System Description: 2-ANTS for interactive ATP

Christoph Benzmiiller'*, John Byrnes?, and Volker Sorge®

! School of Computer Science, The University of Birmingham
Edgbaston, Birmingham B15 21T, England
2 Department of Philosophy, Carnegie Mellon University
Pittsburgh, PA 15213, USA
Fachbereich Informatik, Universitit des Saarlandes,
D-66041 Saarbriicken, Germany

1 Introduction

This paper describes Q-ANTs!, an approach for integrating interactive and au-
tomated proof search. Our system which has been prototypically realized within
the QMEGA environment [4] extends the concurrent, agent based suggestion
mechanism for interactive theorem proving described in [1,2] by a backtracking
wrapper that turns it into an automated theorem prover with interesting features
like anytime character and run-time extensibility. The side conditions and the
control knowledge wrt. the particularly implemented calculus are completely en-
coded in the specifications of the numerous concurrent (software) agents, which
individually perform quite trivial deduction/suggestion tasks.

In order to demonstrate that even nontrivial proof calculi can be realized
in Q-ANTS and especially in order to employ a human oriented approach with
interesting proof automation capabilities we have implemented the intercalation
calculus Nic [3] for efficient natural deduction proof search.

2 The Q-ANTS system

We outline the architecture of Q-ANTS by first sketching the agent-architecture
of the underlying suggestion mechanism and then describing how this mechanism
can be automated into a full-fledged proof search procedure. For a more detailed
introduction to the pure suggestion mechanism see [1,2].

Architecture The suggestion mechanism originally aims at supporting a user
in interactive theorem proving by computing and proposing possibly applicable
commands. The suggestions are thereby computed by two layers of societies of
autonomous concurrent agents which exchange relevant results via blackboards.

In an interactive theorem prover such as QOMEGA one has generally a com-
mand associated with each proof tactic to invoke it. Commands are applied to
a set of arguments such as proof lines or terms that specify how the respective
tactic is to be employed in the current proof state. Depending on the particular
tactic the arguments of the command have then to be of a certain form. For ex-
ample, the command invoking the ND rule Al, i.e. the splitting of a conjunctive

* The author would like to thank EPSRC for its support by grant GR/M99644.
! OMEGA’s Agent-based Natural deduction Theorem proving System

goal, can only be applied to a proof line containing a conjunction and, if avail-
able in the current proof state, to lines containing the right and left conjunct.
We can use these structural dependencies in order to find and suggest possi-
ble arguments for each command with respect to the given proof state. Having
those suggestions available one has then also knowledge which commands are
applicable altogether.

The suggestion process is carried out by a two layered architecture of au-
tonomous agents. On the bottom layer we have associated with each command
a society of Argument Agents. Each argument agent is appointed to one or several
arguments of the command and has a declarative specification of their shape and
structural dependencies. With the help of this specification and if necessary with
information already provided by other agents it can retrieve possible instantia-
tions of the argument from the current proof state either by searching for proof
lines or by computing some additional parameter (e.g., a term). The argument
agents of each society communicate via a Suggestion Blackboard. For example,
in the case of the AT command one agent searches the open lines of the partial
proof for conjunctions and, once it has found some, two other agents can use
this result in order to look simultaneously for lines containing the appropriate
left or right conjunct. Since each argument agent only reads old suggestions and
possibly adds expanded new suggestions, there is no need for conflict resolutions
between the agents.

On the second layer of the mechanism is a society of Command Agents where
every agent is linked to exactly one command. Its task is to initialize (whenever
the proof state has changed) and monitor the suggestion blackboard associated
with the command. Tts intention is to select among the entries of the blackboard
the most promising (e.g., most complete) and to pass it, enriched with the cor-
responding command name to the Command Blackboard. Thus, the command
blackboard accumulates all commands that can be applied within a given proof
state together with appropriate argument instantiations. The command black-
board itself is again monitored by the Suggestion Agent which sorts the entries
with respect to heuristic criteria and presents them to the user.

Automation Automation of this process is achieved in a straight forward way:
We always automatically execute the (according to the given heuristics) best
command suggestion on the command blackboard. However, since the whole
mechanism depends on concurrency, we determine when exactly the next proof
step can be performed by: (1) either knowing that all agents performed all pos-
sible computations and no further suggestion will be produced or (2) if a certain
time bound is exceeded. When a proof step is executed the remaining suggestions
on each suggestion blackboard are saved. Hereby the currently applied sugges-
tion (together with all suggestions it subsumes) is either removed or is kept, in
case not all argument agents have tried to complete the suggestion so far, i.e.
the command was executed due to reaching the time limit. We do backtracking
by re-instantiating the suggestion blackboards with the saved suggestions and
recommencing computation.

In case not all possible completions for the last applied suggestion were com-
puted they might be supplemented in the second phase. However, if a command
has been applied in exactly the same fashion twice, it will not be applied again,

even if not all of its agents have contributed to its completion yet. Thereby we
avoid infinite loops in case some agent gets stuck during its computations.

The automation wrapper can be suspended by the user at any time, for
instance, in order to analyze the current proof state and to add, change or
remove certain agents from the suggestion mechanism. It can then be resumed
using all the information computed so far.

3 Nic: Searching for normal natural deductions

The calculus Nic [3] allows one to search directly for normal proofs in the natural
deduction calculus of Prawitz [5]. Restriction to normality allows for restricted
branching, resulting in more efficient search. In addition, the particular version
of the calculus given here employs additional restrictions on the application of
disjunction elimination and the classical indirect rule.

A proof line is either of the form I' = A (an e-line) or of the form I' - A
(an -line), where I' (the contezt) is a set of formulas and A is a formula. We
write I' F A (an unmarked line) to indicate a line which may be either an e-line
or an i-line. No line may be both an e-line and an i-line. Negation is defined:
—A= A — L. The rules are as follows:

TEAAB I'tA I'B T'FAS3B TFA I''AFB
L7 AR - AT S E —— =1
't A T'tAAB 't B I'tA— B
Ik A I'fAVB I''AFC I.BFcC 7 I -AE L
- vI; . ' VE. MVE [E—

Tt AVB rec rra T+ A

There is a symmetric R, for each rule R;. VE, is not general enough to allow for
complete search. Complete search without excessive branching for disjunction
elimination is achieved by including the tactic VE below, which makes use of
occurrences of the dummy rules? VE; and VE,.. No rule applies to the premise of
VE; [VE,]; they are used only to accumulate proof context information for VE.

Each rule with a premise of the form I' F C has the side condition that C is
a strictly positive subformula® of some formula in I' (briefly, C < I'). VE; [VE,]
has the side condition that AV B < I'. L. has the side condition that A is a
disjunction or an atomic formula. The search procedure may not repeat a line
on a thread. A line of the form I', A+ A is trivial; no rules apply to it.

The search space is disjunctive, in that above some proof lines there will be
multiple applicable rules. We use a dashed line to represent disjunctive branching
in a search tree. Given a tree II. let II4 be the tree obtained by adding A into
the context of each line and deleting rule applications above trivial lines. If P is
a set of trees, let P4 result from applying the operation to each member.

Let I' - C be an i-line, let P be the set of subtrees rooted at rules immediately
above I' C which do not contain any leaves of the form AV B 7 B, and let
S be the set of subtrees rooted at rules immediately above I' - C' which do not
contain any leaves of the form AV B 7 A. The following transformation, i.e. tactic

VE, may be applied whenever P ¢ Q. Q € P, and AV B < I

2 AV B? A means ??? in one line?
% This means 7?7 in one line?

|1C

PUQ
z = —
r'rc

T

4 Implementing Nic proof search in Q-ANTS

The rules of the Nic calculus are defined as tactics in QMEGA. Their side condi-
tions as well as the overall proof search restrictions and heuristics are encoded
into the specifications of the particular argument, command, and suggestion
agents involved in our blackboard mechanism. The automate wrapper itself does
not apply any calculus specific knowledge and the Nic specific proof search be-
havior is completely determined by the agents specifications.

Encoding of structural application conditions and side conditions We briefly
sketch two agents working for the Nic-tactic AE;. We assume that the formal
arguments of the command envoking AE; are named ‘conc’ (for the conclusion
line), ‘conj’ (for the premise line, i.e. the conjuction), and ‘term’ (referring to an
additional term-parameter extending the presentation of AE; in Section 3; this
parameter is needed to realize backward applications of AE; where the conjunc-
tion line to be introduced is unknown and has to be specified). In order to ease
agent specifications we developed a partially declarative description language
that includes the predicate (or function) of the particular agent in LISP code.
(agent“defmatrix NICTAC-AND-E-L

(agents ;5 We define two agents for tactic ‘NICTAC-AND-E-L’: The first agent looks
(s-predicate ;; for support lines which are appropriate candidates for parameter ‘conj’
(for conj) ;; in dependence of some already given suggestion for conclusion line ‘conc’.
(uses conc) ;; Agent specification: ‘conj’ has to be an elimination line with a conjunct-
(definition ;; ion as formula whose left conjunct is equal to ‘conc’.

(and (nic"elimination=p (:line conj)) (data"equal (left-conjunct conj) conc))))

(c-predicate

(for conc term)
(multiple term)

(uses)
(definition ;;

;3 The second agent is looking for open lines which are appropriate can-

;; didates for parameter ‘conc’. If successful this agent returns apart

;3 from a suggestion for ‘conc’ suggestions for the parameter ‘term’.

;3 This agent depends not on already given suggestions on the blackboard.
Agent specification: Let ‘termcandidates’ be all conjunctions among the

;5 strictly positive subformulas of the support lines of open line ‘conc’
;5 which have a left conjunct equal to the formula of ‘conc’. If there are any
;3 such termcandidates, they are suggested together with the line ’conc’.

(s-predicate (for term) (uses conc)

NN

Encoding of rule/tactic preferences and global search strategies The ordering
of the suggestions being passed from the agent mechanism to the automate
wrapper in each proof step determines the system’s backtracking strategy. In
the system suggestions are heuristically ordered on two layers. (i) The command
agents monitoring the suggestion blackboards employ criteria like ‘completeness’
(how many parameters of the command are filled) and ‘actuality’ (what is the
average age of the proof lines suggested as instantiations for the parameters)
before passing the most promising one to the command blackboard. (ii) The
suggestion agent monitoring the command blackboard employs (among other
subordinated criteria) the following partial ordering of Nic tactics when passing

the command suggestions to the automate wrapper*: {— E.VE,AE} > {—

* Simultaneously they are also passed to the graphical user interface for interaction.

LALVL,} > {Llc} > {VE;,}. Instead of a pure static ordering it is possible to
specify dynamic ordering criteria taking the proof state at run time into account.
In fact, we already make use of such dynamic criteria as the tactic VE is not
suggested unless its applicability for particular lines is indicated by respective
applications of the dummies VE; and VE, during the search process.

5 Conclusion and Implementation Notes

Q-ANTs proposes a new system architecture for integrated interactive and au-
tomated theorem proving and its main idea is definitely not to provide another
competitive automated theorem prover to the ATP community. Despite its cur-
rent specialization on the Nic-calculus Q-ANTS can be characterized as an open
and easy extendible theorem proving approach with anytime character that is
based on societies of concurrently working software agents associated with rules,
tactics, methods, or external reasoners. As the system supports the redefinition
of agents at run time, the user can dynamically influence the systems search be-
havior by adding, removing, or modifyingsingle agents. If agent specifications for
elaborate proof planning methods, other powerful calculi, or external reasoners
are available, they can easily be added to the running system as well.

Further work includes the improvement of the interlocking of interactive and
automated command executions without loosing important context and back-
tracking information in the automate wrapper (respective information stemming
from intermediate interactions is currently not available to the automate wrap-
per). We will also experiment with extensions of the current calculus by other
proof tactics. Furthermore, we want to fruitfully incorporate the resource adap-
tivity of the current suggestion mechanism (cf. [2]) into the automation. The
propositional Nic-agents are currently tested and further tuned with examples
from the TPTP-library.

Q-ANTs is implemented as a tool for the OMEGA environment in Allegro
Common Lisp using its multiprocessing facilities. It can be accessed via URL
http://www.ags.uni-sb.de/ omega/www /oants.html and can be run from within
QMEGA’s graphical user interface web applet. When activating Q-ANTs with
the introduced propositional logic Nic rules we have a total of 59 concurrently
working agents (for first-order NIC we currently experiment with ~100 agents).

References

1. C. Benzmiiller and V. Sorge. A blackboard architecture for guiding interactive
proofs. In Proc. of AIMSA’98, LNAI 1480, pages 102-114. Springer, 1998.

2. C. Benzmiiller and V. Sorge. Critical agents supporting interactive theorem proving.
In Proc. of EPIA’99, LNAI 1695, pages 208-221. Springer, 1999.

3. J. Byrnes. Proof Search and Normal Forms in Natural Deduction. PhD thesis,
Dept. of Philosophy, Carnegie Mellon University, Pittsburgh, PA 15213, USA. 1999.

4. The QMEGA Group. QMEGA: Towards a mathematical assistant. In Proc. of CADE-
14, LNAT 1249, pages 252-255. Springer, 1997.

5. D. Prawitz. Natural Deduction: A Proof-Theoretical Study. Almqvist & Wiskell,
Stockholm, 1965.

