method. Some information may be
irrecoverably lost. In this case, extra search in the application of the newly learnt
methods will typically be necessary.

3.1 Method outline representation

The methods we aim to learn are complex and are beyond the complexity that can
typically be tackled in the �eld of machine learning. Therefore, we �rst simplify
the problem and aim to learn the so-called method outlines, and second, we
reconstruct the full information as far as possible. Method outlines are expressed
in the language that we describe here.

Let us de�ne the following language L, where P is a set of known identi�ers
of primitive methods used in a method that is being learnt:

� for any p 2 P , let p 2 L,

� for any l1; l2 2 L, let [l1; l2] 2 L,

� for any l1; l2 2 L, let [l1jl2] 2 L,

� for any l 2 L, let l� 2 L,

� for any l 2 L and n 2 N , let ln 2 L,

� for list = (l1; : : : ; lk) such that li 2 L and 1 < i � k, let T (list) 2 L.

\[" and \]" are auxiliary symbols used to separate subexpressions, \," denotes
a sequence, \j" denotes a disjunction, \�" denotes a repetition of a subexpres-
sion any number of times (including 0), n a �xed number of times, and T is
a constructor for a branching point (list is a list of branches), i.e., for proofs
which are not sequences but branch into a tree.1 Let the set of primitives P

be fassoc-l; assoc-r; inv-l; inv-r; id-l; id-rg. Using this language, the tactic of our

1Note the di�erence between the disjunction and the tree constructors: for disjunction the
proofs covered by the method outline consist of applying either the left or the right disjunct.
However, with the tree constructor every proof branches at that particular node to all the
branches in the list.
Note also, that there is no need for an empty primitive as it can be encoded with the use of

existing language. E.g., let � be an empty primitive and we want to express [a; b; [�jc]; d]. Then
an equivalent representation without the empty primitive is [a; [bj[b; c]]; d]. We avoid using the
empty primitive as it introduces a large number of unwanted generalisation possibilities.
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simpli�cation method described by the three group theory examples above can
be expressed as:

simplify �
�
assoc-l �; [inv-rjinv-l ]; id-l

�
:

We refer to expressions in language L which describe compound methods as
method outlines. simplify is a typical method outline that we aim our system to
learn automatically.

3.2 Machine learning algorithm

Method outlines are abstract methods which have a simple representation that
is amenable to learning. We now present an algorithm which can learn method
outlines from a set of well chosen examples. The algorithm is based on least gen-
eral generalisation [Plo69, Plo71], and on the generalisation of the simultaneous
compression of well chosen examples.

As with compression algorithms in general, we have to compromise the ex-
pressive power of the language used for compression with the time and space
eÆciency of the compression process. Optimal compression { in the sense of Kol-
mogorov complexity { can be achieved by using a Turing-complete programming
language. This is, however, not computable in general, that is, there is no algo-
rithm which �nds the shortest program to represent any particular string. As a
compromise we selected regular expressions with explicit exponents and branch-
ing points, which seem to o�er a framework that is on the one hand, general
enough for our purpose, and on the other hand, (augmented with appropriate
heuristics) suÆciently eÆcient.2

There are some disadvantages to our technique, mostly related to the run
time speed of the algorithm relative to the length of the examples considered for
learning. The algorithm can deal with relatively small examples in an optimal
way (see Section 3.2.1).

Our learning technique considers some number of positive examples which are
represented in terms of lists of identi�ers for primitive methods, and generalises
them so that the learnt pattern is in language L. The pattern is of smallest size
with respect to this de�ned measure of size, which essentially counts the number
of primitives in an expression (where l1; l2; p 2 L, p 2 P , n 2 N for some �nite n,

2Our chosen language L (see Section 3.1) cannot express all method outlines. For example,
we cannot express an outline that a method m1 (e.g., de�nition unfolding) should be applied
as often as possible, then a di�erent method m2 should be applied, and �nally a third method
m3 (e.g., de�nition folding) should be applied exactly as often as the �rst method m1. In our
language we would have to overgeneralise this to [m�

1
;m2;m

�

3
] (unless we know the number of

method applications explicitly and this stays the same in all example proofs).
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len is length of a list function, and list is a list of expressions from L).

size([l1; l2]) = size(l1) + size(l2)

size([l1jl2]) = size(l1) + size(l2)

size(T (list)) =
Plen(list)

i=1 size(li) where li2 list

size(ln1 ) = size(l1)

size(p) = 1

size(l�1) = size(l1)

This is a heuristic measure of size and the intuition for it is that a good gener-
alisation is one that reduces the sequences of method identi�ers to the smallest
number of primitives (e.g., [a2] is better than [a; a]).

The pattern is also most speci�c (or equivalently, least general) with respect
to the de�nition of speci�city spec which is measured in terms of the number of
nesting for each part of the generalisation.

spec([l1; l2]) = 1 + spec(l1) + spec(l2)

spec([l1jl2]) = 1 + spec(l1) + spec(l2)

spec(T (list)) = 1 +
Plen(list)

i=1 spec(li) where li2 list

spec(ln1 ) = 1 + spec(l1)

spec(p) = 0

spec(l�1) = 1 + spec(l1)

Again, this is a heuristic measure. The intuition for this measure is that we give
nested generalisations a priority since they are more speci�c and hence less likely
to over-generalise.

In our experiments, we take both, the size �rst (choose smallest size), and
the speci�city second (choose highest speci�city) in account when choosing the
generalisation. If the generalisations considered have the same rating according
to the two measures, then we return all of them. For example, consider two
possible generalisations: [[a2]�] and [a�]. According to size, size([[a2]�]) = 1 and
size([a�]) = 1. However, according to speci�city, spec([[a2]�]) = 2 and spec([a�]) =
1. Hence, the algorithm chooses [[a2]�].

Note that there are other ways of selecting a generalisation and �nd a di�er-
ent compromise between size (keeping learnt expressions small) and speci�city
(keeping learnt expressions close to the examples). For example, one could vary
the value of the following formula � � size(li) + (1 � �) � spec(li) by changing the
value of � in order to select a suitable generalisation li. The value of � could
depend on the degree to which the generalisation should be concise and gen-
eral/speci�c (e.g., sometimes it may be bene�cial to overgeneralise). Moreover,
there are other possible heuristic measures to select a generalisation. We de�ned
and chose size and speci�city that are suitable measures in our problem domains
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and with our set of theorems. In the range between speci�city and generality,
we tend to (slightly) overgeneralise, but the test results in Section 4 demonstrate
that our choice is a suitable one.

Here is the learning algorithm. Given some number of examples ei (e.g.,
e1 = [a; a; a; a; b; c] and e2 = [a; a; a; b; c]):

1. For every example ei, split it into sublists of all possible lengths plus the
rest of the list. We get a list of pattern lists pli, each of which contains
patterns pi.

3 E.g.:

� for e1: f[[a]; [a]; [a]; [a]; [b]; [c]], [[a; a]; [a; a]; [b; c]], [[a]; [a; a], [a; b], [c]],
[[a; a; a], [a; b; c]], [[a]; [a; a; a], [b; c]]; : : : g

� for e2: f[[a]; [a]; [a]; [b]; [c]], [[a; a]; [a; b]; [c]], [[a], [a; a], [b; c]], [[a; a; a],
[b; c]], [[a], [a; a; b]; [c]]; : : : g

2. If there is any branching in the examples, then recursively repeat this al-
gorithm on every element of the list of branches.

3. For every example ei and for every pattern list pli �nd sequential repetitions
of the same patterns pi in the same example. Using an exponent denoting
the number of repetitions, compress them into pci and hence plci . E.g.:

� plc1 = f[[a]4; [b]; [c]]; [[[a; a]2]; [b; c]]; : : : g

� plc2 = f[[a]3; [b]; [c]]; [[a]; [a; a]; [b; c]]; : : : g

4. For every compressed pattern pci 2 plci of every example ei, compare it with
pcj in all other examples ej, and �nd matchingmk with the same constituent
pattern, which may occur a di�erent number of times. E.g.:

� m1 = (plc11 ; pl
c1
2 ) due to [a]

4 and [a]3

� m2 = (plc21 ; pl
c2
2 ), due to [b; c] and [b; c], etc.

5. If there are no matchesmk in the previous step, then generalise the examples
by joining them disjunctively using the \j" constructor.

6. For every pci in a matching, generalise di�erent exponents to a \�" con-
structor, and the same exponents n to a constant n, and hence obtain pg.
E.g.:4

� for m1: [a]
4 and [a]3 are generalised to pg = [a]�

3Notice that there are n mod m ways of splitting an example of length n into di�erent
sublists of length m. Namely, the sublists of length m can start in positions 1; 2; : : : ; n mod m.

4Notice that here is a point where our generalisation technique can over-generalise. For
instance, when there is a pattern in the exponents, e.g., all exponents are prime numbers, then
this is ignored and just a � is selected.
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� for m2: [b; c] and [b; c] are generalised to pg = [b; c]

7. For every pg of a match, transform the rest of the pattern list on the left
and on the right of pg back to the example list, and recursively repeat the
algorithm on them. E.g.:

� for m1 in e1: LHS= [ ], pg = [a]�, repeat on RHS=[b; c]

� for m1 in e2: LHS= [ ], pg = [a]�, repeat on RHS=[b; c]

� for m2 in e1: repeat on LHS= [a; a; a; a], pg = [b; c], RHS= [ ]

� for m2 in e2: repeat on LHS= [a; a; a], pg = [b; c], RHS= [ ].

8. If there are more than one generalisations remaining at the end of the re-
cursive steps, then pick the ones with the smallest size and among these
the ones with the largest speci�city. Else, the examples cannot be gener-
alised. E.g.: for the examples above, not applicable yet; after the algorithm
is repeated on the rest of our examples, the learnt method outline will be
[[a]�; [b; c]].

The learning algorithm is implemented in SML. Its inputs are the sequences
of methods identi�ers from proofs that were constructed in 
mega. Its output
are method outlines which are passed back to 
mega. The algorithm was tested
on several examples of proofs and it successfully produced the required method
outlines. In particular, for the examples above:

� Group theory:

simplify �
�
assoc-l �; [inv-rjinv-l ]; id-l

�
:

� Residue classes:

tryanderror �
�
defn-exp; [8i-sort]

�; convert-resclass-to-num;

[[or-e-rec]j[defn-exp, or-e-rec]]; simp-num-exp�; reex�
�

� Set theory:

learnt-set �
�
[8i]

3; set-ext; 8i; defni
�; [atp-otterjcounterex-satchmo]

�

As mentioned before, the method outline simplify for the group theory ex-
amples is not the most general one, as the examples that it was learnt from did
not contain the use of the right identity method, for example. Furthermore, it
is only a single application of simpli�cation. However, we tested our learning
algorithm also on examples that use this single simplify method several times.
As expected, the learning mechanism learnt a method outline which is a recursive
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application of simplify, namely rec-simplify = simplify�. We also tested the learn-
ing mechanism on examples that use methods such as right identity and right
associativity, and altogether learnt �ve new method outlines, some of which are
recursive applications of others.

In the domain of residue classes, the learning mechanism also learnt another
method outline called choose. When fully eshed into an 
mega method (see
Section 3.3), this method proves a subpart of proofs for theorems of residue
classes. Namely, given a theorem with an existential quanti�er, statements on
integers are combined using a disjunction in a particular normal form (from the
right side). Then, each disjunct has to be checked until one is found that is true
for the statement. Hence, the method choose starts inspecting the right disjuncts
until either the right (ori-r) or the left (ori-l) one is true, which is then followed
with the rest of the proof, in this case with the application of reexivity (reex).
This proof pattern is learnt and captured in the method outline:

choose =
�
defn-exp, ori-r�; [reex j [ori-l, reex]]

�

The method corresponding to the third method outline learnt-set, i.e., for set
theory examples, transforms a higher-order problem into a propositional logic
one, which is much easier to prove or disprove. It does not eliminate search
altogether, but makes it, in this case, much more tractable. Notice also, that the
method outline learnt-set applies the elimination of the universal quanti�er (8i)
only three times. This is consistent with the examples from which the method
outline was learnt, but in general the quanti�er elimination would be applied
any required number of times, which could be denoted with a star construct in
the method outline. In general, the quality of a method outline learnt from the
examples depends on the quality of the input examples. Hence, it is important
to use well chosen examples when learning new methods. Note, however, that
sometimes a slight overgeneralisation might be bene�cial.

3.2.1 Properties

Let us look at some properties of our learning algorithm:

Property 1 (Completeness) The learning algorithm de�ned above is complete,
that is, given a number of examples, the algorithm learns a generalisation which
is more general than all examples.

In order to see this property let a language expression r stand for the set of all
expressions that are just sequences of primitive expressions. Then an expression
r1 is more general than another r2 if each primitive expression of the set of
sequences for r2 is a subset of that for r1. In the algorithm only the steps (5) and
(6) are critical since all others do not change the generality of the expressions.
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Only steps (5) and (6) perform a generalisation, (5) in form of a disjunction, (6)
in form of a star. Since a disjunction covers each of its disjuncts, and a star each
of its components as well, the property follows.

Property 2 (Complexity) The algorithm which does not make use of heuris-
tics is exponential.

In terms of computational complexity, the algorithm is quadratic in step (1)5

and is exponential in step (7), since we try every possible combination here. All
other steps are linear. The complexity of step (7) could be improved by using the
initially computed information about all sublists of an example list, rather than
recomputing it in every recursive step.

Since step (7) is exponential, our learning algorithm does not run eÆciently
for large examples.6 In case the algorithm needs to be used for very large exam-
ples, we implemented some heuristic optimisations. These prune the number of
generated matches. Good heuristics are those which select matches that make a
big impact on the size of the �nal generalisations. For example, a good heuris-
tic is to pick a pattern match whose pattern of smallest size forms a maximal
sublist of the original example. This enables the algorithm to deal with very
large examples (e.g., lists of length 2000) which are way beyond the length of
examples that we expect for learning our method outlines. Clearly, using such
heuristic learning may miss the best generalisation (according to the measures
de�ned above). The user of our Learn
matic system can choose whether to
use the heuristic optimisations in the learning mechanism or not. Users could
also de�ne their own heuristics, but this is left for future work.

3.3 Using learnt methods

Method outlines that have been learnt so far do not contain all the information
which is needed for the proof planner to use them. For instance, they do not
specify what the pre- and postconditions of methods are, they also do not specify
how the number of loop applications of methods is instantiated when used to
prove a theorem. In our approach, we restore the missing information by search.

In the particular case of our implementation in the 
mega proof planning
system, important information which is needed for the application of methods
{ but which is lost in the abstraction process { are parameters for the methods
that constitute the newly learnt method. Concretely, the methods which make

5An example list of length n is split into all together n2 di�erent sublists: there are n sublists
of length 1, n� 1 sublists of length 2, n� 2 of length 3, n� k +1 of length k and so on, and 1
sublist of length n. Hence, in total, there are n2 sublists of di�erent �xed lengths. Notice that
there exist algorithms, e.g., suÆx trees, which run this step in linear time.

6However, we argue that proof methods that are being learnt typically do not consist of
a large number of low level methods. Indeed our algorithm runs eÆciently on all the tested
examples.
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up the new learnt method in 
mega take some (or none) parameters. These
can be in the form of position information indicating where in the expression the
method is applied, or a term naming the concept for which the de�nition should
be expanded, or instantiating a term used by the method, etc. The parameters
of a method are supplied by control-rules to reduce and to direct the search
performed by the proof planner. For example, the parameter in the de�nition
expansion method defn-exp names the concept that should be expanded. The
possible relevant control-rules can be of the form `Expand only de�nitions of the
current theory' or `Prefer de�nition expansion of the head symbol of the formula
to be proved'.

A set of methods together with a set of control-rules de�nes a planning strat-
egy of 
mega's multi-strategy proof planner Multi [MM00]. Note that control-
rules of a strategy are used not only for determining the parameters of methods,
but also to prefer or reject methods according to the current proof situation.

For each learnt method outline we automatically build a method for which
its precondition is ful�lled if there is a sequence of methods that is an executable
instantiation of the method outline. The postcondition introduces the new open
goals and hypotheses resulting from applying the methods of the sequence to the
current goal. We will call this kind of method a learnt method.

The precondition of a learnt method cannot be extracted from the pre- and
postconditions of the uninstantiated methods in the method outline, because the
formulae introduced by the postcondition depend on the formulae that ful�l the
preconditions. We actually have to apply a method to produce a proof situation
for which we can test the preconditions of the subsequent method in the method
outline. That is, we have to perform proof planning guided by the learnt pattern
which is captured by the method outline.

In detail, the applicability test is realised by the following algorithm:

1. Copy the current proof situation. Initialise a stack with a pair (P0; ;), where
P0 is the initial learnt method outline and ; stands for the empty history.

2. Take the �rst pair from the stack:

(a) If this pair is ([[P1jP2]; P
0];H), then put ([P1; P

0];H) and ([P2; P
0];H)

back on the stack. For ([P n; P 0];H) put ([P; P n�1; P 0];H)
on the stack. In the case of ([P �; P 0];H), return (P 0;H) and
([[P; P �]; P 0];H).7

(b) If the pair is ([m;P 0];H) where m is a method-name, then test the
precondition of m for all open goals (and for all possible instantia-
tions of method parameters, if the method contains parameters). Each
satis�ed test of preconditions results in a partial matching �i of m

7There is a counter for the operator �, the evaluation of this operator is only performed
until an upper bound is reached.
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for the corresponding goal (and parameter). The partial matchings
([�1; P

0];H); : : : ; ([�n; P
0];H) are put on the stack. If m is not ap-

plicable, then backtrack the di�erence between the current history H
and the history of the next pair of the stack.

(c) If the pair is ([�i; P
0];H) where �i is a partially instantiated method,

then �rst apply the postconditions of �i to the copied proof and then
put (P 0; (H; �i)) on the stack.

(d) If the pair is ([ ];H) where [ ] denotes the empty outline, an instanti-
ation of the learnt outline is found, namely, it is the applied methods
stored in H.

3. If the stack is empty, then it was not possible to apply the learnt method
outline; otherwise continue with step (2).

Notice that the application of the method introduces new open lines and new
hypotheses resulting from the application of methods in H into the proof.

The learnt method may contain other learnt methods. That is, the applica-
bility test in (2)(b) may recursively call this same algorithm again within the
applicability test of an embedded learnt method.

Our implementation of the applicability test causes an overhead in the run
time behaviour of the system. This is because the current proof is copied in step
(1) of the applicability test of the learnt method, and also because the new open
goals and hypotheses are copied back into the original proof. These two copying
steps are carried out in order to avoid an interference between the planning
process of Multi in the current proof situation, and the planning process inside
the applicability test of the method outline. The ineÆciency due to overhead
could be avoided in a complete re-implementation of the Multi proof planner.

4 Evaluation and Experiments

In order to evaluate our approach, we carried out an empirical study in di�erent
problem domains. In particular, we tested our framework on examples of group
theory, residue classes and set theory. The aim of these experiments was to inves-
tigate if the proof planner 
mega enhanced with the learnt methods can perform
better than the standard 
mega planner. The learnt methods were added to the
search space in conjunction with a heuristic (control-rule) specifying that their
applicability is checked �rst, that is, before the existing standard methods.

The measures that we consider are:

1. matchings { the number of all true and false attempts to match methods
that are candidates for application in the proof plan;

2. proof length { the number of steps in the proof plan;
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3. timing { the time it takes to prove a theorem;

4. coverage { the ability to prove new theorems.

In order to perform these tests we have built di�erent counters in the program.
The counter matchings counts the successful and unsuccessful application tests of
methods. It also contains the method matchings checked by the search engine in
the applicability tests of learnt methods (see Section 3.3). Matchings provides an
important measure, since on the one hand, it indicates how directed the search
for a proof is. On the other hand, checking the candidate methods that may be
applied in the proof is by far the most expensive part of the proof search. Hence,
matchings is a good measure to compare the performance of the two approaches
(i.e., with and without learnt methods) while it is also independent of potential
implementation ineÆciencies.

Our evaluation test set includes the theorems from which new methods were
learnt, but most of them are new and more complex. Clearly, it is expected
that a new method should work for the examples from which it was learnt. This
development set usually consists of a small number of examples, in particular, for
the examples in the domains discussed in this paper it consisted of three example
theorems (see Section 2). The test set consists of the development set plus a
number of other theorems that are signi�cantly diverse and of di�erent depth
from the development set. We use an informal notion of diversity and depth.

The size of our testing sample was relatively small for group theory: we tested
our learnt methods on 11 theorems, but large for other domains: we had 881 the-
orems of residue classes and 120 conjectures of set theory. Moreover, we chose our
testing set to be characteristic of the problem domain in general. Furthermore,
notice that some evaluation measures, e.g., proof length and coverage are inde-
pendent of the size of the testing set. Namely, some inspection of the approach
clearly indicates that the proof plans that use learnt methods will be shorter, and
from the domain of group theory, it is clear that new theorems are proved that
otherwise could not be.

Table 1 compares the values of matchings and proof length for the three prob-
lem domains. In each problem domain we break down the results according to
the type of theorems under consideration (e.g., how complex they are, what pat-
tern of reasoning or proof methods their proofs may use, how many variables are
in them). The table compares the values for these measures when the planner
searches for the proof with the standard set of available methods (column marked
with S), and when in addition to these, there are also our newly learnt methods
available to the planner (column marked with L). \|" means that the planner
ran out of resources (e.g., four hours of CPU time) and could not �nd a proof
plan.
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Table 1: Evaluation results.
Domain Type of Theorems Matchings Length

S L S L

Group theory
simple 94.2 79.0 15.5 8.3
complex | 189.6 | 9.8
choose 691.0 656.0 39.3 33.0

Residue Class ZZ3 tryanderror 425.3 82.1 38.6 2.0
both 552.9 323.2 39.7 19.0
choose 751.2 713.8 35.2 29.1

Residue Class ZZ6 tryanderror 2309.5 402.9 218.2 2.0
both 2807.8 1419.3 185.9 73.0
choose 1996.1 1640.5 111.2 78.4

Residue Class ZZ9 tryanderror 4769.1 1132.2 453.1 2.0
both 6931.6 3643.4 438.7 163.0

with 1 variable 26.9 42.0 6.6 6.6
Set theory with 3 variables 45.6 14.9 10.9 2.0

with 5 variables 48.1 28.7 12.7 4.0

4.1 Group theory domain

In the group theory domain, our learning mechanism learnt �ve new methods,
but since some are recursive applications of others, we only tested the planner by
using two newly learnt complex recursive methods.8

The methods simplify group theory expressions by applying associativity left
and right methods, and then reduce the expressions by applying appropriate
inverse and identity methods (see Section 2.1). The entries in Table 1 refer to
two types of examples. First, we give the average �gures for simple theorems
that can be proved with standard and with learnt methods. Second, we give the
average �gures for complex theorems that can be proved only when the planner
has our learnt methods.

It is evident from Table 1 that the number of matchings is improved, but it is
only reduced by about 15%. We noticed that the simpler the theorem, the smaller
the improvement. In fact, for some very simple theorems, a larger number of
matchings is required if the learnt methods are available in the search space. The
reason for this behaviour is that there are only a few standard methods available
initially in the group theory domain. Hence, any additional learnt method will
noticeably increase the search space. Also, the application test for learnt methods

8In general, it is a good heuristic to keep the size of the set of applicable methods small.
This can be achieved by subsuming specialised methods by more general ones. For example, as
soon as the system has learnt recursive application of simplify in group theory (rec-simplify =

simplify�), we can remove the proof method simplify.
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may be expensive, especially when a learnt method is not applicable, but still all
possible interpretations of the learnt method outline have to be checked by the
search engine. However, for more complex examples, this is no longer the case,
and an improvement is noticed. This is because the search within the applicability
test of the learnt method is more directed compared to the search performed by
the proof planner. The improvement increases when a larger number of primitive
methods is replaced by the learnt methods.

As expected, the proof length is reduced by using learnt methods.
On average, the time it took to prove simple theorems of group theory took

approximately 100% longer than without the learnt methods. Notice that this
does not include the case of complex theorems, when the proof planner timed out
without �nding the proof plans of the given theorems. The reason for bad timing
in the case of simple theorems is that the learnt methods are small and simple,
and the proof search contains the overhead due to the current implementation
for the reuse of the learnt methods (see Section 3.3).

On the other hand, in the case of complex group theory examples, the ad-
vantage of having learnt methods in the search space is evident from the fact,
that when our learnt methods are not available to the planner, then it cannot
prove some complex theorems. When trying to apply methods such as associa-
tivity left or right, for which the planner has no control knowledge about their
application, then it cannot �nd a proof plan within the given resources (e.g., four
hours of CPU time). Our learnt methods, however, encapsulate typical patterns
of reasoning about these theorems, hence they provide control over the way the
methods are applied in the proof and lead to successful proof plans.

4.2 Residue class domain

In the domain of residue classes, we gave our learning mechanism examples from
the residue class ZZ3 domain such that it learnt two new methods: tryanderror
(as demonstrated in our examples in Section 3.2), and choose.

We applied the standard set of methods and the set enhanced with the two
learnt methods to randomly chosen theorems for the residue class sets ZZ3, ZZ6
and ZZ9. We subdivided the results in Table 1 according to whether only one of
the learnt methods or both of them were applicable in the proof.

There is an improvement in each residue class set when learnt methods are
available. Since choose replaces only small subproofs, whereas tryanderror can
prove the whole theorem in one step, the latter has clearly better results for proof
length and matchings. The bene�t in the search for proofs where both learnt
methods are applicable lies between them.

In addition to comparing the absolute values for our measures within the
di�erent sub-domains of residue class theorems (i.e., ZZ3, ZZ6 and ZZ9) in Table 1,
we also compare the relative improvement between the di�erent sub-domains.
This can be done by examining the ratio between the number of matchings in
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Table 2: Ratio between standard and learnt methods.
Sub-Domain Type Matchings S

L
Length S

L

choose 1.05 1.19
Residue Class ZZ3 tryanderror 5.80 19.30

both 1.71 2.09
choose 1.05 1.21

Residue Class ZZ6 tryanderror 5.73 109.10
both 1.98 2.55
choose 1.22 1.42

Residue Class ZZ9 tryanderror 4.21 226.55
both 1.90 2.69

the standard (S) and the enhanced (L) sets of methods (and the same for proof
length), and then comparing the ratios for each type of theorems across sub-
domains. Table 2 states these values.

For example, the ratio for proof length in the case of theorems that use tryand-
error method in ZZ3 is 19:30. This means that the length of proofs when only
standard methods are available is 19:30 times larger than when learnt methods
are available as well.

Table 2 clearly shows that the ratios for proof length increase across sub-
domains (e.g., in case when both learnt methods are used, the ratio increases from
2:09 to 2:55 and 2:69 across sub-domains). This indicates that the more complex
the theorem (higher residue classes have longer and more complex proofs), the
better the improvement when learnt methods are available to the planner.

In general, the same trend can be observed for the matchings ratios. An
exception are the ratios for the type of theorems that can be proved using try-
anderror method, which only marginally decrease across sub-domains (but we
would expect them to increase as in the case for theorems that are proved using
choose method). This can be explained by the fact that the theorems were
randomly chosen across sub-domains, rather than using the theorems for the
same properties but di�erent residue classes. Namely, the random di�erences in
the complexity of theorems in di�erent sub-domains may be signi�cant, e.g., the
properties randomly chosen in ZZ6 may be more complex to prove than the ones
chosen in ZZ3.

On average, the time it took to prove theorems of residue classes with the
newly learnt methods was 50% shorter for proofs containing tryanderror than
without such methods, 25% longer for both methods and 80% longer for choose.
The time corresponds to the measured matchings but su�ers from the overhead of
the current implementation, especially for the smaller choose method. Since the
learnt methods are tried before the standard set of methods, this e�ect increases
for longer proofs.
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4.3 Set theory domain

In set theory the method learnt-set (see Section 3.2) that was learnt from theorems
containing three variables was added to the set of available methods. Note that
since these theorems have three variables, the universal quanti�cation in learnt-
set is eliminated (introduced in backward reasoning) three times.

In order to test whether specialised learnt methods (e.g., for theorems with
three variables) can be applied to theorems outside the type they were learnt
from, we added to our test set two other types of theorems, namely, with one
and with �ve variables. As expected, learnt-set is not applicable in the proofs of
theorems with one variable. In the proofs of theorems with �ve variables learnt-set
is applicable after the standard methods are applied. Note that if we chose `better
examples' for learning, e.g., theorems that have one, three and �ve variables, then
our learnt method learnt-set would be more powerful and applicable to all three
types of theorems.

For theorems with three variables the proof search performs best, i.e., the
number of matchings is reduced by a factor of three when the learnt method
is available. proof length is reduced by more than �ve times. The results for
theorems with �ve variables are still better than without the learnt method, but
as expected, not as good as with three variables. For theorems with one variable,
where learnt-set is not applicable at all, the proof search clearly su�ers from
the additionally available learnt method, and hence the number of matchings is
increased. proof length is not a�ected in this case.

The bene�ts and drawbacks of the availability of learnt methods can be seen
very clearly in these evaluation results for the set theory examples. Namely, when
a learnt method is applicable, then its availability improves the performance of the
proof planner. However, when a learnt method is not applicable then the proof
planner has to test a larger set of methods, and this will harm its performance.

On average, the time it took to prove or disprove conjectures in set theory
with the newly learnt methods was about 40% faster for theorems with three
variables, approximately 5% faster for theorems with �ve variables, and nearly
20% slower for theorems with one variable.

4.4 Analysis of results

As it is evident from the discussion above, in general, the availability of newly
learnt methods that capture general patterns of reasoning improves the perfor-
mance of the proof planner. In particular, the number of matchings (which are
the most expensive part of the proof search) is reduced across domains, as indi-
cated in Table 1. Furthermore, as expected, learnt methods cause proofs to be
shorter, since they encapsulate a number of other methods. Also, the time is in
general reduced when using learnt methods. There are some overheads, and in
some cases these are bigger than the improvements. Since the time should be
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related to the reduced number of matchings, but it is not in all our cases (group
theory), this indicates that our implementation of the execution of learnt meth-
ods, as described in Section 3.3, is not as eÆcient as that of the 
mega proof
planner.

In general, the coverage when using learnt methods is increased, which is also
indicated by the fact that using learnt methods, 
mega can prove theorems that
it cannot prove otherwise.

The reason for the improvements described above is due to the fact that
our learnt methods provide a structure according to which the existing methods
can be applied, and hence they direct search. This structure also gives better
explanation why certain methods are best applied in particular combinations. For
example, the simpli�cation method for group theory examples indicates how the
methods about associativity, inverse and identity should be combined together,
rather than applied blindly in any possible combination.

A general performance problem of learnt methods is the behaviour when a
learnt method is not applicable. A learnt method is not applicable when there is
no instantiation of the learnt sequence so that the methods of this instantiation
are applicable. This means that every possible instantiation has to be tested
and refuted. In the presented experiments, the learnt methods nearly always
outperform the standard set of primitive methods. But there could be worst case
scenarios where the learnt method is very general (contains many star operations)
and a large part of the learnt sequence is applicable but the whole sequence is
not.

4.5 Analysis of general approach

The additional hierarchical structure of proofs constructed with learnt methods
can also be bene�cial for proof verbalisation and proof explanation tools like
P.rex [Fie01]. The information hidden within our learnt methods can now like-
wise be hidden in verbalisations, and expanded if appropriate or requested by
the user. Namely, learnt methods encapsulate bigger and more abstract steps in
proofs than smaller methods that make up our learnt methods. Hence, learnt
methods provide a higher level explanation of what is going on in the proof plan,
and therefore they help to reect the main idea of a proof by masking and group-
ing details in the proof. When this is combined with proof verbalisation tools,
it enables a proof planner to automatically produce better explanations of the
proofs which can be as high level or as low level as needed.

The preconditions of learnt methods are currently generated by the search
engine for the reuse of methods described in Section 3.3. The engine searches for
the instantiation of the method outline which is applicable in a given proof situ-
ation. This means that a small amount of search, which is guided by the method
outline, needs to be carried out in the applicability test of the learnt method.
In the standard set of methods, i.e., not the learnt ones, the applicability test
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is carried out by checking if the explicitly and declaratively stated preconditions
for the method hold or not in a given proof situation. No search is carried out
within the method. The fact that the preconditions of the standard set of meth-
ods are declaratively stated, but the preconditions of our learnt methods need to
be computed, does not change how proof methods are treated in the planning
process. All methods, whether learnt or not, form part of the search space that
the proof planner traverses in the process of �nding a proof plan. Indeed, one
of our motivations stated at the start of this paper was to devise a mechanism
which is able to learn new primitives of the search space, rather than control the
search within a �xed set of primitives. In the framework of proof planning the
primitives of the search space are proof methods which we can now learn auto-
matically. Even when some search needs to be carried out in order to compute
the applicability condition of our learnt methods, this still is much better, that is,
search is much pruned, than when such methods are not available to the planner.
This is supported by the results of our evaluation demonstrated above in this
section.

We can see our approach as a mechanism that learns how to hierarchically
structure the search through the search space. We built new methods that encap-
sulate guided search over some more primitive methods, and then add these new
elements as a kind of chunks of structured search to our system. This contrasts
with the idea of having only one global control layer in proof planning, since our
learnt methods themselves can be seen as little planning processes consisting of
a set of internal methods and control information on how to search with them.

The mechanism for reusing learnt methods described in Section 3.3 is speci�c
to 
mega proof methods. On the other hand, the learning algorithm presented in
Section 3.2 is general and can be used for learning in other automated reasoning
systems, not just the 
mega proof planner (see Section 6). The learning algo-
rithm learns method outlines which in other systems could be used as inference
rules, in 
mega as proof methods, in �Clam [RSG98] as methodical expressions
[RS01], etc. In fact, in some systems, like �Clam, method outlines are exactly
methodical expressions that the planner can use directly, so no enriching of the
method outline representation is required. In other systems, method outlines are
just inference rules. This may give raise to the question of what is the di�erence
between methods, methodical expressions and tactics. It seems that our method
outlines o�er a uni�ed view of all these structures that are used in di�erent auto-
mated reasoning system, e.g., inferencing systems, tactical theorems provers, and
proof planners. Depending on the system, a di�erent primitive of the search space
is needed (e.g., inference rules, tactics, proof methods, methodical expressions).
Hence, the enriching of the learnt method outline representation so that the new
primitive can be used in the given system has to be carried out di�erently, or may
indeed need no enriching at all. Studying how this process varies for di�erent
systems may give us some clues about the similarities and di�erences between
such structures, but this is left for future work.
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5 Related Work

Some work has been done in the past on applying machine learning techniques to
theorem proving. Unfortunately, not much work has concentrated on high level
learning of structures of proofs and extending the reasoning primitives within an
automated theorem prover.

For example, [Sch00], which is a continuation of previous work such as [FF98,
DS96], investigates learning of heuristic control knowledge in the context of ma-
chine oriented theorem proving, more precisely, equational or superposition based
theorem proving. Knowledge gained from the analysis of the inference process
is used to learn important search decisions, which are represented as abstract
clause patterns. These are employed in heuristic evaluation functions to better
guide the search when attacking new proof problems. The selection of heuristic
evaluation functions for a new problem at hand is guided by meta-data. The
main di�erence to our work is that the learnt information in Schulz's work is not
becoming a reasoning primitive, such as our learnt methods. It rather guides
the search amongst the existing primitives at the global search layer instead of
building up new, structured chunks of encapsulated search processes.

[Sil84] and [Des87] used precondition analysis which learns new inference
schemas by evaluating the pre- and postconditions of each inference step used
in the proof. A dependency chart between these pre- and postconditions is
created, and constitutes the pre- and postconditions of the newly learnt infer-
ence schema. These schemas are syntactically complete proof steps, whereas the

mega methods contain arbitrary function calls which cannot be determined by
just evaluating the syntax of the inference steps.

Kolbe, Walter, Brauburger, Melis and Whittle have done related work on the
use of analogy [MW98] and proof reuse [KW94, KB97]. Their systems require
a lot of reasoning with one example to reconstruct the features which can then
be used to prove a new example. The reconstruction e�ort needs to be spent in
every new example for which the old proof is to be reused. In contrast, we use
several examples to learn a reasoning pattern from them, and then with a simple
application, without any reconstruction or additional reasoning, reuse the learnt
proof method in any number of relevant theorems.

A piece of related work in cognitive science is Furse's Mathematics Under-
stander [Fur95], MU, which stores mathematical domain and procedural knowl-
edge in a contextual memory system, and tries to simulate how students learn
mathematics from textbooks. MU builds up a uniform low-level data structure,
while we build high-level hierarchical proof planning methods. Having explicit
methods allows us to check proofs for their correctness, while in MU incorrect
proof steps cannot be distinguished from correct ones. The hierarchical character
of our methods also allows for a user-adaptive proof presentation.

In terms of a learning mechanism, more recent work on learning regular ex-
pressions, grammar inference and sequence learning [SG00] is related. Learning
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regular expressions is equivalent to learning �nite state automata, which are also
recognisers for regular grammars. Muggleton has done related work on grammat-
ical inference methods [Mug90] which automatically construct �nite-state struc-
tures from trace information. His method IM1 is a general one and can describe
all other existing grammatical inference methods. IM1 consists of �rst, generat-
ing a pre�x tree from example traces, second, merging of states to get canonical
acceptor states (which still describe only the example traces), and third, merging
states which essentially does the generalisation of the structure. The generalisa-
tion, i.e., merging, is determined by a particular chosen heuristic measure. The
existing state automata learning techniques di�er depending on the heuristic that
they employ for generalisation. The main di�erence to our work is that these tech-
niques typically require a large number of examples in order to make a reliable
generalisation, or supervision or an oracle which con�rms when new examples
are representative of the inferred generalisation. Furthermore, the heuristics de-
scribed by Muggleton do not seem to be suÆcient for generalisation in our case,
as none of the states describing our proof traces would be merged. It is unclear
what other heuristic could be employed to suÆce the generalisation of our exam-
ples. Moreover, these techniques learn only sequences, i.e., regular expressions.
However, our language is larger than regular grammars as it includes constant
repetitions of expressions and expressions represented as trees.

There have been various approaches to incorporate learning in planning. In
the Prodigy system [VCP+95] a number of techniques for learning are available.
The goal of the learning process is either to get control knowledge, that is, rules
that describe which goal to tackle next and which method to prefer at the decision
points of the planning algorithm, or learn planning operators from the change
of planning states by observing an expert agent. The learning mechanism of
Learn
matic di�ers in both aspects as its goal is to learn new operators that
are learnt from other operators and could be compared to learning of macro
operators of chunks [RLN93]. Another di�erence is that learning from an analysis
of the domain theory, in our case the set of methods, without the generation of
examples appears to be diÆcult, since proof planning methods are complex and
the post-conditions are only available when a method is applied in a concrete
proof situation. The abstraction from the proof to method names that is the
input for the learning mechanism of Learn
matic is rather radical compared
with abstractions in other planning systems, see [Kno92]. There, a hierarchy
of abstractions can be established by analysing the predicates of the domain
theory. Some ideas for abstractions in method learning that retain possibly useful
information are discussed in the next section.

Related is also the work on pattern matching in DNA sequences [Bra94], as
in the GENOME project, and some ideas on our learning mechanism have been
inspired by this work.
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6 Future Work

There are several aspects of our learning framework which need to be addressed in
the future. With respect to the representation formalism we have mainly consid-
ered sequential rewriting proofs. Other styles (di�erent directions of reasoning)
should also be considered.

Furthermore, we would like to apply our learning approach to other proof
planners, such as �Clam [RSG98]. Since proof methods have a di�erent struc-
ture in di�erent proof planners, this task would require using the same learning
mechanism, but probably, instead of our applicability test, a di�erent reuse of
methods approach as in the case of 
mega.

The expressiveness of our language L for method outlines (see Section 3.1)
could be studied further in order to determine if it should be extended. In par-
ticular, we could look into what type of 
mega methods cannot be expressed
using the current language L, and what other language constructs we would need.
Moreover, we could examine if our language is suÆcient to express primitives of
the search space in other automated reasoning systems, like methodical expres-
sions in �Clam or inference rules in other theorem provers.

Regarding the learning algorithm itself, we need to examine what are good
heuristics for our generalisation and how suboptimal solutions can be improved.
While the learning mechanism is not eÆcient, we argue that we do not need
a highly complicated and eÆcient technique for learning patterns, as in the
GENOME project, for example. Our algorithm may be simple and naive, but is
suÆcient for our examples which are typically small (e.g., less than 50 steps).

An interesting aspect that could be addressed in the future is whether a sys-
tem could automatically learn the information that is abstracted from the proof
traces and that has to be reconstructed by search performed in applicability test
when reusing learnt methods. What could this additional information that de-
scribes learnt methods more speci�cally be? When we take a look at the examples
in group theory, it seems to be obvious that the simpli�cation using associativity,
inverse and identity methods are meant to act on the same subformula. This
information is lost during abstraction, and hence, during the applicability test of
the learnt method, associativity is applied at every possible place. So, the ques-
tion is, could the smallest subterm of an expression to which the newly learnt
method should be applied, i.e., the focus for the method, be learnt automati-
cally and how? Future investigations could address such questions as well as
identify additional pieces of information that describe learnt proof methods more
speci�cally.

Another interesting, but diÆcult idea for future work is to more precisely
characterise well chosen examples, so that these could be selected automatically,
rather than depend on the user. It would be desirable to identify automatically
the subparts of proof traces in several examples of proofs that contain the same
reasoning pattern. In our framework, this has to be done by the user of the
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system. Techniques from data mining could perhaps be useful to tackle this
diÆcult problem, however, they typically require very large data sets, which in
proof planning we typically do not have.

The extraction of method sequences from proofs is currently implemented with
respect to the chronological order of method applications during proof planning.
There could be other orderings, e.g., the di�erent linearisations of the proof tree,
some of them could even result in more adequate learnt method outlines. For
example, in a situation where the planner has more than one di�erent subgoal
that can be closed by the same sequence of method applications [m1; m2], it
depends on the search behaviour of the proof planner whether the proofs will
have a trace like [m1; : : : ; m1; m2; : : : ; m2] or [m1; m2; : : : ; m1; m2]. The learning
mechanism will produce [m�

1; m
�

2] in the �rst case and [m1; m2]
� in the second

case. The later will have a better search behaviour in the applicability test of
the learnt method because only one instantiation for the star operator has to be
found.

In order to model the human learning capability in theorem proving more
adequately it would be necessary to model how humans introduce new vocabulary
for new (emerging) concepts (e.g., representing associative expressions as lists of
terms in the expressions, annotations in rippling [BSvH+93, Hut90]). With our
approach, we cannot do that, however. It is a very challenging question left for
future research.

7 Conclusion

In this paper we described a hybrid system Learn
matic, which is based on
the 
mega proof planning system enhanced by automatic learning of new proof
methods. This is an important advance in addressing such a diÆcult problem,
since it makes �rst steps in the direction of enabling systems to better their own
reasoning power. Proof methods can be either engineered or learnt. Engineering
is expensive, since every single new method has to be freshly engineered. Hence,
it is better to learn, whereby we have a general methodology that enables the
system to automatically learn new methods. The hope is that ultimately, as the
learning becomes more complex, the system will be able to �nd better or new
proofs of theorems across a number of problem domains.

A demonstration of Learn
matic implementation can be found on the fol-
lowing web page: http://www.cs.bham.ac.uk/~mmk/demos/LearnOmatic/.
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