UNIVERSITAT DES SAARLANDES
FACHBEREICH INFORMATIK
D-66041 SAARBRUCKEN

GERMANY

SEKI Report

ISSN 1437-4447

WWW: http://www.ags.uni-sb.de/

Equality and Extensionality
in Automated Higher-Order
Theorem Proving

Christoph Benzmiiller
SEKI Report SR-99-08

Also published as: Dissertation at the Saarland University, 1999

Contents

1 Introduction
1.1 Motivation e
1.2 Higher-Order Logic o
1.3 Higher-Order Model Existence
1.4 Traditional and Extensional Higher-Order Resolution.
1.5 Adding Primitive Equality
1.6 The LEO System e
2 Syntax and Semantics of Higher-Order Logic
2.1 Syntax and Preliminarieso Lo
2.2 Pre-X-Structures
2.3 X-Structures
2.4 Functional Y-structures
2.5 X-Models . . . L
2.6 Leibniz Equality
2.7 Primitive Equalityo
2.8 A Note on Defined and Primitive Equality
3 Higher-Order Model Existence
3.1 Abstract Consistencyo
3.2 Hintikka Sets L
3.3 Primitive Equalityo
3.4 Model Existence
4 Extensional Higher-Order Resolution: &R
4.1 A Review of HORES and ER
4.2 Basic Definitions
4.3 Lifting Properties L
4.4 Completeness
4.5 Theorem Equivalence Lo
5 Extensional Higher-Order Paramodulation: &P
5.1 A Naive and Incomplete Adaptation of Paramodulation
5.2 Positive Extensionality Rules 0o
5.3 Basic Definitionso
5.4 TLifting Properties
5.5 Completeness
5.6 Theorem Equivalence

co Ol W — =

10
12

14
14
17
18
20
22
23
26
27

30
30
33
36
39

i CONTENTS
6 Extensional Higher-Order RUE-Resolution: ERUE 72
6.1 Resolution on Unification Constraints 72
6.2 Basic Definitions Lo 72
6.3 Lifting Properties 73
6.4 Completeness 74
6.5 Theorem Equivalence L oL 79

7 The LEo-System 80
7.1 Basic Data-Structures and Algorithms 81
7.2 Extended SOS Architecture and Main Loop 82
7.2.1 Problems 82

7.2.2 Extended SOS Architecture L oo 83

7.2.3 LEO’s heuristically guided Main Loop 84

7.2.4 Anillustrated Example oL 86

7.2.5 Realisation of the Challenges and the main Sources of Incompleteness . . . 87

7.3 New Insights gained from LEo oL 89
7.3.1 Extensionality and Term indexing 89

7.3.2 Extensionality and Subsumption 0oL 89

74 Case Study 90
7.5 Additional Features of LEO 93
7.5.1 The Interactive Theorem Prover LEO 93

7.5.2 Lour as a Graphical Interface for Lko 0oL 93

7.5.3 Integration to QMEGA 93

8 Examples 96
8.1 Extensionality in ER 96
8.2 Decomposition in ERo 98
8.3 Leibniz Equality and Alternative Definitions in ER 99
8.4 Reasoning about Sets with Leibniz Equality 101
8.5 Positive Extensionality Rules in EP and ERUE 101
8.6 ComparingEP and ERUE L 103
8.7 Raised Questions L 109

9 Applications and Related Work 111
9.1 Cooperation and Joint Worko oo 111
9.2 Abstract Consistency and Model Existence 111
9.3 Extensional Higher-Order Resolution 112
9.4 Primitive Equality in Higher-Order Theorem Proving 114
9.5 Theorem Provers for Higher-Order Logic 115
9.6 Examples 115
10 Conclusion and Outlook 117
Bibliography 118

Index 129

Abstract

This thesis focuses on equality and extensionality in automated higher-order theorem proving
based on Church’s simply typed A-calculus (classical type theory).

First, a landscape of various semantical notions is presented that is motivated by the different
roles equality adopts in them. FEach of the semantical notions in this landscape — including
Henkin semantics — is then linked with an abstract consistency principle that can be employed
for analysing the connection between syntax and semantics of higher-order calculi.

Apart from this proof theoretic tools, the main contributions of this thesis are the three new
calculi ER (extensional higher-order resolution), £P (extensional higher-order paramodulation)
and ERUE (extensional higher-order RUE-resolution) which improve the mechanisation of defined
and primitive equality in classical type theory. In contrast to the refutation approaches for classical
type theory developed so far, these calculi reach Henkin completeness without requiring additional
extensionality axioms. The key idea is to allow for recursive calls from higher-order unification to
the overall refutation search.

Calculus R, which in contrast to &P and ERUE, considers equality only as a defined notion,
has been implemented in the theorem prover LEO and the suitability of this approach for proving
simple theorems about sets has been demonstrated in a case study.

Quo facto, quando orientur controversiae, non magis disputatione opus erit
inter duos philosophos, quam inter duos Computistas. Sufficiet enim calamos
in manus sumere sedere ad abacos, et sibi mutuo (accito si placet amico) dicere:
calculemus.

Gottfried Wilhelm Leibniz
(C.I. Gerhardt (ed.), Die philosophischen Schriften von

Gottfried Wilhelm Leibniz, vol. 7, Berlin 1890, p. 200.)

Chapter 1

Introduction

1.1 Motivation

The dream of formalising and mechanising mathematical reasoning — which also motivates this
thesis — reaches back to Gottfried Wilhelm Leibniz. He conceived a lingua characteristica and
a calculus ratiocinator, i.e., a most general framework to mechanise human reasoning, which was
certainly inspired by his own contributions to the mechanisation of simple arithmetical operations:
He developed and realised a mechanical calculator capable of multiplication. But Leibniz’ contri-
butions to the mechanisation of mathematical reasoning in general did not go beyond elementary
stages and it was not until the end of the 19th century that the field of modern mathematical logic
was born. Taking the important contribution of the ancient Greeks (mostly Aristoteles) into ac-
count, who already investigated the laws of human thought and developed a theory of well-chosen
axioms and rules, it is probably better to say ‘It was not until the 19th century that modern math-
ematical logic was reborn’. Tt was mainly the work of George Boole (1815-1864), Gottlob Frege
(1848-1925) and Bertrand Russel (1872-1970) that stimulated the new and deep interest of many
researchers in the field of mathematical logic. Frege’s fundamental Begriffsschrift is described by
Davis [Dav83] not only as the direct ancestor of contemporary systems of mathematical logic but
also as the ancestor of all formal languages, including computer programming languages.

Another milestone in the formalisation of mathematics to be mentioned is Hilbert’s ambitious
program at the very beginning of this century [Hil04, Hil27], which aimed at the complete devel-
opment of modern mathematics in a formal system. In the early 30’s results came fast: Whereas
Kurt Goédel, Jacques Herbrand and Thoralf Skolem proved the completeness of the (first-order)
predicate calculus in 1930 [G6d30, Her30, Sko28] — i.e., every valid formula in the language of
the predicate calculus is derivable from its axioms — it was Godel who showed in his famous
incompleteness theorems [God31] that it is impossible to develop a generally complete calculus
that mechanises mathematical reasoning. More precisely, Godel showed that as soon as a system
is rich enough to encode Peano arithmetic, one can construct sentences that are valid in Peano
arithmetic but which are not derivable in the system itself.

Caused by the development of electronic computers in the 40’s and 50’s disappointment grad-
ually gave away to attempts of developing and implementing proof procedures in practice. Tt
took quite a few years until J.A. Robinson achieved a first important break-through with his res-
olution approach in 1965 [Rob65]. The most important improvement of this approach compared
to former ones is that in order to prove a theorem it tries to refute the negated theorem in a
goal directed way, thereby employing first-order unification as a powerful filter instead of simply
enumerating the Herbrand universe like most earlier methods. Robinson’s ideas are still employed
in many state of the art theorem provers such as OTTER [MW97, McC94], EQP (which recently
solved the Robbins Problem [McC97b]), or the superposition based prover Spass [WGR96]. Even
tableaux based provers like PROTEIN [BF94] or SETHEO [GLMS94] are rather closely related to
the resolution approach and unification became an essential (filtering) tool for the whole field.

2 CHAPTER 1. INTRODUCTION

Unfortunately rather few pioneers dared to tackle the mechanisation of higher-order logic
based on the simply typed A-calculus — also called classical type theory. For instance, Robinson
presents in [Rob68, Rob69] a higher-order proof procedure based on the tableaux idea that itself
employs many ideas from the calculi given in [Sch60] and [Tak53]. The most important works
to be mentioned are Peter Andrews’ investigation of higher-order resolution [And71], Jensen and
Pietrowski’s approach [JP72] and especially Gerard Huet’s constrained resolution approach [Hue72,
HueT73a]. Tt is well known that one of the great challenges for the mechanisation of classical type
theory is the undecidability of higher-order unification [Luc72, Hue73b, Gol81]. Whereas Andrews’
resolution approach still avoids unification (and instead employs an enumeration of the universe),
Huet’s constrained resolution approach [Hue72] solves the problem by encoding the particular
unification problems as unification constraints and by delaying the application of higher-order
unification until the end of a refutation. Huet’s approach additionally gains from the higher-order
pre-unification algorithm [Hue75] which avoids the guessing aspects of full higher-order unification
(for early non-complete approaches to higher-order unification see [Gou66, Dar71, Ern71]; the first
complete approaches are presented in [Hue72] and [JP72]) and which fortunately turned out to be
sufficient within a refutation approach.

At present, the most powerful higher-order theorem prover is the Tps-system [ABIT96,
AINPI0] developed at Carnegie Mellon University which is based on the mating approach [And76,
And81, And80, Bib83]. This system and the LEo-prover described in this thesis demonstrate the
practical feasibility of automated higher-order theorem proving — at least for simple mathematical
theorems.

All approaches to automated higher-order theorem proving mentioned above necessarily lack
completeness with respect to the intuitive notion of standard semantics as shown by Godel in
1931 [G6d31]. Instead modern calculi (and systems) aim at completeness with respect to Henkin
semantics, which has been invented by Leon Henkin [Hen50, Hen96] and is known as the most
general notion of semantics for classical type theory so that complete calculi are possible. Henkin
semantics, in [And71] also called general models, thus became the theoretical surveyor’s wooden
rod for all calculi in this field.

An interesting aspect of classical type theory is that equality is definable in a very natural way
(if the underlying notion of semantics is strong enough). For instance, one can express the Leibniz
principle of equality — two things are equal, iff they have the same properties — very easily in
classical type theory:'

=" == (AXoYa VPassoe P X = PY)

In this sense, all approaches mentioned above provide for a very natural equality treatment.
But in order to ensure Henkin completeness, they all (including the more recent calculi [Wol93],
[Koh94b] and [Koh95]) require the extensionality axioms of Leibniz equality (i.e. the infinitely
many functional ertensionality arioms? and the axiom for Boolean ertensionality®) to be added to
the search space. Furthermore, there are no special techniques for the mechanisation of equality
reasoning as in first-order theorem proving.

We can now precisely formulate the goals of this thesis, which are:

1. The clarification of the role of equality and extensionality in automated higher-order theorem
proving.

2. The development of proof techniques for analysing higher-order calculi with respect to Henkin
completeness.

!'Note that this formula describes an implication instead of an equivalence as one may expect. This is sufficient
as one easily gets the other direction by contraposition when instantiating P with —P.

2The functional extensionality axioms express that two functions are equal, iff they are equal on all arguments,
and they are of form: VF,, ,5. VG, ,s(VXp F X =G X)= F =P G. We need one axiom for each pair of types o
and 3.

3The Boolean extensionality axiom expresses that on the domain of truth values, which contains exactly two
truth values in standard or Henkin semantics, the equality relation and equivalencerelation coincide: VAo, Bo. (4 =°
B)= (4 =B).

1.2. HIGHER-ORDER LOGIC 3

3. The development of a Henkin complete resolution calculus that avoids the extensionality
axioms in the search space.

4. The development of Henkin complete approaches to primitive equality in higher-order reso-
lution based theorem proving.

5. The demonstration of the practicability of these approaches via an implementation.

In the remaining parts of the introduction we will illustrate the different aspects of this thesis
in more detail.

1.2 Higher-Order Logic

A higher-order logic is any simply typed logical system that allows quantification over function
and predicate variables. Tt was Bertrand Russel [Rus02, Rus03] who first pointed out in 1902
that in connection with the comprehension principles* this may allow for paradozes. The most
prominent example is the set of all non-self-containing sets (also called Russel’s paradoz). As a
possible solution Russel suggested a few years later in [Rus08] a theory of types as a basis for the
formalisation of mathematics that differentiates between objects and sets (or functions) consisting
of these kinds of objects. This idea was also taken up by Alonzo Church in 1940, who invented
the simply typed A-calculus [Chu40] in order to prevent such paradoxes in the untyped A-calculus,
which he developed with Schonfinkel and Curry ten years earlier. Needless to mention that typed
and untyped A-calculi play an important or even central role in many research fields of modern
computer science. Consequently there are several modern textbooks for the typed and untyped
A-calculus available and we refer to [Bar92, And86, HS86, Bar84] for details.

The avoidance of paradoxes like Russel’s paradox is also a main reason why we employ a
logic based on Church’s simply typed A-calculus [Chu40] — i.e., classical type theory — in this
thesis. There are certainly other approaches, e.g., Zermelo-Frankel [Zer08, Fra22b, Fra28] or von
Neumann’s [Neu25] set theory, that solve the paradox problems and they are often more popular
among mathematicians as a basis for the formalisation of mathematics.

An argument for type theory, however, is that it allows for more natural and intuitive problem
formulations as well as solutions (see the introduction in Andrews’ textbook [And86]). Further-
more, the choice of classical type theory has additional advantages as the A-binding construct in
combination with the A-conversion rules in these languages have the effect that the type restricted
comprehension azioms become derivable (see also [And86]). The comprehension axioms are of the
form IUg=_, 6. VX" (U X™) = Bg (for an arbitrary term B such that the variable U does not
occur free in B, types a” and 3, and n > 0) and their intention is to guarantee for each expression
B the existence of the functions (or sets) referred by Ug=_,5. For instance, if (3 is the type o of
truth values the comprehension principle asserts that for any respective formula B there exists a
set u (referred to by the variable U) which contains exactly all those elements v? (referred to by
variables V") for which B evaluates to true. But fortunately the required sets and functions u can
easily be directly described in the A-calculus by the term AX™. B, so that the implicit requirement
that each term in our language indeed has a denotation (which we call Denotatpflicht), already
ensures their existence.

Another advantage of classical type theory is that the functional extensionality principle is, at
least to some extent, automatically built into the language. This is due to the A-conversion rules
— especially the n-rule which expresses the convertibility of all terms of the form (AX. A X) to A
in case variable X does not occur free in A — and the existence of respective normal forms allows
us to reduce all terms, e.g., to fn-normal form or fn-head-normal-form (see [Bar92, Bar84]). Also
the standard higher-order unification or pre-unification algorithm [Hue75, SG89, Sny91] already
applies the functional extensionality principle in a straightforward way in case at least one of the

4These principles assure the existence of certain functions, cf. the type restricted comprehension axioms below.

4 CHAPTER 1. INTRODUCTION

two terms to be unified is a A-abstraction.®

Unfortunately the importance of the Boolean extensionality principle for the mechanisation of
classical type theory has widely been overlooked. If one is interested only in syntactical term rewrit-
ing or narrowing in the simply typed A-calculus (see for instance [Pre98, NP98, NM98b, Pre95,
Pre94, vO94, Wol93]) then the Boolean extensionality principle certainly is not of importance as
the special type o denoting the (exactly two valued) set of truth values and the logical connectives,
which have fixed instead of arbitrary denotations, do not occur in the language. We clarify our
notion of syntactical term rewriting: As already mentioned, higher-order (pre-)unification (as well
as higher-order matching) indeed unifies terms modulo the functional extensionality principles.
And in this sense unification and matching in the simply typed A-calculus can certainly be seen as
an F-unification algorithm, where F is the theory defined by the functional extensionality axioms.
But the functional extensionality principles are quite naturally and without much effort built-in
into the A-calculus as well as the traditional unification and matching algorithms. Thus, when we
speak of syntactical higher-order unification or term rewriting we mean this in the latter sense
and consider functional extensionality as automatically built-in.

The interest in syntactical higher-order term rewriting is motivated by potential applications
in different fields such as functional programming or program verification. The main challenge
recently is to develop suitable term-orderings in order to orientate and complete the equations of
a rewriting system. All results on syntactical rewriting are therefore of great interest for the field
of automated (or interactive) higher-order theorem proving, too, as there are many application
domains in this fields in which syntactical rewriting can fruitfully be employed.

But in this thesis we will illustrate that equational theorem proving in classical type theory
is generally much more challenging and complicated as pure syntactical term rewriting. Apart
from the functional extensionality principle — which is to some extent addressed by syntactical
term rewriting — the Boolean extensionality principle is of importance, too. For example, in
equational theorem proving for classical type theory one is also interested in unifying — and
rewriting — on extensionally equal terms like (AX. red X Acircle X) and (AX. circle X Ared X)
or (AX. AV -A) and (AX. B = B). It is quite obvious that the pure syntactical higher-order
unification approach (i.e., syntactical modulo functional extensionality only) is much too weak
to solve such unification problems. This example also illustrates that higher-order unification
with respect to both extensionality principles requires the application of a general higher-order
theorem prover in the sense of a embedded subsystem within higher-order unification in order to
examine whether two terms of type o are equal. This illustrates the challenging difference between
simple syntactical rewriting, where at most the functional extensionality principle is taken into
account, and equational reasoning in classical type theory where both extensionality principles are
of importance.

Another aspect of higher-order logic to be clarified concerns the aziom of choice and the
description operator. It is well known (see [Fra22a, G6d40]) that the axiom of choice is independent
and consistent in set theory. A respective result for classical type theory is shown in [And72b].
The axiom of choice expresses that there exists a function f that chooses exactly one element
out of each set belonging to an arbitrary family of sets. This axiom — more precisely this axiom
scheme — has a non-constructive character and, e.g., allows a very simple but non-constructive
proof, first presented by Zermelo [Zer04] in 1904, for Cantor’s conjecture that every set can be well
ordered (for a modern discussion of the axiom of choice see also [Jec77]). As many mathematicians
have objections to the non-constructive character of the axiom of choice we will not treat it as an
imperative in our logic. Analogously we do not treat the description operator as automatically
built-in. The description operator, which allows for the description of possibly non-existing objects
like Santa Claus (note that introducing a constant in a signature for Santa Clause automatically
requires his existence by the Denotatpflicht), was first examined by Alfred N. Whitehead and
Bertrand Russel [WR10] (see also [Sco67, And72b] for a discussion).

5Obviously, if one requires the unification terms to be in Bn-normal form, any two terms of functional type
must be A-abstractions. If instead one considers only 37-head-normal form terms they not necessarily have to be
A-abstractions. In the latter case additional rules are probably needed in the unification calculus (see for instance
the sorted higher-order unification calculus discussed in [Koh94b]).

1.3. HIGHER-ORDER MODEL EXISTENCE 5

We want to point out that although the axiom of choice is not built-in, non-constructive proofs
are possible in our framework. We still consider a classical notion of higher-order logic in which,
e.g., the tertium-non-datur principle is valid and proofs can be carried out indirectly.

This is in contrast to intuitionistic type theory [ML94, GJ98] which was invented by Martin
Lof in the early 70’s to provide a formal foundation for constructive mathematics. Intuitionistic
type theory has become a very important and active field in computer science and is successfully
applied, for instance, for the verification of computer programs and languages. Hofmann dis-
cusses in [Hof97] that the extensionality principles are quite important even in intuitionistic type
theory for the formalisation of mathematics, but they unfortunately cause major problems in the
mechanisation.

Summing up, we employ in this thesis a classical higher-order logic based on the simply typed
A-calculus (classical type theory) and treat the axiom of choice and the description operator as
optional. With respect to semantics we are interested in standard semantics and with respect
to the completeness of our calculi we shall refer to Henkin semantics. In standard as well as in
Henkin semantics both extensionality principles (the functional as well as the Boolean) are valid
and for equational reasoning in classical type theory both principles need to be mechanised in an
appropriate way. This differentiates higher-order equational reasoning, which is the topic of this
thesis, from syntactical higher-order term rewriting.

In this thesis we shall differentiate between five notions of equality: If we define a concept we
use = (e.g., let D :={T,F}) and = represents meta-equality. We denote the equality relation as
an object of our semantical domains with q; note that there is at most one q® in each domain
* may occur as a
constant symbol of type a in a signature ¥ and finally = as an abbreviation for the respective

Do. The remaining two notions, = and =, are related to syntax, where =

formula expressing Leibniz equality. Whereas =" only denotes semantical equality relation q® if
the underlying semantical notion is strong enough (e.g., in Henkin semantics), =% always denotes

the respective semantical equality relation.

1.3 Higher-Order Model Existence

In classical first-order predicate logic, it is straightforward to assess the deductive power of a
calculus: first-order logic has a well-established and intuitive set-theoretic semantics, relative
to which completeness can be verified using, for instance, the abstract consistency method (see
the introductory textbooks [And86, Fit96]). This well-understood meta-theory supported the
development of different calculi well.

In higher-order logics, the situation is rather different: the intuitive set-theoretic standard
semantics cannot give a sensible notion of completeness [G6d31]. However, there is a more general
notion of semantics (the so-called Henkin semantics [Hen50]), that allows complete calculi and
which sets the standard today for deductive power of calculi.

Peter Andrews’ Unifying Principle for Type Theory [AndT1] provides a method of higher-order
abstract consistency that has become the standard tool for completeness proofs in higher-order
logic, even though i1t can only be used to show completeness relative to a certain Hilbert style
calculus ¥. A calculus C is called complete relative to a calculus ¥, iff C proves all theorems of
%. Since ¥ is not necessarily complete with respect to Henkin models, the notion of completeness
that can be established by this method is a strictly weaker notion than Henkin completeness.

As a consequence, the calculi developed for higher-order automated theorem proving [And71,
Hue72, HueT73a, JP72, Mil83, Koh94b, Koh95] and the corresponding theorem proving systems
such as Tps [ABIT96], are not complete with respect to Henkin models. Moreover, they are not
even sound with respect to ¥, since all of them utilise n-conversion, which is not admissible in %.
In other words, their deductive power lies somewhere between ¥ and Henkin models.

Here the aim of this thesis is to provide a semantical meta-theory that will support the develop-
ment of higher-order calculi for automated theorem proving just as the corresponding methodology
does in first-order logic. To reach this goal, we establish

6 CHAPTER 1. INTRODUCTION

e classes of models that adequately characterise the deductive power of existing theorem-
proving calculi (making them sound and complete), and

e a standard methodology of abstract consistency proof methods (by providing the necessary
model existence theorems, which extend Andrews’ Unifying Principle), so that the com-

pleteness analysis for higher-order calculi will become as simple an exercise as in first-order
logic.

Due to the inherent complexity of higher-order semantics we give an informal exposition of the
issues covered and the techniques applied.

|
: total

Figure 1.1: The landscape of Higher-Order Semantics

Let us now explore the particular semantic notions (see Figure 1.1). We will discuss the
model classes from bottom to top, from the most specific notion of standard models (&%) to the
most general notion of v-complexes, motivating the respective generalisations as we go along. In
Chapter 2.1, we will proceed the other way round, specialising the notion of a X-model (Mg) more
and more.

The symbols in the boxes in Figure 1.1 denote model classes, the symbols labelling the arrows
indicate the properties inducing the corresponding specialisation, and the V-symbols next to the
boxes indicate the clauses in the definition of the corresponding abstract consistency class (cf. 3.4)
that are needed to establish a model existence theorem for this class of models.

A standard model (6%, cf. Definition 2.31) for our higher-order logic provides a fixed set D,
of individuals, and a set D, := {T,F} of truth values. All the domains for the complex types are
defined inductively: D, is the set of all functions {f|f: Do — Dg}. The evaluation function
Z, with respect to an interpretation Z:3 — D of constants and an assignment ¢ of variables

1.3. HIGHER-ORDER MODEL EXISTENCE 7

is obtained by the standard homomorphic construction that evaluates a A-abstraction with a
function, whose operational semantics 1s specified by F-reduction.

The notion of Henkin models (Sﬁﬁqb or 9) generalises that of standard models in the sense that
instead of requiring D, 5 to be the full set of functions it only requires that D,_, 5 has enough
members such that any well-formed formula can be evaluated.® Note that with this generalised
notion of a model, there are fewer formulae that are valid in all models (intuitively, for any given
formulae there are more possibilities for counter-models). In fact the generalisation to Henkin
models restricts the set of valid formulae sufficiently, so that all of them can be proven by a
Hilbert-style calculus [Hen50]. Thus, whereas standard semantics does not allow complete calculi
due to Gdodels result [G6d31], Henkin semantics does [Hen50, Hen96].

It is matter of folklore that a primitive notion of equality (expressed by a primitive equa-
lity constant =€ X) is not strictly needed, since it can be expressed by the Leibniz formula.
However, the Leibniz formula only denotes the semantic equality relation if D, _,, contains enough
properties to discern members of D, ; in fact, we have to ensure that for all a € D,,, the singleton
set {a} is in Doy, (see the proof of Lemma 2.36).7 In other words, we are in the somewhat
paradoxical situation, that Leibniz equality (which is commonly used as a substitute for primitive
equality) will only denote semantical equality, if we can guarantee that the identity relation is
already present in the model (we call this property g, cf. Definition 2.27). Hence we introduce
the corresponding semantical structures, namely Henkin models without property q (Mgsp), in
which property ¢ is not necessarily valid and thus Leibniz equality does not necessarily denote the
equality relation. An example of a theorem which is valid within the class of Henkin models but
is not in the class of Mgsp’s is given by the axiom of functional extensionality for Leibniz equality
(VFosp. VGass s (VX5 FX = GX) = F =" (), cf. Lemma 2.37.

The next generalisation of model classes derives from the fact that we want to characterise the
deductive power of higher-order theorem provers at a semantic level (we will take Tprs [ABIT96]
as an example). Note that TpPs cannot be complete with respect to Henkin models and is even
not generally complete for Mpyse’s, although there is some ‘extensionality treatment’ built into
the proof procedure. The incompleteness of Tps for Henkin models® can be seen from the fact
that it fails to refute formulae such as cA, A =¢(=—A), where ¢ is a constant of type o — o or
¢(AX, BX A AX) = ¢(AX, AX A BX), where ¢ is a constant of type (&« — o) — o. The
problem in the former example is that the higher-order unification algorithm employed by Tps
cannot determine that A and ——A denote identical semantic objects (by Boolean extensionality
as already mentioned before), and thus returns failure instead of success. In the second example
the principle of functional extensionality is needed in addition in order to prove the theorem.

The lack of completeness of refutation procedures like TPS occurs especially in a situation,
where formulae contain occurrences of propositional formulae dominated by uninterpreted con-
stants or variables or where this problem is mixed with the problem of functional extensional-
ity; in our examples the function constant ¢ dominates the proposition A, or the set expression
AXo BX AAX. To give a semantical characterisation of the deductive power of the Tps proce-
dure, we have to generalise the class of Henkin models further, so that there are counter-models to
the examples above. Obviously, this involves weakening the assumption that D, = {T,F} (we call
this assumption for Henkin models property b), since this entails that the values of A and =—A are
identical: In functional X-models (Mas, Mgso, Mgq, cf. Definitions 2.28 and 2.24) we only insist that
there is a valuation v of D,, i.e., a function v: D, — {T,F} that is coordinated with the functions
Z(—), Z(A), Z(T1*) and (possibly) Z(=%), where T is the interpretation function (i.e., a family of
interpretation functions) for the constants given in the signature. Thus we have a notion of validity
for X: we call a proposition A valid in M := (D,Z, v) under an assignment ¢, iff v(Z,(A)) = T.

81n other words: the functional universes are rich enough to satisfy the comprehension axioms.

7On a similar note, Peter Andrews remarked in [And72a] that if the set Do —yo—so is so sparse that the semantic
identity relation is not present, it is then possible to construct a Henkin model where Leibniz equality is non-
extensional.

8Tn case the extensionality axioms are not available in the search space. Note that one can add extensionality
axioms to the calculus in order to achieve, at least in theory, Henkin completeness. But this increases the search
space drastically and is not feasible in practice.

8 CHAPTER 1. INTRODUCTION

In our first example, there is a ¥-model structure M = (D, Z,v), where Z,(A) # Z,(——A), and
therefore Z,(cA) Z Z,(c (ﬂ—|A)) if we take Z(c) to be the identity function on D,. In particular,
we can have v(Z,(cA)) v(Z,(c(——A))), and therefore v(Z,(cA, A ~c(——A))) = F, since v is a
valuation.

Clearly, for functional Y-models we have the same choices concerning the role of equality,
therefore, we distinguish the classes Mg; and Mg, of functional X-models without/with property
q. Furthermore, we have the class Mgsp of functional X-models with (only) property b, which
expresses that the set of truth values contains exactly two elements, i.e., D, = {T,F}. Since
functional ¥-models with properties b and g are defined to be X-Henkin models, we can also view
Msio as “Henkin models without property ¢”.

Finally, we drop the requirement of functional extensionality for Y-models, which is encoded
as property f (cf. Definition 2.24). This is the most general notion of semantics we will discuss
in this thesis; we only insist that the evaluation function is a homomorphism which respects
instantiation. In such models, a function is not uniquely determined by its behaviour on all
possible arguments. For the construction of such models we therefore need labelings for functions
(e.g., a green and a red version of a function f) in order to differentiate between them, even though
they are functionally equivalent. As already done for functional X:-models we analyse properties g
and b for non-functional X-Models. Whereas b may or may not hold for non-functional ¥-Models,
it turns out that property g, i.e., the requirement that the intended equality relations are provided
in the respective domains, only makes sense in connection with functionality. More precisely,
property g is not independent from functionality.

Peter Andrews has pioneered the construction of non-functional models with his v-complexes
n [And71]. These are even more general constructions than our X-models, since totality of
the evaluation function is not assumed. His construction is based on Schiitte’s semi-valuation
method [Sch60], which only needs partial valuations to construct a model for a given Hintikka set.

In this thesis, we concentrate on the other aspects of higher-order models and ensure totality of
our evaluation functions by a saturation condition (cf. 3.9) in our abstract consistency classes. This
does not restrict the applicability of our model existence theorems, since saturation is relatively
simple to prove for a given calculus (see [Koh94b, Koh98, BK97b]). For all the notions of a
model we present model existence theorems tying the differentiating conditions of the models to
suitable conditions in the abstract consistency classes (see Chapter 3). We can use the classical
construction in all cases: abstract consistent sets are extended to Hintikka sets 3.13, which induce
a valuation on a term structure (see Definition 2.14). In some cases, we have to take a quotient
structure (see Definition 2.12) to ensure that the set of truth values is exactly {T,F} for property
b.

The simplest way to ensure property ¢ is by assuming that the signature contains a primitive
connective for equality, which is evaluated as semantical identity (we call this property ¢). We will
study the case in Section 3.3. On the one hand, the semantical situation becomes much simpler
now (see Figure 2.1), since Mg, Mp; and Mg, are identified, just as Mgy, Mpje and H, on the
other hand, the existence of another logical constant induces further conditions in the definition
of the abstract consistency classes.

1.4 Traditional and Extensional Higher-Order Resolution

As we have seen, traditional higher-order resolution approaches [And71], [JP72], [HueT72] as well
as the TPs-system generally need to add all extensionality axioms to the search space in order to
ensure Henkin completeness. And this holds for more recent approaches like [Koh94b] and [Wol93]
as well. Although the functional extensionality principles taken alone is integrated into syntactical
higher-order unification both extensionality principles still have to be additionally axiomatised in
the search space in order to reach Henkin completeness. This can be seen for problems like
(AX,. red X A (circle X A (large X V =(large X)))) = (AY.. circle X Ared X). It does not help
at all that functional extensionality is already integrated in higher-order unification as we here

1.4. TRADITIONAL AND EXTENSIONAL HIGHER-ORDER RESOLUTION 9

obviously need an appropriate combination of both principles in order to equalise the terms. And
in the above approaches — which all follow the idea of generally delaying higher-order unification
in order to overcome the undecidability problem — such a combination can only be achieved by
adding all extensionality axioms to the search space.

Wolfram [Wol93] applies higher-order F-unification instead of pure syntactical higher-order
unification, but he does not provide an explicit account of theories £ containing both extension-
ality principles: they require potential recursive calls to an (again) Henkin complete higher-order
theorem prover. And also the higher-order F-unification algorithm of Snyder [Sny90] provides no
solution to the problem with the extensionality principles, as the suggested approach is restricted
to first-order theories and, e.g., does not take the Boolean extensionality principle into account.

The idea of such recursive calls was first mentioned in [Koh95]. But unfortunately this approach
still lacks Henkin completeness as the single rule added to the calculus (which is analogous to the
rule Fquiv in our approach; see Figure 4.2) is not strong enough to realize all the necessary aspects
of a suitable interaction of Boolean and functional extensionality.

Another unfortunate aspect about [Koh94b] and [Koh95] is that both approaches not only lack
a general extensionality treatment but also lack soundness. E.g., in both approaches it is possible to
prove that each function has a fixed point, which can be formulated as follows: VF, 4. 3X,. FF X =
X. This is caused by the extra logical treatment of Skolemisation with the so called wvariable
conditions employed in both approaches. But the conditions added with each eliminated existential
quantifier are not strong enough to prevent a proof of the above statement. As the author was
not able to suitably fix this problem we employ in this thesis traditional Skolemisation again
and avoid the usage of variable conditions.® More precisely, we employ Miller’s sound adaptation
of traditional first-order Skolemisation [Mil83], which associates with each Skolem constant the
minimum number of arguments the constant has to be applied to. Higher-order Skolemisation
becomes sound!?, if any Skolem function f* only occurs in a Skolem term, i.e., a formula 8 =
f*An, where none of the A’ contains a bound variable. Thus the Skolem terms only serve as
descriptions of the existential witnesses and never appear as functions proper.

As already mentioned, a main motivation for this thesis is to get rid of the drawback of the
above approaches, which have to add the (generally infinitely many) extensionality axioms to the
search space in order to reach Henkin completeness. In fact, none of the currently available sys-
tems for classical type theory actually adds the extensionality to the search space but they instead
accept incompleteness. The Trs-system [ABIT96] probably offers the most practicable solution
to the situation: It avoids the extensionality axioms and instead analyses the input problems in
order to try to modify them in an appropriate way (e.g., by applying the functional extensionality
principles to input equations of functional type or by replacing equations on type o by equiva-
lences). But Example E§" in Section 8.1 demonstrates that there are many examples which can
not be appropriately modified this way before being passed to the refutation process. Also the
Hor-system [GM93] and the ISABELLE-system, which are other prominent theorem provers for
higher-order logic, do not automatically add all extensionality axioms to the search space when
proving subgoals automatically.

In order to back up the motivation for this thesis we will briefly sketch the drawbacks of the
option to add the extensionality axioms to the search space. This will also clarify why the available
systems indeed avoid this option. First, we remember the definition of the functional and Boolean
extensionality principles (for Leibniz equality):

EXT%—MC" =VFy 5. VG 0ssp. (VX@. FX=GX)=F =%
EXTY] :=VA,. VB, (A=°B)=(A=B)

One challenging problem for the mechanisation of these principles, namely the general need for
infinitely many axioms EXT%_’ﬁ, has already been mentioned. But even apart from this problem

9Michael Kohlhase remarked that he is currently working on a solution to the problem. If this solution turns
out to be sound, it can an probably should be employed instead of traditional Skolemisation within the calculi
presented in this thesis as well.

10Without this additional restriction the calculus does not really become unsound, but one can prove an instance
of the axiom of choice, which we want to be optional in our approach.

10 CHAPTER 1. INTRODUCTION

these axioms would cause an enormous explosion of the search space. This becomes immediately
clear if one considers the clauses obtained by the normalisation of just one single extensionality
axiom. Note that Leibniz Equality = is just an abbreviation for a higher-order term and that the
expanded axioms are thus of form:

EXT;™F =
VFossp VGosspe (VX5 (VPssor P (F X) = P (G X)) = (VQasp)me @ F = Q G)

EXT] = VA, VB, (VP,50. (P A)=° (P B)) = (A= B)

Note that normalising these formulas introduces many flexible variables into the search space.!!
And the problem with the free predicate variables at head position in literals — which are also
called flexible literal heads — is that the primitive substitution rule Prim becomes applicable to
them (cf. [And71] or rule Prim in Figure 4.2 in Chapter 4). This rule, which is very important in
higher-order theorem proving for reaching completeness, blindly instantiates each flexible literal
head with a most general binding (partial binding) that imitates a logical connective, i.e., with
a most general formula that introduces a logical connective at head position. Note that there
are infinitely many universal quantifiers (one for each type) and thus the primitive substitution
rule is infinitely branching. And as this principle aims at introducing most general terms apart
from the new logical connective at head position, new free predicate variables are generated which
subsequently become — after the necessary normalisation of the modified clauses — new flexible
literal heads. And not enough, the primitive substitution rule can thereby even duplicate flexible
literals. Tt is thus obvious that each single clause derived from an extensionality axiom with a
flexible literal leads to explosion of the search space that 1s awkward to handle in practice. Thus,
in principle a higher-order theorem prover can spend an arbitrary amount of time just in applying
primitive substitution to the clauses belonging to the extensionality principles. And unfortu-
nately the primitive substitution principle cannot be generally avoided as otherwise a higher-order
resolution approach even fails to prove such trivial theorems like 3X,. X, or AP, ,. VY,. P Y.

The illustrated serious drawbacks of the option to add all extensionality axioms to the search
space was the main motivation for the development of the extensional higher-order resolution
calculus ER presented in Chapter 4, which instead of adding these axioms employs the idea of
recursive calls to the overall refutation process from within syntactical higher-order pre-unification
as first mentioned in [Koh95]. But in contrast to [Koh95] the approach presented here (which is
also described in [BK98a]) realises the necessary interaction of both extensionality principles in a
suitable way, and this finally makes it the first Henkin complete refutation approach for classical
type theory. Note that this approach can also be viewed as a test calculus for general higher-
order FE-unification in the following sense: If we pass the conditional equations (VX". (L; =
Ri)A...A (L, = Ry)) = (HY_’” (L = R)) to our extensional higher-order resolution calculus,
then this calculus tests for the E-unifiability of the term (L = R), where E is the theory defined
by the equations (VX7”. (L1 = R1) A...A (L, = R2)) and the extensionality principles.

1.5 Adding Primitive Equality

Whereas the research in the field of higher-order term rewriting is very active (see for in-
stance [Pre98, NP98, NM98b, Nip95, Pred5, Pre94, vO94, Wol93] for higher-order term rewriting
and narrowing or [JR99, JR98, LP95] for recent work on higher-order term orderings) the integra-
tion of primitive equality and the application of term rewriting techniques in a refutation based
higher-order theorem proving context is still rather unexamined. At a first glance one might as-
sume that as soon as suitable higher-order rewriting techniques are available — the currently most

1 Tn Chapter 2.8 we will illustrate that there are infinitely many more or less natural ways of defining equality in
classical type theory apart from Leibniz equality. Thus it may be possible to find some slightly more appropriate
formulations of the extensionality principles for defined equality as the ones presented here, even though this seems
to be rather unlikely. It will certainly not be possible, though, to avoid all the free predicate variables introduced
here.

1.5. ADDING PRIMITIVE EQUALITY 11

challenging problem is to find suitable term-orderings in higher-order logic — they can be success-
fully employed in an automated higher-order theorem proving context as well. And furthermore
one may argue that because automated first-order provers that are heavily based on term rewriting
techniques (such as WALDMEISTER [HBVL97], BLIKSEM or SPass [Wei97]) seem to have taken
the lead in many application domains over systems that employ difference reducing techniques,
an analogous situation will arise in higher-order logic as soon as the available higher-order term
rewriting approaches become strong enough. Whereas this may indeed happen in specific do-
mains, this thesis provides a counterargument for the overall success of term rewriting techniques
in automated higher-order theorem proving by pointing out new serious problems that in addition
to the term-ordering problem need to be solved:

e As already motivated higher-order unification takes only the functional but not the Boolean
extensionality principle into account.

e In Chapter 2.8 we illustrate that in classical type theory infinitely many different terms
(apart from the Leibniz definition) define equality and that we cannot decide whether a
(probably automatically generated) proof problem contains a defined equation at some sub-
term position. Thus, even if we consider a higher-logic with primitive equality and try to
employ term rewriting techniques, we cannot generally restrict equality handling in a calcu-
lus that aims at Henkin completeness only to primitive equality as our input problem may
still contain some defined equations we cannot even detect. And Examples ES® and E§™
in Section 8.1 illustrate that there are even theorems which neither contain a defined nor a
primitive equation but where the extensionality principles are nevertheless of central impor-
tance for the proof. Furthermore, in classical type theory with a primitive notion of equality
one unfortunately has to take care of both kinds of extensionality principles, those for Leibniz
equality as well as those for primitive equality. And a Henkin complete approach therefore
also needs to realise a general interleaving between both concepts of equality. This sharply
contrasts with the situation in first-order theorem proving where one can choose between
defining equality (e.g., by axiomatising it) or considering a primitive notion of equality and
providing new calculus rules. In classical type theory one simply does not have this choice:
Defined equality is always built-in.

e In Chapter 5 we adapt traditional first-order paramodulation [RW69] to higher-order logic
and define a higher-order paramodulation approach EP based on the extensional higher-order
resolution calculus ER. Whereas the important reflexivity rule (or axiom) known from first-
order paramodulation is naturally built-in in our approach, we will show that in order to
ensure Henkin completeness additional extensionality rules (or axioms) for primitive equality
are needed. The problem is that in classical type theory even single positive equations can be
contradictory, which again contrasts with the situation in first-order logic. Unfortunately the
needed additional extensionality rules further strengthen (as would the respective axioms)
the already strong difference-reducing character of the underlying calculus ER. It will be
motivated by examples in Chapter 8 that a proper term rewriting approach will be quite
hard to achieve as the realisation of a suitable interaction of the functional and Boolean
extensionality principles has a rather natural difference-reducing character.

As the development of suitable heuristics for the higher-order paramodulation approach EP with
its intrinsic mixed term rewriting and difference reducing character seems to be quite difficult (if
possible at all) we additionally develop in Chapter 6 the difference-reducing approach ERUE which
adapts the ideas of first-order RUE-resolution [Dig79] to our higher-order setting. This approach
faces the same problem about primitive equality as the paramodulation approach &P and has
to add new extensionality for primitive equality in order to reach Henkin completeness. The
only difference between ER and ERUE is actually that the latter avoids the paramodulation rule
and instead allows to resolve and factorise on unification constraints. Thereby ERUE gains a pure
difference-reducing character that may be easier to guide and handle in practical applications than
the intrinsic mixed term rewriting/difference-reducing character of EP. This aspect is illustrated
by examples E{* and E§°* in Section 8.6.

12 CHAPTER 1. INTRODUCTION

1.6 The LEO System

LEo realises the calculus ER and is based on an extended set of support architecture, that adapts
this well known technique from first-order theorem proving (e.g., see [McC94]) with respect to the
very specific requirements of extensional higher-order theorem proving. The system is implemented
in Common Lisp [Ste90] and employs many data structures and basic algorithms offered by the
KeiM-toolbox [HKK*94] for deduction systems. This toolbox, e.g., provides the higher-order
term indexing module described in [Kle97] that adapts the first-order term indexing techniques
of [Gra95] to the higher-order setting.

The prototypical prover LEO has been implemented mainly during a 5 months stay at Carnegie
Mellon University, Pittsburgh, USA, and is discussed in Chapter 7 in detail in (see also [Ben97]).

Originally two contrary search strategies have been developed. In this thesis we only discuss
the one that has become the standard strategy in LEo. This strategy employs like most first-order
approaches unification and subsumption as filter in order to sort out clauses which are either su-
perfluous or which cannot contribute to the refutation. The main difference to first-order theorem
provers is that these filtering side-computations are computationally much more expensive in the
higher-order setting and generally even undecidable. Thus, LEo artificially restricts and interrupts
these side-computations with the result that these filters become quite imperfect. Especially the
employed subsumption check is based only on the simplification part of higher-order unification
and we do not develop and realise a notion of extensional higher-order subsumption, which would
lead to a much stronger and more appropriate (but undecidable) filter for our purposes.

Anyhow the extensionality principles cause new practical problems for LEo. E.g., term index-
ing techniques cannot be employed to the same extent and for the same purposes as in first-order
automated theorem proving. This is illustrated by the following example, which shows that the
usage of term indexing techniques within the computation of resolution partners causes incom-
pleteness: Assume we want to prove

VPis0)so 1 Xi|red X Acircle X} € P = {X,|circle X Ared X} € P

while coding sets as characteristic functions and defining € = AX4. AMqyo- M X. Definition
expansion and clause normalisation leads to the clauses

Ci: [P(L—m)—m ()‘XL red,so X Acircle, 5, X)]T Co: [p(b_’o)_“’ ()‘XL circleio X Arediy, X)]F

where p(,_0), 18 a new Skolem constant. LEO can easily solve this problem by first resolving
between C; and C3, decomposing p(,), in the resulting unification constraint and employing
the functional extensionality principle, thereby deriving the constraint

[red,, s Acircle,,, s = circle,y, s Ared,, S]F

Now LEO employs the Boolean extensionality principle, 1.e., replaces = by =, and performs a re-
cursive call to the overall refutation search, thereby deriving the empty clause in a quite straight-
forward way. To come to the point, the sketched goal-directed refutation is not possible when
employing syntactical term indexing techniques within the computation of resolution partners as
the first, essential resolution step between C; and C; would not even be suggested. The problem
is that syntactical term indexing lacks the extensionality principles, and for the same reason LEO
can generally not employ term indexing techniques in unification.

We want to point out that the prototypical implementation of LEO is not a complete refutation
procedure and in Chapter 7 we will discuss the different sources of incompleteness in detail. But
we will also sketch possible solutions to the incompleteness problems.

A case study, which is illustrated in chapter 7, has demonstrated that LEO is indeed capable of
solving simple theorems about sets, which require the application of the extensionality principles.
In this experiment LEO could solve 95 of 97 theorems from the article Boolean Properties of
Sets [TS89] of the Mizar library [Rud92]. This experiment also showed that on this domain LEO
outperforms well known first-order theorem provers, which cannot exploit the expressiveness of

1.6. THE LEO SYSTEM 13

classical type theory and encode these examples in the case study in Tarski Grothendieck set
theory [Try89] (see the results of this case study at http://www-irm.mathematik.hu-berlin.
de/"ilf/miz2atp/mizstat.html. At present the case study with LEO is continued with the
slightly more challenging examples from the Mizar-article Some Basic Properties of Sets [Byl89],
and without any modifications LEO can already solve about 40% of them.

In Chapter 7 we also sketch further aspects of L.Eo like its features as an interactive theorem
prover or its integration to QmrGa [BCF197].

Chapter 2

Syntax and Semantics of
Higher-Order Logic

2.1 Syntax and Preliminaries

In this section we introduce the preliminaries in a quite compact form.! Apart from the notational
conventions most of the introduced concept are as defined as usual.

We start with a higher-order logic based on Church’s simply typed lambda calculus [Chu40]
and choose the set of base types BT to consist of the types ¢+ and o, where o denotes the set of
truth values and ¢ the set of individuals. The set of all types 7 is inductively defined over B7 and
the type constructor —.

We define the order of types and A-terms as in [SG89, Sny91].

We assume that our signature ¥ contains a countably infinite set of variables V; and constants
C; for every type 7 € T. Additionally we postulate the existence of the logical connectives —,_,,
Vosos0, H{ass0)—o (in short TI?) for every type o € 7 in X. A signature that contains additionally
the logical connectives =40, (in short =*) for all types @ € T is noted by £=. All the logical
connectives in % or ¥~ denote their intuitive semantical counterparts.

The remaining logical connectives are defined as abbreviations of the given ones: A A
B:=-(-AV-B),A = B=-AVBA & B:=(A = B)A (B = A),VX,. A, :=
Miaso)s0(AXan A),IX, A, =YX, 2A,. All other constants are called parameters, since
the argumentation in this paper is parametric in their choice?.

Unlike stated otherwise, variables are printed as upper-case (e.g., X«), constants as lower-case
letters (e.g., co), and arbitrary terms appear as bold capital letters (e.g., To). If the type of a
symbol or term is either not of importance or uniquely determined by the given context, we do
not explicitly mention it.

We denote the set of all terms over a signature X (X7) by wff(X) (resp. wff(¥~)), and wff, ()

(resp. wff,(X=)) denotes the set of all X-terms of type a. Terms of type o are also called propo-
sitions or formulae, and closed propositions are also called sentences. The set of propositions is
abbreviated as wff,(X) and the set of all sentences as cwff,(X). A is called atomic, if its fn-normal
form (cf. below) does not have a logical connective at head position.

We will take the order of a formula to be the highest order of the type of any of its subterms,
and the order of a set of formulae to be the maximum of the orders of its members.

In order to avoid confusion we clarify the meaning of the different equality symbols used in this
paper. =*€ X is the syntactic equality constant in our higher-order language. We will illustrate

below that equality can also be defined in higher-order logic and we refer to this definition by

1We apologise that all the important definitions are introduced here at once, instead of introducing them when
needed. The motivation is to provide a compact reference.

?In particular, we do not assume the existence of description or choice operators. For a detailed discussion of
the semantic issues raised by the presence of these logical constants see [And72b].

14

2.1. SYNTAX AND PRELIMINARIES 15

=. The intuitive semantical equality relations in D,_,_, are denoted by q*. For the meta-level
argumentation we use = and := for definitions.

To ease readability we assume right-associativity for the type constructor — and left-
associativity of function application: A5, B, Cp:=((Aaspsy Ba) Cpg). Further-

more, we sometimes abbreviate function applications by hy,—..50,»5 UL , which stands for
(- (hayssansp UL) - UL). A dot “ 7 occurring in a AMterm stands for a left bracket
whose mate is as far to the right as consistent with all other brackets and the construction of
the term. We avoid brackets in every case where the construction of an expression is uniquely
determined by the context.

The structural equality relation in our higher-order logic is induced by gn-reduction
(AX. A) B—; [B/X]A AX.C X) —,C

where X is not free in C. It is well-known (c.f. [Bar84]), that the reduction relations 8, n, and
(Bn are terminating and confluent, so that there are unique normal forms for each term T denoted
by T,,,, T,,Ty,. The induced structural equality relations are denoted by =s,, =5, =, (and
=, for the equality relation induced by the renaming of bound variables). Another important
normal form used in this paper is the head-normal form (which is unique only with respect to
Bn-equality): a term AX™. h U™ is in head-normal form, iff h is a variable or a constant. The
head-normal form of a term T is denoted by T, .

The definitions of free and bound variables, substitutions and the application of substitution are
as usual (see [Bar84]). In this paper we denote the set of free variables of a term T (analogously
for literals and clauses) by free(T). Whereas the usual application of a substitution [A/X] to
T is denoted by [A/X]T, we denote with T[s,x] the combination of usual substitution with
subsequent reduction of the resulting term (literal or clause) to head normal form.

We define satisfiability, unsatisfiability, and validity of a formula F or set of formulae ® with
respect to a model® M as usual.

When we speak of a Skolem term s, for a clause C and free(C) = {X!.,..., X%}, then
S 1s an abbreviation for the term (fgl—r“—m"—mxl -+ X™), where f is a new constant from

Cory...son_yq and n specifies the number of necessary arguments for f. The latter is important
as a naive treatment of Skolemisation results in a calculus that is not sound with respect to Henkin
models, since Skolem functions are special choice functions*, which are not guaranteed to exist in
Henkin models. A solution due to [Mil83] is to associate with each Skolem constant the minimum
number of arguments the constant has to be applied to. Skolemisation becomes sound, if any
Skolem function f” only occurs in a Skolem term, i.e., a formula 8 = f» A", where none of the A’
contains a variable that is bound outside of S. Thus the Skolem terms only serve as descriptions
of the existential witnesses and never appear as choice functions.

Let a:= (8" — 5) and let h be a constant or variable of type (5, — 4) in X, then
G =)\Xlﬁl. h V™ is called a partial binding of type a and head h (see also [SG89, Sny91]), if
Vi=H Xél and the H' are new variables of types 87 — &%, Tt is easy to see that general bindings

indeed have the type and head claimed in the name and are most general in the class of all such
terms.

Partial bindings, where the head is a bound variable ng are called projection bindings (we

write them as Q’é) and tmitation bindings (Written QZ) otherwise. Since we need both imitation
and projection bindings for higher-order unification, we collect them in the set of approzimating
bindings for h and o (AB" = {Gh} U {G], | Jj<lt}).

For a general introduction to higher-order unification we refer to [SG89, Sny91].

The calculi in this paper are defined on clauses, which are disjunctions of literals (e.g.,
[tas0Xa]T V [PasoXalT V [ca = XQ]F). For literals we differentiate between pre-literals and
proper literals. A pre-literal consists of a proposition N, in head-normal form (atom) and a po-
larity T' or F which states whether this literal is positive or negative. We call a literal proper, iff
it contains no logical constant beside = at head position.

3The different notions of models, e.g. Henkin models and standard models will be introduced in Sections 2.2-2.7.
4They choose an existential witness from the set of possible witnesses for an existential formula.

16 CHAPTER 2. SYNTAX AND SEMANTICS OF HIGHER-ORDER LOGIC

We further differentiate between positive literals, negative literals, and unification constraints.
Unification constraints refer to negative literals with primitive equations as atoms. For the calculi
discussed in this paper unification constraints are handled in one of the following ways:

e As special negative literals with a special head symbol =%*¢ X, i.e., =* is not a logical

constant. By special literal we mean that this literal i1s treated as a unification constraint
only, such that no rule but the unification rules are allowed to operate on them. This will
be the case in the extensional higher-order resolution calculus &R discussed in Chapter 4.
E.g., consider the clauses C1 : [H,,a,]7 and Cs : [X = A}¥. Clause Cy consists only of a
unification constraint, which is encoded as a negative primitive equation. This literal is not
treated as usual negative literal in ER, such that resolving between C; and Cjy is forbidden
and positive primitive literals like [f = g]7 are not allowed.

e As special negative literals with a logical constant =*€ X as head symbol. Special negative
literal means that despite the fact that = is a logical constant provided by the signature,
no rule other than the unification rules are allowed to operate on them. This will be the
case in the extensional higher-order paramodulation calculus P in Chapter 5. Now positive
primitive equations like [f = g]? are allowed (since =*€ X}, but resolution (e.g., between
C1 and C» above), factorisation, etc. on unification constraints is still forbidden.

e As ordinary negative literals with the logical constant =*€ X as head symbol. In this case
all rules, e.g., the resolution and factorisation rules, are allowed to operate on these literals.
This holds for the extensional higher-order paramodulation calculus ERUE in Chapter 6. Now
resolution between clauses C1 and Co from above is allowed.

A clause C is called a proper clause, iff it is in clause normal form, i.e., if all literals of C are
proper. Otherwise we call C a pre-clause. Similarly a clause C is in head-normal form, iff all its
literals are.

An unification constraint U := [X, = N,]¥ or U =[N, = X,]7 is called solved, iff X, ¢
free(N,). In this case X is called the solved variable of U. Furthermore, a unification constraint
in head-normal form [(H U™) = (G V™) for n,m > 1 is called a flez-flex constraint (flez-rigid
constraint), iff H and G are variables (either H or G is a variable).

We define a clause C to be empty (denoted by O), iff C consists only of flez-flex constraints.
As it is well known that any set of flex-flex constraints is unifiable, such that they evaluate to F,
we know that O is unsatisfiable (cf. [Hue75]).

Let C:=L'V---VL*VU!'V ... VU™ be a clause with unification constraints U, ... U™
(1 < m). Then a disjunction U V ---V U (i; € {1,---,m};1 < j < k) of solved unification
constraints occurring in C is called solved for C, iff for every U%i(1 < j < k) holds: the solved
variable of Ui does not occur free in any of the U for I # j;1 <1 < k.

Given a calculus R, i.e., a set of rules r,(n > 0) defined on clauses, we define the following
derivation relation: ® F™ C (C' " C), iff C is the result of one application of rule r, € R to
premise clauses C; € ® (to premise clause C'). Multiple step derivations within a calculus R, e.g.,
Qi R @ (or O L R Cy) where k > 0 and i, € R for 1 < k < n, are abbreviated
by ®1 Fr @i (or Ci Fr Ck). Derivations in a calculus R of exactly n steps are symbolised by F%.

A rule r is called admissible in one of our resolution calculi R, iff adding rule r to R does
not increase the set of refutable formulae. Furthermore, a rule r is called derivable in R, iff each
application of rule r can be replaced by an alternative derivation in R.5

We shall now introduce a variety of semantical constructions for classical type theory motivated
by the different of roles equality and extensionality. We will start out by defining X-structures
(and as an intermediate step pre-X-structures) as algebraic semantics for the simply typed A-
calculus and then specialise them to our notions of models by requiring a special treatment of the
propositional formulae.

5Note that the concepts admissible and derivable as introduced here differ from the standard meaning.

2.2. PRE-X-STRUCTURES 17

2.2 Pre-Y-Structures

Definition 2.1 (Pre-X-Structure). A collection D := Dy :={D, | a € T} of sets Dy, indexed
by the set T of types, is called a typed collection (of sets). Let Dy and & be typed collections,
then a collection Z := {Z*: Dy — &Ea | a € T} of mappings is called a typed mappingZ: Dy — E7.
We call the triple A .= (D, @,7) a pre-X-structure, iff D = D7 is a typed collection of sets and

@ = {@O‘ﬁ:Da_m X Do — Dg | a,feT}

and Z: 3 — D are typed total functions.

The collection D is called the frame of A, the set D, the universe of type a, the function @
the application operator, and the function Z the interpretation of constants.

We call a pre-X-structure A := (D, @,7) functional, iff the following statement holds for all
f,g € Dasyp: f = g, if for all a € D, we have that f@a = g@a. Note that functionality is a
restriction on the function universes only.

Remark 2.2. The application operator @ in a pre-X-structure is an abstract version of function
application. It is no restriction to exclusively use a binary application operator, which corresponds
to unary function application, since we can define higher-arity application operators from the
binary one by setting (“Currying”)

fa(a',...,a") = (...(f@a')...@a")

Ezample 2.3. 1f we define A@B := (A B) for A € wff,(X) and B € wff3(X), then @: wff, , 5(3) x
wff,(¥) — wff3(X) is a total function. Thus (wff(X),@,Ids) is a pre-E-structure. The in-
tuition behind this example is that we can think of the formula A € wﬁa_m(z) as a function
A wff, (¥) — wff3(X) that maps B to (A B).

Analogously, we can define the pre-X-structure (cwff(X), @, Idyx) of closed formulae.

Ezample 2.4. The following is a (trivial) example for a functional pre-X-structure:

1. ({a} x 7,@* 7?), where a@%a = a and Z%(c) = a for all constants ¢ € X, is called the
singleton pre-X-structure.

Definition 2.5 (Z-Homomorphism). Let A := (D,@* 7) and B:=(£,@5 J) be pre-X-
structures. A X-homomorphism is a typed mapping k: D — £ such that

1. koI =J.
2. For all types a, 3€ T, all f € Doy, and g € D, we have: x(f)@Pk(g) = (f@g).

The most important method for constructing X-structures with given properties in this thesis
is well-known for algebraic structures and consists in building a suitable X-congruence and passing
it to the quotient structure. We will now develop the formal basis for it.

Definition 2.6 (X-Congruence). Let A := (D, @,7) be a pre-X-structure, then a typed equiv-
alence relation ~ is called a X-congruence on A, iff f ~ f' € Doyp and g ~ g’ € D, imply
fag ~ f'@g’. Let f € D,, then the equivalence class of f modulo ~, [f]_, is the set of all g € D,
such that f ~ g.

A XY-congruence is called functional, iff for all types o, 3 and all f,g € D, the fact that
f@a ~ g@a holds for all a € Dg implies f ~ g. Note that, since ~ is a congruence, we also have
the other direction, so we have

f@a ~ g@a for alla € Dy, iff f~¢g

Lemma 2.7. The § and By equality relations =g and =g, are congruences on the pre-X-structures

wff(X) and cwff(X) by definition. Moreover, Bn-equality is functional on wff(X) and cwff(X).

18 CHAPTER 2. SYNTAX AND SEMANTICS OF HIGHER-ORDER LOGIC

Proof: The congruence properties are a direct consequence of the fact that g5 reduction rules
are defined to act on sub-term positions. We will establish functionality of =g, on wff(X) first
and then use this to obtain the assertion for closed formulae.

Let (Ay5a Cy)=p,(By5a C) for all C, then in particular, for any variable X € V, that is
not free in A or B, we have (A X)=3,(B X) and (AX. A X)=g,(AX. B X). By definition we
have (A=, (AX,. A X)=3,(AX,. B X)=,B.

To show functionality of 35 on closed formulae, let A, B € cuff,_,5(X), such that A £z, B.
Since @7 is functional on wff(X), there must be a formula C with (A C) #s, (B C). Now let
C’ be a ground instance of C, i.e., C' := ¢(C), where o is a closed substitution®, then we have
(A C') #p, (B C'). Thus we have shown that A #g, B entails A C' #Z5, B C’, which gives us
the assertion. O

Definition 2.8 (Quotient Pre-X-Structure). Let A := (D, @,Z) be a pre-X-structure, ~ a X-
congruence on A, DY = {[f]_ | f € D,}, and Z™(cy) 1= [Z(cy)]. for all constants ¢, € X,.
Furthermore let @~ be defined by [f] L @~ [a]_, := [f@a]_. To see that this definition only depends
on equivalence classes of ~, consider f' € [f] and g’ € [g] ., then [f@Qg] _ = [f'@g]_ = [f'@g']. =
[fQg].. So @~ is well-defined and total, thus A/ := (DP~,@~,Z") is also a pre-X-structure. We
call A/. the quotient structure of A for the relation ~ and the typed function 7.: A — A/, that
maps f to [f]_ its canonical projection.

This definition is justified by the following theorem.

Theorem 2.9. Let A be a pre-X-structure and let ~ be an X-congruence on A, then the canonical
projection T, is a surjective X-homomorphism. Furthermore, A/, is functional, iff ~ is functional.

Proof: Let A:=(D,@,7) be a pre-X-structure. To convince ourselves that 7. is indeed a
surjective X-homomorphism, we note that 7. is surjective by definition and Z~ = 7 0Z. Now let
f € Ds_o, and g € domain(f) C Dg, then g’ € [g] for all g’ € domain(f) and therefore [g] A =
7~ (g) € domain([f]) = domain(7.(f)) and 7 (f)@~ 7. (g) = [f]. @~ [g]. = [fQg]. = 7~ (fQg).

The quotient construction trivialises ~ to (meta-)equality, so functionality of ~ is equivalent to
functionality of A. Formally we have [f]_ = [g] ., iff f ~ g, iff f@a ~ g@a, iff [f@a] = [g@a],_,
iff [f]. @~ [a]. = [g]l. @~ [a].. for all a € D, and thus for all [a] _ € D . O

2.3 Y-Structures

Y-structures are pre-X-structures with a notion of evaluation for wff(X).

Definition 2.10 (X-Structure). Let A := (D,@,7) be a pre-X-structure. A typed function
©:V — D is called a variable assignment into A. We call a total typed mapping” £: F(V;D) x
wff(X) — D an evaluation function for A, iff for any assignment ¢ into .4, we have

1. €¢|E =7 and Sw|v =9

2. &, is a Y-homomorphism

3. £,(A) =&y (A), whenever ¢ and 9 coincide on free(A)
4. £,(IB/XA) = £, e, ()3 (A)

We call A:=(D,@, &) a Z-structure, iff (D,@,7) is a pre-X-structure and £ is an evaluation
function for A. We call £,(A,) € D, the denotation of A, in A for .

If A is a closed formula, then £,(A) is independent of ¢, since free(A) = 0. In these cases we
sometimes drop the reference from £,(A) and simply write £(A).

6 This has to exist, since we have assumed infinitely many constants for each type o in our signature %, i.e., all
types are inhabited.
"We write F(V; D) for the set of functions f:V — D

2.3. L-STRUCTURES 19

Ezample 2.11. The singleton pre-X-structure is a X-structure if we take £(A) = a, where a is the
(unique) member of D,,.

For a detailed discussion on the closure conditions needed for the function universes to be rich
enough, we refer the reader to [And72a, And73].

Note that the pre-X-structure wff(X) from 2.3 cannot be made into a E-structure by providing
an evaluation function, since there is no formula C = Z,(AX,. B) € wﬁ’a%(z), such that CQA =
CA = Z,a/x)(B). In particular, the “obvious” choice AX,. B for C does not work, since
(AXo. B)A # Z,[a/x](B). In fact, if wff(¥X) were a X-structure, S-equality would have to be
valid in wff(X) (cf. 2.17), which it is clearly not.

Definition 2.12 (Quotient X-Structure). Let 4 = (D,@,£) be a Y-structure, ~ a X-
congruence on A and let A/, = (D~,@~,Z~) be the quotient pre-X-structure of .4, where
7= 5|2'

For any assignment 1 into A/., there exists an assignment ¢ into A such that ¢ = 7oy, since
T~ is a surjective X-homomorphism. So we can define £3' as m. o€y, and call A/ = (D™, @™, £7)
the quotient Y-structure of A modulo ~.

Theorem 2.13 (Quotient X-Structure). Let A be a X-structure and let ~ be a X-congruence
on A, then A/. is a T-structure.

Proof: We prove that £~ is a legal value function by verifying the conditions in 2.10: Let ¢
and 1 be assignments, such that ¢ = 7. o ¢, then

1. & E(WNOS¢)|E E7r~oé'¢|2 =7mn0Z =177 and

@ B
5[;|v = (7rN05¢)|v EFN05¢|V =T.o0Y =g
2. &7 = m. 0 &y 1s a Y-homomorphism, since 7., and &y are.
3. E7(A) = [Ep(A)]L = [Eyp(A)]L = &5(A), iff p and ¢’ coincide on free(A), since this
entails that ¢ and ¥’ do too.
4. 5;([B/X]A) = [E(B/X1A)], = [Epe,myxi(A)] . = S%[gg(B)/X](A), since
[€y(B)]. = &7 (B) and therefore 7. 0 ¢, [Ey(B)/X] = ¢, [£5(B)/X

O

Definition 2.14 (Term Structures for X). Let cuwff(Z l;a be the collection of closed well-

formed formulae in B-normal form and A@”B be the -normal form of (A B). For the definition
of an evaluation function let ¢ be an assignment into cwff(Z J—,@ Note that o := 50|free is a

substitution, since free(A) is finite. Thus, we can choose 55()= o 'lﬁ, where AJ,ﬁ is the
B-normal form of A. We call TS(E)ﬂ = (cwff(Z lﬁ, @’ £P) the B-term structure for ¥
Analogously, we can define TS(E)ﬂ = (cuff(X l , @0 £PM) the Bn-term structure for 3.

The name term structure in the previous definition is justified by the following lemma.
Lemma 2.15. ’TS(E)’@ ts a X-structure and '7"5'(2)’677 s a functional X-structure.

Proof: Note that constants are S-normal forms, therefore TS(E)ﬁ is the quotient structure
of cuwff(X) for the congruence =g. As we have remarked in 2.11, wff(X) is not a X-structure,

so we cannot use 2.13, but have to convince ourselves directly that TS(E)ﬁ is a X-structure by
verifying the conditions of 2.10. The first three are direct consequences of the definition of £7 as
substitution application.

1. 5£|EEIﬁEIdE and5£|vEg0

2. 55 is a X-homomorphism

20 CHAPTER 2. SYNTAX AND SEMANTICS OF HIGHER-ORDER LOGIC

3. Sg(A) =o0(A)=0'(A) =&y (A), iff ¢ and ¢’ coincide on free(A)

4. €X([B/X]A) = o([B/X]A) = [¢(B)/X](c’(A)) = o, [¢(B)/X]A = ¢

‘P:[Eg(B)/X](A); where
o' is o, [X/ X].

Since =g, is a super-relation of =g, a similar argument shows that TS(E)M is a X-structure.

Furthermore, =g, is a functional X-congruence on wff(X) (cf. 2.7), so we know by 2.9 that TS(E)[;’7
is functional. (]

Remark 2.16. Note that TS(E)ﬁ is not a functional -structure since, e.g., (AXy. Yy6X)@°
C, = Y@’C for all C in 78, (X)” but (A\X. Y X) £ V.

In a general X-structure A := (D, @, £), the constants are given a meaning by the interpretation
function Z: X — D, and variables get their meaning by assignments ¢:)V — D. Furthermore, the
evaluation function has to respect instantiation as in first-order logic. This is enough to ensure
soundness of F-equality. We do not have to show soundness of a-equality, since this is trivial as
we have assumed alphabetic variants to be identical.

Lemma 2.17 (Soundness of f-equality). Let A:= (D, @ &) be a T-structure and ¢ an as-
signment into A, then £,((AX. A)B) = &£,([B/X]A) provided that X is not bound in A.

Proof: By the definition of X-structures, we have £,((AX. A)B) = &£,(AX. A)@Q¢&,(B)
Eo e, (8)/x1(A) = E([B/X]A)

Rl

2.4 Functional Y-structures

For functional Y-structures, there is another way to define evaluation: Since well-formed formulae
are inductively built up from constants and variables we can extend ¢ and Z to a ¥-homomorphism
on well-formed formulae.

Definition 2.18 (Homomorphic Extension). Let A :=(D,@,Z) be a functional pre-X-
structure and let ¢ be an assignment into A. Then the homomorphic extension I, of ¢ to
wff(X) is inductively defined to be a typed partial function Z,: wff(X) — D, such that

1. X) = ¢(X), if X is a variable,

Zy(
2. Z,(c) =ZI(c), if ¢ is a constant,
3. Z,(

A B) = T,(A)GZ,(B),

4. Z,(AX4. Bp) is the function in Dy g, such that Z,(AX,. B)@Qz := 7, ., x1(B). Note that
this function is unique, since we have assumed A to be functional.

We have to assume that the universes of functions D,_,g are rich enough to contain a value for
all Ao € wff,_,5(X) for this construction to yield a total function.

Lemma 2.19. Let A := (D, @, T) be a functional pre-X-structure, then £: ¢ v~ I, is an evaluation
function for A.

Proof: To prove the assertion, we have to show the conditions of 2.10. The first one is trivially
met by construction, the second is a direct consequence of the fact that Z,oldy =Zoldy =7 on
3.

For the third condition, we prove that the value of a function depends only on its free vari-
ables (by induction on the structure of A). The only interesting case is the one, where A is an
abstraction, since the assertion is trivial for constants and variables, and a simple consequence of
the inductive hypothesis for applications. So let A := (AX. B), then Z,(A)@a = Z, [,/ x1(B) =
Ty [a)x1(B) = Zy (A)@a by inductive hypothesis, since ¢, [a/X] and ¢, [a/X] coincide on the free
variables of B. Thus we obtain the assertion from the definition of Z,.

2.4. FUNCTIONAL $-STRUCTURES 21

Finally, we prove the fourth condition by induction on the structure of A. If A is a constant
or variable, then the assertion is trivial. The case where A is the application C D 1is entailed by
the fact, that substitution and homomorphic extension are defined inductively on the structure of
applications: We have

Z,([B/X](C D))

7,([B/X]C)aZ,([B/X]D)
Ty 11,(8)/x1(C)QL, 7, (B)/x](D)
Ty z,(8)/x](C D)

If A= (\Y.D) and ¢ = ¢, [a/Y], then
Z,([B/X]A)@a = T, (Y. [B/X]D)@a = 7, ([B/ X]D) = 7, 17, (m)/ x](D)

by inductive hypothesis. Note that ¢ and ¢ coincide on the free variables of A, therefore by the
third condition, which we have proven above, we have Zy, 17, B)/x](D) = Z, 1z, (B)/x](AY. D)@a,
which implies the assertion, since .4 is functional. O

In fact, for functional X-structures, the two notions of evaluation coincide:

Lemma 2.20 (Evaluation in functional ¥-Structures). If A .= (D, @, €) is a functional -
structure, then £, = I, for any assignment ¢ into A.

Proof: Let A € wff(X), we prove the assertion by induction over the size of A. The assertion
is trivial, if A is a constant or variable, and a simple consequence of the inductive hypothesis,
if A is an application. So let A := (AX. B), furthermore let Y be a variable not in free(A) and
¥ =, [a/Y]. Then

Eo(A)Qa =&y (A)@a=E,(A)QEL(Y) = Ey(AY) = & ([Y/X]B)
since (-equality is sound in X-structures. Now [Y/X]|B is smaller than A, so we can use the
inductive hypothesis to obtain

Es(A)Qa =Ty ([Y/X]IB) = Iy (AY) = Z,(A)QZy (V) = Z,(A)@Qa

which entails the assertion since A is functional. O

Lemma 2.21. Let A := (D, @, &) be a functional X-structure and X be a variable that is not free
in A, then £,(AX. AX) = E,(A) for all assignments ¢ into A.
Proof: With 2.10.3 and the fact that X is not free in A we have
&K,(AX. AX)@Qa = &p,[a/X](A)@&p,[a/X] (X) = &p(A)@a
which implies the assertion £,(AX. AX) = £,(A), as A is functional. O
We now specialise the notion of X-structures to the classical general model semantics for A=
Definition 2.22 (X-Algebra). A pre-X-algebra A .= (D,Z) is a pre-X-structure (D, @,7), such

that Doy3 C F(Da;Dp) and f@a = f(a). A pre-X-algebra is called full, iff Doyp = F(Da;Dp).
We call a pre-X-algebra a X-algebra, iff it is a X-structure.

Remark 2.23. Note that pre-X-algebras are functional, since they are defined as structures of
mathematical functions. On the other hand, for any functional X-structure A, we can define an
isomorphic X-algebra A’.

Proof: For a functional X-structure A := (D, @, Z) we define a X-algebra A’ := (D', Z’) and a
bijective X-homomorphism x:. 4 — A’ by an induction on the type:

e D! =D, for all « € BT and & := Idp; obviously & is bijective.

o D S5 = £(Dasp) and k(f) := ko (@f)ox ™! for f € D, 5. Note that with this construction

o
K 18 a homomorphism, since

w(f)((2)) = R(fQ(x™" (k(a)))) = r(fa)

22 CHAPTER 2. SYNTAX AND SEMANTICS OF HIGHER-ORDER LOGIC

Kk is surjective by construction and injective, since A is functional: If f Z g € Dy p, then
there is an a € Dy, such that f(a) Z g(a), in particular, we have

k(f(a)) = k(f)@k(a) Z k(f)@k(a) = k(g(a))
since & is injective on Dg. Thus and therefore k(f) Z x(g), since k(f), k(g) € F(Du; Dg)

Now, we only have to choose Z' := k 0 Z to complete the construction of A’. O

As a consequence, we can always consider functional X-structures as X-algebras.

2.5 Y-Models

The semantic notions so far are independent of the set of base types. Now, we specialise these to
obtain a notion of models by requiring specialised behaviour on the type o of truth values. For
this we use the notion of a X-valuation, which intuitively gives a truth-value interpretation to the
domain D, of a ¥-structure, which is consistent with the intuitive interpretations of the logical
constants. Since models are semantic entities that are constructed first of all to make a statement
about the truth or falsity of a formula, the requirement that there exists a X-valuation 1s perhaps
the most general condition under which one wants to speak of a model. Thus we will define our
most general notion of semantics as X-structures that have X-valuations.

Definition 2.24 (X-Model). Let A := (D, @, &) be a X-structure, then a surjective total func-
tion v: D, — {T,F} such that

1. v(€(—)@a) =T, iff v(a) =F,
2. v(&(V)@a@b) =T, iff v(a) =T or v(b) =T,
3. v(E(MI*)@f) =T, iff v(f@a) =T for each a € D,

is called a X-valuation for A and M = (D, @, &, v) is called a X-model. The class of all £-models
is denoted by Mg.

We say that an assignment ¢ satisfies a formula A € wff,(X) in M (M =, A), iffv(E,(A)) =T
and that A is valid in M, iff M |, A for all assignments ¢. Finally, we say that M is a X-model
for aset H C wff,(X) (M | H) iff M satisfies all A € H.

Lemma 2.25 (Truth and Falsity in ¥-Models). Let M = (D, @, &, v) be a X-model and ¢
an assignment. Furthermore let T, := A,V =(A,) for some A, € wff, and let F, := = T,. Then
v(€p(T,)) =T and v(E,(F,)) =F.

Proof: We have v(&,(T,)) = T iff v(£,(A, V 7(A,))) = T. Evaluation shows that this
statement is equivalent to v(£,(A)) = T or v(€,(A)) = F, which is valid since ¢ : V, = D, and
v: D, = {T,F} are total functions.

Note further that v(&€,(F,)) = F evaluates to v(€,(T,)) = T, which we already know. O

Remark 2.26. We only constrain the functional behaviour of the values of the logical constants.
In particular this does not fully specify these values, since

e M need not be functional,

e and there can be more than two truth values.
Definition 2.27 (Properties ¢, b, and f). Given a ¥-model M = (D, @, £, v), we say that M
has property
f iff M is functional,

2.6. LEIBNIZ EQUALITY 23

q iff M has property f and for all @ € T there is a function q* € Dy 00, such that for all
a,b € D, holds v(q*@a@b) = T iff a = b,

b iff D, has at most two elements. Note that D, must always have at least the two elements
E,(T,) and &,(F,) by Lemma 2.25, so we can assume without loss of generality that D, =
{€+(F,) =F,&,(T,) = T} and that v is the identity function.

Definition 2.28 (Specialised Model Classes). We define special classes of ¥-models depend-
ing on the validity of the properties f, g and b. Thus we obtain the specialised classes of X-models
Msq, Mse, Map, Mage by requiring that the properties specified in the index are valid.

Remark 2.29 (Property q). The idea of property ¢ is to ensure for all types a that the intuitive
equality relation qq_sq_0, 1.€., a functional congruence relation, is contained in D,_ 4_,. This
ensures the existence of unit sets in the domains D, _,, which in turn makes Leibniz equality the
intended equality relation, as the membership in this unit sets can be used as a strong argument
in order to distinguish between different elements of D,. For a detailed discussion see [And72a].
Property q as stated in [BK97a] is not correct. Whereas the motivation for the formulation
there was the same as sketched above, this formulation does unfortunately not ensure functionality
(although this was intended), which is needed in the proof of Lemma 2.35. We want to thank an
unknown referee of the Journal of Symbol Logic for pointing to this problem.
Remark 2.30 (Property q in Henkin models). As Peter Andrews has noted in [And72a], Leon
Henkin unintendedly introduced Mgp in [Hen50] instead of the class of Henkin models in the
sense below. An element of Mgg does not necessarily have property g and as Andrews has
shown in [And72a], a consequence is, that such an element may lack the principle of functional
extensionality EXT%*ﬁ, which he corrected by introducing property g.

Definition 2.31 (X-Henkin models). A functional ¥-model is called a X-Henkin model, iff it
has properties q and b. The class of all X-Henkin models is denoted by £ or Mgy,. If furthermore,
all domains D, _,g are full then we call # a X-standard model (&%F).

Now let us extend the notion of a quotient structure to X-models.

Definition 2.32 (Quotient ¥-model). Let M := (D, @, &, v) be a ¥-model, ~ a congruence
on the corresponding X-structure A :=(D,@€), and A/. be the quotient T-structure of
A= (D,Q@, &) modulo ~ as defined in 2.12.

If v(A) = v(B) for all A, B € wff,(X) with A ~ B, then ~ is called a congruence for M. Then
M/ = (D~,@~ &~ v™) is called the quotient ¥-model of M modulo ~, if v~ ([a]) = v(a) for
all a € D,.

Remark 2.33. Note the importance of the additional requirement for functional congruence rela-
tions stated in 2.32. Without this requirement the quotient X-models are not well-defined.

Lemma 2.34. Let M be a X-model, H C wff,(X), and ~ be a congruence for M, then M/, =,
H, if ME, H.

Proof: Let A, € H. We have v~ (SJ(AO)) = v~ ([€0(AL)]L) = v(€,(AL)). O

2.6 Leibniz Equality

Definition 2.35 (Extensionality for Leibniz equality). We call the following formula schemata

BEXT;™?? = VFasp VGass(VX5. FX =G X)= F=" G
EXTY = VA,.VB,. (A& B) & AZ"B

the azioms of full extensionality for Leibniz equality; we refer to the first as aziom of functional
extensionality and to the latter formula as the extensionality aziom for truth values. Note that
EXT%_W specifies functionality of the relation denoted by the Leibniz formula =. We will use the
terms functionality and extensionality interchangeably.

24 CHAPTER 2. SYNTAX AND SEMANTICS OF HIGHER-ORDER LOGIC

Lemma 2.36 (Leibniz Equality in X-models). Let M = (D, @, &, v) be a X-model and ¢ be
an assignment.

1. If€,(A) = E,(B), then v(€,(A =" B) =T.

2. If M € Mgp and v(E,(A =° B)) =T, then £,(A) = £,(B).

3. If M € Mgy and v(E,(A =" B)) =T, then £,(A) = £,(B).

Proof: Let a,b € D, and ¢ := ¢, [a/X],[b/Y].

1. We show that v(€,(=")@a@b) = T, if a = b, which entails the assertion. By definition
Eo(=") = ELAX.AY.VYP. P X = P Y) and thus £,(=")@a@b = £, (VP. P X = P Y).
Now let r € Doyo, then v(Ey /P (P X)) = r@a = F or v(&y r/p1(P Y)) =r@b = r@a =T,

since v is total and a = b. So we see that v(€,(=)@a@b) = v(&y yp)(P X = PY)) =T
for all r € D,_y,, which yields the assertion.

2. First note that by property b we have D, = {T,F} and v is the identity function on D,.
Let us assume that v(€,(A =" B)) = &(VP. P A = P B) = T but £,(A) #£ &,(B),
which means that either £,(A) = T and £,(B) = F or vice a versa. In the first case we
choose a predicate r := £,(AX,. X,) and get from the first assumption that £, [/ P] 1(PA)=
Eor/P1(A) = EH(A) =For E,1yp)(P B) = &, /p1(B) = E,(B) =T, Whlch gives us the

contradiction. Note that P does not occur free in A or B by deﬁnition of =.

The second case is analogous with r := £, (AX,. =X,).

3. We show that if v(£,(=")@a@b) = T, then a = b, which entails the assertion. Suppose
azbe&D, and r = q*@a, where q* € Dy—sa—o 18 the function guaranteed by property q
We know that q®@a@a = T and q*@a@b = F, since a Z b by assumption. Hence v(€, (="
J@a@b) = v(&y(VP. P X = PY) =F for ¢ := ¢, [a/X],[b/Y], since v(& /p)(P X =
PY)) =F, as v(&y /(P X)) = q*Qa@a = r@a =T and v(&y /p)(P Y)) = q*@a@b =
r@b = F.

O

Lemma 2.37 (Extensionality in Y-models).
1. There exists a model M € Mg which is not functional.
2. There exists a model M € Mgy for which EXT%_}’@ is not valid.
3. There exists a model M € Mgy for which EXTY is not valid.
4. EXTS7? is valid in model M, if M € Myg,.
5. EXTY] is valid in model M, if M € Mgp.

As a consequence the following table characterises the different properties of the introduced se-
mantical structures. If a formula is valid for a certain semantical structure we use a ‘+° and

a ‘—’ otherwise. Fach entry is further marked with a justification referring to one of the above
statements.

valid in Ms/Ma Mg Mae/Mare . Maqe

EXTE o) 4 - Fw)

BEXTY) It) N 5) *)

Proof: Let v be a X-valuation and let M be a ¥-model based on the f-termstructure TS(E)ﬁ
for ¥, i.e., M := (cwﬁ(z)lﬁ, @7 £P v). Note that M need not to be functional by Remark 2.16

and 2.26.

2.6. LEIBNIZ EQUALITY 25

For the proof of 2. we refer to [And72a], where Andrews constructs a functional ¥-Model
(actually a M € Mpyp) that lacks the principle of functional extensionality of Leibniz equality.

For 3. note that EXTY can only be valid if D, = {o,+}, which is not required for M € Mp,.
For a concrete example of a M € Mg,, which lacks EXT], see 3.29 (for Accg,).

Next we consider 4.: Let ¢ := ¢, [/ F], [g/G]. From Vy(VA, F A= G A) =T we get that for
all a € Dy Vy [aja)(FF A =G A) = T. By lemma 2.36(3) we can conclude that & ./a1(F A) =
Ey [aja)(G A) for all a € D, and hence &y [a/a1(F)QEy [a/a1(A) = Ey [a/a](G)QEy [a)41(A) for all
a € D,. By definition of property g, which includes property f and thus ensures functionality, we
get £y (F) = &y (G). This finally gives us that Vy (F S G) = T with lemma 2.36(1).

And finally in 5. we have that for all a,b € D, and all assignments ¢: (€, [ajayp/B)(A &
B)) = T, iff v(&, [ajaye/B1(A)) = v(€p jajay/B)(B)). From b we further know that v is the
identity function and hence this statement is valid, iff £, [a/a1p/B1(A) = &€p [aja)y 8] (B). For the
left to right direction of our statement we can now apply lemma 2.36(1) and in the right to left
direction the assertion follows with 2.36(2). O

Next we discuss the role of Leibniz equality within the different semantic structures.

Theorem 2.38 (Properties of Leibniz Equality). Let M be a ¥-model. For all assignments
¢ and all terms A, B, C € wff,(¥) and F, G € uff,_,5(X) we have:

My If M € Mg, then £,(=") is an equivalence relation on D, with respect to v. In particular:

re: v(E,(A =" A))=T.
sy: Ifv(€y(A =" B))=T, then v(€,(B =" A))=T.

tr: If v(E,(A =% B)) =T and v(€,(B =% C)) =T, then v(€,(A =% C)) = T.
Mo If M € Mgy, then &p(:'a) s a congruence relation on D, with respect to v. In particular:
co: Ifv(€,(A =" B)) =T, then v(€,(F A =’ F B))=T.

Maq If M € Mgy, then E,(=") is a functional congruence relation on D, with respect to v. In
particular:

fu: v(E,(F=""" G)) =T, if v(£,(F A="F A)) =T for all A € uff,.
Maqe If M €), then E,(=") is the equality relation on D,.
Proof:

Ms re v(€,(A =" A)) = T, iff for all p € Doy, we have that v(E,p/p)(P A)) = F or
v(€y p/P1(P A)) = T, which is obvious since v is total and surjective.

sy Suppose v(€,(A =" B)) = T, but v(£,(B =" A)) = F. From the latter we get that
(& p/p1(P B)) =T and v(&, [p/p) (P A)) = F for some p € Doyo. Without loss of
generality, let p ;= £,(V') for a fresh variable V € X,;,. From the former assumption
we know that for all g € Do, holds v(Ey [q/p)(P A)) = F or v(€yq/p)(P B)) =T
and hence v(€, (e, (ax. vx)/P1(P A)) = F or v(&, e, (xx. vx)/p](P B)) = T which is
equivalent with v(€, /P (P A)) = T or v(&, [p/p](P B)) = F and contradicts the latter
assumption.

tr Similar to sy.

Ms; co Suppose v(E, (F =of G)) =T, but v(&,(F A =% G A)) = F. From the latter we get
that v(&, p/p1 (P (F A))) =T and v(&, p/p1 (P (G A))) =F for some p € Dyyo. Without
loss of generality let p := &,(V') for a fresh variable V' € V,_;,. From the former assumption
we know that for all 9 € Duy, holds v(€, [q/Q)(Q F)) = F or v(&, [q/01(@ G)) = T and
hence U(5w7[5¢()\x_ V(X A))/P](P F)) = For U(Stp’[gw()\x_ V(X A))/p](P F)) = T, which is
equivalent with v(&, p/p1(P (F A))) = F or v(&, p/p(P (G A))) = T and contradicts the
former assumption.

26 CHAPTER 2. SYNTAX AND SEMANTICS OF HIGHER-ORDER LOGIC

I total

vca V—., vV;V/\; VV

M.
VEI, Vﬁ, Vq, V:r; V:S

b

mﬁzb = fje vb
full
6%,

Figure 2.1: The landscape of Higher-Order Semantics with primitive equality

Mgs, fu A direct consequence of lemma 2.37(4).

Mpqe By property b we know that v is the identity relation on D, and thus we have that =
denotes a relation for which the principles reflexivity, symmetry, transitivity, congruence
and functionality hold. Hence = denotes the equality relation.

O

2.7 Primitive Equality

The situation of higher-order semantics becomes much simpler if we introduce equality as a prim-
itive logical constant = in X, which we will assume for the rest of this section. Since = is logical,
we have to specialise the notion of Y-valuation (cf. 2.24) by requiring that v(£(=")@a@b) =T, iff
a = b. In this case, we call v a X-valuation with equality.

Furthermore, we say that a ¥-model M has property e , iff M has property { and for all types
a, v(€(=*)@a@b) =T, iff a = b.

Definition 2.39 (Henkin Model with Primitive Equality).

A (functional) Y-model, which has property ¢ is called a (functional) X-model with primitive
equality and a functional one with additional property b is called a X-Henkin model with primitive
equality. The class of all ¥-models with primitive equality are denoted by Mg, and the class of all
Y-Henkin model with primitive equality by Mg.;.

Remark 2.40 (Property ¢ implies q). It is easy to see that property ¢ implies q. The only
difference between both properties is, that property g only ensures the existence of the intended
semantical equality relation, while ¢ additionally requires that our new logical connectives =%
are indeed associated with this relations. The connection between property g and e is already
discussed in [And72a]. Andrews concludes that it seems natural to require the existence of logical
connectives =% in the signature, if one is interested in extensionality. In this thesis we are especially
interested to shed some light on both: in extensionality of Leibniz equality in case =*¢ X and in
extensionality of Leibniz equality and/or primitive equality in case =*€ X.

As property ¢ implies ¢ which in turn implies property f, it is easy to see that the landscape
of higher-order semantics from Figure 1.1 at Page 6 collapses to the one in Figure 2.1.

2.8. A NOTE ON DEFINED AND PRIMITIVE EQUALITY 27

Definition 2.41 (Extensionality for primitive equality). Analogous to the extensionality
axioms for Leibniz equality, we can define such for primitive equality.

EXT*?? = VYFa,p.VGass(VXs. F X =G X)=> F =G
EXT? ‘= VA,.VYB, (A& B)& A="8B

the azioms of full extensionality for primitive equality.

The following lemma shows that in a ¥-model with full equality the denotations of primitive
equations and corresponding Leibniz equations are identical modulo v.

Lemma 2.42 (Primitive and Leibniz equality). If M = (D,@,£,v) € Mg, we have that
v(€,(A =B)) = v(&,(A = B)) for all A|B € wff(%).

Proof: By lemma2.36(3) we have v(£,(A = B)) =T,iff §,(A)

&,(B), since each M € Mg,
T. O

is also in Mg,. By property e this is equivalent with v(&€,(A = B))
Lemma 2.43 (Extensionality in ¥-models with primitive equality).
1. There exists a M € Mg, for which EXT? and EXTY are not valid.

2. EXT*?? and EXTS™? are valid in M, if M € Mg,.
3. BXT® and EXTY is valid in M, if M € Mgy,

Thus we can extend the table in Lemma 2.37 to the following one:

valid in Mee Mpeo
EXT;77 EXT*?? | + +
EXT?, EXTC - +

Proof: The assertions follow from their respective counterparts in Lemma 2.37(3) with
Lemma 2.42 and the fact that each M € Mg, is also in Mg,. O

Theorem 2.44. Let M € Mg,, then £,(=") and £,(=") are equivalence relations on D, with
respect to v for all assignments ¢. If M € Mgaep, then E,(=") = £,(=") is the equality relation
on D,.

Proof: If M € Mg, then the proofs for = are provided by lemma 2.38. For = they follow
immediately with 2.42.

If M € Mgep, then the argumentation is analogous, and we first show that = and = denote a
functional congruence relation. As furthermore v is the identity relation on D, we have that =
and = indeed denote the intended semantical equality relations. O

2.8 A Note on Defined and Primitive Equality

The extensional higher-order resolution approach discussed in Chapter 4 treats equality as a con-
cept defined by Leibniz’ principle. While this way of handling equality is theoretically convenient
and suitable it turns out that it is quite inappropriate in practice®, mainly because Leibniz equality
introduces new flexible literals into the search space and thereby increases the amount of blind
search with primitive substitution rule Prim. Furthermore proofs containing Leibniz equations are
rather unintuitive and hard to understand for non-experts. Illustrating examples for such unintu-
itive problem formulations and proofs when using Leibniz equality are E5** and EE® presented in
Section 8.1.

8 Anyhow, the already mentioned successful case study with the LEO-system on the the examples from the
MTIZ AR-articles Boolean and Basic Properties of sets showed that Leibniz equality can be handled at least to some
extent in practice. Also the TPs-system [ABIT96, AINP90], which has proven non-trivial theorems that require
substantial amount of equational reasoning (e.g., theorem THM15b in [ABI*96]), still employs Leibniz equality.

28 CHAPTER 2. SYNTAX AND SEMANTICS OF HIGHER-ORDER LOGIC

Our aim therefore is to avoid Leibniz equality and to use primitive equality instead. But in
contrast to first-order logic we do not have the choice in higher-order logic to consider equality
as a primitive notion only. The reason is, that infinitely many definitions of equality are always
implicitly provided by our higher-order language (if we choose Standard- or Henkin semantics
as the underlying semantical notion), and that there is no way to get rid of them. A definition
of equality different from Leibniz equality, e.g., is discussed in Andrews’ textbook [And86] (page
155), where he defines =% = AX4. AYo VQas a0 (VZar (Q Z Z)) = (@ X Y). This definition
is based on a reflexivity property, whereas Leibniz equality in some sense employs a substitutivity
property. A proof for the eqivalence of both definitions of equality (and the one introduced below)
in calculus &R will be presented in Section 8.3.

Apart from all the sensible definitions of equality in higher-order logic, one can always introduce
additional artificial ones by adding arbitrary tautologous sub-formulae to a sensible definition of
equality. For instance, if A'...A” and B! ... B” are tautologous sentences, then we can define
equality based on the Leibniz idea also by = := AX,. AY,. VP4, (A'A...AA" AP X) =
(PYAAYAA; A...AA"™). By employing this idea, it is easy to see, that there are infinitely
many valid but different ways of defining equality. As it is undecidable, whether a formula is a
tautology, we also have the unfortunate fact that it is undecidable, whether a formula is equivalent

to Leibniz equality. This argument immediately leads to the following corollary:

Corollary 2.45 (Defined equality in higher-order logic).
Given a higher-order sentence A. It is undecidable whether A contains a sub-formula that ex-
presses the equality between two terms.

A consequence of this lemma is that we generally have to assume the presence of some defined
equations in the input problems. We cannot generally detect all defined equations and remove
them by primitive equations, as one might wish to. Consequently, even if we add a primitive
equality treatment to the calculus, we still have to ensure that the calculus can handle Leibniz
equality and all alternative definitions of equality as well (we want to point out, that calculus ER
indeed can handle all forms of defined equality). This obviously contrasts with the situation in
first-order logic, where one has the choice to either define equality (e.g., by axiomatising equality
as a congruence relation) or to consider it as a primitive notion and to add special inference rules
for equality (e.g., paramodulation rules) to the calculus.

Hence we have the requirement that we still have to take care of defined equality even if our
calculus can handle primitive equality and we cannot remove the extensionality or other rules for
defined equality from the calculus, as one might wish to. Of course, when adding some special
primitive equality rules we can afterwards examine if some of the other rules became admissible
and hence superfluous (c.f. remark 8.1).

A first approach to primitive equality treatment in higher-order logic is presented in Chap-
ter 5, where we adapt the first-order paramodulation approach to our higher-order setting. The
anticipated result of this attempt is, that just adapting the first-order paramodulation rules is
not sufficient to ensure Henkin completeness. Incompleteness is caused by missing extensionality
principles — this time with respect to positive primitive equations. At first glance the resulting
higher-order paramodulation calculus seems to be inappropriate for some problem domains — e.g.,
for comparisons of sets, when sets are coded as characteristic functions, such that the extensional-
ity properties play an important role. The reason is that the developed paramodulation approach
combines term rewriting with difference reduction, whereas the difference reduction aspect comes
from the the extensionality treatment already provided by calculus R as well as from the new
extensionality rules for positive primitive equations that are added to the calculus.

Hence, apart from the problem that well founded reduction orderings for improved paramodu-
lation approaches are hard to develop in higher-order logic, the adapted paramodulation approach
has to face a second problem: it has an intrinsic mixed term rewriting and difference reducing
character which will be quite hard to control in practice.

As an alternative we therefore develop in Chapter 6 a second approach to primitive equality
treatment in higher-order logic which adapts the ideas of first-order RUE-resolution [Dig79]. In
contrast to the intrinsic mixed term rewriting and difference reducing character of the extensional

2.8. A NOTE ON DEFINED AND PRIMITIVE EQUALITY 29

higher-order paramodulation approach this extensional higher-order RUE-resolution approach has
a pure difference reducing character which is probably much easier to guide in practice.

We assume for the Chapters 5 and 6 that the considered signature contains the primitive
equality symbols = for all types a, and that the denotation of these symbol is fixed to the intended
semantical equality relations of appropriate type. Furthermore, the primitive substitution rule is

automatically extended, such that the new logical connectives = are now imitated as well.

Chapter 3

Higher-Order Model Existence

In this section we introduce abstract consistency properties and respective model existence the-
orems for the different semantical notions discussed in Chapter 2.1. These theorems have the

following form, where * € {3, b, 5f, Bq, 5fb, Bqb Be, feb}:

Theorem (Model Ezistence): For a given abstract consistency class 2lce, and a set

H € Acc, there 1s a X-model M of H, such that M € M.

The most important tools used in the proofs of the model existence theorems are the X-Hintikka
sets. These sets are maximal elements in abstract consistency classes, and allow computations
that resemble those in the considered semantical structures (e.g., 3-Henkin models). These allow
to construct x-valuations for the term structures that turn those into *-models.

The key step in the proof of the model existence theorems is an extension lemma, which
guarantees a YL-Hintikka set H for any set H of sentences in Iy;. Apart from this, the proofs for
the model existence theorems are standard.

3.1 Abstract Consistency

Let us now review a few technicalities that we will need for the proofs of the model existence
theorems.

Definition 3.1 (Compactness). Let C be a class of sets.

1. € is called closed under subsets, iff for all sets S and 7' the following condition holds: if
SCTand T€eC, then S€C.

2. C is called compact, iff for every set S the following condition holds: S € C, iff every finite
subset of S is a member of C.

Lemma 3.2. If C is compact, then C is closed under subsets.

Proof: Suppose S C T and T' € C. Every finite subset A of S is a finite subset of 7', and since
C is compact, we know that A € C. Thus S € C. O

Definition 3.3 (Sufficiently Pure). Let ¥ be a signature and 7 be a set of YX-sentences. T
is called sufficiently S-pure, iff for each type a there is a set of constants P, C C, with equal
cardinality to wff, (2), such that the elements of P do not occur in 7.

We will always presuppose that sets of sets of sentences are sufficiently Y-pure in order to
have enough witness constants. This can be obtained in practice by enriching the signature with
spurious constants. Another way would be to use specially marked variables (which may never be
instantiated) as in [Koh94b].

30

3.1. ABSTRACT CONSISTENCY 31

Definition 3.4 (Properties for Abstract Consistency Classes). Let Iy be a class of sets of
Y-sentences. We need the following conditions, where A, B € cuwff,(X) and F, G € cwﬁaqﬁ(Z):l

V. If A is atomic, then A ¢ ® or —A ¢ ®.

V. Tf—=—Ac® then dxAcly.

Vs If A€ @ and B is the f-normal form of A, then B * ® € Ix.

V4 If A € ® and B is the 8r-normal form of A, then Bx ® € [3.

W IfAVBec® thendxAclyor®xBels.

Va If-(AVB) €, then U {-A,-B}eL.

Y IfII°F € @, then ® % (F W) € Iy for each W € cuff,(X).

Va If -TI°F € @, then & + =(F w) € Iy for any constant w € X, which does not occur in ®.
Ve If—=(A="B)ec® then DU{A -B}c€lxzor®U{-A B}clk.

vV, If-(F =oFh G) € ®, then &+ =(F w =’ G w) € Iy for any constant w € X, which does
not occur in ®.

(Additional abstract consistency conditions for primitive equality will be introduced later in Sec-

tion 3.3.)

Remark 3.5. Note that for the connectives V,I1* there are two conditions — a positive and a
negative one — given in the definition above, namely Y4, /V, for V and W&/V; for TT®. For = and
=% the situation is different, as we need only conditions for the negative cases. The positive

cases can be inferred at the level of Hintikka sets by expanding the Leibniz definition of equality
(see the proofs of v: in lemma 3.15 and V;’ in lemma 3.17).

Definition 3.6 (Abstract Consistency Classes). Let X be a signature and Iy be a class of
sets of Y-sentences. Using the properties from the previous definition we introduce the following
abstract consistency classes:

Aces If V., V4, Vs, W, Vi, Y and V5 are valid for Iy, then Iy is called an abstract consistency
class for X-models (ccg).

Based upon this definition we introduce the following specialised abstract consistency classes:
Accge, Accs, Accgq, Accssp, Accgqp, where we indicate by indices which additional properties from
{1V, Vi, Vo} are required.

Sometimes we do not want to differentiate between the particular notions above. In this cases
we simply speak of an abstract consistency class, with which we refer to an arbitrary but one in
{QAces, Accgp, Accss, Accgq, Accpre, Accsqp |-

Remark 3.7. Note that Rdccgs corresponds to the abstract consistency property discussed by An-
drews in [And71]. The only (technical) difference is that Andrews does not consider a-conversion
as built-into the logic but needs a condition similar to Vs that requires a-standardised forms to
be abstract consistent.

Lemma 3.8 (Non-atomic Consistency). Let Iy be an abstract consistency class and A €
cuff,(X), then for all ® € Ty we have A ¢ & or -A ¢ .

'n the following we will use ¢ x A as an abbreviation for ¢ U {A}.

32 CHAPTER 3. HIGHER-ORDER MODEL EXISTENCE

Proof: Let A € wff,(X) and ® € Ty, such that A € ®. By V3 we can assume that A is a
G-normal form. So we prove the assertion by an induction over the structure of A.

If A is atomic we get the assertion immediately by V.. If A is not atomic, then its head
must be a logical constant, therefore we can proceed by a case-analysis over the connectives and
quantifiers.

Suppose A has the form =B and {-B,——-B} C ®. By V., we know that {-B,B}U® € Ty,
which contradicts the induction hypotheses. Now suppose A has the form BVC and {BVC,~(BV
C)} C ®. By W, Vi we know that {BV C,-(BV C),B,-B,~-C}U® €[} or {BVC,~(BYV
C),C,-B,-C}U® € Ty. In both cases the contradiction is given by the induction hypotheses.
Suppose A has the form TI(AX. B) and {II(AX. B),-II(AX. B)} C ®. By V3, W and V3 we know
that {TI(AY. B), —II(AY.B),[W/Y]B, -[W/Y|B}U® € Iy which contradicts again the induction
hypotheses. O

In contrast to [And71], we work with saturated abstract consistency classes in order to obtain
total X-valuations, which makes the proofs of the model existence theorem much simpler and, e.g.,
yields much more natural models.

Definition 3.9 (Saturated). We call an abstract consistency class Iy atomically saturated, iff
for all ® € Iy and for all atomic sentences A € cwff,(X), we have P x A € Iy or @+ -A € Iy, If
this property holds for all sentences A € cwff,(X), then we call Iy saturated.

Remark 3.10. Clearly, not all abstract consistency classes are saturated, since the empty set is
one that is not, even if X is empty.

In the definition of abstract consistency class, we only had to require atomic consistency,
i.e., that there are no atomic propositions that contradict each other in one abstract consistent
set, to ensure consistency (see 3.8). The conjecture is that a similar theorem can be proven for
saturatedness:

Congecture: Let Iy be an atomic saturated abstract consistency class. Then there
exists an saturated abstract consistency class Tf}, with I is a subclass of .

Such a result would be of practical importance, as it allows to reduce the problem of proving
saturatedness of a given calculus to proving atomic saturatedness.

Lemma 3.11. Let Iy be a saturated abstract consistency class, ® € Iy; and A an atomic sentence.
Then &+ (AV-A)ely.

Proof: Since Ty is saturated and ® € Ty, we must have x (AV-A) €z or Px-(AV-A) €
Iz. We prove the assertion by refuting the second alternative. If ® x =(A vV =A) € Ty, then
dU{-(AV-A),-A -—-A A} € Ty by V) and V,. Since A is an atomic sentence we get a
contradiction with lemma 3.8. O

Lemma 3.12 (Compactness of abstract consistency classes). For each abstract consis-
tency class Ty, there exists an abstract consistency class T, of the same type, such that Ty, C I,
and T} is compact. Furthermore I, is saturated, iff T, is.

Proof: (following and extending [And86], proposition no. 2506)

We choose I, := {® C cuff,(X) | every finite subset of @ is in I;}. Now suppose that ® € Iy. Iy
is closed under subsets, so every finite subset of ® is in Iy and thus ® € Ij}. Hence Iy; C ;.

Next let us show that each Tf; is compact. Suppose ® € It and ¥ is an arbitrary finite subset
of ®. By definition of I} all finite subsets of ® are in I; and therefore ¥ € Li. Thus all finite
subsets of ® are in T whenever ® is in If}. On the other hand, suppose all finite subsets of ® are
in If. Then by the definition of Tf the finite subsets of ® are also in Iy, so ® € ;. Thus T3 is
compact.

Next we show that if Iy satisfies V., then I satisfies V4, by considering the cases of defini-
tion 3.6. First note that by lemma 3.2 we have that [5 is closed under subsets.

3.2. HINTIKKA SETS 33

V. Let ® € I and suppose there is an atom A, such that {A,-A} C ®. Then {A,-A} €}
contradicting V..

V. Let ® € I, =—A € ®, ¥ be any finite subset of & x A and © := (¥ \ {A}) x——A. Oisa
finite subset of ®, so © € Iy. Since [is an abstract consistency class and —-—A € ©, we
get © x A € Iy by V4. We know that ¥ C © x A and Iy, is closed under subsets, so ¥ € Ix.
Thus every finite subset ¥ of ® % A is in Iy and therefore by definition ® * A € T3,.

Vi, Vi, W, Va, W, V5 Analogous to V..

Vy, Let®eTy, —(F —of G) € ® and ¥ be any finite subset of &% -(F W = G W). We show
that ¥ € I. Clearly © := (¥ \ {-~(F W = G W)}) x =(F = G) is a finite subset of ® and
therefore © € Ix. Since Ix satisfies V; and =(F = G) € O, we have Ox=2(F W = G W) € Ix
by V. Furthermore, ¥ C O * ~(F W = G W) and It is closed under subsets, so ¥ € Iz.
Thus every finite subset ¥ of ® «+ =(F W = G W) is in Iy, therefore by definition we have
P+-(FW=GW)cL.

Ve Let ® € T{ with -(A = B) € ® but U {A,-B} ¢ ® and ® U {—A,B} ¢ &. Then there
exists finite subsets ®; and ®, of ®, such that ®; x {A, "B} ¢ Iy and &5 x {-A B} ¢ I;..
Now we choose &3 := &; UP;+ (A = B). Obviously ®; is a finite subset of & and therefore
®; € Iy;. Since Ty satisfies Vj, we have that ®3U{A,-B} € Iy or ®3U{-A,B} € I;;. From
this and the fact that extensional abstract consistency classes are closed under subsets we
get that ®; U{A,-B} € Iy or ®; U {=A B} € I;, which contradicts our assumption.

For the proof that I3 is saturated, let ® € I3, but neither ® * A nor ® x = A be in I§,. Then there
are finite subsets ®t and ®~ of ®, such that ®* x A ¢ Iy and &~ x ~A ¢ & (since all finite
subsets of ® are in Iy). As ¥ := &t U ®~ is a finite subset of ®, we have ¥ € Iy;. Furthermore,
UxAclyorVs—-A €LY, because It is saturated. Iy is closed under subsets, so ®T x A € Iy
or & x A € Ix. This is a contradiction, so we can conclude that if ® € Iy, then ® x A € T, or
Px-A €T O

3.2 Hintikka Sets

Now we define Hintikka sets, which are maximal elements in an abstract consistency class. Hintikka
sets connect syntax with semantics as they provide the basis for the model constructions in the
model existence theorem 3.29.

Definition 3.13 (X-Hintikka Set). Let Iy be an abstract consistency class, then a set H is
called a X-Hintikka set for Iy, iff it is maximal in T3, i.e., iff for each sentence D € cuff, (X), such
that # * D € I;;, we already have D € H.

In the following we discuss properties of Y-Hintikka sets. Since we have different types of
abstract consistency classes, depending on the additional requirements f,q and b, we have to
discuss different Hintikka lemmata.

Theorem 3.14 (Hintikka Lemma for 2ccg). If Iy is a saturated Accg and H is mazimal in
Iz, then the following statements hold for all A)B € cuff,(X), F € cuff,_,,(X) and C,D,E €

cuff, (3):
vcl A¢Hor-A¢gH.

2

V. AcH,iff A¢H.
V. -ACH, iffA¢H.
Y. (——A)eH, iff AcH.

w
~

CHAPTER 3. HIGHER-ORDER MODEL EXISTENCE

Vs IfA=4B,then AcH, iff BEH.

Y (AVB)EH, iffAcH orBeH.

Va —(AVB)EH, iff "AcH and -BcH.

Y% U°F € H, iff for each D € cwff, (X) we have (F D) € H.

Ya —I°F € H, iff there is a D € cuff, (), such that =)F D) € H.
V. A="AcH

V. IfF[C], € H and C =" D € H, then F[D], € H

VW c="De#H, ifD="CeH

Ve C="DeH and D="EcH, thenC="EcH

Av/ (A V-A) €H for any sentence A.
Proof:
V' By 3s.

—2 —3 . . S
V. ,V. Both are direct consequences of the saturation of Iy and V,, .

A

If ==A € H, then H x A € Ty by V.. The maximality of H now gives us that A € H. To
obtain the converse, let us assume that A € #. Then by 7:2 we know that —=A ¢ H and by
=3

V., —mAcH.

Vs Suppose A=gB. Since f-reduction is terminating and confluent there is unique C, such that
C is the f-normal-form of A and B. Without loss of generality we show that if A € H,

then B € #. For that we suppose that A € # but B ¢ H. From the latter we get by Vcs
that -B € H. Note that the f-normal-form of A is C and of =B is =C. By Vj and the

maximality of # we know that {C,~C} € #, which contradicts V}.

Yo We get the first direction by Y4 and the maximality of H. For the converse direction let us
assume that A € % or B € H but (A V B) ¢ H. Then by VCS we get 7(A vV B) € # and by
the first direction of V5 we have {=A, =B} C H which contradicts the assumption with vcl.

Va Analogous to the Y, case; note that the argumentation is not circular. In both cases we use
the forward direction of the counterpart to verify the backward direction, whereas forward
directions are proven directly. The same holds for the proofs of Y and V5 below.

Y Again, we get the first direction by Y and the maximality of . For the converse direction
let us assume that (F D) € H for each D € cuwff,(X), but II*F ¢ #. Then —II*F € H by

vf and by the first direction of V5 there is a D € cwff, (X), such that =(F D) € # which is
a contradiction.

Va2 Analogous to V.

V. Suppose A =" A ¢ H. By ch, the definition of =, V4 and V, we have =(-Q AVQ A)) € #
fora Q € cuffs_,,(X). Applying Vi contradicts VCQ.

Suppose F[C], € # and C = D € H. From the latter we obtain (AP. =P CV
P D)(AX. F[X],) € H by the definition of = and W. Note that X is free for F[Y], so
we have =F[C], V F[D], € # by Vs. From this we conclude with %, that —=F[C], € H or

. . . . L =1
F[D], € H. Since the first option contradicts our assumption with V, , it must be the case
that F[B], € #.

3.2. HINTIKKA SETS 35

V=" By

il

and V-.

|
|

V. By V., V:S and ﬁiy

Y, Saturation of_Fg and maximality of H entails that A € H or =A € H. We now get the
assertion by VA . 0

Depending on the kind of abstract consistency class we are considering, Hintikka sets have
different properties. We discuss this different properties in the Hintikka lemmata below.

Theorem 3.15 (Hintikka Lemma for Accgs). If Iy is a saturated Accgs and H is mazimal in
Iz, then for all A,B,C € cuff,(X)

Vi IfA=s,B, then AcH iff BeH.

Proof: Analogous to Vs in Theorem 3.14 O

Theorem 3.16 (Hintikka Lemma for ccsy). If Iy is a saturated Uccgq and H is mazimal in
Is, then for all C € cuwff,(X), and F, G € cuff,_,5(¥):

vq -(F b G) € H, iff there is a C € cwff, (), such that =(F C = a C)eH.

ot

" F="""GeH, ff FC=" G CeH for all C € cuff, (%)

Proof:

Vq_ We get the first direction by the definition of =, V; and the maximality of #. For the
converse let us suppose that =(F C = G C) € A but -(F = G) ¢ H. From the latter

we know by v:, that F = G € # and by V- we have that =(G C = G C) € H which
contradicts V. and vcl.

Suppose F = G € H but F C = G C ¢ H, which means by VCS, that -(F C = G C) € H.
From this we get by the definition of =, V5 and Vj, that =(=Q (F C) v Q (G C)) € H
for some Q € wff,,(X). On the other hand we know from F = G € # by the definition
of = and W that (APassp)50- 7P FV P G)(AXasp. Q (X C)) € H, and hence by Vj
that =Q (F C) vV Q (G C) € H, which contradicts Vcl. For the converse assume that
FC=GCecHforallCEHbut F=G¢H. Weget by V. that =(F = G) € H which

. . — =1
contradicts the assumption with V, and V, .

<

O

Theorem 3.17 (Hintikka Lemma for ccge). If It is a saturated ™Uccge and H is mazimal in
L, then for all A, B € wff,(X):

Ve —(A="B)eH, iff {(-A,B}CH or{A -B}CH
(A="B)cH, iff A B} CH or {-A,-B} CH.

Vo (A B)cH, iff(A="B)cH.

V. FEither A="BeH orA="-BeH.

V. =(T,=F,) €M, if T, and F, are defined as in lemma 2.25.
VI Bither A =" T, € H or A =" F, € H.

Proof:

36 CHAPTER 3. HIGHER-ORDER MODEL EXISTENCE

YV, We get the first direction by the definition of =, V4, and the maximality of . Now assume
that {=A B} C Hor {A, =B} C # but =(A = B) ¢ H. From the latter we know by the defi-
nition of = and W that {(AP,_,. ~PAVPB)(AX,. X), (AP,,. 7P AVP B)(AX,.=X)} CH
and by V; and W, that one of {=A,==A}, {B,-B}, {=A,-B} or {B,~—A} must be a
subset of . All four cases contradict V. together with the assumption.

=+

Vp Since I3 is saturated we have A € H or =A € H. From this we easily get the first direction
by Vé. For the converse suppose that {A;B} € H or {-A,-B} € H but (A =B) ¢ A

which means by VCS that =(A = B) € #. By V, we have {~A,B} € # or {A,-B} € H.

. =1
In each of the four cases the contradiction follows by V. .

i

If we assume (A < B) € H, then by the definition of < and V, we have {=AVB, AV-B} C
H, and by W that {-A A} C H or {-B,B} C H or {-A,-B} C H or {A,B} C H.
Note that the first two alternatives are impossible because of V.. Now we assume that
A = B ¢ H from which we obtain by VCS and V, that {=A B} C H or {A,-B} CH. We

have to consider four cases and in each case we get a contradiction with V, .

Assume that A = B ¢ # and A = -B ¢ H. By VCS we have =(A = B) € H and
=(A = -B) € H#, and by V, we get from the former that {=A B} C # or {A,-B} C H
and from the latter that {A,-B} C H or {-A,--B} C H. We have to consider four

cases and in each we get a contradiction with V.. Analogous we can show with v;- that

A =B cH and A =-B € H leads to a contradiction.

il

V;f_ From V, we know that T, € H#. Hence by VCZ and VCS that =F, € H and finally by V, we
get =(T, =" F,) € H.

Vﬁ” Follows immediately from V:c

3.3 Primitive Equality

We now define abstract consistency properties for primitive equality. For this we have different
options, e.g. we could introduce primitive equality by postulating = to be a functional congruence
relation or alternatively we could state properties connecting = with =.

Our concrete choice, namely a property postulating reflexivity and substitutivity of =, is
motivated from a practical point of view, as we believe that reflexivity and substitutivity are more
easy to verify in practical applications.

Definition 3.18 (Abstract Consistency with Primitive Equality). Let ¥ be signature and
let Ty be a QAceg, then we define the following condition, where ® € Ix:

V' ~(A="A)¢d.

[4

Ve TfF[A], € ® and A =B € ®, then ¢« F[B], € Ix.

[4

Using this properties we introduce the abstract consistency classes ccg, and Rfceg,; based upon
the definition of Accg.

Instead of using reflexivity and substitution principles we can also introduce the following
alternative definition for abstract consistency with primitive equality:

Definition 3.19 (Alternative Abstract Consistency with Primitive Equality). Let X
be signature and let Iz be a Accg, then we define the following condition, where ® € Ix:

3.3. PRIMITIVE EQUALITY 37

V= If -(A=B) € ®, then d* (A =B) c k.
V= If =(A = B) € @, then &+ ~(A =B) € Tt.

Using this properties instead of V" and V) we can introduce analoga to the abstract consistency
classes ccg, and Accgep above.

Remark 3.20. Just as in the case with Leibniz equality, we can extend a abstract consistency class
with primitive equality so that it is compact.

Proof: We proceed just as in the proof of Lemma 3.12 but check the cases for V" and V.

For V! let ® € T}, and suppose there is an A € cuwff, with =(A = A) € ®. Then {-(A =
A)} € Ty contradicting V.

For V7 let ® € T}, {F[A],, A = B} C &, ¥ be any finite subset of ® « F[B], and © := (¥ \
{F[B],}) U {F[A],, A = B}. O is a finite subset of ®, so © € Iy. Since Iy is an Accgep and
{F[A],,A = B} C O, we get O x F[B], € Iy by V. We know that ¥ C © % F[B], and Iy is
closed under subsets, so ¥ € Iy;. Thus every finite subset ¥ of ® « F[B], is in Iy; and therefore by
definition ® x F[B], € T}. O

The next lemma shows the connection between Leibniz equality and primitive equality for
Accge.

Lemma 3.21 (Leibniz versus Primitive Equality). Let Iy, be a saturated ccg,. For all ® €
Iz, all A,B € uff,(¥) and F, G € wff,_,5(X) holds:

1. If+(A =" B)€®, then ®* (A ="B) €Iy
2. If (A =" B) € ®, then ®x~(A =* B) € Iy
3. fA="Be®, then®+A="Bel
/. IfA="Bcd®, thn®+A="BcT

5. If =(F =22P G) € ®, then ® + ~(Fw = Gw) € Ty for any constant w € C,, which does
not occur in .

Proof:

1. Suppose =(A =" B) € ®, but ® x =(A =* B) ¢ T. Since Iy is saturated we have
®*x A =>B €Iy and by V}, that ® x A = B* ~(B =" B) € Iy;. From the definition of =
we further conclude with V5 that ® x A = B* =(B = B) x =(-p BV p B) € I, for any
constant p € Cou—o. From this we get the contradiction with V, and lemma 3.8.

2. Suppose =(A =2 B) € ®, but ® x (A =" B) ¢ I1. Since Iy is saturated we have ® x A ="
B € Ty and by definition of =, Y& and the subset closure of Iy, that ® % (AP, 7P AV
P B)(AX,. A = X) € Iy. By V3, W and the subset closure of Iy we finally get that
®x—(A =A) elyorPxA =B cIy. The former is contradictory with V" and lemma 3.8,
and the latter with the assumption =(A =* B) € ® and lemma 3.8.

3. Suppose A =" B € @, but ® x A =* B ¢ I%. Since [}; is saturated we have ® * —(A =*
B) € Iy and by (2) and the subset closure of I that @ % —(A = B) € Iy which contradicts
the assumption with lemma 3.8.

4. Analogous to (3) with (1).

5. From —(F =27¢ G) € ® we can derive with (2), V,, (1) and the subset closure of I that
@+ —~(FC =*~ GC) € L.

O

38 CHAPTER 3. HIGHER-ORDER MODEL EXISTENCE

Remark 3.22. Lemma 3.21 again shows that in an M € Mg, the symbol = defines the same
relation as =, namely a functional congruence relation modulo v. And if we are considering an
M € Mgaep then both describe the equality relation. This shows that the conditions V] and V;
are sufficient for this purpose. We could alternatively introduce primitive equality by requiring
the statements 1. and 2. of lemma 3.21, i.e., as suggested in definition 3.19

We now discuss two new Hintikka lemmata, which take the logical nature of = into account

Theorem 3.23 (Hintikka Lemma for Qccg.). If Iy is a saturated Accg, and H is mazrimal in
Ix, then the following statements hold for all A, B, C € uwff,(X), F,G € wff,3(X) and D,E €
wff, (%)

Y. (A="A)eH.

V- IfD[A], € H and A =* B € H, then D[B], € .

V) A="BcH, iff(B="A)cH.

V. A="BecH andB="CcH, then A="CcH

V2T =(F =227 G) € H, iff there is a C € wff, (L), such that -(F C =% G C) € A.

V" F=""PGEcH, iff FC="G CcH for adll C € wff,(X).

VT A="BeH, if A="BcH.

T o(AZ"B)EeH, iff (A="B)cH.

Proof:

V. Follows by V and V.

V. By maximality of % and V..

_"yi: By Vz’” and st

<

V:J’ By maximality of #, 3.21(3.) and 3.21(4.)

~~ By maximality of #, 3.21(1.) and 3.21(2.)

q .

V:q_ Follows from vq_ with V:-‘-.

V;H Follows from vq_ with V:‘. .

Theorem 3.24 (Hintikka Lemma for Accge). If IS is a saturated Accgep and H is mazimal in
Iz, then for all A,B € wff,(X):

Y (A =°B)cH, iff {(-A,B}CH or {A,-B} CH.

Vot A="Be#, iff {A,B} CH or {-A,-B} C H.
Vo AoBe#H, iff A=BeH.
Y. Hither A=BecH orA=-BecH.

Proof: The statements follow direct from their counterparts V, - V:C in lemma 3.17 with the
help of §:=+ and Vj‘. (]

3.4. MODEL EXISTENCE 39

3.4 Model Existence

We shall now present the proof of the abstract extension lemma, which will nearly immediately
yield the model existence theorems. For the proof we adapt the construction of Henkin’s com-
pleteness proof from [Hen50, Hen96].

Theorem 3.25 (Abstract Extension Lemma). Let ¥ be a signature, Iy be a compact abstract
consistency class and let H € Iy be sufficiently X-pure. Then there exists a X-Hintikka set H for
I3, such that H C'H.

Proof: We construct H by inductively constructing a sequence of sets H’ such that #! € I.
Then the X-Hintikka set is H = Uie]N H € L.
Let A1, A, ... be an enumeration of cuff,(X). We define #° := H and the set H#"+! according
to the following table 3.1. Since the construction is uniform for all kinds of abstract consistency
classes H™+! depends on the respective kind of abstract consistency class Iy; we are interested in
and in the properties of A, with respect to this Iy;. (How to read the table: Assume I3, is an an
Accsq and A, is of form ~(F =77 G). The table defines H"+! to be H" ¥ A, x—(F w =" G w)
for a fresh w € C, in case A, € Iy and H" otherwise.)

Aeces/Accsn/ Accay /Accsqn/ Accs, [Acesen/
HT! Accss /Accsso
H" x A, ¢T3 H" H" H"
A, of form H™ x A, * H”™ * A, * H™ « A, *
=I1°B -(B w) —(B w) -(B w)
A, of form H” x A, H™ * Ap* H™ x Apx
H*« A, | ~(F="""qG) ~«(Fw="Guw) | ~(Fuw="G w)
€Iy and | A,, of form H" x A, H" x A, H" x A, %
-(F =8 G) -(F w = G w)
A, of other form H" x A, H" x A, H" x A,
w € C, is a constant which is fresh for H"

Figure 3.1: Hintikka set construction: How to construct sets H"+! from H"

Next we show by induction, that H™ € Iy for all n € IN. The base case holds by construction
(for all kinds of abstract consistency classes). So let H” € I;. We have to show that H M e .
This is trivial in case " A, ¢ Iy (again for all abstract consistency classes). In case H"xA, € Iy
we have to consider four sub-cases:

1. If A,, is of form —IT*B, then we get the conclusion trivially by V3 (for all cases).

2. If A, is of form —(F =20 G) the conclusion is either trivial (by Vi in case of 2ccg,
Accgp, Accgs or Acegre), or follows by Vj in case of Accgg or Accgqp, or follows by V, and
Lemma 3.21(1), 3.21(5), and 3.21(2) in case of Accg, or Accgep.

3. If A, is of form —(F —a—p G) the conclusion is either trivial (by V3 in case of an 2ccg,
Accsp, Uccpy, Uccpre, Accsy, Uccaqp) or follows by 3.21(5).

4. If A, is of any other form, then the conclusion is trivial (for all cases).

Since Iy is compact, we also have H € Ix.

Now we know that our inductively defined set H is indeed in Iy and that H C H. It only
remains to show that H is maximalin Is. Solet A, € wff,(X) be the n-th sentence from the above
sequence, such that # * A,, € Ix. Since H is closed under subsets we know that X" *x A,, € Ix.
By definition of #"*' we conclude that A, € #"*' and hence A,, € H. O

Next we define two congruence relations which we need in the model existence theorems below
in order to build quotient models.

40 CHAPTER 3. HIGHER-ORDER MODEL EXISTENCE

Definition 3.26 (Congruence Relations ~3 and ~). Let Iy; be an abstract consistency
class and A be a Hintikka set for I;. For all A B € wff(X) we define:

A, <~y B, iffA="BeH.

¥

A=B ify=.
A, ~y B, iff ¢ {ABleHor{AB}INH=0 ify=o
AC~yBCforal Ceuff,(¥) ify=a—-p

Lemma 3.27 (Functional Congruence Relations). Let Iy, be an abstract consistency class
and H be a Hintikka set for Iy;. Then ~y is a functional congruence relation, if Iy; is an Accy and
~ 15 a functional congruence relation, if I is an Accgqp.

Proof: ~ is a functional congruence relation by V viy, V:, Vq_ and v:, which are valid
in case Iy is an Accgqp.
Note that ~ is a functional congruence by construction. O

Remark 3.28. Note that in Lemma 2.37 EXT%_W does not hold for = and hence ~y is not
a functional congruence in case Iy; is not at least an Rlccgy;. Hence ~4 is unsuitable for the
model construction of an M € My (or M € mlﬁb) from a given M’ € M; (or M' € EIRﬁ) as
demonstrated below but fits well for the construction of an M € Wﬁqb. Fortunately the relation
~y is already a functional congruence in case Iy is an ccg;.

We now use the L-Hintikka sets, guaranteed by lemma 3.25, to construct a X-valuation for the
Y-term structure that turns it into the desired model M.

Theorem 3.29 (Model Existence Theorem). Let Ty be an saturated Ucc and let H € Ty, be
a sufficiently T-pure set of sentences. For all i € {8, Bf, Bfb, Ba, Bqb, e, Beb} (cf. Def. 2.28, 2.31
and 2.39) we have: If Ty, is an ce; (cf. Def. 3.6 and 3.18), then there erists a countable model in
M e M; that satisfies H.

Proof: Let Iy be an abstract consistency class. We can assume without loss of generality (see
lemma 3.12) that Ty is compact, so the preconditions of 3.25 are met, and therefore there exists a

Y-Hintikka set H C wff,(X) for Iy, such that H C .

Now, for each different kind of abstract consistency class, we will construct a countable model
M™ of the corresponding type. These model constructions closely reflect the relations of the
different model types as discussed in Chapter 2.1 and shown in figures 1.1 and 2.1. We start with
the construction of an M} € M, and an MZ € Myg; based upon the non-functional termstructure

TS(E)ﬂ and the functional TS(E)W. The remaining model constructions are then based upon
these two basic constructions.

Ms Let Ty be an Accg. Given the X-Hintikka set H with H C H from above, we choose v(C) := T,
iff C € H. Note that we have v(C) :=F, iff -C € A by ﬁf. By Vs we know that v is well-
defined on cwﬁ(E)lﬁ and by vf, vc?) we have that v is a total function on TSO(E)ﬁ.

Furthermore by vj, vCS, W and Yy we have that v is a L-valuation of the E-term structure
TS(E)ﬁ and thus M7 = (TS(E)ﬁ, v) is a Y-model by construction. We have M} | H,
since H C H. Note that M7 is indeed countable, since the sets of well-typed formulae are
countable.

Mps Let Iy be an Uccgs and hence also an 2ccg. Analogous to the previous case we construct
the countable ©-model M% = (TS(E)ﬁ”,U) with M3 |= H. Note that in this case v is

well-defined on TSO(E)’B’7 because of ﬁf By lemma 2.15 we know that M’ZH 1s functional and
hence MZ is in M.

3.4. MODEL EXISTENCE 41

We proceed with the construction of an M* € Mg, and M* € Mg, based upon the previ-
ous construction of an M} € 9Ms and accordingly of an M* € Mg, and an M* € Mgy,
based upon an M;H € Mgs;. Thus we start out with a countable X-model M;H = (TS(E)ﬂ, v) or
MM = (TS(E)ﬁ”,v), such that M |= H, for i = 1,2. Property q is easy to verify, as it follows
from the properties discussed in the Hintikka-lemmata 3.14 and 3.16.

Msq Let Ty be an Accgy. From -, Viy, E", vq_ and v: we can derive that = is indeed the
q* required by property q and hence M* is a countable X-model in Myg,.
To verify property b instead we have to construct an M* from M (i = 1,2) by reducing the set

of truth values to {T,F}, which can be done with the help of a functional congruence relation.

Mpp,Mpe Let I be an Accgy or Accgre. By lemma 3.27, VJ and vCS we can show that the
relation ~ defined in 3.26 is a functional ¥-congruence for M? and thus, by lemma 2.34,

the quotient structure M7/, is a functional ¥-model that satisfies H. From vf, Vf’ and
the choice of v we conclude that ~¢ has exactly two equivalence classes on ’TSD(E)’B”. Thus
we have D, = {T := [T,]. ,F := [F,]_}, if we define T, and F, as in lemma 2.25. Using V;
and v: we further get that v is the identity relation. Finally note that M7/, is countable
since M7 is.

We finish the constructions for the cases without a primitive notion of equality with the construc-
tion of a ¥-Henkin model N'* € Maqp in case we are considering an ccayp.

We start with M* ¢ My, guaranteed by the discussion above. Analogous to the construction
of an M™ ¢ Mpp, we make use of a functional congruence relation in order to construct a quotient
model which fulfils property b. But instead of the relation ~3 we had to use before, we apply the
simpler relation ~4; which is a functional congruence relation for the elements of Mpqp.

5 = Mgqe By lemma 3.27 and v;’,vf’ we know that the relation ~4 is a functional X-congruence
for M*, so the quotient structure N* .= M™/ € Mg, with N* = H by lemma 2.34.
Now we can conclude that D, = {T,F} with the same argumentation as in the Mg case.

It remains to discuss the cases with primitive equality and we start with the M™ € Mg,
resp. M™ € Mgy from above.

Mp. Let Iy be an Accg, and hence an Accgy. We construct the countable EH ¢ Mp, with EhEeH
as discussed above. Tt remains to show that property e is valid for €% which follows from

property g by V:+ and V:_.

Mper This case is analogous: Let Iy be an Accgep and hence an Accgqe. We construct a countable
EH = (TS(E)M,U) € o with &% = H. Again property e is valid for £% by property q,

v::-l_, and V_ . O

Chapter 4

Extensional Higher-Order
Resolution: &R

In this chapter we introduce the calculus ER for extensional higher-order resolution. The key idea
of ER is to integrate the search for unifiers and for refutations on the same level, i.e.; we allow for
recursive calls to the refutation process from within higher-order unification and vice versa. ER is
Henkin complete without additional axioms. In Section 4.1 we shall first discuss calculus ER and
illustrate the connections, modifications and extensions with respect to the underlying calculus
HORES as introduced in [Koh94b]. We then formally introduce calculus ER in Section 4.2
and define ERy and &Ry, which generalise ER by unfolding clause normalisation derivations and
additionally providing the FlexFlexz-unification rule. In Section 4.3 we present a simplified proof
(compared to the technique employed in [Koh94b]) of a lifting lemma for the generalised calculus
ERye before we examine Henkin completeness of ERy. in Section 4.4. As we are actually more
interested in calculus ER than in ERy. or £Ry, we discuss the equivalence of these three calculi in
Section 4.5.

4.1 A Review of HORES and ER

Traditional first-order resolution [Rob65] can be seen as a two layered approach, where the overall
search for a refutation (based on the resolution rule resolve and the factorisation rule factorise)
is performed at a layer above: this layer passes subproblems to the lower layer, such as the initial
clause normalisation process or the intermediate unification problems. An important fact is that
all the side computations performed at the lower layer are decidable. First-order unification is the
main engine of first-order resolution, it is in a sense a filter in the refutation search in order to
separate inappropriate clauses from the search space and to compute most general representations
for all suitable variable instantiations for the appropriate ones.

In our higher-order setting clause normalisation remains uncritical and the set of clauses
CNF(®) for a given set of higher-order formulae ® can easily be computed with the clause nor-
malisation rules as follows: Initially all formulae A € & are replaced by pre-clause [A,]7. Then
the clause normalisation rules are exhaustively applied to ®. Thus, in calculus ER clause normal-
isation does not cause any decidability problems and can still be employed as a side computation
(evoked by rule Cnf of Figure 4.2) whenever it appears to be appropriate.

In contrast however to clause normalisation, higher-order unification is undecidable [SG89,
Sny91] and can thus no longer be employed as a side computation like in the traditional first-order
setting. Huet solved the undecidability problem in [Hue72, Hue73a] by delaying unification in
his original constraint resolution approach instead of employing it as a filter. This is somewhat
unrealistic in practice, as the filter effect is now delayed until the end too, and there are just too
many candidates which fail only at the end of the computation. Therefore Kohlhase allows within
his sorted variant of Huet’s resolution calculus HORES (see [Koh94b]) for eager unification, i.e.,

42

4.1. A REVIEW OF HORES AND ER 43

Cv[AvB]Y . Cv[aAvB]" = CV[AVB]" _
CVIAT v BT " CVIA]F cvBf 7
CVI-AI" . CVI-A]"

CVI[A]F cvI[AlT

CcvVv [HO‘A]T X, new variable
CVI[A X7

CV [I*A)F sk, is a Skolem term for this clause
C V[A sk,]”

Figure 4.1: The Clause Normalisation Calculus CNF

the unification filter is (inspite of its theoretical undecidability) employed as early as possible
during the refutation process. This is realistic as undecidable unification problems do rarely occur
in practice.

The unsorted variant of HORES provides the basis for our calculus ER (as well as for EP and
ERUE). The first modification of calculus ER with respect to HORES concerns Skolemsisation:
the Skolemisation technique employed by HORES is not sound. HORES adds special variable
conditions to each clause in which the binding restrictions obtained from the Skolemisation steps
are encoded. Consequently, after modifications of a clause (like the renaming of free variables)
these variable conditions have to be updated as well. As the employed variable conditions and the
updating mechanisms are not strong enough to prevent HORES from proving obviously invalid
statements like Fach function has a fiz-point (VFqo_p. 3X,. (F X) = X), we employ in calculus
ER traditional Skolemisation again. More precisely, we use Miller’s sound approach for higher-
order Skolemisation [Mil83]. Another, more notational modification belongs to the encoding of
unification constraints which we uniformly present as negated equations in all calculi introduced in
this thesis. The most important modification of ER over HORES is that we add new extensionality
rules to the calculus in order to reach Henkin completeness without the need for extensionality
axioms. The rules of HORES that are directly reflected in ER are the clause normalisation rules
presented in Figure 4.1 and basically the resolution and the pre-unification rules as stated in
Figure 4.2 — except for the extensionality rules Equiv and Leib, and partly the extensionality rule
Fune.

The rules of calculus &R can be divided into the following three groups: clause normalisa-
tion rules, resolution rules, and extensional higher-order pre-unification rules. The set of clause
normalisation rules are displayed in Figure 4.1 and the resolution and unification rules of &R in
Figure 4.2. For all rules we assume commutativity of V, symmetry of =, and associativity of
V. Furthermore, we assume that the literals of our clauses are always kept in head-normal form.
Consequently we suppose that the newly generated or modified clauses are always immediately
transformed into head-normal form.*

We now discuss the rules of R in detail and start with those that are directly imported from
HORES. We then describe extensionality rules that are new in ER and which make ER Henkin
complete.

1For the formal proofs in this chapter we do not assume that £R automatically takes idempotency of V into
account and does not automatically factorise identical literals in the clause normalisation process, since this eases
our argumentations. In practice, however, one is certainly interested to optimise clause normalisation as far as
possible.

44

CHAPTER 4. EXTENSIONAL HIGHER-ORDER RESOLUTION: ER

| Clause Normalisation:| (defined for arbitrary clauses)

D C ECCN}'(D) Cnf

(defined on proper clauses only)

[A]l*VC [BffVD a#3
CvDV[A=B]F

Res

[A]*V [B]*VC ac{T F}
[A]*VC VA =B]"

[Q, TF*VC PeABIVIVITIETY o (T Py
— Prim

[@y UFl*v CVI[Q=P]"

‘ Extensional (Pre-)Unification: ‘ (defined for arbitrary clauses)

cv [Ma—m:Na—m]F s« Skolem term for this clause

F
CV[M s=N 5" e
CV[Ausp Co =B, D
ya +— Dec
CVI[A=B]"v[C=D]
CVI[A=A]F CV[X=A]" X ¢ free(A)
——— Triv — Subst
C Cia/xy
CV[F, Ur=h V7|’ G AB)
——— FlexRigid
CV[F=G]F V[F Ur=h V7|F
CV[M,=N,]* , CV [M,=N,]"
Equiv Leib

CVM, & N,J” CV[VP.yo, PM= P NJF

.AB,;; is the set of partial bindings of type v for head h as defined in [SG&9]

Figure 4.2: The Extensional Higher-Order Resolution calculus ER

4.1. A REVIEW OF HORES AND ER 45

The higher-order resolution rule Res and factorisation rule Fac employed in ER and HORES
obviously differ from their first-order counterparts. Instead of using unification as a filter, which
checks the rules applicability and even computes a most general representation of all suitable
variable instantiations justifiying the particular resolution or factorisation steps, they add — as
suggested by Huet — respective unification constraints to the generated clauses and generally
delay the application of unification. Consequently, the search space thereby explodes as any two
literals with contrary polarities can be resolved upon and any two literals in a clause with identical
polarities can be factorised.

In order to avoid this search space explosion ER and HORES allow for eager pre-unification.
This is realised by rule Subst which propagates (partly) solved unification constraints back to the
other literals of the same clause. Thus, the idea is not to delay unification in ER till an empty
clause is derived, but to employ it early and parallel to the overall refutation search, thereby
partly regaining the filter properties of unification. Clearly, as higher-order unification and pre-
unification is generally undecidable we still cannot prematurely decide all unification problems —
but many.

After applying rule Subst (or analogously the extensionality rules Equiv or Leib as introduced
below), clause normalisation may become necessary in order to obtain proper clauses again. This
is due to the fact that instantiating predicate variables at head positions of some literals, i.e.,
flexible literal heads, may lead to pre-clauses instead of proper ones. The clause normalisation
process is evoked by the application of rule Cnf. Tt performs exhaustive CNF-derivations from a
pre-clause D to a proper clause C € CNF (D) according to the rules presented in Figure 4.1. Thus,
the whole derivation according to the CVF-rules is hidden inside the single rule application of Cnf
in calculus ER.

Tt is well known for higher-order resolution that a primitive substitution rule (as suggested
in [And89]) or a splitting rule (see [Hue72]) is needed, as unification is too weak to compute all
necessary instantiations for flexible literal heads.

The primitive substitution rule Prim provided by calculus £R is a variant of the rule suggested
in [And89] and is conceptually simpler than Huet’s splitting rule. Rule Prim allows to instantiate
flexible heads of the literals by a partial binding that imitates a logical constant. The important
role of this rule can be illustrated by the example 3X,. 3Y,. X VY which is obviously a theorem
with respect to Henkin semantics. By negation and clause normalisation we obtain the two unit
clauses [X]7 and [Y]". Both clauses consist of exactly one negated literal with a flexible head.
Neither resolution nor factorisation is applicable and thus without the primitive substitution rule
we cannot find a refutation. The application of Prim with the partial binding {X + —X’} on
clause [X]¥ results after clause normalisation with rule Cnf in [X’]T. Thus, by applying rule
Prim we add important but missing logical structure to our clauses, such that a refutation with
the other calculus rules becomes possible.

HORES is not complete with respect to Henkin semantics. The problem is that despite the
primitive substitution rule Prim, which in some sense supports higher-order unification algorithm
in computing instantiations of variables?, the unification rules are still too weak to handle the ex-
tensionality principles sufficiently. More precisely, higher-order unification as employed in HORES
or in Huet’s original approach is a pure syntactically oriented algorithm for unifying terms. But
for reaching Henkin completeness we need unification with respect to the theory defined by the
extensionality principles, as we are interested to unify terms like A, A B, and B, A A, or even
AXage Agso XABy o, X and AX,. By XAA,L, X

Clearly, HORES as well as the traditional approaches [And71, Hue72] can be made Henkin
complete by adding the extensionality axioms to the search space, which is unfeasible in practice.

As a solution to this problem, the calculus ER adds the three new extensionality rules Leib,
Equiv, and Func to the unification rules and thereby avoids the extensionality axioms in the
search space. Rule Leib (see Figure 4.2) simply instantiates the equality symbol within unification

2Clause normalisation removes logical structure from the input formulas and translates them into the clause
structure. The primitive substitution rule on the other hand can always introduce new logical structure for flexible
literal heads, which cannot be computed by unification. In this sense primitive substitution supports higher-order
unification in a refutation approach.

46 CHAPTER 4. EXTENSIONAL HIGHER-ORDER RESOLUTION: ER

constraints by its Leibniz definition and Equiv reflects the extensionality property for truth values
in a negative way: if two formulae are not equal, then they are also not equivalent. Rule Func
analogously reflects functional extensionality: if two functions are not equal then there exists a
witness s, on which these functions differ. To ensure soundness, s, has to be a new Skolem term
that contains all the free variables occurring in the given clause. Why is rule Func presented as a
new extensionality rule but also as a usual unification rule? The reason is that the pre-unification
rules & and 7 as presented in HORES already partially realise the negative aspect of the functional
extensionality principle:

CVI[(AXa A)=(\Y,. B)]T s Skolem term for this clause
CVI[Af/x) =Byvyl”

[0

CV[AX,. A)=B]F Sq Skolem term for this clause
T Ui
cv [A{s/X} = (B S)]

Note that the purely type information based rule Func extends and generalises these two rules and
thus rule Func has the following two meanings in our calculus: If one or both unification terms is
a A-abstraction, it works like the traditional a- and 7-rules as, e.g., used in HORES and [BK98a].
If on the other hand neither of the unification terms is a A-abstraction rule, Func realises the
functional extensionality principle.

In cooperation the new extensionality rules connect the unification part of our calculus with
the resolution part by allowing for recursive calls of the overall refutation process from within
higher-order unification.

We want to point out that none of the three new extensionality rules introduces any flexible
literal and even better, they introduce no new free variable at all; even if they heavily increase the
search space for refutations, they behave much better — as the experiments (see Section 7.4) with
the LEO theorem prover [BK98b, Ben97] showed — than the addition of extensionality axioms in
the traditional approaches, which introduces many flexible literals in the refutation process.

One important aspect that is illustrated by the examples in this thesis as well as the examples
discussed in [BK98a] is that eager pre-unification becomes essential in ER and many proofs cannot
be found when delaying the unification process until the end.

Another important modification of ER with respect to HORES concerns the encoding of
unification constraints. In &R they are encoded as negated equational literals. In this sense a clause
CVIL!=RYv...VIL" = R")¥ can also be read as the implication ([L! = R]T A...A[L" =
R"|T) = C, i.e., the unification constraints describe the conditions under which clause rest C holds.
Consequently the question arises whether or not resolution and factorisation rules are allowed to
be applied on these unification constraints, which look like ordinary literals. In order to obtain a
Henkin complete calculus this is not necessary — as the completeness proofs in [BK98a, BK97b]
and the alternative one in this thesis show. Consequently the unification constraints do not
necessarily have to be encoded as negative equational literals, any other form will work as well.
But the encoding of unification constraints as negated equational literals becomes essential for
the extensional higher-order RUE-resolution calculus presented in Chapter 6 and the extensional
higher-order paramodulation calculus presented in Chapter 5.

We briefly sum up the particular modifications with respect to [BK98al:

e The unification rules o and 7 employed in [BK98a] are avoided as they are subsumed by rule
Func.

e Instead of employing clause normalisation in the definitions of rule Subst and the extension-
ality rules Fquiv and Leib we add the extra clause normalisation rule Cnf to the calculus.

e We slightly modify the decomposition rule Dec. This modification is illustrated in detail by
Example EP¢¢ in Subsection 8.2.

We will present in this chapter an alternative proof for the Henkin completeness of calculus
ER to the one given in [BK98a, BK97b]. The motivation for this new proof is threefold:

4.2. BASIC DEFINITIONS 47

e We have slightly modified the calculus £R in this thesis.

e The completeness proofs of the new, further extended calculi EP (extensional higher-order
paramodulation) and ERUE (extensional higher-order RUE-Resolution) are carried out anal-
ogously, such that many lemmata can be either directly reused or with minor modifications.

e The lifting lemma in the completeness proofs in [BK98a, BK97b] builds upon an argument
also employed in [Koh94b] which uses a quite complicated notion of clause isomorphisms
susceptible to errors. In this thesis we present a lifting argument that omits the notion
of clause isomorphisms. This is possible as we analyse a generalised resolution calculus
ERy. instead of ER. This enriched calculus additionally employs the instantiation guessing
FlezFler-rule (see Figure 4.3) and applies the single clause normalisation rules instead of
grouping them into exhaustive clause normalisation chains with rule Cnf. Consequently, in
Subsection 4.5 we will discuss the theorem equivalence between &Ry and ER.

An important convention for this and the following chapters concerns a-equality of clauses and
the arity of Skolem terms:

Remark 4.1 (Equality of clauses). In resolution based theorem proving one usually assumes all
clauses to be variable digjoint. In practice this is achieved by automatically renaming the variables
within each newly generated clause. In this thesis we implicitly use this convention, too.

Another implicit convention concerns the Skolem terms. We briefly illustrate this aspect by
an example. Assume that the following pre-clause is given:

C1: VX, pisyo X, VIEVIVZ. quso Z)F
Clause normalisation either leads to
C? : [pL—>o XL YvL]T \ [qb—>0 (Sbl_n Y—L)]F or to CS : [pL—>o XL Y—L]T \ [’JL—}O (Sg_n_n XL YL)]F

1L, Y) and (s2,,,, X, Y,) are new Skolem terms. The first clause Cy is the result of
applying rule II7 first and II" to the result, whereas the second clause Cs is the result of applying
first I1¥" and then II7. Both results differ with respect to the arity of the new Skolem terms. It
is well known for refutation approaches that each refutation using only one of these clauses can
be analogously carried out with the other one. For a discussion of this Skolemisation aspect in
the context of of sequent calculi we refer to [AMS98]. In the following we will therefore ignore
the different arities of Skolem terms caused by switching the order of single applications of clause
normalisation rules (switching the order of clause normalisation rules will be employed in some of
the proofs in this thesis).

where (51

4.2 Basic Definitions

Instead of a direct proof of Henkin completeness for ER, we first analyse the slightly enriched
calculus ERy.. Aside from the unfolding of exhaustive clause normalisation derivations this calculus
provides the well known FlezFlex unification rule displayed in Figure 4.3. In case a clause contains
a flez-flex-unification constraint this rule allows to guess an instantiation for one of the flexible
heads such that the unification process can proceed with its eager unification attempts. It was
already pointed out by Huet [Hue72] that in practice we are interested in avoiding this possibly
infinitely branching rule (there may be infinitely many constants in the signature) and it turned
out that within a refutation approach one can in fact avoid the FlexFlez-rule and delay the
operations on flez-flex-constraints until one of the head variables gets bound. However, employing
this additional rule within the lifting lemma eases the proofs as it turns our eager pre-unification
approach into an eager unification approach. This allows to omit the clause isomorphisms that
are needed in the respective proofs in [Koh94b]. The motivation for the unfolding of exhaustive
clause normalisation derivation by rejecting rule Cnf and lifting the clause normalisation rules to
calculus level is analogous: We want to ease the proofs in this section and especially the analogous

48 CHAPTER 4. EXTENSIONAL HIGHER-ORDER RESOLUTION: ER

CVI[Fr,, Ut = Hem, VA" GecABL:

Mmoo Y=o

CV[FU"=H V"I v[F =G

for a h, € C;,

FlexFlex

Figure 4.3: The FlexFlex unification rule

but slightly more complicated ones for the extensional higher-order paramodulation calculus EP
and extensional higher-order RUE-resolution calculus ERUE in the following sections.

A formal proof for the admissibility of rule FlezFlez has not been carried out yet, but evidence
is given by [BK98a] (the completeness proof presented there avoids rule FlezFlez but admittedly
lacks a bit of transparency and clarity within the lifting argument) and the case studies with
the LEO prover [BK98b]. Actually, there is no example known to the author that requires the
application of rule FlexFlex.

Definition 4.2 (Clause Normalisation). The calculus CNF consists of the clause normalisa-
tion rules displayed in Figure 4.1. We assume that the result of each rule application is transformed
into head-normal form®. By applying these rules exhaustively to a pre-clause [A]* (a € {T, F})
one can derive the set CVF([A]®) of proper clauses derivable from [A]*.

Lemma 4.3 (Soundness of CNVF). The rules CNF\{I1*'} preserve validity and the rule II¥" pre-
serves satisfiability with respect to Henkin semantics.

Proof: The proofs for the rules in CVF\ {17} are analogous to the first-order case and Skolemi-
sation has been corrected for higher-order logic by Miller in [Mil83, Mil91, Mil92]. O

Definition 4.4 (Unification). We define the following two calculi for higher-order unification
and higher-order pre-unification:

UNT The calculus UNT consists of the pre-unification rules Triv, Func, Dec, FlexRigid and
Subst as presented in Fig 4.2. We assume that the result of each rule application is
transformed into head-normal form.* These rules form a quite close variant of the higher-
order pre-unification calculus discussed in [Koh94b] and [SG89, Sny91]. We already
mentioned that rule Func, which simply applies the functional extensionality principle,
subsumes the rules o and 5 used in [BK98a] and [Koh94b].

UNT The calculus UNZ is defined as UNZU {FlexFlex}.

Theorem 4.5 (Higher-Order Unification and Pre-Unification).

Soundness UNZ (resp. UNT) is a sound calculus for higher-order unification (resp. higher-order
pre-unification). More precisely, for each derivation A : E:=[L; = R4]F v...V[L, =
R, Funr B (resp. A - E byng E'), where E' is in solved form and corresponds with unifier
(pre-unifier) o, holds that o is a unifier (resp. pre-unifier) of {L1 =" Rq,...,L, =" R, }.

Completeness UNT; (resp. UNT) is a complete calculus for higher-order unification (resp. higher-
order pre-unification). More precisely, for each higher-order unification problem {L; =’
Ri,...,L, =" R,} with unifier (resp. pre-unifier) o, there erists a derivation A : E := [Ly =
RiF V.. .V[L, = R, bupng E' (resp. A : E bypr E'), such that E' is in solved form and
corresponds with unifier (resp. pre-unifier) o.

3Remember the special definition of head-normal form for unification constraints as given in Chapter 2.1.
4Note that this is the main difference to the pre-unification rules presented in [SG&9] which presupposes that all
results are reduced to Sn-normal form.

4.2. BASIC DEFINITIONS 49

Proof: We will not present a formal proof here and instead refer to [Koh94b]. The only
difference of our rules to the respective ones used in [Koh94b] is, that the latter consider sorts as
well and employ a extra-logical form of Skolemisation. Note that our set of rules furthermore only
slightly modifies the set of unification rules discussed in [SG&9, Sny91]. O

The first complete set of transformations for higher-order unification was defined in [Pie73,
Hue73a] and undecidability of higher-order unification was first discussed in [Hue73b]. Huet then
introduced higher-order pre-unification in [Hue75]. For a modern presentation of higher-order
unification and pre-unification we refer to [SG89, Sny91]. Sorted higher-order unification and
pre-unification is discussed in [Koh94b].

As the calculus UNZ; realises higher-order unification and as rule Subst allows to propagate
solutions back to the non-unification constraints of a clause we get the following corollary.

Corollary 4.6 (Higher-Order Unification). Let CV E be a clause with unification constraints
E. Then for each unifier o of E we have that CV E Fyng Cs.

Definition 4.7 (Extensional Higher-Order Resolution).

ER The calculus ER consists of the following inference rules displayed in Figure 4.2, i.e.,
ER = {Cnf, Res, Fac, Prim} UUNIU {Leib, Fquiv}

ER; The extension ER; of calculus &R that employs full higher-order unification instead of
higher-order pre-unification is defined as ER; := ER U {FlexFlex}.

ERs. 'The calculus &Ry that employs stepwise instead of exhaustive clause normalisation is

defined by ERy. := (ER\{Cnf}) UCNF.

A set of formulae ® is refutable in calculus R € {ER, ERy, ERy.}, iff there is a derivation A : & Fp
O, where & := {[F,]7|F € ®} is the set obtained from ® by simple pre-clausification. We
remark again, that unification constraints are treated as special literals, which are only accessible
to the unification rules.

Remark 4.8 (General Higher-Order E-Unification). The extensional higher-order resolution
calculus ER (ERy or ERy) can also be viewed as a test calculus for general higher-order E-pre-
unifiability (E-unifiability): Assume an arbitrary set of equations E; ...E,, describing a theory E
and an E-unification problem Ty = T is given. If we pass clauses [E1]7 ...[E,]” and [T; = Ts]"
as an input problem to our calculus, then the calculus &R tests if the unification constraint
[T; = T3]" is solvable with respect to theory F enriched by the extensionality properties. The
overall answer substitution computed by the refutation is obviously also an answer substitution
to our E-unification problem.

Theorem 4.9 (Soundness of Extensional Higher-Order Resolution).

The calculi ER, ERy and ERy. are sound for Henkin semantics, i.e., let ® be a set of formulae, such
that ® Fr O, then ® is unsatisfiable with respect to Henkin semantics (and consequently standard
semantics).

Proof: We already know by lemma 4.3 that the rules in CNF either preserve validity or
satisfiability with respect to Henkin models and thus the latter also holds for compound rule Chnf.
The extensionality principles are valid in Henkin models (see Lemmata 2.37 and 2.43) and thus
the extensionality rules Leib and Equiv preserve validity wrt. Henkin semantics, whereas rule Func
only preserves satisfiability as it immediately applies Skolemisation after employing the functional
extensionality principle. All remaining unification rules as well as the resolution rules Res, Fac,
and Prim can easily be shown to preserve validity with respect to Henkin models. Now the
assertion follows from the well known result that preservation of satisfiability ensures soundness
within a refutation approach. O

The following lemma states that each non-proper clause C in a clause set ® can be replaced

by its corresponding set of proper clauses CNF(C), without affecting the set of derivable proper
clauses. We want to remark that this lemma implicitly employs the convention of Remark 4.1.

50 CHAPTER 4. EXTENSIONAL HIGHER-ORDER RESOLUTION: ER

This lemma is applied in the completeness proof of calculus £Ry., more precisely, in Lemma 4.15,
which 1s then applied in the completeness proof to verify the consistency properties V4, and Vj,
and to show saturatedness. In the completeness proofs for EPj. and ERUES., analoga of this lemma
will be additionally employed to verify the abstract consistency property V;’ (again indirect within
the proofs of respective lemmata). The Lemma can be proven for all three calculi, but we will
need it only for calculus ERy..

Lemma 4.10 (Proper Derivations). For each clause set ®, clause C, and proper clause (',

such that ® x C Fer, C', we have ® UCNF(C) Fer, C'.

Proof: The proof is by induction on the length of the derivation ® * C Fgr, C'. In the
base case (n = 0) we know that ¢’ € ® as ¢’ must be different from C. Thus, the assertion
holds trivially. In the induction step (n > 0) we consider the first step in derivation ® x C "
® % C + D Feg,, €', where D is a clause. If C is not a premise clause for the application of rule r
then the assertion follows immediately by induction hypotheses. Thus, let us assume that C is a
premise clause for the application of rule . By induction hypotheses applied to clause D we get
that (®+C) UCNF (D) Fer,, C'. As the resolution rules Res, Prim, Fac are only defined on proper
clauses, we know that the only rules that are possible for r are the unification rules in 2N% and
the rule Cnf. Tt is easy to check that in all those cases we have that CNF(C) Fer,, CNF (D). And
thus, we finally get that ® U CNF(C) Fer,. ® UCNF(C) UCNF (D) ker, C'. O

4.3 Lifting Properties

This subsection examines some lifting properties of the calculus ERy.. We shall prove a lifting
argument for all clause normalisation rules in CVF before we then present the lifting lemma for
ERye. The lifting lemma for calculus Ry, which states that each derivation in &Ry performed on
an instantiated level has a direct counterpart on the uninstantiated level as well, turns out to be
quite trivial. The reason is that Ry provides rule FlexFlex, which can be employed in addition
to rule Prim to introduce the necessary instantiations on the abstract level whenever the replay
of the derivation given on the instantiated level is blocked caused by missing clause or unification
term structure. Furthermore, clause normalisation rules are not grouped into one single rule Cnf
but treated as single inference rules of their own, which also eases the particular argumentations.

Lemma 4.11 (Lifting Lemma for Clause Normalisation). Let D1,Dy be clauses and o be
a substitution. For each derivation Ay : (D1), I—ém_- Do exists a clause D3, a substitution §, and
a derwation Ay : Dy e, D3, such that (P3)oos = Da.

Proof: The proof is by case distinction on the rules in CVF. As all cases are analogous we only
consider the VIF rule here. In this case we have that (D1)s == (L1)o V...V (Ln)o V[As V B,]”
and Dy :=(L1)o V...V (Lp)s V [A,]" for some literals (Li)o, 1 < i < n, and terms A,, B,.
We now consider the possible structure of the focused literal in the uninstantiated clause Dy :
LiV...VL,V[C]F.

In case [C]7 = [AV B]¥ we can obviously apply VI leading to D3 : L1 V...V L, V[A]F | such
that the assertion follows trivially.

Otherwise we have [C]F = [H U™]F such that (H U™), = A, V B,, as either (i) H, =
AX™, LV R, with (L[U"/X™]), = A, and (R[U"/X™]), = B,, or (ii) H, = AX™, X" T (for
1 >n >m), with (X" T)[Um/X™])), = A, VB,.

Case (i): we now apply rule Prim to clause D; with general binding AX™, (H! Xm)v (H? Xm)
for predicate variable H (H', H? are new predicate variables of appropriate type) and obtain the
clause

Dy V...V L, VIH=XX" (H" X™)v (H? X™)]"

With rule Subst we get clause

Ds: (L1): V...V (L), V[(H T™) v (H? T™))F

4.3. LIFTING PROPERTIES 51

where 7 := [AX™. (H' X—m) V (H? X™)/H]. Now rule VI is applicable which leads to clause
D3 : (L1); V...V (Ly), V[(H' TU™))F. Tt is easy to verify that 7 is more general than o
(because of the flexible variables H' and H?) and that hence there must be a substitution v that
appropriately instantiates the new predicate variables H' and H? and that coincides with o on
all other variables, such that we have (L;)yor = (Li)o, (H' U™),0, = A,. This finally proves the
assertion as (D3)yor = Da.

Case (ii): In this case the assertion follows analogously if we apply rule Prim with the projection
binding AX™. X™ (H X™). O

We are now ready to prove the lifting lemma for calculus ERy.. The main result (a special case
of statement 4.12(2)) is that for any substitution ¢ and clause set ® holds that ® is refutable in
calculus ERy. provided that ®, is. Here we even prove a more general result, stating that lifting
is even possible for general derivations and not only for refutations.

Lemma 4.12 (Lifting Lemma for ERy). Let ® be a set of clauses, Dy be a clause and o «a
substitution. We have that:

1. For each derivation Ay : ®, l- D1 there exists a substitution 0, a clause Dy and a
derivation Az @ @ ber,, D2, such that (D2)s = D1

2. For each derivation A1 . @, l-gnfc D1 there exists a substitution 0, a clause Dy and a
derivation Ay : ® Fer, D3, such that (D3)s = D;.

Proof:
(1) The proof is by case distinction on all rules in ERy. and in all cases we construct a derivation
Ay as required.

Res Assume the first step in Ay employs resolution rule Res to clauses [A,]* V C5 and
[B,]? V D, with resolvent D1 : C, V Dy V [As=B,]¥. Then an analogous resolution step
is possible between [A]* V C and [B])? V D leading to resolvent Dy : C'V DV [A=B]¥
We trivially have that (D3), = D;.

Prim Assume the first step in A; employs rule Prim to a flexible literal in a clause Cy V
[H (A;)"]* leading to clause Dy : C, V [H(A,)*]* V [H = G|, where G is a general
binding for variable H imitating a logical connective. Then an analogous proof step with
an identical partial binding is possible on the uninstantiated clause C'V[H A"]® leading
to Dy : OV [H An]*V [H = G] such that (Ds), = D;.

Fac This case is analogous to Res.

Trw, Dec, Func, FlexFlex, Leib, Equiv These cases are all analogous to Prim. Note that = is
a special symbol not available in the signature and thus the abstract literal must also
have head =. Therefore, all these rules must be applicable on the abstract level as well.

Subst In this case the ground literal is of form [X = A,]". If X, is of base type, the
corresponding abstract literal obviously must have form [V, = A]¥ for a variable Y.
Then the assertion follows immediately. If X,_,g is of functional type the correspond-
ing abstract literal can principally also be of form (i) [V, (aop) B, = AlF or (ii)
[Crs(asp) By = A]" | where C is a A-abstraction. Case (ii) can actually be excluded
due to our special head-normal form convention of unification constraints. In case (i)
rule Subst can not immediately be replayed at abstract level. But in a straightforward
derivation which employs the rules FlexRigid or FlexFlex one can finally subsequently
apply a substitution that is identical or more general than [A,/X]. E.g., let the ground
derivation be Cy : [X,50 BT V [Xiso = A pisso Z]7 F5Uu0st Dy [p 8T, and let
C: [(Yisino a) Y, (Y a) = AZ.. P Z)F) such that ¢ = [AW.. X,,,/Y,p/P].
We consider the following derivation on the abstract level (s, is a Skolem term, and H!
and H? are new free variables of apropriate type): C 4" [(Y a) b]T V[(Y a) s =
P S]F I_Fle:cFle:c [(Y a) b]T v [(Y a) s = P S]F [—)\ (HL1—>L V)]F I_Subst

[a) BV IY @) s = p (! $))F FFSR0 [y) B V(Y a) 5 = p (7 57V [Y =

)\UL- /\VL (H2 U V)]F I_Subst [p (H2 b)]T vV [p(2 a) =p (Hl)] }_Dec,Triv

Lt—>1—>0

52 CHAPTER 4. EXTENSIONAL HIGHER-ORDER RESOLUTION: ER

[p (H? ab)TV[(H? a s) = (H')] FFesPies [(B2 a)]TV[(H? a) = (' s)|PV[H! =
)\X“ X]F |_5ubst [p (HQ a b)]T v [(H2 a 5) — S]F |_FlezRigid [p (H2 a b)]T v [(HQ a S_) —
s]F Vv [H? = AU,. AV, V]I RSubstTrivop, - [p p]T. Thus, the subsequent instantiations
computed on the abstract level in our example lead to clause Do, i.e., the result of the
substitution step on the ground level.

FlexRigid Whereas the abstract literal must have head = it is probably a FlexFler-constraint
such that we cannot immediately replay the FlezRigid step. In this case we employ
the rules FlexFler and Subst in order to introduce the corresponding rigid head of the
instantiated literal. Thereby the FlexRigid step performed on the instantiated level
becomes possible on the abstract level as well. It is easy to verify that the resulting
clause on the abstract level is more general than the instantiated counterpart.

r € CNF By clause normalisation lifting lemma 4.11.

(2) The proof is by induction on the length of derivation Ay. The base case is trivial and in
the induction step we first employ statement (1) and then the induction hypothesis. O

4.4 Completeness

We now focus on the Henkin completeness proof for the calculus ERp.. Towards this end we first
prove a lemma stating that reduction to head-normal form is sufficient in calculus Ry (note our
special definition of head-normal form for unification constraints as described in Chapter 2.1). A
second lemma then provides some important refutational properties of ER. Finally in theorem 4.16
we show that the set of propositions that cannot be refuted in calculus Ry, defines an abstract
consistency property for Henkin models as defined in 3.6. The latter entails Henkin completeness

for &Ry by theorem 3.29.

Lemma 4.13 (Head-Normal Form). Let ® be a set of clauses. If A : ®,, Feg, O then
Ay, Fer, O

Proof: The proof is by induction on the length n of A and the base case (n = 0) is trivial. In the
step case (n > 0) we consider the first derivation step in @, =" ® I 0. Tn case r € { Res, Fac} the
assertion follows immediately by induction hypotheses as both rules are applicable independently
from the structure of the literals atoms we focus on. In case r € {Prim} UCNF the heads of the
atoms obviously play an important role. But note that the head symbols in the #n-normal form
and the head-normal form coincide, such that rule r is applicable in the head-normal form case as
well. Therefore, we again get the assertion by induction hypotheses. In case r € UNT our special
definition of head-normal form for unification constraints (which requires both hand sides of the
constraint to be reduced to head-normal form) ensures the assertion with an analogous argument
as in the previous case. (Note that the other direction of this lemma, which we do not need in
this thesis, can be proven analogously.) O

Remark 4.1/ (Head-Normal Form). It is not essential for our calculi whether we keep our
clauses and literals in head-normal form or fgn-normal form. The reason why we have chosen
reduction to head-normal form is that we expect that reduction to head-normal form is less
expensive in practice (which has not been investigated yet). One can also choose fn-normal
form. This variation will hardly influence any of the further discussions and theorems in this
thesis.

Lemma 4.15. Let ® be a set of clauses and A, B be formulae. It holds:
1. If® x [A]T Fer,, O and @ * B]” Fer,, O, then @ x [AV B]” Fer, O.
2. If & x [A]T « [B]F Fer,, O and @ * [A]F + [B]T Fer,, O, then @ x [A & B]” Fer, O.

Proof: (1) Without loss of generality we assume that the pre-clauses [A]7 and [B]? are
variable-disjoint. We can replay derivation @ * [A]” Fgr, O in context ® x[A v B]”, such that we

4.4. COMPLETENESS 53

get for each clause C € CNF([B]") @ x [A V B]” Foyr [A]T VC ber, CV E for a set of FlexFlex
constraints £ containing no variables occurring in [B]” or €. By corollary 4.6 we know that each
unifier o of E can be derived in UNZ; and thus we get for each unifier ¢ of clause C V E that
CV E bypng Co. Now the assertion follows by lemma 4.10 as @ x [B]” Fgg, O and as the domain
of & contains none of the free variables in C, such that C, = C for each clause C € CNF([B]T).
(2) This statement (which is also well known from first-order resolution) can be proven by
a tedious but straightforward computation which we only roughly sketch here. From the two
assumptions we get by lemma 4.10 that (i) ® x CNF([A]T) * CNF([B]Y) Fer, O and (ii) @ x
CNF([A)Y) « CNF(IB)?) Fer,, O. The idea now is to apply exhaustive clause normalisation to
the clause [A < B]" and then to show that (iii) ® x CNF([A < B]) ke, O. Note that
CNF([A & B]Y) :={C Vv D|C € CNF([A]?) and D € CNF([B]*) for a € {T,F}}. Thus, the
task is to show that (iii) is a consequence of (i) and (ii), which is possible, e.g., by simultaneous
induction on the structure of A and B. O

Theorem 4.16 (Completeness of ERy.). The calculus ERy. is complete with respect to Henkin
models.

Proof: We adapt the proofs given in [BK98a] and [Koh94b] which in turn are based on the
ideas of [AndT1].

Let Iy be the set of Y-sentences which cannot be refuted by the calculus ERy. (ly = {® C
cwff,(X)|®. ter,, O}), then we show that Iy is a saturated abstract consistency class for Henkin
models 3.6 which entails Henkin completeness for Rz by theorem 3.29.

In particular we have to verify that I3, ensures the abstract consistency properties V,, V., Vj,
W, Va, Y, VA, W, V. Furthermore we have to show that Iy is saturated.

Ve Suppose that A, —A € ®, where A € cuff,(X). Since A is atomic we have @ * [A]T *
[A)! Feng @a * [A]T # [A]F and hence we can derive O with Res and Triv. This
contradicts our assumption.

In all of the remaining cases, we show the contrapositives, e.g., in the next case we prove, that for
all ® € I, if ®x =—A x A ¢ Iy, then ® x =—A ¢ I3, which entails the assertion.

V. Let us assume that ®.; x [-=A]7 #[A]” Fer, 0. We immediately get the assertion since
[-=A]T Feovr [A]T.

Vi It &+ [A]7 x [A}, 17 Fer, O, then we get that ® % [A]” Fer, O by lemma 4.13 (note
that A is assumed to be in head-normal form).

W If &, * [AVB]T* [A]T I—ngc O and ®; [AVB] * [B]T I—ngc O, then @ * [AVB]T I—ngc O
by lemma 4.15(1).

Va Analogous to V, as [~(A V B)]T Foyr [A]T and [-(A v B)]? Fave [-B]Y.

W Let @ [II* F]” « [F A]” Fgg, O for each closed formula A. By lifting lemma 4.12
we get that & * [T F]” « [F X]” kg, O for a new variable X, and thus obviously
(I)cl * [Ha F]T "ngc D

Va Let us assume that ®¢ % [=(I1 F)]7 + [2(F w)]” Fer,. O. Note that =(IT F) is a closed
formula and furthermore that w does not occur in ®¢ * [=(IT F)]T. We get the assertion
as [=(IT F)]T Feye [(F w')]T for a Skolem constant w’, which is just a renaming of w
above.

Vo We show that if &, % [2(A =° B)]” * [-A]” % [B]” Fer, O and ® * [~(A =° B)]” *
[A]7 % [-B]” Fer,. O, then @, x [~(A = B)]7 gz, O. Note that &, « [-(A = B)]” =
Oy *[-TI(AP, 0. =P AV P B)]T bonr @ *[r A]T +[r B]F, where 7,_,, is a new Skolem

constant. Now consider the following derivation
[r A]" [rB]”

es
[r A =rB]F .
————— Dee, Triv
[A =B]" .
FEquiv

[A & B

54 CHAPTER 4. EXTENSIONAL HIGHER-ORDER RESOLUTION: ER

Hence ®; % [(A = B)]” Fer, @ *[(A = B)]” x[A & B)]" and we get the conclusion
as a consequence of lemma 4.15(2).

Vy, We show that if &y [-(F =77 G % [-(F w = G w)|” Fer, O, then &g *
[~(F = G))]” Fer, O. Note that & [<(F = G)]” % [=(F w = G w)]T = & «
[FTT (A asg)sor (@ F) V(Q G)IT # [FII(APs,0. ~(P (F w)) V (P (G w)))] Fenr

O+ [q F]T x[¢ G] +[p (F w)]” + [p (G w)]” and that & * [(F = G)] Foyr o *
[r F]7 % [r G]¥, where Pp—sorU(asp)—o aNd 7(a_s5)5, are new Skolem constants. Now
consider the following derivation:
[F]" [r G]”
[r F=rG]F i
—— Dec,Triv
[F=G]"
——— 7 Func
[Fs=G s] Leib
[t (E
[t (G)"
Here again s, and tg_,, are new Skolem constants. Hence @ * [r F]T x [r G]¥' kg,
O * [r FIT 5 [r GI¥ 5[t (F s)]T * [t (G s)]¥. Now the conclusion follows from the

assumption as s,? and r are only renamings of the Skolem symbols w, p and ¢ and as all
do not occur in ®@;.

To see that Iy is saturated let A € cwff,(¥) and ® C cwff,(X) with @ l/er, 0. We have to show
that ®, * A Ifgnfc O or ®, * -A Ifgnfc O. For that suppose @ Ifgnfc O, but @, * A '_Snfc O and
Q. A Fer,, 0. By lemma 4.15(1) we get that @ * AV —A Fgr, O, and hence, since A V-A
is a tautology, it must be the case that @ Feg, 0, which contradicts our assumption. O

Res

Remark 4.17 (Eager Unification). In contrast to Huet [Hue72, Hue73a] eager unification is
essential within our approach. This is illustrated by the argumentations for V4 and V; in the
completeness proof 4.16 as well as many of the examples presented in Chapter 8.

Conjecture 4.18 (Restricted rule Leib). Even though rule Leib is employed to terms of arbi-
trary types in the completeness proof (see 4.16(N,)) we conjecture, that this rule can be restricted
to unification constraints between terms of primitive type:

Ccv [Ma:Na]F a € {O, L} Leib/

CV[VPysyo PM= P NJF

Unfortunately a formal proof for this congecture, whose wvalidity would be of practical impor-
tance, 1s still missing. In order to prove this conjecture, it would suffice to prove that if

D, x [A ~a=p B)]F Fer,, O then ®¢ * [A s =/ B s|F Fer,, O for any new Skolem term s,.

Note that VX, A X =B X] Fenvr [A s =’ B s]F'. Thus, this lemma expresses one direction
of the functional extensionality property formulated with Leibniz equality and with this lemma we
could reduce the applications of rule Letb in all three calculi (ER, EP and ERUE)} discussed in this
thesis and employ the restricted rule Leib’ instead. This result would be of practical tmportance
as it allows us to restrict the search space. In the extensional RUE-Resolution approach rule Leib
may even become redundant (c.f. Remark 8.1).

4.5 Theorem Equivalence

With respect to our theoretical goal of proving Henkin completeness it does not make a difference
whether exhaustive clause normalisation derivations are grouped together into one rule Cnf like in
calculi ERy and ER, or if the single clause normalisation rules are lifted as single inference rules to
calculus level like in ERy.. But note that there is a practical motivation for the ungrouping of CNF-
derivation as well: Calculus Ry allows to avoid redundant applications of identical unification
derivations to all proper clauses belonging to the same abstract clause. For instance, it may be

4.5. THEOREM EQUIVALENCE 55

more appropriate first to apply unification rules to a non-proper clause and then to apply clause
normalisation rule to the result than the other way around.

Remark 4.19 (Convention).

1. Whereas the CNF and the UNZ rules aside from Subst do not directly influence each others
applicability, they may indirectly influence each others applicability via Skolemisation. More
precisely if 5 is rule IIT and 7y is rule Func the arity of the Skolem term that is introduced in
Func increases its arity when switching 71 and ro. We have already pointed out in Remark 4.1
that we can ignore this fact for the remainder of this thesis.

2. Another important and simplifying convention in all proof transformations in this thesis is
to consider proper proof trees instead of proof graphs, such that each derived clause in a
derivation is used exactly once as a premise clause in the subsequent derivation steps.

Lemma 4.20 (Derivability of Proper Clauses). For each proper clause C and clause set @,
such that A : ® }—gnic C, there is a ERy-derwvation Ag @ @ }—ng C.

Proof: The proof idea is to show that the single, distributed clause normalisation steps can
be grouped in exhaustive CVF-chains, which can then be replaced by rule Cnf. The proof is by
induction® on the length n of derivation Ay and the base case (n = 0) is trivial. In the induction
step (n > 0) we consider the first step in derivation Ay : @ F™ & x Dy }—ngc C, where 1 € ERy..
We proceed by examining all possibilities for r1:

r1 € {Res, Fac, Prim} As these rules operate on proper clauses only, we have on the one hand
that ry is also a proper £R; derivation step. On the other hand we know by induction
hypothesis that there is a proper £R; derivation ® x Dy Fer, C. Thus, ® Feg, C.

r1 € UNZ U Leib, Equiv Analogous to above the first step is also a proper ER; derivation step,
such that the assertion follows immediately by induction hypotheses.

r1 € CNF 1In this case we look for the first step in derivation A; that employs a non-CAF-rule.
Without loss of generality let us assume that this happens in step n for n > 1. Then Ay
has form Ay : @ " @+ Dy "2 . F"m=t @xDyx.. Dy BT @k Dy Dy ber, C
such that r; € CNVF for 1 < j < n. Without loss of generality let us assume that each
of the steps r; employs the newly generated clause from the previous step as premise
clause (we can reorder the derivation steps in A; without any influence to the particu-
larly derived clauses such that this assumption is met).
In case r, € {Res, Fac, Prim}, D, must be a proper clause, such that we can obviously
replace the initial n — 1 derivation steps in A; by a single application of rule Cnf in
calculus ERy. Now we again employ the convention that we consider proper proof trees
instead of proof graphs in our formal proofs such that each derived clause in a derivation
is used exactly once as a premise clause in one of the following derivation steps. Conse-
quently Ay : ® Foyr @ % Dy, Fer,, C and the assertion follows by induction hypotheses.
In case r, € UNT;, we verify that the clause normalisation steps r; for 1 < j < n do not
affect the unification constraints of the involved clauses. Thus we can obviously apply
rule 7, in the first place in Ay as well. Furthermore, the clause normalisation steps r;
for 1 < j < n are applicable to the result of this new first step in Ay and the result of
this derivation chain in the n-th step is clause D,,. Now the assertion follows again by
induction hypotheses.

O

As O is also a proper clause we immediately get the following corollary.

5Note that with convention 4.19, which says that we consider proof trees rather than proof graphs, this induction
proof (and many others in this thesis) should actually be carried out by induction on the structure of the proof
tree or by induction on the depth of the proof tree. But note that the derivations described by proof trees can be
linearised in a unique way, such that the length of the linearised proof trees gives us an well-founded ordering as
well.

56 CHAPTER 4. EXTENSIONAL HIGHER-ORDER RESOLUTION: ER

Corollary 4.21 (Theorem Equivalence of &Ry and ERy). The calculi ERy. and ERy are the-
orem equivalent, i.e., ® Feg, O, iff ® Feg, 0.

Tt is no longer possible to delay all (pre-)unification rules, but our claim is that the additional
rule FlexFlez can still be delayed until the end of a refutation. This result would give us that rule
FlexFler is not needed at all, as O is defined modulo flez-flex constraints.

Conjecture 4.22 (Theorem Equivalence of ER and &Ry (or ER;)).
The calculi ER and ERy. (or ERy) are theorem equivalent.

The above conjecture is motivated by the observation that none of the challenging examples
discussed in this thesis or in any of the papers [BK98a, BK98b, Ben97, BK97b] requires an appli-
cation of rule FlexFlex. Furthermore, our case study with the extensional higher-order resolution
prover LEo [BK98b] showed that none of the examples from the MIZAR-articles Boolean and
Basic Properties of Sets [TS89, Byl89], which are very interesting with respect to extensionality
principles, requires the application of the FlexFlex rule.

Chapter 5

Extensional Higher-Order
Paramodulation: &P

In this chapter we shall try to adapt traditional first-order paramodulation to higher-order logic.
The paramodulation rule is not sufficient to ensure Henkin completeness as we run into problems
with the Boolean and functional extensionality principles of primitive equality, hence additional
extensionality rules are needed.

5.1 A Naive and Incomplete Adaptation of Paramodulation

Figure 5.1 shows the traditional paramodulation rule and introduces a more elegant higher-order
reformulation.” Note that we assume the symmetric case for both rules.

The paramodulation rule Para replaces any subterm Tg (which contains no variable that
is bound outside T) by Rg provided that T and L are unifiable. Analogously to higher-order
resolution and factorisation, unification has to be delayed and thus a unification constraint [T =
L]" is added to the resulting clause. Unfortunately, we thereby introduce with each application
of rule Para twice as many (because of symmetric application of equations) new clauses into the
search space as there are subterms Ty, of type « in the given term A. To illustrate applications of
rule Para we consider the following two unit clauses C1 : [p (f (f a))]7 and Ca : [f = h]T, where
Pissos fimsi, Pu—, and a, are constants. By application of paramodulation in left to right direction

we obtain the following two clauses: Cs : [p (h (f a))]TV[f = f1F and Ca : [p (f (h a))]"V[f = fIT.

In our trivial example the generated unification constraints can be immediately eliminated in eager
unification attempt with rule Triv.

Paramodulation:| (defined for proper clauses only)

[A[Tg)]*vC [L=R]"VvVD
[A[R]]*VCV DVI[T = L)

Para

[Al*VC [L=R]TVD
[Pso R]*VCV DVI[A=° Pz, L]

!
+ Para

In Para subterm T of A must not contain free variables that are bound outside

Figure 5.1: The Paramodulation rules Para and Para’

! This rule was suggested by Michael Kohlhase.

57

58 CHAPTER 5. EXTENSIONAL HIGHER-ORDER PARAMODULATION: EP

Rule Para’ combines the expressiveness of our higher-order language with the power of higher-
order (pre-)unification and avoids the introduction of too many clauses into the search space.
Instead only one new clause with a new flexible literal head is created. The idea of this rule
is very simple: it describes the respective resolution step between the left premise clause and
the clause that corresponds to the right premise clause when replacing the positive primitive
equation by a (normalised) positive Leibniz equation (the modified right clause would have form
[P LT V[P R]TV D — or with an additional primitive substitution step [P L] V [P R]" v D).

When applying rule Para’ to the clauses C1 and Csy from left to right, we introduce only one new
clause: Cs : [P h]TV[p (f (f a)) = P f]'. By eager pre-unification we can generate the following
four instantiations for P and propagate this partial solutions with rule Subst to the literal [P h]T

1) P AZ,L.p (f (f a)) 2) P Xsp (Z (f a))
NP A,5,.p(f (7 a)) 4) P A,5,.p (Z (7 a))

The pure imitation solution (1) introduces clause C; again and is thus redundant.? By instan-
tiating solutions (2) and (3) we obtain exactly the clauses Cs and C4 (clearly without the trivial
pairs), which are identical to the result of the applications of the traditional paramodulation rule.
Solution (4) is the most interesting one as it encodes the simultaneous application of [f = h]T
to both subterms f in [p (f (f a))]7. As we have illustrated, the only clause resulting from the
application of rule Para’ encodes all the possible traditional paramodulation steps together with
all simultaneous applications and even the original clause itself. The only problem for practical
applications is, that we introduce a new flexible literal head with each application of Para’, such
that the primitive substitution rule becomes applicable. As this seems to be rather useless, a good
heuristic in practice might be to avoid primitive substitution steps on flexible heads generated by
rule Para’.

Remark 5.1 (Reflexivity Resolution). Note that a reflexivity resolution rule is already natu-
rally integrated into calculus &R, as it is derivable with the help of the unification rules. The
unification rules already operate on negative primitive equational literals, i.e., unification con-
straints, like [f X = @ a]”, such that each negative equation between two unifiable terms can be
refuted by them.

We want to point out, that the encoding of unification constraints as negated literals is essential
here, whereas it is not of importance for calculus ER. If we would not encode unification constraints
as negative primitive equational literals and would differentiate between both concepts, then we
obviously have to face the reflexivity resolution problem.

Remark 5.2 (Paramodulation into Unification Constraints). Tt turns out that paramodulation
into unification constraints is not necessary, and in fact we can show its derivability:

Ci:CVI[A[T,] =B]" Cy:[L="R]TVD
C3:CVDV[A[R,] =B} v[T =*L)¥

Para

Each such step can be replaced by the following derivation (p is a Skolem constant):

Leib(C1),CNF - D :CVp A[Ta]]T

D2 : C \ [p]
Para(D1,Cs) : D3:CVDVI[p AR V[T =L
Res(Ds, Ds), Fac, Triv: Dy :CVDV][(p A[R,]) = (B)|F v [T L)”
Dec(Dy), Triv : Ds:CVDVI[A[R,] =B]" V[T =~ L]"

On the one hand paramodulation into unification constraints may shorten proofs and in some
examples this seems to be very appropriate, but on the other hand such an approach may be hard
to guide in practice.

20n the other hand this possibly leads to interesting heuristics in practice: When applying rule Para’ with a
right premise clause which is a unit equation, we can remove the left premise clause from the search space as this
clause gets encoded into the result of the paramodulation step itself.

5.1. A NAIVE AND INCOMPLETE ADAPTATION OF PARAMODULATION 59

Remark 5.3 (Functional Eztensionality and rule Para’). Tt has been claimed by an un-
known referee of [Ben98], that rule Para’ already captures full extensionality, such that rule
Para’ should be preferred over Para. Example E{um (VX fiss X = g0 X) = (Plsi)mo [=
Pis1)—o §)) discussed in Section 8.6 demonstrates that this is not true: even rule Para’ requires
additional extensionality rules to ensure full functional extensionality.

Definition 5.4 (P 4ive). The calculus &P, 4y consists of the rules of calculus ER (see Fig-
ure 4.2) enriched by the paramodulation rule Para (see Figure 5.1). We assume that the result of
each rules application is transformed into head-normal form. A set of formulae ® is refutable in
calculus EPpajve, iff there is a derivation A : @y bep, ... O, where &, = {[F},]T|F € ®} is the
set, of clauses obtained from ® by simple pre-clausification. We want to point out that primitive
equations are not expanded by Leibniz definition.

Next, we discuss soundness of the extended calculus €P, 4y and show by a counterexample
that EP, give 18 not complete with respect to Henkin semantics.

Theorem 5.5 (Soundness of naive higher-order paramodulation).
The calculus EP pqive 15 sound with respect to Henkin semantics.

Proof: Soundness of the traditional paramodulation rule Para is obvious (note that we avoid
the replacement of subterms 7' with free variables that are bound outside): given a standard model
M for the two premise clauses, then one can easily see that the paramodulant is also valid in M, as
either the unification constraint evaluates to F and we are done or it evaluates to T giving rise to
the validity of literal [A[R]]]*, in case [A[T]]]® guaranteed the validity of the first premise clause
and [L = R]T guaranteed the validity of the second premise clause (all other cases are trivial).

The proof of soundness for the new rule Para’ is analogous, even though this rules looks
more complicated: we consider all possible variable assignments ¢ which map variable P,_,, to a
function in the domain D,_,, and employ an analogous argumentation like above. (]

Theorem 5.6 (Incompleteness of EP4ive). The calculus EPpaive is incomplete with respect to
Henkin semantics.

Proof: The assertion is proven by the following counterexamples to the assumption of Henkin
completeness of calculus EP,,qipe:
Ezample 5.7 (Incompleteness of EP paive).
EPera —3X,. (X = -X)
This formula expresses, that the negation operator is fix-point free, which is obviously the

case in Henkin semantics. Our calculus is not able to find a proof as clause normalisation of
the negated assertion leads to the single clause

Ci: [a=-al

where a, is a new Skolem constant. The only rule that is applicable is self-paramodulation
on positions {1), (2) and () leading to the following clauses:

Yi: Co: l[a=-alf V[ma=alf C3: [ma=-all V]a=dF

i Ca: la=-alfViea==a! C5: [a=a]t V][~a=a]F
: Co: [af Vra=(a=-a)f Cr: [a)f V]a=(a=-a)f

(
Para(Cy,C4) at (1
Para(Cy,C4) at (2
Para(Cy,C) at)

Case distinction on the possible denotations {T,F} for a shows that all these clauses are
tautologies. Thus no refutation is possible in EPpaive.

EY% 3G, 4,50 VP40 3X,. G X =72 P
This is a simple formulation of cantor’s theorem stating that there exists no surjective func-
tion from the set of individuals into the set of sets of individuals. Clause normalisation
results in

Cl . [G X _t—o p]T

60 CHAPTER 5. EXTENSIONAL HIGHER-ORDER PARAMODULATION: EP

where p,_,, 1s a Skolem constant. Similar to the case above, a refutation in EP,,4iye 18 not
possible.

ELv% IM,_ 0. M £ B, where B,_,, is defined as AX,. F,. This formula expresses, that there exists
a set of truth values that is not empty. As the set of truth values is fixed in Henkin semantics
and has exactly two elements, this assertion is obviously valid. Clause normalisation results

m
Ci: [M=XX,.1]7

where M,_,, is a free variable. Analogous to EF2™® no refutation is possible.

EPere —3M,,,. M = M, where the set complement operator ~(00)=(00) 18 defined by
ASos0e AX o 2(X € S) and €, (90)—0 as function (predicate) application AX,. AS, 0.5 X.
This formula expresses, that there is no set M of truth values in Henkin semantics, such
that M and its complementary set M are identical. Clause normalisation leads to

Cl N [m =)\XO. —|(m X)]T

where m,_, is a fresh Skolem constant for M. In contrast to Eg‘"“ there is no free variable.
Again no refutation is possible.

Eg‘"a If VP(L—>L—>O)—>(L—>L—>L—>O)' (P Q10 = P rL—>L—>0)) then (VXL q X # A7, —|(7° X Z)) The
first equation expresses, that all relations of type + — ¢ — ¢ — o that can be defined based
upon relation ¢ or r, are equal (which in fact means that ¢ and » must be equal). The second
inequation expresses that ¢ is the complement set of r, but uses an artificially complicated
form (we employed the functional extensionality property once to ¢ # AVi. AZ;. =(r V' Z)).
This assertion is again valid, as in Henkin semantics the set of truth values contains exactly
two elements. Our problem normalises to

Cr:[Pg=2op T Co:[p X ="°NZ,.~(r X 2)|”

where P, 0y (115150), X, are free variables and ¢,, 0, 7,—,-, are function constants.
Note that apart from self-paramodulation no rule is applicable. Especially there is no
paramodulation step possible between the clauses C; and Ci, as there is no subterm of
type ¢t — o in C; and no subterm of type ¢+ — ¢ — ¢ — o in Cs, such that a type conform
term rewriting becomes possible.

O

The overall problem in the first four examples is, that our calculus provides no mechanism to
detect positive equations with an implicitly embedded contradiction. For example the clause [a, =
¥ is implicitly contradictory with respect to the Boolean extensionality principle. Examples
E£97% and EF%"® show, that also functional extensionality is involved as the implicit contradiction
follows here only with respect to both extensionality principles. The general problem is that in
higher-order logic (when considering Henkin semantics as well as some weaker notions like discussed
in Chapter 2.1) infinitely many semantical domains contain a fix-point free function, such as the
negation operator or the set complement operator on a non-empty domain (such as the set of
truth values or the domain of all functions from truth values to truth values, etc.).

In example EF?% none of the positive equational literals is unsatisfiable taken alone, but
it is contradictory in connection with the other ones. Here again a refutation is not possible

in calculus &P give, as we would have to employ the functional extensionality principles to the

-a

positive equation in order to obtain a corresponding equation of appropriate type, such that the
paramodulation rule becomes applicable.

Remark 5.8 (Fiz-point free functions). Given a predicate type o .= a1 — ... = ap — 0
(n > 0). The semantical domain domain,_,» contains a fix-point free function provided that it
is not empty (which must be the case in Henkin Semantics, as at least the identity function, i.e.,

5.2. POSITIVE EXTENSIONALITY RULES 61

the evaluation of AP,. P,, must be an element of this domain). Note, that these fix-point free
functions map predicates to predicates. An example in domain,_,, is the negation operator. And
in domain((, ;) 0) ((1—1)—0) One can choose the set complement operator defined with the help
of the negation operator: AS(,_,) 0. AF, .. (S F). Tt is easy to see, that analogously to the
latter example one can easily construct a fix-point free function in any of the domains domain,,_,,.

These fix-point free functions cause the problems with positive equations in higher-order logic:
Let term T, , be an A-expression that denotes such a fix-point free function in domain D,
(it has been illustrated above how to construct such A-expressions). Then the positive equation
T X, = X, is obviously unsatisfiable. Note that such single contradictory equations do not occur

in first-order logic.

5.2 Positive Extensionality Rules

Before going further into the investigation of the extensionality problem with positive equational
literals, let us first reconsider the analogous problem for negative equations. For example, [a, =
—-a]f" is a negative equation literal, which is implicitly contradictory with respect to Boolean
extensionality. Just as for reflexivity resolution (cf. 5.1) our calculus already provides a solution to
this problem as it interprets negative equational literals automatically as unification constraints
and offers an appropriate extensionality treatment by the extensionality rules Le:b, Func and
Equiv:

Remark 5.9 (Extensionality for Negative Primitive Equations).

Our calculi encode unification constraints as negative primitive literals and do not differentiate
between unification problems and negative primitive equations. Therefore an additional exten-
sionality treatment for negative primitive equations is not needed as the unification algorithm has
already been extended by the special extensionality rules Leib, Func and Equiv. When differentiat-
ing between negative primitive equations and unification constraints, the unit clause [a, = =—a]”
is not refutable in the resulting approach, and we would need an additional extensionality treat-
ment for negative primitive equations.

In contrast to this pleasant result, we do have to face the lack of extensionality principles in
the case of positive equational literals. And, as we have seen in the examples above, our calculus
so far does not provide a solution to it. What we need is a way to test the inequality of the two
sides of a positive equation with respect to the extensionality principles and also with respect to
the knowledge provided by the other clauses in the search space (see for example EL7¢). This
suggests to introduce analogous extensionality rules to Func, Equiv, and Leib, that operate on
positive equations. To anticipate the results of the analysis of Henkin completeness, it turns out
that a positive counterpart to rule Leib is not needed, and thus our new extensionality for primitive
positive equations are Func’ and Equiv’ as given in Figure 5.2.

Remark 5.10 (Rule Leib’). A positive counterpart for rule Leib would have the following form:

CVv[M,=N,]T ac{o:}
CV [VPyso PM = P N|T

Leib’

As this rule i1s not needed in the completeness proof below, we can conclude that Leib’ is admissible.

5.3 Basic Definitions

We further extend our extensional higher-order paramodulation approach by adding rule FlexFlex
as in Chapter 4, and lift the single clause normalisation rules to calculus level, instead of grouping
exhaustive clause normalisation derivations together in rule Cnf.

The definitions for clause normalisation calculus CNF (cf. 4.2), UNZ and UNZ; (cf. 4.4) need not
to be modified and the lemmata 4.3 (Soundness of CNF), 4.5, and 4.6 (properties of higher-order
unification) will be employed in this section again.

62 CHAPTER 5. EXTENSIONAL HIGHER-ORDER PARAMODULATION: EP

CV[M, =N,
CV M, & N,

Equiv'

CV[My,p = Na_m]T X new free variable
CVIMX =N x|7

Func'

Figure 5.2: The extensionality rules for positive primitive equations.

Definition 5.11 (Extensional Higher-Order Paramodulation).

EP The calculus EP consists of the rules of calculus ER (see Figure 4.2) enriched by the paramod-
ulation rule Para in Figure 5.1 and the positive extensionality rules displayed in Figure 5.2,
ie., EP := ER U{Para, Equiv', Func'}.

EP; The extension £P; of calculus £P, that employs full higher-order unification instead of higher-
order pre-unification, is defined as Py := EP U {Flex Flex}.

&P The calculus £Py., that employs stepwise instead of exhaustive clause normalisation, is defined

by &Py = (EP\{Cnf}) UCNF.

For all calculi we assume that the result of each rule application is transformed into head-normal
form. A set of formulae ® is refutable in calculus EP, iff there is a derivation A : @, Fgp O, where
@, = {[F,]7|F € ®} is the set obtained from & by simple pre-clausification. Unification literals
are still only accessible to the unification rules.

Theorem 5.12 (Soundness of Extensional Higher-Order Paramodulation).
The calculi EP, EP; and EPy. are sound with respect to Henkin semantics.

Proof: We already know by 5.5, that calculus €P, 4iye 18 sound. The soundness of the new
positive extensionality rules is obvious in Henkin semantics (see Lemmata 2.37 and 2.43), as they
simply apply the extensionality properties, which are valid in standard semantics. O

Lemma 5.13 (Proper Derivations). For each non-proper clause D, proper clause C, and
clause set ®, such that ® ¥ D Fep,, C, we have ® UCNF(D) F¢p,, C.

Proof: Analogous to lemma 4.10. In the induction step the case » = Para is analogous to
the cases r € {Res, Fac, Prim}, and the cases r € {Func', Equiv'} are analogous to the case

r € UNT. O

5.4 Lifting Properties

The clause normalisation lifting property stated in lemma 4.11 is not affected by the modification
of the calculus and will be employed in the following lifting lemma for calculus £Pr. The new
problem within this lemma is; that we have to take care of the additional logical connectives =*
in the extended signature. But fortunately rule Prim became automatically extended as well and
allows now to introduce the logical connectives =* at head position analogous to the connectives

=, V, TI* so far.

Lemma 5.14 (Lifting Lemma for £Pr.). Let ® be a set of clauses, Dy be a clause, and ¢ a
substitution. We have that:

5.5. COMPLETENESS 63

1. For each derivation Ay : &, l—épfc Dy exists a substitution §, a clause D5, and a derivation
Az 0 @ Fep,, Do, such that (D2)s = Ds.

2. For each derivation Ay : &, I‘gpfc D1 exists a substitution §, a clause D5, and a derivation
Ay 1 ® bgp, Dy, such that (D3)s = D1.

Proof:
(1) The proof is by case distinction on all rules in EPf, and in all cases we will motivate that
there 1s a derivation Ay as required.

Res, Prim, Fac, Cnf, Subst The corresponding argumentations in 4.12 are not affected by the
additional rules or the availability of primitive equality symbols =% in the signature.

Leib’, Equiv’, Para The argumentations for these new rules are analogous to the previous cases.

Triv, Func, Dec, FlexRigid, FlexFlex, FEquiv, Leib These cases are indeed affected by the new
primitive equality symbols = « in the signature, as we may have a unification constraint
[T = T2]" on the instantiated level, but an ordinary negative literal with a flexible
head [H U"]" on the abstract level. In order to enable the application of the particular
unification rule on the abstract layer as well we can use primitive substitution rule
Prim in connection with rule Subst in order to introduce the logical connective = at
head position, i.e., we get the abstract unification constraint [H; Um = Hy Un|F. The
remaining argumentations are now analogous to the corresponding ones discussed in 4.12.

(2) The proof is by induction on the length of derivation Ay. The base case is trivial and in
the induction step we first employ statement (1) and then the induction hypothesis. O

5.5 Completeness

We first analyse Henkin completeness of the extended calculus EPy.. The calculi EP; and EP are
then examined in Subsection 5.6.

Before we present the Henkin completeness theorem 5.27 for &Py, we first adapt the two
lemmata 4.15 and 4.15. The first one compares refutability of clause sets in head-normal form
with the refutability of clauses in fn-normal form, and the second one discusses some important
refutational properties.

Lemma 5.15 (Head-Normal Form). Let ® be a set of clauses. If A : ®,, tgp, O, then
AI : q>¢h I—gpfc D

Proof: The proof is analogous to lemma 4.13. In the induction step we additionally have
to consider the cases where r € {Para, Func', Equiv'}, which are analogous to the cases where
r € {Prim}UCNF.

(One can also prove the other direction, which is not needed in this thesis.) O

Lemma 5.16. Let ® be a set of clauses and A, B be formulae. We have that:
1. If &+ [A]" Fep, O and @ « [B]” bep, O, then ® x [AV B]” Fgp, O.
2. If ® x [A]T % [B]" bgp, O and @ x [A]" x [B]” kep, O, then ® x [A & B]”
Proof: Analogous to lemma 4.15. The new rules do not affect the argumentations. O

The main completeness proof of calculus EPy. (cf. 5.27) will employ a generalised paramodu-
lation rule GPara that is allowed to operate also on non-proper clauses, but which only rewrites
identical terms and employs only unit equations instead of conditional equations.

Definition 5.17 (Generalised Paramodulation Rule).
The generalised paramodulation rule GPara is defined as follows (subterm A od T must not
contain free variables that are bound outside):

A"V [A=7 BT
[T[B]" v C

GPara

64 CHAPTER 5. EXTENSIONAL HIGHER-ORDER PARAMODULATION: EP

This rule is not restricted to proper clauses and is furthermore allowed to operate on unification
constraints. Thus, GPara generalises rule Para. On the other hand GPara also restricts Para as
unification is not employed and thus only identical terms can be replaced by applying this rule.
Furthermore, the second premise clause is assumed to consist only of a single positive equation
literal.

We want to point out, that rule GPara is especially designed for the completeness proof 5.27
to ensure the abstract consistency property V., and the only reason why we introduce the latter
restriction for rule GPara is, that we want to ease the proofs of the lemmata below as much as
possible.

Rule GPara will be proven to be admissible? in calculus £Py., which completes the completeness
proof. For the proof of the admissibility of rule GPara (in fact we even prove a weak derivability
property) we employ additional generalised calculus rules: generalised resolution, factorisation and
primitive substitution, which are also admissible or even weakly derivable. Instead of formulating
these rules as general as possible, we again (analogously to rule GPara) restrict ourself to the
structures that are needed for our completeness proof.

We want to point out that the investigation of the generalised calculus rules also prepares the
investigation of a respective non-normal form calculus.

Definition 5.18 (Generalised Resolution Rules).
The generalised resolution rules GResi, GRess, and G Ress are defined as follows (for all rules we
assume a, B € {T, F'} with a # 3, and for GRes; we assume that V" ¢ free(A)):

[Ag50 T2]*VC [Aqo, XZ1PVD a#f
(C'V D) 57

(GG Res;

[A, Y]°VC [X, T)°VD a#p
(cv D)[A/X,F/Y_n]

GRESQ

[A, T"]*VC [X,Y"]PVD a#p
(CV D)px 77)77

G Ress

These rules are not restricted to proper clauses and in this sense they extend rule Res. But the
new rules are defined within special contexts only, and in this sense they also restrict the rule Res.

Definition 5.19 (Generalised Primitive Substitution Rules). The generalised primitive
substitution rule is defined by (H' is a new free variable)

—or(VH)orAX. X ify=o
\% ify=o0—o0
([H Ty]*V O)a/m

[H T,]*VC GE{

GPrim

This rule 1s not restricted to proper clauses, but note that it applies very special instantiations only
and that these instantiations are less general as usual partial bindings. E.g., the usual imitation
binding AX,. =(Q' X) is combined with the subsequent projection binding AY. Y for Q', such
that we get AX,. =X, or simply — as combined binding. An imitation binding for II is avoided as
it is not needed in the completeness proof, i.e., the proof that the generalised resolution rules —
and thus the generalised paramodulation rule — are weakly derivable in EPy..

3Remember the definition of admissible and derivable in our refutation approach: A rule r is called admissible in
one of our resolution calculi R, iff adding rule » to R does not increase the set of refutable formulae. Furthermore,
a rule r is called derivable in R, iff each application of rule r can be replaced by an alternative derivation in R.

5.5. COMPLETENESS 65

Definition 5.20 (Generalised Factorisation Rule). The generalised factorisation rule GPrim
is defined by
[Al°V[B]*VC A, =,B,
([Al*V C)s

GFac

This rule is not restricted to proper clause but only factorises syntactically unifiable literals.

We will now show, that all our generalised calculus are in a weak sense — modulo subsequent
clause normalisation and a kind of lifting — derivable in calculus EPy. The proof for the weak
derivability of GPara thereby employs the generalised resolution rule G Res1. G Resy and G Ress
are only needed to ensure the weak derivability property for the generalised resolution rules itself.
This also holds for the generalised factorisation and primitive substitution rule.

Remark 5.21. One could omit all the generalised rules and prove the crucial substitutivity property
V¢ in the main completeness proof of £Py.. Most likely nested induction proofs will then be needed.
Thereby we would loose clarity and also the interesting information on the derivability of the special
form generalised calculus rules defined above.

Lemma 5.22 (Weak Derivability of GFac). Let C1,Cy be clauses and D be a proper clause.
If Ay : C FGFee Oy bopr D, then there is a derivation As @ Cy l—gpfc D.

Proof: The proof is by induction on the length of the CAF-derivation. In the base case the
clauses C; and Cy must be proper, such that we can employ the non-generalised rules Fac and then
full higher-order unification UNZ to replace GFac. In the induction step at least one of the literals
of clause rest C' must be non-proper. Without loss of generality we can therefore assume, that the
first step in the CVF derivation operates on one of the literals in C'. We can now switch this first
CNF-step with the application of GPara and apply the induction hypotheses, which leads to the
assertion. We want to point out, that we need to employ the conventions stated in Remark 4.19
in this proof. O

Lemma 5.23 (Weak Derivability of GPrim). Let C1,Csy be clauses and D be a proper clause.
If Ay : Cy FOPT™ Co bonr D, then there exists a substitution o and a derivation A, : Cy Fep,. &,
such that £, =, D.

Proof: Analogously to GFac the proof is by induction on the length of the CNVF-derivation. In
the base case the clauses C1 and Cy must be proper, and thus for all instantiations we can employ
the normal primitive substitution rule Prim instead. Note that the partial bindings introduced
by Prim are more general than the quite special instantiations of rule GPrim, and consequently
in all this cases we have that the result of Prim is indeed more general than the application of
GPrim. The induction step is analogous to the respective argumentation for GFac in lemma 5.22

above. O

Lemma 5.24 (Weak Derivability of GResi, GRess, and G Ress).

1. Let C1,C2,C3 be clauses and C4 be a proper clause, such that Ay : {C1,Ca} F" C3 Figrac)
Cs Fexr D for r € {GRes1,GResy, GResz}. If both resolution literals of the generalised
resolution step (i.e., the resolution literals in C1 and Cy) are proper, then there exists Ag :

{C] s Cz} f—gpﬁ: D.

2. Let C1,C2,C3,C4 be clauses and D be a proper clause, such that Ay : {C1,Ca} F" C3 F{gFac)
Ca Fenr D for r € {GRes1,GResy, GResz}. Then there exists a substitution o and a
derivation Ay : {C1,C2} Fep,, €, such that & =, D.

Proof:
(1) The proof is by induction on the length of the CNF-derivation. In the base case the clauses
C1 and Cs must be proper (i.e., all literals and not just the resolution literals are proper) and thus
the application of the generalised resolution rule can be replaced by an application of the ordinary

66 CHAPTER 5. EXTENSIONAL HIGHER-ORDER PARAMODULATION: EP

resolution rule Res and subsequent eager unification. Furthermore the GFac steps can be replaced
by an &Py, derivation as guaranteed by lemma 5.22.

In the step case we simply switch* the generalised resolution step with the first clause nor-
malisation step (which is obviously applicable either to C; or Cy as well and does not operate on
[A]T or [B]7 as these literals are assumed to be proper). The assertion then follows by induction
hypotheses.

(2) The proof is by induction on the number of logical connectives in the resolution literals. In
the base case, where both resolution literals must be proper, the conclusion follows immediately
by (1). In the induction step we examine the three rules separately:

GResy: Note that in this case the clauses {C1,Cs,C3} are of form Ci : [Ay5, T_;L]“‘ v C,
Cy : [Ay5, X_;I]ﬁ VD, and C3 : (C'V D)z, where X7 ¢ free(A). We have to consider the
following cases: [Axy_, T_g]“ can be (i) proper (i.e., the logical connectives occur not at head
position), (ii) of form (a®): [V Ty T2]® for n = 2, (iii) of form (a®): [~ T]%, (b%): [II T]%, (c*):
[((Vv M) T]® for n = 1, or (iv) of form (a%): [~ M]%, (b%): [II M]?, (¢*): [V M N]® for n = 0.

As representatives we discuss here the cases where [A5_, T2]* is of form (iv)(c’): [v M N]? for
n =0, (iii)(b7): [IT T]F, and (iii)(b¥): [II T]¥ for n = 1. Note that case (i) is trivial and follows
by (1).

(iv)(cT) Tn this case clause C3 must be of form [V M N]¥ v D. We first perform the following
clause normalisation steps:

C;:[VMNI"vVD
Ci:[VMN]"vC Cs:MFvD 1T
G M VINTvC Y and G NJFVD

Thus, we can derive Cs (and consequently Cs4) also from clauses {Cs, Cs, C7} with G Resy:

Ci:[VMN]TvC , C;:[VMN]FVvD

F
G MIVINTVC Y TG MFVD LY G vMNTVD
Cs: [NTVCVD CRes = NPV .
G OV D GResy, GFac
. CNF
Ca

By induction hypotheses (applied to the latter application of GResi) we know that there is a
derivation of the form

VeV ¢
5 6 C F
Cs GR681 C7 Vr
&Py
Cy

such that C} is more general than C4. Our aim is to apply the induction hypotheses now also
to the first application of GResy, but unfortunately the preconditions are not met, as Cg is not
necessarily a proper clause. Therefore we first apply lemma 5.13, which gives us that

eV eV eVl
5 6 5 6
Cs G Resy C_s G Resy
L OVF L ONF C2
D1 Dy Cr 7
: Py
Cy

4Note that we here need to employ the conventions of Remark 4.19.

5.5. COMPLETENESS 67

where CNF(Cg) = {D1,...,D,}. The preconditions for the induction hypotheses are now met for
Dq,...,D, and by applying the induction hypotheses for n times we get

G » C o p
GV GV
. EPy D EPy
D, D!,
such that the D} (i = 1,...,n) are more general than the D;. And as we already know that
{D1,...,D,,Cs} Fer,. C, we get with the lifting lemma for ERy. (cf. 5.14), that there must be a
derivation {D1,...,D;,,Cs} Fer, Cf, where C is more general than Cj and Cs4, which completes
the proof.
(iii) (b”) Obviously we have that (note that Cs must be of form [IT X7 v D)

Ci: [H TQ_M]T vC T Cs: [H XQ_M]F vD
G [TY,)TVC m Ce: [X SaJFVD
Ca: (CV D)/xs/v]

. CNF
Cs

F

GG Resy

In this derivation Y is an new variable and S a new Skolem term of appropriate type. Induction
hypotheses is applicable and we get that
Cli[HT]FVC r CQZ[HX]TVD
Cs:[TYI"VC ~ Cs:[XS]TVD
Py
Ci

nF

where €} is more general than C4. This proves the assertion.
(iii) (b™) Obviously we have that (note that C» must be of form [I1 X]* v D)

Cl . [H TQ_>O]F V C T CQ . [H Xa_>0:|T V D

F
Cs:[TS,)"vC Co : [X Yo JFVD m
G Ress
Cg N (CV D)[T/X,S/Y]
. CNF
Cq

where Y is an new variable and S a new Skolem term of appropriate type. Induction hypotheses
is applicable and we get that
Cli[HT]F\/C » CQi[HX]TVD
Cs:[TS]FvC ' C:[XY]TVD
Py
C

nF

where €} is more general than C4. This proves the assertion. o o
G Ress: In this case, the clauses {Cy,Cs,C3} are of form C; : [A Y?]*VC, Cy : [X T?)PV D, C5:
(Cv D)[A/X T /7)) where n € {0, 1}. The argumentation is similar to the above case for G Resy,

and we have to consider the following cases: [A Y7]® can be (i) proper, (ii) of form (a®): [V Y7 Y3]*
for n = 2, (i) of form (a®): [= Y]%, (6%): I Y]%, (¢®): [(V M) Y]® for n = 1, or (iv) of form
(@®): [M]?, (b%): [T M]?, (¢*): [V M N]* for n = 0. Case (i) again follows immediately by
(1), as both resolution literals must be proper. And as a representative for the other cases we

68 CHAPTER 5. EXTENSIONAL HIGHER-ORDER PARAMODULATION: EP

exemplarily discuss the induction step for (iii)(a’"), i.e., in this case the two resolution literals

[A Y7]* and [X T™)#) are of form [(= V)] and [x T)”.
We have that

Cy:[X T]TVD

GPri
Ci:[-Y]FvC , Us (X" T1" V D)pay. ~(x1v)/x] GPrz'm
= m
C:[YITvC Co: (T V D)y, "
€S
C3:(C'V D)payx,1/v] ’
L CNF
Ca
By Induction hypotheses we get that
LY T GPrim
C:[~Y)FvC - ([—'T] VD)[,\Y -IX1
C:[YI"ve c7 (T V D)yx)
&Py
C

where C} is more general than C4. By applying weak derivability of GPrim (cf. 5.23) two times in
connection with the lifting lemma for Py, (cf. 5.14), we now get that {C1,Ca} Fep,, C4, where C}’
is obviously more general than C4, and which proves the assertion.

G Ress: In this case the clauses {C1,C2, C3} are of form C; : [A T?]*VC, Cy : [X Y?]PV D, C5:
(C'V D)p)x 7777 where n € {0,1}. We have to consider the following cases (analogous to

GResy): [Ay, F]o‘ can be (i) proper (i.e., the logical connectives occur not at head position),
(ii) ofform(*): [V T1 T»]* for n = 2, (iii) of form (a®): [~ T]*, (b*): [IT T]*, (¢*): [(V M) T]*
for n = 1, or (iv) of form (a®): [- M]*, (b%): [II M]?*, (¢*): [V M N]* for n = 0. Case (i) again
follows by (1). As a representative for the other cases we briefly sketch induction step for (iii) ("),

, the resolution literals [A Y7]* and [X Y7]? are of form [(V M) T]¥ and [X Y]T. We first
employ rule GPrim and obtain

Cy [XY]TVD
Ca: ([(V H) YT VD)v My x]

G Prim

The rest of the proof is analogous to the case (iv)(c”) for G Res; as discussed before. The main
difference is, that we additionally have to get rid of the initial GPrim step here, which can be
done analogous to the case discussed for GRess above. O

The following paramodulation lemma now shows, that the generalised paramodulation rule
GPara is weakly derivable in EPy., too. The proof employs the (weakly derivable) generalised
resolution rules GRes; and GRess.

Lemma 5.25 (Weak Derivability of GPara).
1. Let Cy be a clause and Cs be a proper clause.

(a) IfCy : [A]*V D and Cy : [A = B]Y, then there exists Ay : {C1,Ca} Fep, D : [C]*V E,
and a substitution o, such that Do =, [B]*V D (i.e., D is more general than the clause
we would obtain by a respective generalised paramodulation step)

(6) If C1 : [A~y—o T;‘]O‘ V D and Cs : [(Ay—o X;l) = (By—o ﬁ)]T, where Xz ¢ free(T;‘) U
free(A), then there exists Ay : {C1,Ca} Fep, D : [Cy, DZ|*V E and a substitution o,
such that Dy, =, [By_, ﬁ]a v D.

5.5. COMPLETENESS

2. Let C1 : [T[A]p]a \% D, CQ : [A = B]T

and Cs3 :

69

[T[B],]* V D, such that there is a derivation

Ay {Cy,Co} FEPaa Cybone Cy, for a proper clause D derived by clause normalisation from
: {C1,C2} Fep, D' and a substitution o, such that

Cs.

Then there exists a derivation A,

=D.
Proof:

(1) We first concentrate on case (1a) and consider the following CNVF-derivation:

¢, [A =BT
[B]"

4Z[A]

Equiv'

Depending on the polarity a of literal [A]® in clause C;, we now apply the generalised resolution

rule GRes; either to C; and Cs, or to C; and Cg, thereby deriving clause Cs

:[B]* vV D. By weak

derivability of GResy (cf. 5.24(2)) we get a derivation Ay : {C1,Ca} Fep, D as required, i.e., D is
more general than [B]* V D. The case (1b) is analogous as

C2 1 [(Agso X7) = (Byso X7)]7

Ca: [(A50 X7) & (Byoo X7))7
. CNF

]F \ [Bﬁa() X_;L)]T

Cs : [A7_>0 X_,;L

Co : [Ayso XT]TV By, X7)17

Equiv'

and thus the application of G Res; to C1 and Cs, or to Cy and Cs derives clause Cs : [By, T_,’YI]O‘VD.
Again the assertion follows by weak derivability of GResy (cf. 5.24(2)).
(2) The tedious proof is by induction on the length n of the embedded CNF derivation C3 Fenr

Cy.
n=20:

In the base case C3 must be a proper clause, i.e.,

the clause rests D consist only of

proper literals and the literal [T[B],]* is proper. We now consider the possible cases for literal

[TA]]~.
L. [T[A],)7

is a proper literal and C; is a proper clause. Instead of generalised paramodulation

we can apply in this case the standard paramodulation rule Para to C; in order to derive

Ca by Ay : {C1,Ca} FP* [T[B],]7 v D1 V [A = A]" 77V C,. In this case o is the empty
substitution.
2. [T[A],]F is a proper literal and C; is a proper clause. If [T[A],]” is not a unification

constraint, then the argumentation is analogous to the above case. In case [T[A],]” is a
unification constraint, it is (without loss of generality) of form [T;[A] = T5]”. In this case
we employ a derivation that is analogous to the one already discussed in remark 5.2:

Lezb(Cl),CN}' : Dl :CV [p Tl[]]

Dz :CV [p T]F
Para(Dy,Cs), Triv : Ds:CV[p T1[B,]]"
Res(D3,Ds), Fae,Triv: Dy:CVDV|(p Tl[Ba]) (p o))"
Dec(Dy), Triv Ds: CV DVI[T[B,] = Ty

Again we have that o is the empty substitution.

3. [T[A]p]” is not a proper literal, i.e., has a logical connective different from = at head position.
We consider the possible subterm positions p of term A in T (noted T[A],).

As this would contradict our assumption ([T[B],]* is a proper literal), we know that
for literal [T[A],]* the following cases are impossible: [- (M[A],)]%, [V (M[A],/) N]%,
[V M (N[A],/)]* and [II (M[A],/)]*. The remaining cases are:

70 CHAPTER 5. EXTENSIONAL HIGHER-ORDER PARAMODULATION: EP

A A A
. —— —— A~ .
(a) Literal [T[A],]* has form [- M]*, [V M N|® or [IT M]®. Then (5 is of form [(-M) =

B]7, [(Vv M N) = B]7 and [(IT M) = B]7 respectively. For all these cases the assertion
now follows by (1a).

(b) Titeral [T[A]]" has form [o~ MJ®, [V> M NJ=, [T M]* or [(v M) NJ°.

Then analogous to above Cs is of form [- = B]T, [v = B]”, [T = B]” and [(V M) =
B]7 respectively. Applying positive extensionality rule Func’ to these clauses leads to
(= X) = (B X)I, (VX Y) = (BXY)7, (I P) = (B P and [(v M X) =
(B X)]T. For all these cases the assertion now follows by (1b).

n > 0: In the induction step we know that literal [T[B],]* must have a logical connective
at head position, as otherwise the length of the CAVF-derivation (3 Fene Cs is zero. We now
distinguish the following two cases:

1. At least one of the literals in D is not proper. In this case, it is obvious that we can
reorder the CNVF-derivation, such that one of the clause normalisation steps that modifies D
comes first.> Without loss of generality, let us assume that CNF-rule r transforms in step
k (1 < k < n) of derivation A; the clause rest D into D’. Then we can reorder derivation
Ay and obtain a derivation Az : {Cy,Ca} FEFP¥® C3 7 C : [T[B],]*V D' benr Ca, such that
rule 7 is applied first. Obviously, we can also switch the first two steps in Ag, such that we
get Ay : {C1,Ca} F7 {C} : [T[A]]* V D', Cy} P Chb-cye C4. Now induction hypotheses
is applicable and we get that there is EPp-derivation As : {C],Ca} Fep,. C4.

2. D consist only of proper literals. We again examine the structure of literal [T[A],]* and
distinguish between all possible subterm positions p of term A in T.

(a) Literal [T[A],]* is of form [- (M[A],/)]*, [V (M[A],) N]*, [V M (N[A],)]*, or
[IT (M[A],/)]*. As the proofs are analogous we only present the case where C; is of
form [V M (N[A],/)]T v D. Consider now derivation Ay, which obviously applies the
CNF-rule VT first within the normalisation process (note that D contains only proper
literals). Thus we have Ay : {Cy,C2} FEPae 5 FvT Cy - M]T v [N[B],]" V D Fenr Ca.
We can obviously switch the first two steps in Ay, such that we get an alternative
derivation® A} : {C1,Co} V' {C} - M]T v [N[A]]T Vv D,Co} FGFara CL boyr Ca.
By induction hypotheses we now get that there is a derivation A% : {C1,Ca} FvT
{C1,Ca} Fep,, Ca.

A A A
(b) Literal [T[A],]* is of form [- M]*, [V M N]* or [IT M]®. Then C5 is of form [(- M) =
B]*, [(v M N) = B]* or [(TT M) = B]®. In all cases the assertion follows immediately

by (1a).
A A A A
. . PN ~ =~ ——

(c) Literal [T[A],]* is of form "=~ M]*, [V M N]* [T M]* or [(VM) N]*.
Then C is of form [- = B]*, [v = B]7, [T = B]” and [(V M) = B]7 respectively.
Applying positive extensionality rule Func’ to these clauses leads to [(= X) = (B X)],
(VXY)=(B X Y)]* (T P)=(B P)]*and (VM X) = (B X)]*. For all these

cases the assertion now follows by (1b).

O

As O is just a special proper clause we immediately get the following corollary.

Corollary 5.26 (Admissibility of Generalised Paramodulation Rule).
The generalised paramodulation rule GPara is admussible in calculus EPy..

5Note that we here need to employ the conventions of Remark 4.19.
6Note that we here need to employ the conventions of Remark 4.19.

5.6. THEOREM EQUIVALENCE 71

Theorem 5.27 (Completeness of EPr). The calculus EPy. is complete with respect to Henkin
models.

Proof: Let Iy; be the set of X-sentences which cannot be refuted by the calculus &P,
(Iz :={® C cuff,(¥)|® ep, O}), then we show that I3 is a saturated abstract consistency
class for Henkin models with primitive equality (cf. Definition 3.18). This entails completeness
with the model existence theorem for Henkin models with primitive equality (cf. Theorem 3.29).

First we have to verify that Iy validates the abstract consistency properties Vi, V., V5, W,
Va, W, VA, Vs, V, and that Iy is saturated. For all of these cases, the proofs are identical to the
respective argumentations in theorem 4.16. The only difference is that we employ lemmata 5.14
and 5.16 instead of 4.12 and 4.15. Thus, all we need to ensure is the validity of the additional
abstract consistency properties V' and V; for primitive equality.

Vi —(A=%A)¢ .
V! IfF[A], € ® and A = B € ®, then @ + F[B], € L.
(V) We have that [A = A]" 77" O, and thus —(A =* A) cannot be in .

(V?) Analogous to the cases in 4.16 we show the contrapositive of the assertion, i.e., we assume
that there is derivation Ay : ®; * [F[B]p]T Fep,. O, and then ensure that Ag @ &g * [F[A]p]T *x[A =
B]” Fep,, 0. Now consider the following EPp.-derivation:

[F[A],]” [A=B]
[F[B],]"

GPara

By Corollary 5.26 the generalised paramodulation rule GPara is admissible for calculus EPy., which
guarantees, that there is a derivation Ag : @ # [F[A],]7 x[A = B]” Fgp, O, that does not apply
GPara. This proves the assertion. O

5.6 Theorem Equivalence

We shall now prove that Py, and £P; are theorem equivalent. Theorem equivalence of EPy and
EP is only presented as a conjecture.

Lemma 5.28 (Proper Clauses in EP and EP;). For each non-proper clause C and clause set
@, such that ®* Fep, C, we have @ Fgp, C.

Proof: Analogous to lemma 4.20. In the induction step, the case for rule Para is treated
analogously to the cases r € {Res, Fac, Prim}, and the rules Func’ and Equiv’ are treated
analogously to the unification rules. O

As O is also a proper clause we immediately get the following corollary:

Corollary 5.29 (Theorem Equivalence of &Py and EP;). The calculi EPy, and EPy are theo-

rem equivalent.
Conjecture 5.30 (Theorem Equivalence of P and &Py, (or EP;)). The calculi EP and EPy.
(or EPy) are theorem equivalent.

The proof for the latter conjecture will most likely be analogous to the proof of the theorem
equivalence for calculi ERy. and ER.

Chapter 6

Extensional Higher-Order
RUE-Resolution: ERUE

6.1 Resolution on Unification Constraints

In this section we will extend the Resolution by Unification and Equality approach of Digri-
coli [Dig79] to higher-order logic. The key idea of the resulting calculus ERUE is to allow resolution
and factorisation rules also to operate on unification constraints.! More precisely, our approach
allows to compute partial F-unifiers with respect to a specified theory E (where F is given in
form of a set of unitary or conditional equations in clause form in the search space) by employing
resolution on unification within constraint the calculus itself. This is due to the fact that the
extensional higher-order resolution approach already realises a test calculus for general higher-
order E-pre-unification (or general higher-order E-unification in case we also add rule FlezFler;
cf. Remark 4.8). Furthermore, each partial instantiation can be applied to a clause with rule
Subst. Finally, like in the traditional first-order RUE-resolution approach, the non-solved unifi-
cation constraints are encoded as still open unification constraints within the particular clauses
itself.

Remark 6.1 (Incompleteness of a naive RUE-Resolution approach). Similar to our naive
adaptation of the first-order paramodulation approach, we obtain a Henkin incomplete RUE-
resolution approach, if we do not additionally add the positive extensionality axioms. This is
illustrated by example EF9"? already used in the incompleteness proof 5.6 for £P. In a naive
ERUE approach, i.e., without positive extensionality rules, no single rule would be applicable to
the contradictory unit clause C; : [a = —a]”.

6.2 Basic Definitions

Similar to the approaches &R and EP discussed in the previous chapters, we further extend the
extensional higher-order RUE-resolution approach by adding rule FlezFlezr and lifting the single
clause normalisation rules to calculus level.

Definition 6.2 (Extensional Higher-Order RUE-Resolution).

ERUE The calculus ERUE consists of the rules of calculus ER (see Figure 4.2) enriched by the
positive extensionality rules displayed in Figure 5.2. The most important aspect is that we
allow to resolve and factorise on unification constraints. Furthermore we want to point out
that unification constraints are assumed to be symmetric which could also be formulated by

! The idea to resolve on unification constraints arose while discussing the necessity of Rule Leib within extensional
higher-order resolution with Frank Pfenning during a stay at Carnegie Mellon University.

72

6.3. LIFTING PROPERTIES 73

the following rule:

Ci:CVIA =B
C»:CV[B=A)

Sym

We employ this convention despite the fact that the symmetry rule Sym is derivable (c.f. re-
mark 6.3) in ERUE — as well as in ER and EP — as it shortens and eases derivations and is

acceptable with respect to its complexity in practice.

ERUE; The extension ERUE; of calculus ERUE that employs full higher-order unification instead of
higher-order pre-unification is defined as ERUE; = ERUE U {FlexFlex}.

ERUE. 'The calculus ERUEs. that employs stepwise instead of exhaustive clause normalisation is

defined by ERUEs. = (ERUEN{Cnf}) U CNF.

We assume furthermore, that the result of each rule application is transformed into head-normal
form. A set of formulae @ is refutable in calculus ERUE, iff there is a derivation A : @y Fere O,
where ®.; := {[F]T|F € ®} is the set obtained from ® by simple pre-clausification.

Remark 6.3 (Symmetric Unification Constraints). The following derivation shows that the
symmetry rule Sym is derivable in ERUE (ER and EP):

Lezb(Cl) : Dl :C'V [p A]T
Dy:CV[pBF

Res(Da,D1), Fac, Triv: D3z :CV[pB=pA]"

Dec(Ds), Triv : C>:CV[B=A"

Theorem 6.4 (Soundness of Extensional Higher-Order RUE-Resolution).
The calculi ERUE;., ERUEs, and ERUE are sound with respect to Henkin semantics.

Proof: Soundness of most of our calculus rules have already been discussed in lemmata 4.9
and 5.12. We additionally have to verify that resolution and factorisation on unification constraints
is sound wrt. Henkin semantics. Note that unification constraints are treated as ordinary negative
literals with a primitive equality symbol at head position. Thus, there is nothing new to show here
and we can employ the standard argumentation for soundness of the resolution and factorisation

rule. O

Lemma 6.5 (Proper Derivations). For each non-proper clause C, proper clause C', and clause

set ®, such that ® * C Ferug,, C', we have that @ U CNF(C) Fep,, C'.

Proof: Analogous to lemmata 4.10 and 5.13. Tt does not cause any problems that we allow to
resolve on unification constraints. O

6.3 Lifting Properties

The clause normalisation lifting lemma 4.11 is not affected by the modifications to the calculus
and can be safely employed in the following lifting lemma for calculus ERUE;. .
The proof of the adapted main lifting lemma is analogous to the one presented for £R..

Lemma 6.6 (Lifting Lemma for ERUES).
Let @ be a set of clauses, D1 be a clause and o a substitution. We have that:

1. For each derivation Ay : ®, I—}W/Efc Dy, there exists a substitution §, a clause Do, and a
derivation Ay : ® Ferye,, Do, such that (D3); = D;.

2. For each derivation A1 : @, l—mfc D1 there exists a substitution §, a clause Dy, and a
derivation As : ® Ferug,, D2, such that (D2)s = Di. (Note that this claim is stronger than:
® s refutable by ERUE;.., provided that O, is.)

74 CHAPTER 6. EXTENSIONAL HIGHER-ORDER RUE-RESOLUTION: ERUE

Proof:

(1) ERUE;. only slightly modifies calculus EPp. as it does not employ rule Para but a slightly
extended resolution instead. This does not cause new problems and the argumentation is analogous
to 5.14(1). The main idea is again to employ rule Prim in order to introduce logical connectives
at head position, such that the needed structure becomes available at the abstract level as well.

(2) Analogous to 5.14(2) O

6.4 Completeness

Analogous to the Subsections 4.4 and 5.5, we analyse in this subsection Henkin completeness of
calculus ERUE;.. The calculi ERUE; and ERUE are then examined in Subsection 6.5. Like in the
case of extensional higher-order resolution, theorem equivalence between ERUE and ERUE;. has not
been proven formally yet and will only be presented as a conjecture.

We first adapt the two lemmata 5.16 and 5.24. The former compares refutability of clause sets
in head-normal form with refutability of clauses in Gn-normal form and the latter one discusses
some important refutational properties.

Lemma 6.7 (Head-Normal Form).
Let ® be a set of clauses. If b, "gwac O, then @, "gwac 0.

Proof: The proof is analogous to lemma 4.13. In the induction step we additionally have
to consider the cases where r € {Para, Func', Equiv'}, which are analogous to the cases where

r € {Prim} UCNF. O

Lemma 6.8. Let ® be a set of Yo-sentences and @ be the corresponding set of pre-clauses. Fur-
thermore let A, B be formulae and C,D be clauses. We have that:

1. If q)cl * [A]T "ngC O and q)cl * [B]T "mfc D, then (Dcl * [A V B]T "gmgfc .
2. [f @cl * [A]T * [B]F mec O and <I>cl * [A]F * [B]T mec D, then ':Dcl * [A < B]F,

Proof: Analogous to lemma 4.15 and 5.16. The new or slightly modified rules do not affect
the argumentations. (]

As in Chapter 5, we will now show that the generalised rules GFac, GPrim, GRes1, GRess and
G Resg are in a weak sense (modulo subsequent clause normalisation and a kind of lifting) derivable
in calculus ERUE.. Derivability of G Res; will then be employed to establish the admissibility of
generalised resolution rule GPara for calculus ERUE,.. We will finally use the latter result in the
main completeness proof for calculus ERUE;. to prove the crucial substitutivity property V. of
primitive equality.

Lemma 6.9 (Weak Derivability of GFac). Let C1,Cs be clauses and D be a proper clause. If
Ay C FOF Cy bonr D, then there is a derivation Ay : Cy Ferue,, D-

Proof: Analogous to the corresponding Lemma 5.22 for EPy.; resolution and factorisation on
unification constraints does not cause serious new problems. O

Lemma 6.10 (Weak Derivability of GPrim). Let C;,Cy be clauses and D be a proper clause.
If Ay C FGPrim Cy bonr D, then there exists a substitution o and a derivation As : C1 Ferug,, £,
such that £, =, D.

Proof: Analogous to the corresponding Lemma 5.23 for £Py.; resolution and factorisation on
unification constraints causes no extra problem. O

Lemma 6.11 (Weak Derivability of GRes;, GRess, and G Ress).

1. Let C1,C2,C3 be clauses and C4 be a proper clause, such that Ay : {C1,Ca} F7 Cs FiGrac)
Cs Fenr D for r € {GRes1,GResa, GResz}. If both resolution literals of the generalised
resolution step are proper, then there exists As : {C1,Ca} }—mfc D.

6.4. COMPLETENESS 75

2. Let C1,C5,C3,C4 be clauses and D be a proper clause, such that Ay : {C1,Co} F" C3 Figrac)
Cs Fear D for r € {GResy,GResy, GResz}. Then there exists a substitution o and a
derivation Ay : {C1,Ca} Ferug,, &€, such that £, =, D.

Proof: The argument is analogous to 5.24 and resolution on unification constraints does cause
new problems. O

The following paramodulation Lemma 6.12 now shows that the generalised paramodulation
rule GPara is admissible in ERUE;..

Whereas Lemma 6.12(1) is again analogous to Lemma 5.25(1), we can prove in 6.12(2) only
admissibility instead of the weak derivability property in 5.25(2). This is because in 5.25 we were
able to reduce the applications of the generalised paramodulation rule either to the generalised
resolution rules and thus finally to the proper resolution rule Res or to the proper paramodulation
rule Para. Whereas the reduction to rule Res is analogous here as well, we cannot employ the
reduction to the proper paramodulation Para. Instead we have to show that alternative reductions
are possible which employ the RUE-resolution idea to resolve against unification constraints. The
latter causes the loss of the weak derivability property. But fortunately admissibility is sufficient
for our purposes.

Lemma 6.12 (Admissibility of Generalised Paramodulation Rule).
1. Let Cy be a clause and Cy be a proper clause.

(a) IfCy : [A]*V D and Cy : [A = B)?, then there exists Ay : {C1,Ca} Ferue, D : [C]*V E,
and a substitution o, such that Dy =, [B]*V D (i.e., D is more general than the clause
we would obtain by a respective generalised paramodulation step)

(b) If C1 : [A5, T_g]“ V D and Cy : [(Ax—, X_,’Y'L) = (By5o X_ZY'L)]T where Y_ZY'L ¢ free(T_w U

free(A), then there exists Ay : {C1,Ca} Ferue,. D - [Cy50 D’;]“ V E' and a substitution

o, such that D, =, [By, T’v‘]o‘ v D.

2. Let C1[A/B]p be a clause that is obtained from clause C be replacing the occurrences of term
B at positions p € P by term A and let ® be a set of clauses. If Ay : @ x C1[A/B]p x [A =
B]" FGP e @ « C1[A/B]p * [A = B]” % C1[A/Blp\{p} Fere, O, then there is a derivation
AQZ@*[A:B]T "mfc .

Proof:
(1) For the cases (la) and (1b) the proof is analogous to the corresponding argumentation in
lemma 5.25(1). The only difference is that we here employ Lemma 6.11 instead of 5.24.
(2) The proof is by induction on the length of A; and the base step is the most complicate one as
we cannot reduce G Para paramodulation steps to Para steps, but instead have to replace them
by pure ERUE;. derivations.

n=1:1f0¢c®+C;[A/B]p*[A = B]T the assertion follows trivially. Therefore let us assume that
O = C1[A/B]p\{p}- Hence C1[A/B]p has form C{[A/B]p, V[T[A/B]p,]*, where all but one
literal must be flex-flex unification constraints. Without loss of generality we assume that
this is the literal [T[A/B]p,]*. Then the new clause C1[A/B]p\p} looks like Ci[A/B]p, V
[T[A/B]p,\ p11]%, where position p’ in literal [T[A/B]p,\ (,/1]* specifies the position where
the replacement has been taken place. Obviously this clause must consist only of flex-flex
unification constraints, and hence, polarity a must be F', as otherwise it would be different
from 0. Thus, the literal [T[A/B]p,\ (p11]* is a flex-flex constraint. We now consider the
position p’ in literal [T[A/B]p,]", where the generalised paramodulation step has been
applied to. The first two possibilities concentrate on replacements that include the head
position in this literal.

e If p’ specifies the replacement of the whole atom of the literal in focus, i.e., T[A/B]p, =
A, then we get the assertion by (la).

76 CHAPTER 6. EXTENSIONAL HIGHER-ORDER RUE-RESOLUTION: ERUE

o If p’ specifies the replacement of a proper prefix term of the atom T[A/Blp, (i.e.,
T[A/B]p, looks like (A Un)), then we first apply the positive functional extensionality
rule Func’ for n-times to [A = B]T, thereby generating a proper clause [A X7 =
B X7]T. Now (1b) is applicable, which gives us the assertion.

Next we examine the cases where a proper subterm of the atom of [T[A/B]p,]” is replaced.
As the replacement must lead to a flex-flex unification constraint we already know that
[T[A/B]p,]" must be a unification constraint and thus must have form [T1[A/B]p, =
T2[A/B]p,]".

e If p’ refers to proper subterm of either T1[A/B]p, or T3[A/B]p,, then it must be
the case that the generalised paramodulation step was not necessary as the literal
[T[A/B]p,] already is a flex-flex unification constraint and thus C;[A/B]p = O,
which trivially gives us the assertion.

e Without loss of generality let us assume that p’ refers to a prefix of term T1[A/B]p,.
We then know that [T1[A/B]p, = T2[A/B]p,]" must have form [A (U[A/B]p,) =

H V[A/B]gsm]F, where n,m > 0. As the replacement of A by B introduces a flex-
flex constraint, we know that term B must have a flexible head, 1.e., B has form
(F ﬁ), such that { > 0. Now consider term A: If the head of A is a variable then
again the replacement of A is not necessary as we already have a flex-flex constraint
without employing generalised paramodulation rule. If on the other hand A has a
rigid head, i.e., A has form (a W) for & > 0, then the proof is a bit more com-
plicate as we have to construct a refutation using C;[A/B]p and [A = B]7 with-
out employing generalised paramodulation. Before discussing this derivation let us
sum up the structural restrictions that are given: The clause C1[A/B]p looks like
Ci[A/Blp, V [((a WF) (U[A/B]3,) = (H V[A/B]gsm)]F and clause [A = B]? has
form [(a W) =70 (F ﬁ)]’r, where @ is a predicate constant and F a predicate
variable of appropriate type. We apply rule FlexRigid to the former clause and positive
extensionality rule Func’ for n-times to the latter clause, such that we get:

2 GiIA/Blp, V(2 WF) (UTA/BE;,) =" (# VIA/BIE,)"
V[H = A7, a (K Z_m)k+n]F
Ca: [(a WF) Y7 =0 (F RI) Y77

The variable K in Cy and the variables Y” in C3 are new free variables. Next, we
instantiate the imitation binding in clause Cy with rule Subst. (Thereby we assume
that variable H does not occur in any of the literals in C{[A/B]p,. If on the other
hand H occurs in C{[A/B]p,, then we only get a problem if H occurs at literal head
positions. In these cases we can use an analogous argumentation to the following one
for these literals as well.)

Cs:Ci[A/B]p, V (a W) mzo (a(K W)k+n)]F

By resolving2 between C4 and C3 we get (note that the unification terms of both unifi-
cation constraints must have the same type)

Cs : Ci[A/Blp, V[((« WF) (U[A/B]}) = (a(K V[A/BJg_)k+"))
—* ((a WF) V7 = (F RI) V)|

We now apply the decomposition rule (2 times) and immediately delete the trivial pair
[===]" with rule Triv.

Cs : C{[A/Blp, V [((« WF) (U[A/BI3,) = ((a WF) Y7)I"
Vl(a(K V[A/BJF)+n) = ((F RT) Y7)I°

2We do not need to switch the latter unification constraint here as C4 and C3 already have the right constellation.
But generally it might be necessary to employ the symmetry rule to clause Cs.

6.4. COMPLETENESS 7

We know that C;[A/B]p, contains only flez-fle-constraints and that F and Y do not
occur in them. And as the latter two unification constraints of C5 are obviously solvable
with substitution

[(U[A/B]3, /Y™ Az (a(K VIA/BIR,)k+n)/F]

we know that C5 by O, which proves the assertion.

n > 1: In the step case we consider the second derivation step in Ay : ® % C;[A/B]p x [A =
B]" FGPara & 4 C1[A/B]p * C1[A/Blp\1p} F7 @ % C1[A/Blp « C1[A/Blp\(p} * C2 Fere,. O,
i.e., we focus on the first step following the generalised paramodulation step. If the premise
clause(s) within the application of rule r are different from Ci[A/B]p\p} we can obvi-
ously switch the first two derivation steps of Ay, such that we get the assertion trivially
by employing the induction hypothesis.®> This even holds if the application of rule r in-
deed uses Ci1[A/B]p\p} but operates on a literal that was not affected by the initial gen-
eralised paramodulation step, i.e., on a literal different from the position where p refers
to. Thus, for all of the following cases let us assume that clause Ci1[A/B]p\(,y is of form
[T1[A/B]pnp3]* V C [A/B]pn (for respective position lists P/, P and position p', i.e, p'
and p are equal is one removes the first element from position p, specifying the subterm that
was modified within the initial generalised paramodulation step) and that r operates in the
second derivation step on literal [T1[A/B]pn(,13]*. Note that under this assumption the
non-modified original clause C1[A/B]p is of form [T1[A/B]p:]* V Ci[A/B]pu.

r € {Res, Fac}: As both rules do not depend on the term structure of the resolution or
factorisation literals, we can in both cases switch the initial derivation steps, such that
the assertion easily follows by induction hypothesis. We will briefly illustrate this here
for rule Res; the argumentation for Fuac is analogous. Let us assume that there is a
clause Cy € @ that is of form [T5])? vV C4 and that

[T1[A/Blpn 1] V G A/Blpr [T5) v CY
Ci[A/Blp v C3 V [(T1[A/Blpn () = To]"

Res
Then an analogous resolution proof step is possible between Cy and the non-modified
clause [T1[A/B]p:]* V Ci[A/B]pu

[T\ [A/Blp]* V C{[A/Blpr [T2)° v C4
Ci[A/Blpn V G4V [(T1[A/Blpr) = To]"

€S

We can obviously apply generalised paramodulation rule GPara to the latter clause (at
position p’ in the left term of the new unification constraint) thereby generating exactly
the same clause as in the above original derivation.

Ci[A/Blpn Vv C3 V [Ty = (T1[A/B]p)]" [A =B]"
Ci[A/Blpn v Cy V [(T1[A/Blpnpry) = T2]”

GPara

Now the assertion follows by induction hypothesis.

r € {Prim, Func', Equiv'}: The three cases are similar and therefore we only discuss rule
Prim here. Thereby we consider the position p’ of the subterm that has been rewritten
in the generalised paramodulation step. (i) If the position p’ in literal [T [A/Blpn (p1}]*
refers to a proper subterm, then we get the assertion analogously to the cases for
r € {Res, Fac} above by switching the first two derivation steps and employing the
induction hypothesis. (ii) In the other case position p’ refers to a flexible prefix term
of T1[A/B]pn{p}, i.e., this literal has form

A
(.(..(HUp).. Up...U,)" (+)

3Note that we here need to employ the conventions of Remark 4.19.

78 CHAPTER 6. EXTENSIONAL HIGHER-ORDER RUE-RESOLUTION: ERUE

for 0 < k < n. In case £k = n we can replace the initial paramodulation step in Ay
by an alternative one not employing generalised paramodulation by (1a) and get the
assertion by induction hypothesis. In case k& < n we first apply positive extensionality
rule Func’ for (k — n)-times to the clause [A = B]7 leading to [A Y*-7 = B Yk-n]T,
This time we can employ (1b) to replace the initial paramodulation step in A; by an
alternative one. Again, the assertion follows by induction hypothesis.

r € UNZ 1f position p’ in literal [T1[A/B]pn p1}]* refers to a flexible prefix term as illus-

trated in (%) above, we get the assertion analogously to the previous case by (la) and

induction hypothesis, or by (1b) in combination with an appropriate modification of
clause [A = B]7 with rule Func’. If on the other hand position p refers to a proper
subterm of [T1[A/B]pn 3], then we get the result by employing derivation that is
analogous to one already employed in Remark 5.2 (which shows that paramodulation
into unification constraints is derivable).

r=Cnf: We again differentiate between the following two cases: (i) position p’ in
[T1[A/B]pnypy]* refers to proper subterm of the literals atom and (ii) position p’
in [T1[A/B]pnip}]* refers to a prefix term of the atom (like in (x) above). In case
(1) the assertion follows by induction hypothesis after switching the first two derivation
steps.*. This is possible as derivation step r is obviously also applicable to the initial
clause first, such that an subsequent application of rule Para leads to Cz. In case (ii)
the argumentation is analogous to the case (ii) for r € {Prim, Func', Equiv'} discussed
above, i.e., we get the assertion by employing either (1a) and induction hypothesis or
by (1b) in combination with an n-times application of rule Func’ to literal [A = B]T
and induction hypothesis.

O

Theorem 6.13 (Completeness of ERUE:). The calculus ERUE;. is complete with respect to
Henkin models.

Proof: Let Iz be the set of X-sentences which cannot be refuted by the calculus ERUE.
(I :={® C cuff,(¥)|Pu Vere, O}), then we show that Is is a saturated abstract consistency
class for Henkin models with primitive equality (cf. Def. 3.18). This entails completeness with the
model existence theorem for Henkin models with primitive equality (cf. Theorem 3.29).

First we have to verify that Iy; validates the abstract consistency properties V., V., Vg, W,
Va, Y, V5, V4, V, and that Iy; is saturated. For all of these cases the proofs are identical to
the corresponding argumentations in theorem 4.16. The only difference is that we employ the
lemmata 6.6 and 6.8 instead of 4.12 and 4.15. Thus, all we need to ensure is the validity of the
additional abstract consistency properties V] and V; for primitive equality.

VI o(A=%A)¢0.

[4

Ve T F[A], € ® and A =B € ®, then ® « F[B], € Is.

(V7)) We have that [A =* A]" F77 O, such that =(A =* A) ¢ ®.

(V) Analogously to 5.27 we show the contrapositive of the assertion. Therefor we assume, that
there is derivation Ay : @ * [F[B],]” Femye, O, and show, that there exists Aj : @ x [F[A],]7 «
[A = B]” Ferue,, O. Consider the following ERUEy-derivation:

[F[A],]” [A=B]
[F[B],]"

GPara

By lemma 6.12(2) we know that the generalised paramodulation rule GPara is admissible for
calculus ERUE;., such that must be a pure ERUE;. derivation Ay @ $yy* [F[A]p]T *x[A = B]” Ferug,, O
that avoids rule G Para. O

4Note that we here need to employ the conventions of Remark 4.19

6.5. THEOREM EQUIVALENCE 79

6.5 Theorem Equivalence

We now prove that ERUE;, and ERUE; are theorem equivalent. Theorem equivalence of ERUE:. and
ERUE is then only presented as a conjecture.

Lemma 6.14 (Proper Clauses in ERUE and ERUE;). For each non-proper clause C and clause
set @, such that ®x Ferye,, C, we have that ® Ferye, C.

Proof: Analogously to lemmata 4.20 and 5.28. Resolution on unification constraints does not
cause additional problems. O
As O is also a proper clause we immediately get the following corollary:

Corollary 6.15 (Theorem Equivalence of ERUE;, and ERUE:). The calculi ERUE;. and ERUE;

are theorem equivalent.

Conjecture 6.16 (Theorem Equivalence of ERUE and ERUE;. (or ERUEF)). The calculi ERUE
and ERUEs. (or ERUE;) are theorem equivalent.

Again the author expects that the proof for this conjecture will be analogous to the proof of
the theorem equivalence for calculi ERy. and ER (or EPy. and EP).

Chapter 7

The LEO-System

In this chapter we present the theorem prover LEO, which realises the extensional higher-order
resolution approach ER. LEO is implemented in CLOS [Ste90], a object-oriented extension of Lisp,
and its input language is POST , which is also used in the QMEGA-system [BCF197].

Despite the theoretical completeness results on ER, the most recent implementation (LE003)
of LEo is not Henkin complete. The main lesson learned from the implementation and the case
studies is that developing a theoretically Henkin complete approach to mechanise classical type
theory is one thing, but implementing it, such that non-trivial theorems can be proven in practice,
is certainly a much more challenging task.

The difference between unification and proof search disappears in extensional higher-order
theorem proving and all rules have to be integrated at the same level in order to realise arbitrary
calls from the overall proof search to unification and from unification again to the overall proof
search. ITmplementing calculus ER in such a theoretically Henkin complete but practically naive
way is certainly not very complicated, however, the search spaces generated in such a system
would be enormous. Therefore LEO employs the extensionality rules only in a restricted way
and furthermore guides their application by additional heuristics. This enables LEO to prove
simple theorems which require the application of the extensionality principles, such as the theorem
discussed in Subsection 7.2.4; which is currently not automatically provable in any other higher-
order theorem prover. The drawback is, that these restrictions and heuristics are the main sources
of LEO’s incompleteness.

Leo adapts well known ideas and techniques from first-order automated theorem proving and
modifies them with respect to the special requirements and aspects of the extensional higher-order
resolution approach. More precisely, LEO is based on an extended SOS-architecture that provides
two additional stores. The two new constructions are the store of extensionally interesting clauses
and the store of unification continuations; the ideas of these concepts will be illustrated in detail
below.

The most important feature of the LEO-system is that it employs, like traditional first-order
resolution, eager unification as a kind of filter, i.e., LEO tries to get rid of newly generated clauses
with a non-solvable unification constraint as early as possible. The main problem thereby is
the undecidability of higher-order (pre-)unification and the general need for recursive calls from
unification to the general refutation process in order to unify terms also with respect to the
extensionality principles. A compromise between completeness and practicability is needed for
LEO in order to realise the eager unification idea and hence LEO should be viewed as higher-order
theorem prover specialised in extensionality reasoning rather than a general purpose automated
theorem-prover for classical type theory.

The LEO-system has been implemented by the author mainly during a stay at Carnegie Mellon
University (see [Ben97]). The implementation is still quite prototypical and leaves much room for
improvements.

LEO’s main strength is not to compete with other theorem-provers, such as Tps [ABIT96,
AINPI0], but rather more to complement their weakness in the treatment of the extensionality

80

7.1. BASIC DATA-STRUCTURES AND ALGORITHMS 81

principles. TPs, for instance, can in contrast to LEO explore rather deep search spaces and
has its strengths, e.g., in the handling of the primitive substitution principles or the handling of
definitions [BA98]. Real mathematics will only be mechanisable by combining specialised auto-
mated higher-order and first-order theorem provers guided and controlled, e.g., by a cognitively
more adequate proof planning approach (see [Bun88, CrS98, Mel95, Mel94]) or an intelligent agent
mechanism like [BS99, BS98a].

We shall now discuss LEO’s extended SOS-architecture and its main loop in a greater detail.
A case study will then be sketched and typical examples that can be solved with the LEO system
will be given.

7.1 Basic Data-Structures and Algorithms

KriM-Toolbox The implementation of Lo employs the KiiM-toolbox [HKKT94] for deduction
systems. This toolbox, which also underlies the mathematical assistant system Qmraa [BCFT97],
provides many useful data structures (e.g., higher-order terms, literals, clauses, and substitutions)
and basic algorithms (e.g., application of substitution, subterm replacement, copying, and re-
naming). Thus, the usage of KEIM allows for a rather quick implementation of new higher- or
first-order theorem proving systems. In addition to the code provided by the KiiM-package, LEO
consists of 6900 lines of LisP code. Whereas the KEIM-toolbox indeed turned out to be very useful
to support a prototypical development of a system like LEO, the experience with LEO also showed,
that the datastructures offered by KEIM are in many cases too extensive and costly. Especially the
implementation of LEO’s latest version, LE03, which employs the fully polymorphic data struc-
tures offered by Keim3 (the latest version of KEim) is roughly 5-10 times slower than the former
version LEO1, which was based on the non-polymorphic data structures of Keim2.

Higher-Order Unification The author (in cooperation with Karsten Konrad) implemented
higher-order unification by rather closely realising the rules of [SG89, Sny91]. In all branching
cases (branching may only happen in the FlezRigid or FlezFlexr case) this algorithm employs
the variable binding mechanism offered by the KEiM-package. This mechanism avoids copying
of terms and maintains variable instantiations by pointers instead of explicitly instantiating, i.e.,
modifying, the term data structures. Unfortunately the current implementation does not allow
for an explicit maintenance of the variable bindings itself, such that a heuristically guided higher-
order unification algorithm cannot be realised in this setting (the aim was to realise a most general,
heuristically guided backtracking in the unification search tree, where an user definable heuristics
selects — probably in dependence of the current proof goal — the particular partial binding
to be examined first when branching in the FlerRigid-case). As KEIM is written in Lisp, the
implemented unification algorithm can furthermore not exploit concurrency like, e.g., employed
in the unification algorithm of Lro’s brother HoT [Kon98], which is written in the programming
language Oz [Sb98, SSW94]. Hor translates and realises the main ideas of calculus ER in a
tableaux setting.

Higher-Order Term indexing In most state of the art theorem provers for first-order logic,
term indexing techniques [Gra95] are successfully employed as strong filters in unification, sub-
sumption, and the computation of resolution partners. The basis for higher-order term indexing
has been laid by the masters thesis of Lars Klein [K1e97], supervised by Michael Kohlhase, which
adapts first-order term indexing ideas as presented in [Gra95] to A-terms. The key idea of this
adaptation is to employ the simplification part of higher-order unification, which is in contrast to
general higher-order unification decidable, as the overall filtering criterion. When sending a re-
quest for a given A-term T to this higher-order term indexing approach, it filters out those terms
T, given in its database, for which pure simplification can not detect a counterargument to its
unifiability with T. This obviously realises an imperfect filter, as each delivered T' may still fail
to unify with T. But because of the undecidability of general higher-order unification it is easy to
see that a perfect eager unification filter cannot be achieved.

82 CHAPTER 7. THE LEO-SYSTEM

Subsumption The subsumption filter [Tam98, BHIB92, Fit96], which is well known from res-
olution based first-order theorem proving, checks whether a given clause ¢ : Ny V...V N, is
more general than another clause D : My V ...V M,,. To be more precise, subsumption checks
whether there exists a substitution o, such that the particular literals of Co are entailed in D. If
80, then the more specialised clause D can be removed from the search space without affecting
completeness. In practice, many resolution based first-order theorem prover spend most of their
computation time in filtering out subsumed clauses in order to minimise the search space. As
matching is involved, term indexing techniques are thereby employed to lower the computation
costs and to speed up the subsumption tests.

LEo employs a higher-order subsumption test that is, apart from the technical details; very
similar to the ones employed in first-order provers. Instead of first-order matching, the criteria for
comparing the single literals is higher-order simplification matching, i.e., matching with respect
to the deterministic higher-order simplification rules. As matching is known to be decidable up
to fourth-order logic [Pad95], it is theoretically possible to develop and employ a much stronger
subsumption filter in LE0. This has been avoided so far, as the respective matching algorithms
seem to be rather complex. But at least higher-order pattern unification or matching [Mil91],
which is decidable in linear time [Qia93], should be employed in LEo. Consequently, the higher-
order subsumption filter that is currently employed in LEO is — just as the higher-order unification
filter — a quite imperfect one, as not all subsumed clauses can be determined in the search space.

But note that even if higher-order matching would be generally decidable for all orders (which
is still an open and challenging question), we still could not develop a perfect higher-order sub-
sumption filter for LEO, as this would require a higher-order extensional subsumption approach
instead of one that is based solely on syntactical higher-order matching. The problem of exten-
sional higher-order subsumption will be illustrated in detail in Section 7.3.

7.2 Extended SOS Architecture and Main Loop

7.2.1 Problems

The most important aspects and problems for an implementation of the LEo-system are:

1. Extensional higher-order (pre-)unification The necessary combination of the tradi-
tional syntactical higher-order unification rules with the new extensionality rules' FEquiv
and Leib is probably the most challenging aspect in the implementation of £R, as a non-
restricted application of this rules obviously leads to a search space explosion. But because
of the goal directed application of the extensionality principles in R, even such a general
integration would still have advantages over an unrestricted usage of the infinitely many
extensionality rules in the traditional constrained resolution approach (cf. the discussion in
Section 1.4). Anyhow, the challenge in LEO is to find suitable heuristics to restrict the
application of the extensionality rules in calculus ER and to avoid too many recursive calls
from within higher-order unification to the overall search process.

2. Eager unification is essential but undecidable In contrast to Huet’s original constraint
resolution approach, eager unification becomes essential in ER and cannot be generally de-
layed. The reason is, that whenever both extensionality principles are involved in the search
for a proof, then calculus &R needs to employ recursive calls to the overall search procedure
from within a unification attempt, 1.e., eager unification is essential in ER and LEo. There-
fore we need to develop a mechanism, which allows to interrupt eager unification attempts.
For example, when reaching a user-definable unification search depth limit the unification
process terminates and is resumed later.

3. Primitive substitution is infinitely branching The primitive substitution problem is
well known in resolution based higher-order theorem proving and is thus not a specific

!'We here consider the modified rule Func as belonging to syntactical higher-order unification.

7.2. EXTENDED SOS ARCHITECTURE AND MAIN LOOP 83

problem of calculus ER. Informally the problem is that one generally has to ensure that free
predicate variables can be instantiated with arbitrary formulae. In order to illustrate the
problem, assume that the single unit clause [P a]” (e.g., obtained from the negation and
normalisation of the theorem 3P,_,,. P a,) is given in the search space, where P,_,, is a free
variable. The only way to refute this unit clause is to guess an appropriate instantiation for
P; in our case AX,. =P’ X. With this instantiation we get another unit clause [—~(P’a)]¥,
which normalises to [P'a]?. Now the empty clause can easily be derived by resolving between

[P a)f and [P'a]T.

Fortunately, a blind guess of instantiating formulae can be avoided as it is sufficient to
subsequently instantiate the free variable heads with partial bindings imitating the logical
connectives in the signature (which in some sense subsequently enumerates all formulas
schemes). But as experienced in the Tps-project (cf. [ABI*96]) it can nevertheless be
very fruitful for some proof attempts to instantiate free variables immediately with special
formulae, such as Leibniz Equality.

It is easy to see that the primitive substitution principle causes an enormous explosion of
the search space when applied in an unrestricted and non-guided way.

Apart from these challenging aspects of the implementation of LEO, there are many other, mostly
technical problems (see [Ben97]).

7.2.2 Extended SOS Architecture

USABLE SOS
I N Architecture of LEO
S| e)
Lightest }

& '---=| Paramod |- @
® &) @ - —— implemented

---= not yet implemented

[Factorised] | Prim-Subst | © :
) (1) choose lightest from SOS
‘ ® ‘ — — (2 Integrate light. to USABLE
e (3) resolve with USABLE
.| Processed Unified (4) paramodulate with USABLE
‘ © (5) factorize lightest

primitive substitution on lightest
extensionality treatment on EXT
pre-unification on CONT

process results (tautology deletion)
pre-unification on Processed

store continuation object

check if extensionally interesting
Integrate Unified into SOS

d

(Yo

®&RE®

Figure 7.1: LEO’s main architecture

LEo’s basic architecture adapts the well known set of support approach (cf. [McC94]) with
respect to the special requirements and challenges of calculus ER. The four cornerstones of LEO’s
architecture (see the figure 7.1) are:

84 CHAPTER 7. THE LEO-SYSTEM

USABLE The set of all usable clauses, which initially only contains satisfiable clauses, i.e., the
clauses stemming from the assumptions of the theorem to prove (same idea as in first-order
resolution [McC94]).

S0S The set of support, which initially only contains the clauses belonging to the negated theorem
(same idea as in first-order resolution [McC94]).

EXT The set of all extensionally interesting clauses, i.e., clauses which are assumed to be unifiable,
when the new extensionality rules EFquiv and Leib are taken into account (but probably not
by pure higher-order (pre-)unification alone). Initially this set is empty.

CONT The set of all continuations created by the higher-order unification algorithm when reaching
the search depth limit in a particular branch of the unification search tree. The idea of this
objects is to allow for the continuation of interrupted unification attempts at a later time.

7.2.3 LEO’s heuristically guided Main Loop

As a suitable realisation of ER we suggest a computation consisting of the steps 1-13 as described
below (the Initialise step is applied only at the very beginning of the proof attempt and is not
part of the main loop). The main loop, whose data-flow is graphically illustrated in Figure 7.1, is
executed until an empty clause, i.e., a clause consisting only of flezflez-unification constraints, is
detected. The described algorithm is an abstract and slightly idealised presentation of the working
principles of the currently actual version (LE03) of LEo. Furthermore, this description of LEO’s
working mechanism abstracts from many technical details and mentions only the most important
user definable flags and heuristics that influence its problem solving behaviour.

Initialise The proof problem formalised in POST -syntax is read from a file. Then the specified
assumptions and the assertion are pre-clausified, i.e., the assumptions become positive unit
(pre-)clauses and the assertion becomes a negative unit (pre-) clause. The assumption clauses
are passed to USABLE and the assertion clause to SOS. Thereby the SOS store is automatically
sorted (with respect to a heuristics H1, that is based on the clauses weights; this weights are
computed from the accumulated weights of the term-symbols and from the clause age, i.e.,
the number of the loop in which the clause has been created).

Step 1 (Choose Lightest) LEO chooses the lightest, i.e., topmost, clause from S0S. If this
clause is a pre-clause, i.e., not in proper clause normal-form, then LEO applies clause nor-
malisation to it and integrates the resulting proper clauses into S0S while employing sub-
sumption (depending on the flag-setting forward and/or backward subsumption; see also
step 13). Within the clause normalisation process the positive primitive equations are re-
placed by respective Leibniz equations. Negative primitive equations are not expanded but
immediately encoded as extensional unification constraints. Furthermore, identical literals
are automatically factorised.

In case the lightest clause was not proper, LEO chooses the next clause from SOS and
proceeds with this as described. Otherwise the lightest clause is passed to the store Lightest.

Step 2 (Insert to USABLE) LEo inserts the lightest clause into USABLE while employing forward
and/or backward subsumption depending on the flag-setting.

Step 3 (Resolve) The lightest clause is resolved against all clauses in USABLE and the results
are stored in Resolved.

Step 4 (Paramodulate) Paramodulation is applied between all clauses in USABLE and the light-
est clause, and the results are stored in Paramod. (This step is currently not realised in

LE03)

7.2. EXTENDED SOS ARCHITECTURE AND MAIN LOOP 85

Step 5 (Factorise) The lightest clause is factorised and the resulting clauses are stored in
Factorised.

Step 6 (Primitive Substitution) LEo applies the primitive substitution principle to the light-
est clause. The particular logical connectives to be imitated in this step are specified by a
flag. The resulting clauses are stored in Prim-Subst.

Step 7 (Extensionality Treatment) The heuristically sorted (with a heuristics H2) store EXT
contains extensionally interesting clauses (i.e., clauses with unification constraints that may
have additional pre-unifiers, if the extensionality rules are taken into account). LEO chooses
the topmost clause and applies the compound extensionality treatment to all extensionally
interesting literals of it. Assume the chosen clause has form C; : DV [Losp = Ra_w]F,
where the latter literal is extensionally interesting (determined by a heuristics H3), then the

compound extensionality treatment proceeds as follows:

1. First rule Func is applied exhaustively to Ci. This means that Func is sub-
sequently applied until the unification constraint has form [((Loop s')...s") =
(Rasp s')...s™)]F, where both hand sides are of primitive type 7 € {s, 0}.

2. If 7 = o, then the compound extensionality treatment applies rule Equiv, and if 7 = ¢,
then rule Leib is applied.

The resulting clauses are stored in Ext-Mod.

Step 8 (Continue Unification) The heuristically sorted (with a heuristics H4) store CONT con-
tains continuations of interrupted higher-order pre-unification attempts from the previous
loops (cf. step 10). If the actual unification search depth limit (specified by a flag, whose
value can be dynamically increased during proof attempts) allows for a deeper search in the
current loop, then the additional search for unifiers will be performed. The resulting, instan-
tiated clauses are passed to Uni-Cont and the new continuations are sorted (wrt. heuristics
H4) and integrated into CONT. (This step is currently not realised in LEO3)

Step 9 (Collect Results) In this step LEO collects all clauses, that have been generated within
the current loop, from the stores Resolved, Paramod, Factorised, Prim-Subst, Ext-Mod,
and Uni-Cont, eliminates obvious tautologies, and stores the remaining clauses in Processed.

Step 10 (Pre-Unify) LEO tries to pre-unify the clauses in Processed. Thus, it applies the
pre-unification rules exhaustively, thereby spanning a unification tree until it reaches the
unification search depth limit specified by a special flag. The unification search depth limit
specifies how many subsequent FlezR:igid-branchings may at most occur in each path through
the unification search tree. The pre-unified, 1.e., instantiated clauses, are passed to Unified.
The main i1dea of this step is to filter out all those clauses with syntactically non-solvable
unification constraints (modulo the allowed search depth limit). But note that there are
exemptions, which are determined in steps 11 and 12. That means, that not all syntactically
non-unifiable clauses are removed from the search space as this would, e.g., also remove the
extensionally interesting clauses.

Step 11 (Safe Continuations) Each time a pre-unification attempt in step 10 is interrupted
by reaching the unification search depth limit, a respective continuation is created. This
object stores the state of the interrupted unification search process, i.e., it contains the
particular unification constraints as given at the point of interruption together with the
remaining literals of the clause in focus and some information on the interrupted unification
process (in principle a continuation is just a new clause with some additional information).
Continuations allow to continue the interrupted unification process at any later time. The
set of all such continuations is integrated (employing sorting heuristics H4) in the sorted
store CONT. (This step is not realised in LE03.)

86 CHAPTER 7. THE LEO-SYSTEM

Step 12 (Safe Extensionally Interesting Clauses) In the pre-unification process in step 10
LEo analyses the unification pairs in focus (with heuristics H3) in order to estimate whether
this unification constraint and thus this clause is extensionally interesting, i.e., probably
solvable with respect to both extensionality principles. The motivation thereby is obvious:
we want to avoid recursive calls to overall search procedure for all generated unification
pairs and instead employ such calls only selectively. We present two exemplifying criteria
for H3: (i) never apply the extensionality treatment to two constants of type ¢ that clash
(which are quite a lot unification pairs in practice) and (ii) never apply the extensionality
treatment to fler-flez-constraints.?2 All extensionally interesting clauses are passed to EXT,
which is heuristically sorted with a heuristics H5. While integrating the clauses to EXT
forward and/or backward subsumption is applied in order to minimise the number of clauses
in this store (cf. the discussion of syntactical and extensional subsumption below).

Step 13 (Integrate to S0S) In the last step LEO integrates all pre-unified clauses in Unified
into the sorted (with heuristics H1) store S0S. Forward and/or backward subsumption is
employed depending on the flag-setting.

7.2.4 An illustrated Example

Let us illustrate LEO’s working with the following example (this example is graphically illustrated
in Figure 7.5 in Subsection 7.5.2 and also mentioned as example E§** in Section 8.1):

paApb=p(aAb)

where p,_,,a, and b, are constants. Despite 1t’s simplicity, this theorem cannot be solved au-
tomatically by any other theorem proving system known to the author (apart from the tableaux
based higher-order theorem prover HoT which is based on the tableaux calculus H7E [Koh98];
HTE [Koh98] translates the calculus ER presented in this thesis in a tableaux context). Negation
and clause normalisation introduces the following three clauses:

Cl:[pa]T Cz:[pb]T Cg:[p(a/\b)]F

In Figure 7.5 these clauses are represented by the nodes 5, 7 and 12.

In order to derive the empty clause LEO proceeds as follows: First, it inserts C3 into SOS,
and the two others into USABLE. In the first loop Cs is chosen as the lightest clause (step 1),
inserted into USABLE (step 2), and resolved against C; and C» (step 3), thereby yielding the clauses
Ca:[p(anb) =pa]l and C5 : [p (a Ab) = p b]T. Paramodulation (step 4) is not employed
in LE03 and factorisation (step 5) as well as primitive substitution (step 6) are not applicable.
Thus, the clauses passed to Processed (step 7) are C4 and Cs. The stores EXT (step 8) is still
empty and continuation of (pre-)unification (step 9) is not employed in LEo. Next LEO tries to
pre-unify both clauses in Processed (step 10). After decomposition the unification process ends
up with a clash in both cases: Cs : [(a Ab) = a]f and C7 : [(a A b) = b]¥ such that no clause is
passed to Unified. As continuation of (pre-)unification (step 9) is not employed in LEO no clause
is passed to CONT: the maximal unification search depth limit (usually 5 FlezRigid branchings) is
not reached in both unification processes. Then the non-unifiable clauses Cs and C; are analysed
whether they are extensionally interesting (step 12). As unification constraints between terms of
Boolean type are generally classified as extensionally interesting, both clauses are subsequently
stored in EXT. Unified is empty and thus no clause is passed to SOS (step 13), such that S0S is
empty at the end of the first loop.

Nothing happens and no new clause is generated in the next loops until LEo is allowed to
perform its extensionality treatment. The loops in which the extensionality treatment is applied
are specified by a flag, and here we assume that the extensionality treatment is employed in every
6th loop. When reaching this loop LEO, e.g., chooses Cs from EXT (in step 7) and applies its

2Whereas the criterions (i) and (ii) mentioned here are fair, LEO currently employs additional criterions which
are not so obvious and which are most likely not fair, e.g., never apply the extensionality treatment to flez-flez-pairs.

7.2. EXTENDED SOS ARCHITECTURE AND MAIN LOOP 87

compound extensionality treatment, thereby generating clause Cs : [(a A b) = a]”, which passes
the unification filter (in step 9) as it contains no further unification constraints, and which is
inserted to Processed. From Processed Cs is finally passed (in step 10) to S0S.

In the 7th loop clause Cg is chosen from S0S and immediately normalised (step 1), leading to
Co : [a]T, Cio : [a]F v [B]T, and Ciy : [a]F V [b]F. These clause are then integrated to SOS, and as
subsumption is applied, the clause C1¢ 1s removed.

In the following two loops LEO subsequently chooses Cg and Cy1 as new lightest clauses, and
proceeds with its processing as described. The only interesting clause generated in these two loops
is C1o @ [0]7 (by resolution between Cs and Ci1). This clause is itself integrated to USABLE in one
of the following loops.

In the 12th loop LEO then chooses clause C7 from EXT and applies its compound extensionality
treatment to it (in step 7), thereby generating clause Ci3 : [(a A b) = b]¥, which is passed to SOS
at the end of this loop.

Clause normalisation of Cy3 at the beginning of loop 13 leads to Cy4 : [b]7, C15 : [a]” v [b]T and
Cis : [a] V [b]7; both are immediately integrated (modulo subsumption) into S0S. Cy4 is chosen
as the new lightest clause, and as the complementary clause C;5 is already contained in USABLE,
the empty clause is derived in this loop by resolution and (trivial) unification.

7.2.5 Realisation of the Challenges and the main Sources of Incomplete-
ness

Within the current version of LLEO the basic challenges mentioned in 7.2.1 are realised as follows:

1. Extensional higher-order (pre-)unification Instead of a full integration of the new
extensionality rules into the employed higher-order pre-unification algorithm, we decided to
separate the extensionality treatment from higher-order pre-unification (see steps 7, 10, and
12 above). Thereby the pre-unification filter simply passes extensionality interesting clauses
to the store EXT in order to prevent from being removed from the the search space. The store
EXT is itself heuristically sorted, such that the (heuristically) most interesting clauses (this
notion clearly depends on the quality of the criterions employed by the sorting heuristics
H5) are considered first in the extensionality treatment. This mechanism allows to delay
the extensionality treatment in order to avoid an early search space explosion. It is obvious,
that because of the possibly delay of the extensionality treatment, the sorting heuristics Hb
for EXT strongly influences LEO’s overall performance on examples, which indeed require the
application of the extensionality principles. The extensionality treatment itself is exhaustive,
i.e., it is applied to all extensionally interesting literals of the chosen clause from store EXT
in once.

Whereas the original motivation for the separation of the extensionality treatment was to
avoid a complete re-implementation of the pre-unification algorithm provided by the Keim-
package and to examine first in a prototypical implementation of LLEO whether the ER
approach is in principle able to solve some simple theorems requiring the extensionality
principles, it turned out that this separation and the possibility to delay the extensionality
treatment is very fruitful if not even essential in practice.

Another interesting experience gained from practice is, that when allowing an extensionality
treatment only in each, e.g., 6th loop, and when restricting primitive substitution to the
logical connective =, LEO refutes many of the examples mentioned in Section 7.4 as follows:
In the first 2 or 3 loops LEO performs a couple of interesting resolution, factorisation and
primitive substitution steps. In the following loops he then often produces less interesting
clauses which are often already subsumed by already given ones. Sometimes the SOS even
becomes empty, just like in the example discussed in the previous section. But, meanwhile
the store EXT contains some extensionally interesting clauses and from this LEO chooses then
in the 6th loop the most promising one, applies the extensionality treatment thereby often
generating new interesting facts which then subsequently positively influence the amount of

88

CHAPTER 7. THE LEO-SYSTEM

interesting clauses derived in the following loops. This illustrates that LEO indeed applies
the extensionality principles in a goal directed way, which contrasts with the traditional
approaches, as they would — provided that the extensionality axioms are added to the
search space — always operate on the extensionality axioms and/or their consequences.

2. Eager unification is essential but undecidable The current version of LEO employs

higher-order (pre-)unification only with respect to a certain search depth, which is specified
by a flag. When reaching this depth LEO simply terminates its search in the current path
and backtracks to the next one. It has already been pointed out by other authors (see
for instance [Wol93, Pau94, BS94, Nad87]) that non-terminating higher-order unification
constraints rarely occur in practice, such that the syntactical unifiability of many clauses
can indeed be decided even when restricting the unification search depth to a certain limit.
And for the rather simple examples discussed here, a unification search depth of 5 allowed
nested branchings with rule FlezRigid turns out to be sufficient.? But not that Lro’s
architecture and main loop already presents with the (currently not realised) steps 8 and 11
a general solution to the problem. This solution consists in the generation of continuations
for interrupted unification processes. The generated continuations® are heuristically sorted
and stored in CONT, from where they can be chosen in a later loop of LEOo. Thus, the
idea is to realise a delayed continuation of interrupted unification processes with respect to
a steadily increasing unification search depth in order to overcome the problems induced
by the undecidability of higher-order (pre-)unification. The KEIM-toolbox already provides
data structures and algorithms for unification continuations. Even though they are not
yet employed in LEo — mainly as there was no need for increasing the unification search
depth within the currently considered example domains (e.g., simple examples about sets
as discussed in Subsection 7.4) and as it seems to be more promising to concentrate on the
improvement of other aspects in LEO prototypical implementation first.

3. The primitive substitution principle is infinitely branching When using its default

settings LEO3 only imitates the logical connective = when applying the primitive substitution
principle in step 6. Analogously to the restriction of the unification search depth, this
restriction turns out to be sufficient for proving simple examples about sets discussed in
Subsection 7.4. Whereas the additional imitation of the logical connective V only slightly
influences the time LEO needs to solve these problems, the situation is quite different when
imitating also universal quantifiers, e.g., all quantifiers up to order 5.

For more complicated examples it is certainly not sufficient to restrict the primitive substi-
tution rule to the connective = as, e.g., example THM15b discussed in [ABI196] illustrates.
The proof of this example in the TpPs-system requires the primitive substitution of primi-
tive or Leibniz equality (in LEO the latter would in fact mean to subsequently build up the
respective instantiation by single primitive substitution steps imitating V and — in a row).

In order to improve LEO’s treatment of the primitive substitution principle one can introduce
a delay mechanism for primitive substitution similar to the stores EXT and CONT. The idea
is to start a proof attempt by, e.g., only imitating = and V, and then to subsequently add
primitive substitutions of universal quantifiers in a delayed manner.

We briefly summarise the main sources of incompleteness in LE03, i.e., the current version of LEO:

1. the restricted (pre-)unification depth in step 10 of the main loop,

2. the restricted application of the primitive substitution principles in step 6,

3Peter Andrews mentioned that his experience with the TPs-system is similar: Most of the examples examined

within the TPs-system can been proven when restricting the unification depth in this sense. A unification depth of
more than 15 FlexRigid branchings seems to be rarely needed in practice.

4Note that continuations are basically just ordinary clauses with additional information on the interrupted

unification process (e.g., the particular search depth).

7.3. NEW INSIGHTS GAINED FROM LEO 89

3. the heuristics employed for determining extensionally interesting clauses in step 12, which
have not been proven to ensure a Henkin completeness yet,

4. the compound extensionality treatment in step 7, which has not been proven to ensure a
Henkin completeness yet,

5. the heuristics employed to sort the stores S0S, EXT (and CONT) which have not been proven
to ensure fairness yet.

7.3 New Insights gained from LEO

7.3.1 Extensionality and Term indexing

Syntactical higher-order term indexing (see Subsection 7.1) must not be employed in the com-
putation of resolution partners as otherwise no resolution step on only extensionally but not
syntactically unifiable literals would be suggested.

This drawback is illustrated by the example discussed in Subsection 7.2.4: the key steps in this
refutation — namely the resolution steps between Cs : [p (a A b)]¥ and €1 : [p a]T or Cz : [p b]T
at the very beginning — will not be performed in case syntactical higher-order term indexing is
employed as a filter within the computation of possible resolution partners. Thus, LEO would fail
to prove this theorem.

What we would need in extensional higher-order theorem proving is term indexing modulo the
extensionality principles, which is obviously undecidable.

7.3.2 Extensionality and Subsumption

With respect to our higher-order subsumption filter — we face a problem, similar to the one
sketched for the higher-order term indexing filter above. LEO’s subsumption filter is a quite weak
one, as it only looks for matchable literals on the basis of higher-order simplification, i.e., only em-
ploys first-order matching, when examining whether one clause subsumes another one. Analogous
to the situation in higher-order term indexing, this filter does not take the extensionality principles
into account. Clearly, this does not affect the completeness of our approach and the only effect
of employing a weak subsumption filter when inserting clauses to a clause store is, that probably
much more clauses are inserted as needed to ensure the completeness of the system. Especially the
store EXT is affected, which maintains the extensionality interesting unification constraints. As the
compound extensionality treatment is strongly delayed in LEO, it is consequently very important
to avoid as many as possible subsumed clauses in store EXT. We illustrate this problem by the
following two clauses (p, ¢ and r are constants):

Cr: [(AX e pisso X) = AXow qusso X A7y, X)IF

Ca: [()\XL Tiso X Ao X) = (/\XL Pr—o X)]F

It is obvious that with respect to a syntactical higher-order matching approach neither one of
both clauses is subsumed by the other. Even though, when applying the compound extensionality
treatment and normalisation to them, they introduce identical proper clauses (modulo the names
of the new Skolem constant, s') into the search space:

Ci~ Ca:[ps')fvigs'Fvirs'1" Ci:lps'1Pvigs']t C:ps]tvirs']t
Con Co:[ps?)TVvigs®]"virsy]" Co:lps’]"vigs]T Cs:[ps’] virs?]"

The problem is that €1 and Cy subsume each other only with respect to a notion of extensional
higher-order subsumption, but not with respect to a notion that is only based on syntactical
higher-order matching or simplification. And, as extensional higher-order matching or unification
is undecidable extensional higher-order subsumption seems not to be feasible in practice.

90 CHAPTER 7. THE LEO-SYSTEM

A practical solution that has yet not been examined in LEO, could be to employ the extension-
ality treatment before inserting a extensionally interesting clause into the store EXT and to insert
the resulting clauses (clauses Cs...Cg in our example) instead of the extensionally interesting
clauses itself. One could then try to develop a higher-order subsumption approach that abstracts
from the names of the Skolem constants introduced by the extensionality treatment and employ
it as a filter for store EXT. In our example, this could prevent LEO from inserting all the clauses
Cs...Cg into EXT and to filter out, for instance, C3,C4 and Cs. In such a modified approach, the
idea of the store EXT would be to delay and control the insertion of the clauses obtained from
the compound extensionality treatment rather than to delay the extensionality treatment of the
extensionally interesting clauses itself.

7.4 Case Study

Boolean Properties of Sets A case study on the examples provided by the article Boolean
Properties of Sets [TS89] has demonstrated that LEO sometimes outperforms state of the art
theorem provers when reasoning about simple examples from set theory. Article [TS89] presents
97 quite trivial theorems about sets. To provide an impression, we present the examples 28, 80,
99, 104 and 111 (the examples in [TS89] are numbered, but not each natural number is associated
with an example — this explains the example numbers greater than 97).

Examples:
set28) f X CY and Y C X, then X =Y

set80) (X NY)U(X\Y)=X
set99) (X-Y)-7 = X (VY -7)
set104) Xmisses ()

set11l) (X NY) misses (X\Y)

To formalise these theorems and to mechanise their proofs in a first-order theorem prover one has
to axiomatise set theory in the system. In a case study carried out in the ILF-project [Dah97],
Tarski Grothendieck set theory was employed. The results of this case study are presented in de-
tail at http://wuw-irm.mathematik.hu-berlin.de/~ilf/miz2atp/mizstat.html and are sum-
marised by Figure 7.2. We want to point out that examples 99, 104 and 111 could not be proven
by any of the employed first-order theorem provers.

Figure 7.2 also relates the ILF case study to the respective case study carried out with LEo.
Instead of employing Tarski Grothendieck set theory the above examples were encoded in this case
study in classical type theory. This encoding fully exploits the expressiveness of the higher-order
language based on the A-calculus and describes sets by characteristic functions. For instance, the
set {X,|p X} is encoded by the A-expression AX,.p X or simply p (by n-reduction). Based on this
idea one can for instance define the notions €, C,N, U, \, —, meets and misses as follows:

Ea—>((a—>0)—>o) =)‘on- Asa—m- S X

g(a—m)—»(oz—m)—»o = AMy400 ANy 0. VX0 X EM = X EN
N(aso)s(amso)s(aso) = AMasoe ANaso. AXoo X EMAX EN
Ulaso)s(aso)s(aso) = AMason ANaso. AXo. X EM VX €N
.\(a—>o)—>(a—>o)—>(a—>o) = Ao ANgosor AXae X EM AKX ¢ N
“(a—=0)—>(a—0)—(a—0) = AMaor ANason (M\N) u (N\M)
meets(a— o) (a—o)mo = MMy 0 ANgo. AX0o X EMAX EN
Misses(q o) (amso)so = AMayoe ANas0. 7(M meets N)

LEO’s (version 1.0) detailed performance in seconds when solving the theorems of the article
Boolean Properties of Sets [TS89] is presented in Figure 7.3. The reader may wonder how some

7.5. ADDITIONAL FEATURES OF LEO 91

problems can be solved without consuming any time. This comes from the fact, that the initial
definition expansion (which is done by QMEGA) and initial clause normalisation was not measured
in this case study. And surprisingly some examples, which seem to be hard to solve for the first-
order provers (e.g., set104), can be proven just by normalising the expanded formula. A simple
example is the theorem VX,. X ¢ @, which expands and normalises to [L]T (LEo immediately
detects such contradictory clauses).

LEo was able to prove 95 of the 97 theorems and the only reason why the system cannot prove
theorems 56 and 57 is, that after applying its extensionality treatment in one of the first loops in the
proof attempt, LEO simply generates too many — in their sum contradictory — first-order clauses
to be refuted in its prototypical implementation. By simply combining LEo with a sophisticated
first-order theorem prover like Spass (e.g., within the QMEGA-system), such that LEo could pass
all the essentially first-order clauses generated by its extensionality treatment to this first-order
reasoner, this two problems should easily be solvable as well. LEO’s task in such a combined system
would be to concentrate on the extensionality aspects and the first-order reasoner would perform
brute-force search on the results in order to check if the extensionality reasoning performed so far
by LEoO is already sufficient to ensure the contradiction by straightforward first-order reasoning.

Solved theorems (of 97)
Waldmeister (pure equality prover, only Th 72 and 99 have been tried) | 1
Spass v0.78 (on Ultra Sparc 170) 72
Setheo v3.3 (“on” PVM) 76
CM v10-15-97 (ME Prover in Prolog) 72
CM v10-15-97 (with special cost function [hdef(d1,6,1,6)]) 76
CM v9-22-97 (with definition expansion in the theorem) 79
Otter (auto) 60
Gandalf v. c-1.0b 47
Spass v0.54 52
Setheo 53
All Together 94
LEo 95

Figure 7.2: Case study with LEO on simple example about sets

set ex. 8 9 10 12 13 15 17 18 19 20 23 24 25 27 28
sec .03 .02 .04 .05 .06 .04 .05 1.90 1.80 1.93 .05 .60 5.89 0 .22
set ex. 29 30 31 32 33 34 35 37 38 39 40 41 42 44 45
sec .12 .05 .02 .13 .07 .12 11 0 .02 .14 .08 .14 11 .26 2.06
set ex. 46 47 48 49 50 51 52 53 54 55 58 59 60 61 62
sec .07 .08 .12 .03 .04 .20 1.98 .21 17 17 .04 1.56 .02 .02 .03
set ex. 64 65 67 68 69 70 71 72 7 74 75 76 77 7 79
sec .13 .03 .14 .04 .05 17 .17 57 .04 .03 .02 .04 .10 .05 .09
set ex. 80 81 82 83 84 85 86 87 88 89 90 91 92 93 95
sec .08 .18 .09 .09 2.36 14 17 14 .14 .19 27 .16 .24 .05 .15
set ex. 96 97 98 99 100 101 102 104 110 111 112 113 114 115 116
sec .16 .54 .47 2.00 25.66 .10 .06 0 .24 .02 .03 .07 .18 .50 .14
set ex. 117 118 119 120 121

sec .18 1.67 1.64 .25 .15

Figure 7.3: LEO’s performance in seconds on simple examples about sets

CHAPTER 7. THE LEO-SYSTEM

Leo-Command

Description

beta-normalise
cd
decompose
delete-clause
end-report
execute-log
exil

ext

factorise
help

rmatate
new-log
para
pre-unifiers
pre-unify
prim-subst
proj-imi
project

prove
read-problem

resolve

set-flag
set-tactic
show-clause
show-clauses
show-derivation
show-flags
show-problem
show-proof
show-tactics
show-vars
step-log
subsumes
write-derivation
write-louiproof
write-proof

B-normalises a clause

changes the current directory

applies the decomposition rule Dec to a clause

deletes a clause from the current environment

closes the report stream

subsequently executes the commands in a report file

quits the current interpreter session

applies the compound extensionality treatment to a clause
applies the factorisation rule Fac to a clause

lists a short description of all commands

applies the FlezRigid rule to a clause (only with imitation bindings)
opens a new report-file

applies the paramodulation rule Para to two clauses
computes and displays the syntactical pre-unifiers of a clause
pre-unifies a clause

applies the primitive substitution Prim rule to a clause
applies the FlexRigid rule to a clause

applies the FlezRigid rule to a clause (only with projection bindings)
calls LEO in automatic mode to the current system state
reads a problem file containing a proof problem in POST syntax,
applies pre-clausification and stores the clauses either in the
set of support or the set of usable clauses

applies the resolution rule Res to two clauses

modifies the setting of a global flag

modifies the setting of a global tactic

displays a clause

displays the content of clause stores

displays a linearised derivation of a clause

displays the settings of all global flags

displays the given problem (POST input)

displays a found proof in linearised form

displays the available tactics (heuristics)

displays the settings of all global variables

interactively executes the commands stored in a log file
determines whether a clause subsumes another clause

writes a derivation of a clause in a file

writes a proof in L.out format in a file

writes a proof in a file

Figure 7.4: Some interactive commands provided by the LE0-system

7.5. ADDITIONAL FEATURES OF LEO 93

7.5 Additional Features of LEO

7.5.1 The Interactive Theorem Prover LEO

LEO can also be employed as an interactive theorem prover for extensional higher-order resolution.
The main idea thereby is to provide a system that enables the user to analyse and illustrate the
working principles of extensional higher-order resolution step by step. Especially in LEO’s first
implementation stages the interactive features turned out to be a very useful tool for experimenting
with the calculus &R. Figure 7.4 presents the most important interactive commands of LEO.

7.5.2 Loul as a Graphical Interface for Lro

Lour is a generic graphical user interface developed by Stephan Hess within his masters the-
sis [Hes99] and it is described in detail in [SHBT98, SHBT99]. Among the systems which already
employ LoUI as an interface or which are currently connected to it are: the mathematical assis-
tant OMEGA [BCF197], the induction theorem prover INKA [AHMS99, HS96], the higher-order
proof planner \-CrLAM [RSG98], and the LEO system described in this thesis. Apart from other
useful information, Lout displays a proof graph (more precisely, a proof tree with co-references to
already given nodes in the tree) and a linearised proof protocol.

LEo’s connection to Lour allows for the graphical presentation of extensional higher-order
resolution derivations and proofs with the gain for the user, that the structure of interactively or
automatically created derivations become much more transparent to him.

Figure 7.5 presents Loul’s visualisation for the proof of the small but challenging example
(Pomso@o A Posobo = Poso(@s A by)) discussed in Subsection 7.2.4. Figure 7.6 presents another
simple example about sets, which states that the power set of the empty set is the set that
contains only the empty set.

In the Lour interface triangles represent initially given clauses stemming either directly from
the assumptions or from the negated theorem. Derived clauses are presented as round nodes with
links to their ancestors and their successors. Rhombi symbolise co-references to already displayed
sub-derivations in order to avoid their duplication in the display.

7.5.3 Integration to (IMEGA

The LEO prover is integrated into the mathematical assistant system QMEGA [BCF*97], and the
main aspects of this integration are:

e LEOo and QMEGA rely on the same data structures and run in a single Lisp process. Hence,
LEO can be viewed as QMEGA’s logical engine, which can be employed to solve minor sub-
problems and to support QMEGA’s proof planner [CrS98, Mel95, Mel94].

e LEO can be employed as an integrated higher-order theorem prover just like any other of the
(currently) 10 external systems, that have been integrated to QMEGA.

e LEO can be employed as an interactive theorem prover for extensional higher-order resolution
in QMEGA. This is supported by the Loul-interface, which provides menu entries supporting
an easy selection for each of LEO’s interactive commands (cf. Figure 7.4).

Within the QMEGA system, Lio and Tps [ABIT96, AINP90], which is the only other higher-
order theorem prover integrated to QMEGA (the integration of TpPs and QMEGA is described
in [BBS99, BS98b]) complement each other. The Tps system can explore rather deep search
spaces and employs a clever mechanism for selectively expanding definitions [BA98]. But the
extensionality treatment in TPs is rather weak (e.g., TPs can not solve our little problem illustrated
in Figure 7.5 and Subsection 7.2.4).

94

CHAPTER 7. THE LEO-SYSTEM

EXAMPLE: Pyyo Go A Poso bo = Poso (Go A Dy)

1: O

2: [b]T

3: [b=(anb)F

4: [(pd)=(p(anb)]”
5: [po]t

6: [((pa)A(pb))=(p(and))]”
7: [p(anbd)]

8: [B]F

9: [a]” Vv [b]"

10: [a=(aAD)F

11: [(pa)=(p(an b))]F
12: [pa]”

13 : [d]

d

.5: Loul-Visualisation of LE0’s proof for example E$”?

Figure 7

7.5. ADDITIONAL FEATURES OF LEO 95

EXAMPLE: p(0) = {0}

Uni {kUX9}

Def.: BCA

0 =AMy 0 AByyoe V. X,B X => A X
{} =)\Xﬁ.)\Yﬁ. Y =X
0 .= AY,. F,

To show:

'(()‘Ba—m- (VXQ. (B X) = J)) —
(ABasyo B =AY, 1))

Uni {Sk]fXS} 1 - O
A g el ,, X2 =¢el _, sk'1F
3,4 el , X3
5: [eflx—m ng = erlx—m Skl]F v [eflx—m Xg]F
61l XEPVEL, X3P
T: [eflx—m Xolz]F v [ea—m = AZ. J—]T
8,9 [(ABaso- (VXa- (B X) = 1)) =
(ABussor B = AV, L)]F
10,11: [el_, sk']T
12 e e = e, XTP Y (el sk
13 leaso Y [sk']”
, 14 : leh o = AYo LIF Vel ,, skT
Uni {e2/X7) 155 [ehoy XEF Ve, ski]f

Figure 7.6: Loui-Visualisation of LE0’s proof for example E§*t.

Chapter 8

Examples

This chapter presents various examples that illustrate the basic ideas of the calculi ER, EP, and
ERUE and compare refutations in the different calculi with each other. These examples especially
demonstrate the importance of an appropriate extensionality treatment in higher-order theorem
proving.

8.1 Extensionality in ER

This section discusses five simple, but with respect to their mechanisation nevertheless challenging
examples for an higher-order automated theorem prover. As already mentioned in Subsection 7.2.4,
example ES® is currently not automatically provable in any higher theorem prover apart from
Lro. Note that all refutations are quite trivial and straightforward in the extensional higher-
order resolution approach &R.

E$ a, = b, = (VPyy,. Pa = Pb)

The non-trivial direction of the extensionality property for truth values: if a, is equivalent to
b,, then a, is Leibniz equal to b,. In the following refutation p,—, is a new Skolem constant).

Cnf(—E$") : Ci:[pa]” Cy:[pb])F Cz: [a]” V)T Cy:[b]T V[a]"
Res(Cq,Cs) : Cs:[pa=pb)~

Dec(Cs), Triv : Ce: [a=0b]F

Equiv(Cs),Cnf: Cr:[a)f VBT Cs:[a]T Vv [b]T

The rest of the refutation with clauses Cs, C4,C7, and Cg is obvious.

E5"™ posso (a0 Abo) = p (bAa).

Any property which holds for a A b also holds for b A a. This statement can also be read as:
whenever a A b 1s in a set of truth values p,_,,, then also b A a is in p,_,,.

Cnf(-E5") . Ci:lp(an b)]F Co:[p(bA a)]F

Res(C1,Cs) : Ca:[p(anb)y=p (A a)]F

Dec(Cs), Triv : Ca:lanb=bAa)"

Equiv(C4),Cnf: Cs:[a] v [B]F Co:[a)f vIBT Cr:latf Cs:[B)F

The rest of the refutation is obvious: resolve C5 against C7 and Cs.

Egm (p0—>o ao Ap b(,) =p (b/\ a)

If the truth values a, and b, are in set p,_,, then a, A b, is in p,—, as well.

96

8.1.

ert
E4

ert
E5

exrt
EG

EXTENSIONALITY IN ER 97
Cnf(—E5™") : Ci:[pal” Cy:[pb]” Cs:[p (anb)F
RGS(C3,61) : Cs: [p(a/\b):pa]F
Res(Cs,Cs) : Cs:[p(anb)=pblF
Dec(Cy), Triv: Cs:[aAb=a]F
Dec(Cs), Triv: Cr:lanb=10bF
Equiv(Cs),Cnf: Cs: [a]F v [0 Co:[a]T VBT Cio:[a]”
Equiv(C7),Cnf . Ci1: [a)f v [0]F Ciz: [a]T vV [B]T Ciz:[b]T

The rest of the refutation is obvious: Resolve Cg against Ci¢ and Ci3.

(VX,. VP Sou (P (mus, X) = P (n,5, X))

= (VQu=1)=o @ (AX,. mX) = Q (AX,. nX))
This formulais an instance of the {-rule (VX,.m,, X =n,,,X) = (AX,.mX) = (AX,. nX)

for Leibniz equality; for details on the &-rule, e.g., see [HS86].

Cnf(-E5") : P (m X)]

[q (AX.m

FvIP (n X))

X" Cs: lg (AX.n X)I7

Unfortunately the idea to resolve Ca and Cs immediately against €1 does not lead to successful
refutation as the resulting unification constraints are not solvable. Therefore we choose
another way and resolve between C; and C3 (in the following derivation p,—,, ¢(1—.)=0, and
s; are new Skolem constants):

Res(Ca,Cs) : Ca:lg(AX.m X) =g (AX.n X)F

Dec(Ca), Triv: Cs:[AX.m X =AX.n X

Fune(Cs) : Co:[ms=mns]"

Leib(Cs),Cnf: C7:[p (m s)]T Cs:[p(ns)”

We made a detour to the pre-unification part of the calculus and modified the clauses Cs
and Cs in an extensionally appropriate way and Cy and C3 have now their counterparts in C7
and Cg But in contrast to Cy and C3 the new clauses can successfully be resolved against C;.

In our refutation q(,,)0, 51, Pi—o are new Skolem constants.

)) = (VQ(L—H)—HJ- Qm = QTL)

This is an instance of the non-trivial direction of the functional extensionality axiom for type
¢t — ¢ (in the following derivation p, o, ¢(,-,)=0, and s; are new Skolem constants):

(VX,-VYP, . P(m,—,X) = P(n,5, X

Cnf(mEg™) . Ci: [P (m X)]F V[P (n X)]
Cy: [qm]T Cz:[qgn)”
Res(C2,C3) : Cs:[gm=qn]"
Dec(Cs), Triv: Cs:[m=n]"
Fune(Cs) : Ce:[ms=n .]F
Leib(Ce),Cnf . Cr:[p (m s)]T Cs:[p(ns)]F

The rest of the refutation is (like above) obvious: resolve C7 and Cs against C;.

In our refutation q(,,)50, Si, P10 are new Skolem constants.

p(0) = {0}

98 CHAPTER 8. EXAMPLES

A (similar) proof for this example in calculus ER is also illustrated by Figure 7.6.

Cnf(—EE™) C1 : [(ABoa- (VXo- (B X) = 1)) = (ABoa- B = AY,. L)|F
Fune(Cy), Equiv,Cnf . Co:[e! X]JF Vel =22, L)F
Cs: el s]T viel =2z, L)F
Cq: el)T v et X]F
Fund'(C2), Equiv',Cnf . Cs:[er X]F v [e! Y]F
Fac(Cs),UNT: Ce :: [er XIF

Func'(C3), Equiv,Cnf: C7:Cy:[e! s]T v [e! €]
Res(C4,C7), Fac,UNT: Cs:[e! s]”
RBS(CG,Cg) O

8.2 Decomposition in ER

Example EP¢¢ below demonstrates the basic ideas of extensional higher-order resolution and
illustrates why this approach can also be seen as test calculus for extensional higher-order E-
unification. This example furthermore focuses on the role of the decomposition rule in connection
with the extensionality rules and compares the slightly modified decomposition rule Dec employed
in this thesis with the rule Dec’ as used in [BK98a]:

CV[hUr =h VP
CvUl=vify. . .v[U"=vF

Dec!

Our example extends E£®® from the previous section: suppose we have four function constants,
flasa)sasar Jasa)sasas Pasa, and ja—sq, and we know that f equals g and h equals j (in
the E-unification perspective we can assume that this two equations define our theory E). We
want to prove that under this assumptions (under this theory) application (f h) equals application
(g j). Depending on the actual encoding of the assumptions and the assertion, a respective proof
is either trivial or quite complicate to mechanise in classical type theory. A formulation that is
not trivial to mechanise (as the application of the extensionality principles is required) and which
uses Leibniz equality is:

EP (VXussae W (f X V) 2 (9 X V) A (VZau (h 2) = (G 2)) = (F B) = (g)

When expanding the definition of =, negating the theorem and applying pre-clausification we
obtain the following pre-clauses for this example:

" VPasor VX osor VYo ((fFXY)V(P(gX Y)_)]T
[VQa—m V7 o _'(Q ()V (Q (Z))]T
C3 : [_‘(VR(a—m)a()- (_‘(()) V((g J))

Clause normalisation leads to:

Ca:[P(fXY)NVIP (g X YT C5:[Q (h 7]FV[Q G "
Co:[r (f1)]" Co:lr (g 9)°

The reader may check that resolving Cs and C7 against Cs4 does not lead to successful refutation
(c.f. discussion of example E1 in [BK98a]). Instead we resolve between Cs and C7 and proceed by
employing the difference reduction idea.

The first refutation we present here employs rule Dec. Below we will present a second refutation

8.3. LEIBNIZ EQUALITY AND ALTERNATIVE DEFINITIONS IN ER 99

that alternatively use rule Dec’.

Res(Cs,C7) : Cs:[r (fh)=r(9)]F
Dec(Cs), Triv: Co:[f h=gj¥
Dec(Co) Cro: [f=gl" VIh=4]"
2 x Fune(Cro): Cii:[fts=gtsFvVhu=jul
2% Leib(Cr1) : Cia: [VPassoo (P (f 1 5)) V(P (gt s))]"
V [¥Qao =(Q (h) V(Q (j u))]”
Cnf(Cio) : Ciz:[p (F 1)] Vg (hu)” Cuatlp (F15)" u)]”
Cis:[p (9t 9)]" Vg (hu)” Cie:[p (9t 9)]" Vg (5 w)]”
Prim(Cy) : Cir : [P (fF X Y)NT VI[P (¢ X Y)©
Prim(Cs) : Cig: [Q (h 2" VIQ (5 217

Within this derivation 4, Sa, %ha, Paso and ¢u—s, are new Skolem terms and P.,_ Q._, , ar
new predicate variables. The rest of the refutation employs straightforward resolution between
the clauses C13-C16 and our assumption clauses C4,Cs, C17 and Cis.

A alternative refutation that uses the rule Dec’ is a bit more tricky:

Res(Cs,C7): Cs:[r (fh)=r(g95)"

Ded' (Cg) : Co:[fh=gij"

Func(Co) - Cio:[fhs=gjsF

Leib(Cio) : Ci1 : [VPasson —|(P (fhs)V(P(gy s))]F

Cnf((,’u) : 612 : [p (f h S)] 613 : [p (g] S)]F

Res(Ci12,Ca): Cra:[P(g X YV)TVp(fhs)=P(f X YV)F
Res(Ci3,Ca): Cis: [P (F XY VIp(gjs)=P (¢ X V)F

Note that the unification constraints in C14 and Cy5 are solvable by first imitating p and then either
projecting to the argument of P or imitating to the argument of p. In our refutation we choose
for Ci4 the partial projection solution ¢y := [(AXs. p X)/P,h/X,s/Y] and for Ci5 the partial
imitation solution o5 := [(AX,. p (¢ j s))/P’]. Both solutions can be computed in ER by applying
eager unification. We propagate this solutions back to the non-unification literals of the clauses
and proceed as follows:

UNTI(C1a) Cis :[p (9 h9)]”

UNT(Cy5) : Cir:[p (g7 s)F

Res(Ci6,Ci7): Cis:[p(ghs)=p (979"

2% Dec’(C1s) : Cio:[hs=js)"

Leib(Cm) : Can : [Vro—w- B Q (h 5)) \ (Q (.7 5))]F

Cnf(Ca) : Co1 : [g (R s)]" Co 2 g (G 5)]"

Res(C21,C5) 1 Co3:[Q (7 2)]F Vg (hs)=Q (h 2)]F
Res(C22,C5) 0 Coa: [Q (W ZNF Vg (js)=Q (7 2"
Res(Cn,Cot) - [Q G 2) =@ (h Z]F Vg (h's) =@ (h 2 Vg (G 5) =@ (G 2]

With unifier o := [(AXa. ¢ (h $))/Q, (AXo. ¢ X)/Q',s/Z'] this unification constraint is obviously
solvable, such that the empty clause is obtained by applying pre-unification.

This discussion raises the question whether rule Dec or rule rule Dec’ is better suitable within
calculus ER. This problem can and should be clarified by experiments in practice. As an alternative
to [BK98a] and in order to simplify the formal completeness proofs at certain points we decided
in this paper to use Dec.

8.3 Leibniz Equality and Alternative Definitions in ER

The examples discussed in this section focus on the equivalence of Leibniz equality and alternative
definitions for equality in classical type theory.
The definitions for equality that are compared are:

100 CHAPTER 8. EXAMPLES

Leibniz Equality

.o

= AX 4 AY,. VP oo PX = PY
Reflexivity Definition

=% = AXow Ao VQossams0r (Ve (@ Z 7)) = (Q X V)

Modified Leibniz Equality

=Y = AX e AV VP o ((ao Vo @) AP X) = (o V= b,) APY)

Leibniz equality employs the substitutivity principle to define equality, whereas the second al-
ternative definition, which is presented and discussed in Andrews textbook [And86] at page 155,
employs the reflexivity principle. The third (artificial) definition illustrates that there are infinitely
many modifications of Leibniz equality (and analogously of the Reflexivity Definition) which all
denote the same relation in Henkin semantics, namely equality. The examples furthermore illus-
trates that it is impossible to decide whether a given formula denotes the equality relation as this
requires to decide whether two arbitrary formulae are equivalent.

ET (i) (u="v) = (v =% v) and (ii) (u =% v) = (u = v)
In case (i) we use the following refutation (¢a—a—o is a new Skolem constant):

CNF (i) : Ci:[PufvIPT

Coilg 7 Z]

Cs:[qu v]
Res(Cy,Cs) : Co:[Pul" VIPv=qu]"
UNT(Cy) with [(AX.qu X)/P]: Cs:[quv]”
Res(C2,Cs), Triv : O

In case (ii) we proceed as follows (pa—o is a new Skolem constant):

CNF(i) - Ci:[Qz2Vv[QunvT
Cy:[pul”
Cs:[pv]f
Prim(Cy), Subst : Ca: Q' 22T VI[Q uv]F
Res(Cq,C3) : Cs:Qz2fV[Quuv=pv]F
UNTI(Cs) with [AX,Y.pY)/P]: Cs:[p 2"
Res(C4,C9) : Cr Q22" VI[Q wv=pu]l
INT(C5) with [(AX,Y.p X)/P]: Cs:[pz]”
R@S(CG,Cg), Triv : O
Alternatively one can directly prove ===, but the proof is a little more bulky.
EF (i) (v =" v) = (u =% v) and (ii) (v = v) = (u =% v)
In case (i) we proceed as follows:
CNF (i) : Ci: [Pulf v[P T
Cy: [pu]” VviaT
Cs:[pul” Vvia"
Ca:[pv)fVviaT
Cs : [pv]F vIa"
Res(CQ,Cg), ac,2x Triv: Cs:[pu]”
Res(Cs,Cs), Fac,2 x Triv: C7:[pv]’
Res(C1,Cs) : Cs:[Pv]TV[Pu=pul”
Res(Cs,Cr) : Co:[Pu=pulfVIPv=pu
UNZ(Co) with [p/P]: O

8.4. REASONING ABOUT SETS WITH LEIBNIZ EQUALITY 101

In case (ii) we employ the following derivation:

CNF (i) : Ci:[a)f V[P u]lf v[p]F VP T
Cy:[a)f V[P u]lf v[p]T V[P v]T
Cs: [a]T VI[P u]F vI[p]F V[P v]T
Ca:[a]T VP ulf v[p]T V[P v]T
Cs: [pu]”
Ce: [pv]¥
Res(Cl,Co) 3x Fac,4x Triv: C7:[a]f V[P u]F V[P v]T
Res(C3,C4),3 x Fac,4x Triv: Cg:[a]T V[P u]" V[P v]T
Res(C7,C8),2 x Fac,3x Triv: Cq:[Pu]f" V[P v]T
Res(Co,Cs) : Cio : [PV]TVIPu=pull
Res(C10,Cs) : Cii:[Pu=pul"V[Pv=puF
UNZI(C11) with [p/P]: O
Alternatively one can directly prove that :'a:'a_m_mia). Again the proof is a little more

bulky.

8.4 Reasoning about Sets with Leibniz Equality

The case study carried out with LEO on the examples presented in the Mizar article Boolean
Properties of Sets [TS89] has already been discussed in Section 7.4. This case study makes use of
the expressiveness of classical type theory and encodes sets as characteristic functions instead of
employing, e.g., Tarski Grothendieck set theory [Try89].

The particular proofs generated by LEO are in most cases quite short and elegant. Very inter-
esting is, that some proofs are found immediately by definition expansion and clause normalisation.

LEO’s performance together with the detailed proofs is reported at http://www.ags.uni-sb.
de/projects/deduktion/projects/hot/leo/.

Currently the author experiments with the examples of the article Basic Properties of

Sets [Byl89].

8.5 Positive Extensionality Rules in £P and ERUE

The examples discussed in this section demonstrate that the positive extensionality rules (or exten-
sionality axioms which we want to avoid) are unavoidable in order to reach Henkin completeness
approaches for primitive equality. As discussed in detail in chapter 2.8 none of these examples can
be proven in EP or ERUE without employing the additional extensionality rules.

E{—’ara Cl . [(l — _|(1]T

Refutation in &P and ERUE

Equiv' (C1),CNF : Co: [AIF VAT C3:[A]T v[A]T
Fac(Cs),UNT, Fac(Cs),UNL: C4:[A]F Cs - (AT
Res(Ca,Cs),UNT: Ce: O

As rule Para is not needed this refutation is also possible in calculus ERUE.

Egara Cl . [G X =t p]T

102

Para
ES

Para
E4

Para
ES

CHAPTER 8. EXAMPLES

Refutation in P and ERUE

Fund'(C1) : C:[GXY=pY]"

Equiv' (Cy) CG:[GXYIFVvpY]T C:[GXY)TVv]pY]F
Prim(Cs), Subst : Cs:[G' X YT v[p YT

Prim(C4), Subst : Cs : [G" X V'V [p YV]F

Fac(Cs),UNT: Cr:[pY]"

Fac(Cs),UNT: Cs:[p Y]

Res(C7,Cs),UNTL: Cq:0

As rule Para is not needed this proof is also possible in calculus ERUE.
Ci:[m=AX,. (AX,. X A=X)|T
Refutation in &P and ERUE

Func' (Cy) : Cy: [MY,=(3X,. X A=X)]T

Equiv'(Cy) : Cz: [MY]FvI[s]T Cy: [MY]F Vv I[s]F
Prim(Cs), Subst : Cs [HY]TvI[s]T

Fac(C4q),UNL, Fac(Cs),UNT: Cg : [s]T Cr: [s]F
Res(Ce,C7),UNT: Cs: O

where s, is a Skolem constant for X. As rule Para is not needed this proof is also possible

in calculus ERUE.
C1:[m=XX,. ~(m X)]T
Refutation in £P and ERUE

Fund'(Cy) : Co:[mY =-(m Y)]T

Equiv'(Cq) : C3:mY)TvimY]T Cy:mY)FvmY]F
Fac(C3),UNT, Fac(Ca),UNT: Cs:[m Y]T Co : [m Y]F
Res(Cs,Cs), UNT: Cr: O

As rule Para is not needed this proof is also possible in calculus ERUE.

Cl . [P q —t=i==0 p T‘]T CZ . [q X =t—o ﬁ(r X)]T

where P(,_5,50)—(1—1—10), X, are free variables and ¢,,,,7,,-, are function constants.
Refutation in &P

3x Func'(C1): Ca:[Pq ¥ Y2 V3= Pry!y2 vl
Func'(Cq) : Ci:lg X Z,=°=(r X Z)]T
Para(Cu,Cy) - Cs [P r Y] Y2VATVIP g V) Y2 VP =2 (¢ X 7 =0 ~(r X Z))F

By pre-unifying Cs one can compute the following unifier for its unification constraint:
(AUis150, Vi, W, T.. U VW =° =(r V W))/P, V/Y1, W/Y?]. Thus by eager unification
applied to Cs with get:

UNT(C5), Subst . Co:[r X Z="=(r X Z)]F
The rest of the refutation is analogous to EFXa,

Refutation in ERUE

3x Func'(C1): C3:[PqY'V2Y3=Pry!V2YVAT
Fund'(Cs) : Ca: g X Z, =°(r Z)]T
Equiv'(Cs) : Cs:[PqY ' V2Y3PVIPrY!V2YVAT
Co: [P g VL Y2 YT V[P r Y V2 Y2
Equiv'(Cs),Cnf: Cr:lg X Z)FVv[r X Z)F Cs: g X Z)'v[rX 27

The rest of the refutation is straightforward resolution on Cs, ..., Cs.

8.6. COMPARING EP AND ERUE 103

8.6 Comparing &P and ERUE

Properties of Primitive Equality The following examples demonstrate that primitive equal-
ity denotes an extensional congruence relation in all Henkin models (i.e., the intended equality
relation). The single properties to be checked are reflexivity (ET), symmetry (ET), transitivity
(Ef), congruence (EZ) and extensionality (EZ).

E= VA, A= A.

Negation and clause normalisation leads to (a, is a new Skolem constant):
Ci:la=a)”

Refutation in £P: immediately by unification.
Refutation in ERUE: immediately by unification.

ES VA, Bo. (A =% B) = (B = A).

Negation and clause normalisation leads to (aa, ba, Pa—yo are new Skolem constants):
Ci:fa="0b" Co:[b="a)"
Refutation in &P:

Leib(C2), CNF : Cs:[pa” Ca:[pb¥
Para(C1,Cs), Triv: Cs:[p b]T
Res(C4,Cs), Triv: O

Refutation in ERUE:
Res(C1,Cs), Triv : O (possible because of symmetry convention in ERUE)

EF VA VBa. VO, (A = B) A (B = C) = (A = C).

Negation and clause normalisation leads to (@a, ba, Ca, Pa—so are new Skolem constants):

Ci:la=b" Co:[b=¢"T Cs:[a=c"
Refutation in &P:
Leib(Cs), CNF : Ca:lpal Cs:[pc¥
Para(Cy,C4), Triv: Cs:[p b*

Para(Cs,Cs), Triv: Cr:[p)
Res(C5,Cr), Triv: O

Refutation in ERUE:

Res(c3,¢2) : Ca:lla=c)=(b=c)¥
2 x Dec(c4), Triv: Cs:[a=b"
Res(cl,eb),UNT: (e :0O

EZ VFaop VA VBo. (A= B) = (F A= F B).

Negation an clause normalisation leads to (aq, bo, faesp, Ps—o are new Skolem constants):
Cr:la=10" Co:[fa=fb"
Refutation in &P:

Leib(Cy), CNF - Ca:lp (fa)]” Ca:lp(f0)F
Para(Cy,Cs), Triv: Cs:[p (f b)]”
Res(Cs,C4), Triv: O

Refutation in ERUE:
Dec(c2), Triv : Cs:la=0b"F
Res(cl,e3),UNT: C4:0O

104 CHAPTER 8. EXAMPLES

E= VP, VGassp. (VA (F A=P G A)) = (F = G).

Negation and clause normalisation leads to (fa—s 3, Ja—s g, Ps—0, S are new Skolem constants):
Ci:[f A=g A" Co:[f=gl"
Refutation in &P:

Fune(Cs) : Cs: [fs=gs"
Leib(Cs), CNF Ca:lp(fs)]” Cs:[p (g s)]F
Para(C1,Ca),UNT: Cs:[p (9 s)]

RES(CG,Cs),UNI: O

Refutation in ERUE:
Func(Cs) : C3:[fs=gs)F
Res(cl,e3),UNLZ: C4:0

Note that the ERUE refutations are in all cases shorter and more elegant.

Especially EZ shows that in extensional higher-order paramodulation it might be useful to
allow paramodulation also on unification constraints in order to get shorter and simpler proofs
without recursive calls from within the unification process. On the other hand i1t seems to be quite
complicated to guide an approach that simultaneously paramodulates into unification constraints
and employs recursive calls to the overall refutation procedure from within unification.

Primitive Equality and Leibniz Equality We analyse in calculi £P and ERUE whether Leib-
niz equality and primitive equality denote the same relation.

ET We prove that ="=2722°=2 je. that (AXs. AYa. VPoryo. P X = P Y) =072 02

Refutation in &P (uq, va and pa—yo, qa—o, 'a—o are Skolem constants)

CNF(ET) : Cr [(AXqw Ao ¥Paryo P X = P V) =000 0T
2 x Func(Cy) : Co: [(VPasor Pu= Pv)=°(u="0v)"
Equiv(Ca2),CNF = Cs:[pu]” V[u=2v]"

Ca:[pu]”VIu=2v"

Cs: [Pu]TVu=2v]T V[P uF
Res(C3,Ca), Triv: Co: [u="v]""V[u=2=vF
2 x Letb(Ce) : Cr: [VQaoso Q@ u=Q v] V[VRasyor Ru= Rv]¥
CNF(Cr) : Cs: [qu]f VIruT

Co:[qgu)t vIrv¥

Cio: [qg V]I V[ru”
Ci1: g v)F" v [rv)¥

Prim(Cs) : Cio: [PV]T V]u="v]T V[P u]F

VIP =" (\Xgs (Hara X) =" (Tl X))
Subst(Cy2) : Ciz: [(H v) = (H' v)]T Vu=>2T V[(H u)=* (H u)]”
Fac(Cia) : Cia :[u="v]T V[(H u) = (0 "u))’ -

VI((H v) = (H' 1))
2 x Dec(Cra), Triv: Cis: [u="v]T V[(H u) =" (H' u)]' V[(H v) = u]"
V[(H" v) = v]"
2 x Flex Rigid(Ci5) : Cis: [u="v]T V[(H u) =* (H' u)]" V[(H v) = u]"
VI(H" v) = v]" V[H = AXa w)]" V[H = (AXa X)]7
2 x Subst(Ci6) : Cir:[u="v]TV[u=>u]" Vu=u]"V=0]F
3 x Triv(Ci7) : Cig: [u=*" v]T
4 x Para(Cig,{Cs, Co,C10}),3 x Triv :
Cio: [qv]T VIru]T Coo:[qgv]T VIrv]F Cor:lgv]" VI[ro]T
Straightforward Resolution on Cyg, C29,C21,C11 : O

Refutation in ERUE

8.6. COMPARING EP AND ERUE 105

We replay the derivation above and instead of the paramodulation steps between C;g and
Cs, Cg, C19 we resolve between Cig and the unification constraint Cs.

EF We prove that =*="7%7°=2 e, that VQ(asa—so)soyr (@ (AX. AY. VP, 0 P X =
PY))= (@ =)

Refutation in P (¢(a—a—0)—o i a Skolem constant):

CNF(EF) : Ci:1q ()\X AY. VP, .. PX =P Y)]

Ca:lg ="

Res(Cq,Cs) : Cs:[(g AX.AY.VPyo. PX = PY)) =727 (g :a)]F
Dec(C3), Triv: C4:[AX.AY.VP,,,. P X = PY) =07o7o=o|l

C4 is identical to Cy in the refutation for ET above:...O

Refutation in ERUE
We employ the previous initial derivation and then an refutation that is analogous to the
ERUE-refutation for ET.

Reasoning about Sets with Primitive Equality

E:®" Let the set of odd numerals be defined as the set of non-even numerals. Then the power
set of the set of odd numerals greater than 100 is equal to the power set of the set of even
numerals greater that 100:

{X|odd X Anum X} ={X| -~ev X Anum X} =
P{X] odd X Anum X AX > 100} = p{X]| - ev X Anum X A X > 100}

where the power set is defined by p := AMay—0- ANy VX0 N X = M X. Negation and
clause normalisation leads to:

Cl : [(AX. odd X A num X) = (/\X_ —ev X Anum X)]T

Co: [(AN.VX. N X = ((odd X Anum X) A X >100)) =
(AN.VX. N X = ((= ev X Anum X) A X > 100)))]7

The probably simplest refutation in calculus EP is:

Func'(Cy) : Cs:[(odd Y Anum Y) = (= ev Y Anum Y)|"

Fune(Cs) : Cs:[(VX.n X = ((odd X Anum X) AX > 100))
=(VX.n X = ((-ev X Anum X) A X > 100)))]"

Equiv(Cs) : Cs: [VX.n X = ((odd X Anum X)AX > 100)]Tv

VX.n X = ((— ev X Anum X) A X > 100)]F
Co: [VX.n X = ((odd X Anum X)AX > 100)]Fv
VX.n X = ((— ev X Anum X) A X > 100)]¥
Para(Cs3,Cs5),Triv: Cr7:[VX.n X = ((—ev X Anum X)A X > 100)]Tv
VX.n X = ((— ev X Anum X) A X > 100)]F
Fac(Cr), Triv : Cs:[VX.n X = ((—ev X Anum X) A X > 100)]F
Para(Cs,Cs), Triv: Co:[VX.n X = ((= ev X Anum X)A X > 100)]FV
VX.n X = ((-ev X Anum X) A X > 100)]"
Fac(Cy), Triv : Cio:[VX.n X = ((—m ev X Anum X) A X > 100)]7
Res(Cg,Cro), Triv: O

The following ERUE-refutation has a more goal directed character and is at least not more

106 CHAPTER 8. EXAMPLES

complicated than the above paramodulation proof:

Fund(Cy) : Cs:[(odd Y AnumY)=(-evY Anum Y)]T

Fune(Cy) : Cs: [(VX.n X = ((odd X Anum X) A X > 100))
=(VX.n X = ((-ev X Anum X) A X > 100)))]"

Dec(Cyq), Triv : Cs: [(AX.n X = ((odd X Anum X) A X > 100))
=(AX.n X = ((-ev X Anum X) A X > 100)))]"

Fune(Cs) : Cs : [(n s = ((odd s Anum s) A s > 100))

=(ns= ((—evsAnums)As>100)))]"
2 x Dec(Cs),4 x Triv: Cr:[(odd s Anum s) = (= ev s Anum s)]¥
Res(Cr, Cg),UNI: O

If we slightly modify, i.e., complicate, the example by switching the first two conjuncts in the
definition of odd numerals, such that C; : [AX. (num X Aodd X) = AX. (= ev X Anum X)]T
and C3 : [(odd X Anum X) = (= ev X Anum X)]T, both refutations obviously need to employ
additional recursive calls from within unification in order to show that [(num X A odd X) =
(odd X A num X)]¥ is a solvable extensional unification problem. More precisely in an
analogous paramodulation refutation to above additional recursive calls are necessary to
justify the paramodulation steps leading to Cz and Cio (note that Triv is not applicable in
both cases to justify the resolution step immediately). These clauses would look like

Cs: [VX.n X = ((—ev X Anum X)AX > 100)]Tv
[(num X Aodd X) = (odd X Anum X)|¥

and
Cio: [VX.n X = ((—ev X Anum X) A X > 100)]Fv

[(num X Aodd X) = (odd X Anum X)]¥

In both cases the unification constraints can be eliminated only by recursive calls to overall
proof procedure.

A RUE-resolution refutation analogous to the above one would result in Res(Cs,Cs) : C7 :
[(odd s Anum s) = (= ev s Anum s) = (num s A odd s) = (= ev s Anum s)]¥ such that
decomposition and subsequent elimination of trivial pairs leads to Cs : [(num X A odd X) =
(odd X A num X)]¥. Then an recursive call to the overall proof procedure leads to the
refutation.

This modified example demonstrates that calculus EP in some cases unavoidably needs to
perform recursive calls to the overall refutation process in order to justify single paramodulation
steps. These side computations obviously follow the difference reduction idea. Thus, in practice
the paramodulation approach requires both: appropriate heuristics in order to guide a proof
along the paramodulation, i.e., term rewriting idea, and appropriate heuristics that guide the side
computations based on the difference reduction idea.

The following example demonstrates that in some situations the term rewriting idea even
seems to be completely inappropriate and useless. Therefore we further modify and complicate our
example above. The idea is to restructure the single conjuncts in the assertion, such that rewriting
with the assumption equation at the right subterm of the assertion becomes impossible. This final
modification additionally illustrates that an efficient paramodulation approach is probably not
easy to mechanise in practice, completely independent from the question if suitable reduction
orderings are available or not.

E$** We complicate problem E$®* by switching the conjuncts in the assertion:

{X]odd X Anum X} ={X| 7ev X Anum X} =
{X]| (odd X NX > 100) Anum X} = p{X| (- ev X AX > 100) Anum X}

Negation and clause normalisation leads to:

C1: [AX. (odd X Anum X) = AX. (= ev X Anum X)]T
Co: [(AN.VX. N X = ((odd X A X > 100) A num X))
= (AN.VX. N X = ((m ev X AX > 100) A num X))]¥

8.6. COMPARING EP AND ERUE 107

We first try to proceed analogous to example E{¢:

Func'(C1) : Cs:[(odd X Anum X) = (= ev X Anum X)]T
Fune(Cy) : C4q:[(VX.n X = ((odd s A s> 100) A num s)) =
(VX.n X = ((= ev s As > 100) A num s))]7

Following the paramodulation based refutation for E{® we perform a recursive call to the
refutation process with rule Fquiv and then try to rewrite the resulting clauses in an appro-
priate way:

Equiv(Cs) : Cs:[VX.n X = ((odd X A X > 100) A num X)]TV
VX.n X = ((nev X AX > 100) Anum X)]T

Cs : [VX.n X = ((odd X A X > 100) A num X)]FV
VX.n X = ((= ev X A X > 100) A num X)]F

Surely, there are many different rewrite steps possible with Cs on these clauses, but as
the reader may convince himself, none of these rewrite steps lead to unification constraints
that are solvable (even recursive calls to the overall proof procedure cannot help and un-
fortunately only overwhelm the search space with useless clauses). The problem is that
the right paramodulation step is simple not possible because of the improperly modified
term-structure. The only possible way to proceed that the author explored is to employ
a difference reducing refutation as motivated by the respective ERUE refutation in example
E{®* above:

Dec(Cy), Triv: Cs:[(AX.n X = ((odd X A X > 100) A num X))
=AX.n X = ((-ev X AX > 100) A num X)))]F
Fune(Cs) : Cs : [(n s = ((odd s A s > 100) A num s))
=(ns=((-evsAs>100) Anum 9)))]F
Dec(Cs), Triv: Cr:[((odd s As>100) Anum s) = ((—= ev s As > 100) A num s)]¥

Instead of immediately resolving between C7 and Cs as in the corresponding derivation for
E{®* we employ the extensionality rules to both clauses and proceed with a straightforward
resolution proof.

Equiv(C7)CNF,

Fac,UNT: Cs : [odd s]T V [ev 5]
Co : [odd S]T V [s > 100]7 (subsumed by C12)
Cio : [odd s]T v [num 9]T (subsumed by Cig)
Ci1: [s > 10017 V [ev s]F (subsumed by Cq2)
012 : [S > 100]T
Ciz:[s> IOO]T \; [num s]T (subsumed by Cq2)
Ciq: [num s]T V [ev 5] (subsumed by Cig)
Cis : [num s]T v [s > 100]7 (subsumed by Cig)

Cig : [num s]T
Ci7 : [odd s]F' V [s > 10017 V [num s]F' V [ev s]T

Straightforward resolution refutation with Cg,Ca1, Ca2, Cas

An alternative Refutation in RUE-resolution approach that illustrates the difference reduc-
tion idea even better is the following:
Res(Cs,C7) 1 Cs:[((odd X Anum X) = (- ev X Anum X)) =
(((odd s A's > 100) Anum s) = ((= ev s A's > 100) Anum s)]¥
Fquiv(Cs),Cnf :
C7 : [(odd X Anum X) = (= ev X Anum X)]|TV
[((odd s A's > 100) Anum s) = ((= ev s A's > 100) Anum s)]7
Cs : [(odd X Anum X) = (= ev X Anum X)]F'V
[((odd s As > 100) A num s) = ((— ev s A's > 100) Anum s)]¥

108 CHAPTER 8. EXAMPLES

2 x Equiv'(C7),Cnf, Fac, Triv :
Co : [odd s]T V [ev s]T V [odd X]T V [ev X]T V [num s]F V [s > 100]T V [num X]F
Cio : [odd X]TV [ev X]T V [ev s]F V [num s]F v [s > 100]7 V [odd 5] V [num X]F
Ci1 : [odd s]T V [ev s]T V [num s] Vv [s > 10017 V [ev X]F'V [num X]F V [odd X]F
Cia : [ev 8]V [num s]F v [s > 100]F V [odd s]T V [ev X]F V [num X]F V [odd X]F
2 x Equiv'(C7),Cnf, Fac, Triv :
Cis : [num s]T V [num X7

Cia : [s > 10017 V [num X]7

Cis : [odd s]T V [num X]T V [ev s]¥

Cis : [s > 10017 V [odd X]T V [ev X]F

Ci7 : [odd s]T V [odd X]T V [ev s]F V [ev X]F

Cig : [s > 10017 V [ev X]T V [odd X]T" V [num X]¥

Cio : [ev s]T V [num X]T V [odd s]¥" V [num s V [s > 100]"

Cao : [ev s]T V [odd X]T V [odd s]¥" V [num s]T' V [s > 100]" V [ev X]F

Co1 : [ev s]T V[ev X]T V [odd 5] V [num s]F" Vv [s > 1001 V [odd X]F' V [num X]F
Straightforward resolution proof on Cg,...,Cq1 : O

We could even resolve immediately between C3 and C4 and proceed with a recursive call
to the overall proof procedure as illustrated above. The resulting set of clauses then again
increases a bit but a straightforward resolution proof is still easy to find.

With this example we demonstrated that a pure termrewriting is most likely impossible in
extensional higher-order resolution as a combined extensionality treatment that takes functional
and Boolean extensionality into account seems to require the application of difference reduction
techniques.

The following example illustrates that neither rule Para nor rule Para’ capture full functional
extensionality.'

E{unc (\V/XL fis X =g, X) = (p(b—”)_m f= Pli=i)=o !])

This problem normalises to:

Ci:[f X=gXI" Co:lpfI" C3:[pg)"

Note that neither with rule Para nor with rule Para’ a fruitful rewriting step is possible
(when applying rule Para’ in order to rewrite f in C» we obtain the unification constraint
[P (f X) = p fI¥, which is not solvable with a projection binding). Instead we have to
employ difference reducing derivations and again the ERUE derivation is more elegant:

Refutation in &P

Res(C2,C3), Dec . Ca:[f =g]*

Func(Ca) : Cs:[fsi=y SL]T

Leib(Cs) : Co:[p (f s)7 Cr:[p (g9
Para(Cy,Ce),UNI: Cs:[p (g9 s)]T

Res(Cs, C7), Triv: O
Refutation in ERUE
Res(Co,C3), Dec: Cy:[f =g]"

Func(Cs) : Cs:[fsi=gs]"
Res(Cs,C1),UNZ: O

Tt has been claimed by an unknown referee of [Ben98], that rule Para’ in contrast to rule Para captures full
functional extensionality, which is not the case as our examples illustrate.

8.7. RAISED QUESTIONS 109

8.7 Raised Questions

The examples examined so far (an excerpt has been presented in this Chapter) raise various

questions concerning the calculi ER, EP, and ERUE:

1.

Ot

Is rule FlezFlexr indeed admissible in all three approaches, i.e. can this rule be avoided (as
already realised in LEO)? As to the best of my knowledge there is no counterexample to this
conjecture.

Can rule Leib be restricted to base types as conjectured in Remark 4.18 and as already
employed in LEO’s extensionality treatment (cf. step 7 in LEO’s main loop as presented
in Subsection 7.2.3)7 For the examples examined so far, this restriction is indeed possible

without affecting refutability.

Is decomposition rule Dec, as used in this thesis, or rule Dec’, as used in [BK98a], better
suited for applications in practice? The difference between both rules has been illustrated
in Subsection 8.2.

. Is the traditional paramodulation rule Para (cf. Figure 5.1) or its higher-order counterpart

Para’ (cf. Figure 5.1) better suited in applications of calculus EP in practice. The connection
between both rules has been illustrated in Section 5.1.

In 5.2 it has been remarked that paramodulation into unification constraints may shorten
some proofs, but it might be quite complicated to guide this in practice. This question needs
further investigation.

The following example demonstrates that in calculus ERUE various applications of rule Leib
can be substituted by alternative derivations applying resolution on unification constraints
instead.

Remark 8.1. In ERUE one can prove example EE”" (cf. Section 8.1), which formulates an
instance of the functional extensionality property for Leibniz equality, as follows (the idea
of this refutation is due to Frank Pfenning):

Cnf(—Eg™) : Ci:[P(m X)) V[P (nX)T
C g ml
Cs < [q n]"
Res(Ca,C3), Dec, Triv : Cy:[m=n]"
Func(Cs) : Cs:[ms=ns]"
Res(C1,C5) : Co: [P (m X)) VIP (nX)=((ms)=(ns))"

UNT(Cs, [AX. (m s) = X/P]): O

Hence the question arises if rule Leib can be avoided completely in ERUE. As rule Leib is
obviously not avoidable in calculus EP (there is no proof in EP for the above problem that
avoids the application of rule Leib) this result would be another strong argument in favour
of calculus ERUE and against calculus EP.

The calculi do not provide sufficient restrictions of the extensionality and equality rules
that allow for a fruitful guidance of the proof search in difficult examples. Thus, further
investigations in order to restrict and specialise the developed approaches is important and
can probably lead to much more powerful implementations as the LEO-system.

It should be examined whether &P and ERUE bring essential advantages at all over a pure
defined equality treatment as employed in ER. Clearly, one advantage of EP and ERUE is that
the primitive substitution rule in these approaches allows to immediately instantiate a flexible
literal by a primitive equation, whereas in calculus R the instantiation of Leibniz equality
requires two subsequent primitive substitution steps (which can be improved by extending
the primitive substitution rule in &R, such that it also instantiates the free literal head by

110 CHAPTER 8. EXAMPLES

most general Leibniz equations, i.e., AX". VP,_,. (P (Hy X™))V (P (Hy X")), where Hy
and Hs are new free variables of appropriate type). The importance of primitive substitutions

of equality is demonstrated by the TPs-example THM15b discussed in [ABIT96].

Chapter 9

Applications and Related Work

In this chapter we discuss related work and sketch some applications. The discussion is structured
with respect to the different kinds of contributions.

9.1 Cooperation and Joint Work

The contributions of the Chapters 2.1 and 3 have been developed in cooperation with Michael
Kohlhase. Some main aspects of this chapter were also positively influenced by discussions with
Frank Pfenning and Peter Andrews during a research stay at Carnegie Mellon University, Pitts-
burgh, USA.

As already mentioned, the resolution calculus ER in Chapter 4 is based on, extends, and corrects
Michael Kohlhase’s approaches presented in [Koh94b] and [Koh95]. And the first completeness
proof for ER, which is presented in [BK98a] and which differs from the one presented in this
thesis, has been developed in cooperation with Michael Kohlhase. The author gained important
insights about &R, the completeness proof for ER and the ideas for ERUE in discussions with Frank
Pfenning.

9.2 Abstract Consistency and Model Existence

The abstract consistency method, which has been extended in this thesis, was first developed
by Hintikka and Smullyan [Hin55, Smu63, Smu68] for first-order logic and extended to higher-
order logic by Andrews [And71]. The new results can clarify the relationship between syntax
and semantics for a variety of higher-order deduction calculi. Up to now calculus development
in higher-order logic has been guided by Andrew’s Unifying Principle for Type Theory [AndT1].
This model existence theorem has set the completeness standard for higher-order calculi such
as [And71, Hue72, Hue73a, ALCMP84], even though it is weaker (i.e., with respect to this prin-
ciple fewer formulae are valid) than the intuitive one given by Henkin Models. The new model
existence theorems, e.g., allow to analyse completeness of the traditional higher-order resolution
calculi [And71, JP72, Hue72, Hue73a] or the more recent ones [Wol93, Koh94b, Koh95] with re-
spect to Henkin semantics or, if the extensionality axioms in these approaches were avoided, with
respect to the ¥-Models. Both was hardly possible before, i.e., only when using direct proofs and
without the help of a proof tool.

The semantical notions in Chapter 2.1 stem from earlier attempts of Kohlhase to achieve
completeness with respect to Henkin models for higher-order tableaux [Koh95, Koh98] and espe-
cially from the attempts of the author in cooperation with Kohlhase to achieve completeness for
higher-order resolution [Koh94a, Ben97, BK97b, BK98a).

A model existence theorem for a logical system £ is a theorem of the form: If a set of sentences
® wn L is a member of an abstract consistency class I, then there exists an L-model for ®. Thus
if we want to show the completeness of a particular calculus £, we first prove that the class T’

111

112 CHAPTER 9. APPLICATIONS AND RELATED WORK

of sets of sentences ® that are L-consistent (cannot be refuted in £) is an abstract consistency
class, then the model existence theorem tells us that £-consistent sets of sentences are satisfiable
in £. Now we assume that a sentence A is valid in £, so =A does not have a £-model and
is therefore L-inconsistent. From this it is easy to verify that A is a theorem of £. Note that
with this argumentation the completeness proof for £ condenses to verifying that T' is an abstract
consistency class, a task that does not refer to £-models. Thus the usefulness of model existence
theorems derives from the fact that it replaces the model-theoretic analysis in completeness proofs
with the verification of some proof-theoretic conditions (membership in T'). In this respect a model
existence theorem is similar to a Herbrand Theorem, but it is easier to generalise to other logic
systems like higher-order logic.

Another application of model existence theorems is that they allow for very simple (but non-
constructive) proofs of cut-elimination theorems. In [And71] Andrews applies his Unifying Princi-
ple to cut-elimination in a non-extensional sequent calculus, by proving the calculus complete (rel-
ative to %) both with and without the cut rule and concludes that cut-elimination is valid for this
calculus. In the extensional case, where a cut-elimination theorem can be found in [Tak68, Tak87],
we can directly model a cut-elimination proof following Andrews’ approach, using the model ex-
istence theorem for Henkin models.

Takahashi discusses in [Tak68] a non-constructive cut-elimination theorem for simple type
theory with extensionality. This work is based on [Tak67], where a respective result has been
shown for simple type theory without extensionality. Cut-elimination addresses the question:
”Given a deductive system, a proof for A = B and one for B = C. How can we construct a proof
for A = C?” Takahashi analyses this problem for a Gentzen style sequent calculus [Gen35]. His
system is also used by Takeuti in [Tak87]. A constructive proof of cut-elimination for intuitionistic
type theory is presented by a student of Gandy in [Unkar].

With respect to the connection of the primitive substitution principle and higher-order model
existence the author wants to point to the theorem 2 in [BK98a]. A consequence of this restricted
model existence theorem would be that depending on the maximal order 7 of an input problem
the primitive substitution of universal quantifiers at head positions could be restricted to those
types with an order < 7. Unfortunately at CADE-15 Peter Andrews presented a counterexample
to the argumentation in the proof of theorem 2 given in [BK98a] and [BK97a] so that we had to
withdraw the theorem. The author is grateful to Peter Andrews for his advice (and not only for
this particular one) but also wants to point out that the lack of theorem 2 does not affect the
other results presented in [BK98a] as they do not depend on theorem 2. The overall role of the
primitive substitution principle in higher-order theorem proving and the question whether there
are ways to restrict this principle is, at least for the author, still not obvious.

In all these applications, the leverage added by the work presented in Chapters 2.1 and 3 is
that we can now extend non-extensional results to extensional cases. However, the generalised
model classes have a merit of their own, for instance in higher-order logic programming [NM94],
where the denotational semantics of programs can induce non-standard meanings for the classical
connectives. For instance, given a SLD-like search strategy as in A-PROLOG [Mil91], conjunction
is not commutative any more. Therefore, various authors have proposed model-theoretic semantics,
where property b (which expresses that the domain D, contains exactly T and F) fails. For instance
Wolfram uses Andrews v-complexes [Wol94] as a semantics for A-PROLOG and Nadathur uses
“labeled structures” for the same purpose in [NM94]. Tt is plausible to assume that the results of
this thesis will be useful for further developments in this direction as well.

9.3 Extensional Higher-Order Resolution

Higher-order resolution has been first discussed in [And71]. Andrews calculus still avoids higher-
order unification and instead provides a substitution rule, i.e., a instantiation rule for free variables,
that basically allows to enumerate the Herbrand universe. Most important about [And71] is, that
it adapts Smullyans unifying principle to higher-order logic in order to prove completeness of the
developed resolution approach with respect to the semantical notion of v-complexes; see also the

9.3. EXTENSIONAIL HIGHER-ORDER RESOLUTION 113

discussion in Section 9.2 above.

The first mechanisable higher-order resolution calculi were presented by Jensen/Pietrowski
in [JP72] and Huet in [Hue72, Hue73a]. Especially Huet’s Constrained Resolution Approach is
closely related to the work presented here, as the non-extensional fragment of calculus &R is
essentially a variant of Huet’s Constrained Resolution Approach. The differences of extensional
higher-order resolution to Huet’s constrained resolution approach have been illustrated in this
thesis; especially remark 4.17 pointed to the fact, that in contrast to Huet’s approach eager
unification becomes essential in ER, such that unification can not be delayed until the end of the
refutation process.

The resolution calculus HORES in [Koh94b] influenced the development of calculus ER to a
large extent. The particular connections between ER and HORES have been discussed in detail
in Section 4.1. Furthermore, extensionality rule Equiv is motivated by an analogous rule already
given in the higher-order tableaux calculus [Koh95]. Whereas this calculus claims to be Henkin
complete it can easily be shown by a counterexample, for instance by examples E5?¢ and Eg®,
that it is not. The problem is that [Koh95] does not realise a sufficient interplay between the
functional and the Boolean extensionality principles. Such an interplay is realised in ER by the
modified rule Func (which extends the a- and n-unification rules employed in [Koh95]) and the
rule Lezb which connects unification constraints with Leibniz equations in connection with rule
Equiv. The extensional tableaux calculus HTE [Koh98] which extends [Koh95] translates the rules
of calculus ER presented in this thesis in a tableaux setting. In difference to [Koh95] the calculus
in [Koh98] provides an extended unification rule Func as discussed in this thesis (the extended
unification rule Func applies the functional extensionality principles also to non-A-abstractions
within higher-order unification).

Wolfram suggests in his resolution approach [Wol93] to employ general higher-order E-
unification, but does not present a concrete higher-order E-unification algorithm for theories F
that include full extensionality principles. And it has been illustrated in this thesis, that gen-
eral calls to a Henkin complete theorem prover are needed to realise extensional higher-order
FE-unification. In other words, extensional higher-order unification unavoidably needs to employ
higher-order theorem proving for side computations, such that the difference between extensional
higher-order unification and Henkin complete higher-order theorem proving disappears. Instead,
both algorithms have to be closely integrated. In order to reach Henkin completeness the resolu-
tion approach in [Wol93] therefore either needs to add the extensionality axioms or has to address
the problem for mutual recursive calls from resolution to E-unification and vice versa.

The difference of higher-order unification as employed in ER with respect to the higher-order
E-unification approach discussed in [Sny90] is, that the latter is restricted to first-order theories
only and does not take the Boolean extensionality property into account. Hence, it does not allow
to unify terms like AX. red X Acircle X and AX. circle X Ared X, whereas ER allows to tests for
the unifiability of two terms with respect to an arbitrary higher-order theory including both ex-
tensionality principles. Restricted transformation based approaches to higher-order F-unification,
where as much computation as possible is pushed to a first-order E-unification procedure, are
discussed in [QW96, NQ91], and a restricted combinatory logic approach is presented in [DJ92].
Like [Sny90], these approaches do not take the Boolean extensionality into account and do not
allow to consider arbitrary higher-order theories. The study of higher-order E-unification was first
suggested by Siekmann in [Sie84] and a complete overview on first-order E-unification is provided
by [BS94].

The ”theorem proving modulo” approach described in [DHK98] is a way to remove computa-
tional arguments from proofs by reasoning modulo a congruence on propositions that is handled
by via rewrite rules and equations. In their paper the authors present a higher-order logic as a
theory modulo.!

Pfenning addresses in [Pfe87] the problem of translating machine found proofs in higher-order
logic into natural deduction [Pra65] or sequent style calculi [Gen35]. The proposed solution, which

!The author does not fully see yet to what extend the "theorem proving modulo” approach can handle full
extensionality in the sense of this thesis.

114 CHAPTER 9. APPLICATIONS AND RELATED WORK

is based on previous works by Andrews [And80] and Miller [Mil83], first translates the machine
found proof into a so-called expansion tree proof, where it can be cleaned up and brought into a
certain standard form, before it is translated into a natural deduction or sequent calculus proof.
Pfenning’s work especially focuses on the problem of extensionality and primitive equality and
it extends Miller’s work [Mil83] by introducing the notion of extensional expansion proofs. The
proof translation mechanism developed by Pfenning is employed in the TPs-System in order to
translate mating proofs [And76] into natural deduction proofs and it is applicable to other machine
oriented calculi as well. The only prerequisite is a translation from the deductive system used by
the theorem prover into extensional expansion proofs. The relation to the calculi sketched in
this thesis is thus quite obvious: By defining a respective translation algorithm from extensional
higher-order resolution into extensional expansion proofs, one can exploit Pfenning’s translation
mechanism to generate natural deduction proofs.

The role and importance of extensionality in intensional type theory [Str93] is examined by
Hofmann in [Hof97]. He illustrates that the identity type in intensional type theory is not powerful
enough for the formalisation of mathematics or program development as it lacks the principles of
extensionality. Hofmann investigates to what extent extensional constructs of interest (i.e., quo-
tient types) can be added to intensional type theory without sacrificing decidability and existence
of canonical forms. He also points to the problem of adding full extensionality to intensional type
theory (which is then called extensional type theory) by proving the undecidability of typing in the
resulting system. A new approach to extensional equality in intensional type theory is presented
in [Alt99].

The treatment of the functional extensionality principles in term rewriting in intuitionistic
type theory is furthermore addressed in [DCK93, DCK96].

Typical applications of extensional higher-order resolution (as well as extensional higher-order
paramodulation or RUE-resolution) are comparisons of sets, functions or functionals. Both in
mathematics as well as in applications like the verification of functional programs these concepts
play an important role. Hence, a subsystem that is capable of at least some basic extensionality
reasoning is very important for a mathematical assistant system like QMEGA [BCF197] or a system
employed in program verification like Pvs [ORS92] or Hot. [GM93].

A rather new but nevertheless interesting and challenging application of extensional higher-
order resolution lies in the semantical construction in natural language processing. In this context
the use of higher-order unification and especially coloured higher-order unification [HK99, HK97],
for instance in the dissolving of ellipsis, has been illustrated in [DSP91, GK96a, GK96b, GK97].
The gain of full extensional higher-order theorem proving in this context is motivated by the
examples discussed in [KK98b].

9.4 Primitive Equality in Higher-Order Theorem Proving

Equality is usually treated as a defined notion in approaches and systems for automated higher-
order theorem proving. This is probably the main reason why the problem of mechanising primitive
equality in higher-order logic while preserving Henkin completeness has (to the best knowledge of
the author) not been addressed in literature so far.

In contrast, the field of higher-order term rewriting and narrowing has become very active in
recent years (see [Pre98, NP98, NM98b, Nip95, Pre95, Pre94, vO94, Wol93]).

The probably most challenging tasks in this field addresses the development of confluent and
terminating term rewriting orders (see for instance [JR99, JRI8, LP95]) For a summary to the
most recent approaches and developments we refer to [Pre98]. Higher-order term rewriting and
narrowing is obviously of great importance for the mechanisation of primitive equality in auto-
mated higher-order theorem proving, too. But one should not confuse higher-order term rewriting
— where the Boolean extensionality property does simply not occur — with higher-order equa-
tional reasoning. The difference has been illustrated in detail in Chapter 5, where we show that
if one is interested in problem domains which require a combined application of functional and
Boolean extensionality principles (e.g., when reasoning on sets described by characteristic func-

9.5. THEOREM PROVERS FOR HIGHER-ORDER LOGIC 115

tions), then traditional higher-order term rewriting techniques alone cannot be sufficient. And
even worse, it has been motivated by the example in Subsection 8.6 that it will be very hard, if
not impossible, to integrate the Boolean extensionality principle in higher-order term rewriting
(and analogously in syntactical higher-order narrowing [Pre98] or superposition [Vir95]), thereby
safely preserving a pure term rewriting character. Nevertheless, it seems to be promising to inte-
grate term rewriting and simplification techniques into higher-order theorem proving approaches
and to apply these techniques in all those problem domains, where the extensionality principles,
especially the Boolean extensionality, are not needed and for which suitable rewrite orderings
are available. The calculus P presented in this thesis provides a primitive equality treatment
based on paramodulation and therefore provides a basis to integrate term rewriting techniques
into higher-order equational reasoning. In this sense, the developed approaches &P and ERUE can
probably fruitful influence and support the development of an (full) extensional higher-order term
rewriting approach.

The areas of application for the developed approaches to primitive equality EP, and ERUE are
identical to those for extensional higher-order resolution ER: They improve the mechanisation of
reasoning on sets, functions or functionals in mathematics or program verification and can support
the semantical construction in natural language processing.

Another interesting application of extensional higher-order equality reasoning might be within
the field of logic programming [MNPS91, NM98a]. Also in this research field the treatment of
(full) extensional equality has to best knowledge of the author not been addressed so far.

9.5 Theorem Provers for Higher-Order Logic

In the last two decades several higher-order theorem proving system have been built, among them
are Tps [ABI*96], Hor [GM93], or Pvs [ORS92]. Neither one of these systems provides a full
extensionality treatment in the sense of this thesis. The TpPs-system, which is very likely the most
powerful higher-order theorem prover currently available, at least provides a partial solution: it
looks for equations between functional terms in input problems and modifies them by initially
applying the extensionally principles in an appropriate way.

The IsaBELLE-system [Pau94] and the TweLF-system [SP98] (TWELF is the successor of
ELF [Pfe91]) provide logical frameworks, i.e., this systems provide logic languages powerful enough
to allow for the specification of object logics as well as the specification of respective proof tactics
in order to mechanise reasoning at the object logic level. Both system have reached a considerable
degree of automation and have been successfully applied in case studies in the area of program-
ming languages and logics, e.g., the formal verification of Java Byte Code Verifier of Java with
ISABELLE and the type preservation and value soundness properties of Mini ML with TWELF
(see [Pfe96, Pfe]). Whereas the degree of automation in both systems is steadily increasing, both
systems do, to best knowledge of the author, currently not address the problem of mechanising
full extensionality reasoning.

Quite closely related to Lro is Konrad’s extensional higher-order theorem prover Hor [Kon9§],
which is based on the higher-order tableaux calculus H7€ [Koh98] that has already been mentioned
above. HoT is implemented in Oz [Sb98, SSW94] and can thus exploit concurrency when branching
within tableaux extensions. Therefore, and as HoT 1s based on more efficient data structures, HoT
is (at least) on some examples more efficient as LEO (see [Kon98]). It seems to be interesting to
reimplement L.EO in Oz using the same datastructures and then to compare the tableaux based
prover HoT with LEO.

9.6 Examples
The presented examples can support the development of new approaches and systems for ex-

tensional higher-order theorem proving, as they point to the weaknesses of current approaches.
Especially the examples discussed in Subsection 8.6 emphasize the difference between higher-order

116 CHAPTER 9. APPLICATIONS AND RELATED WORK

term rewriting and higher-order equational reasoning. And it seems to be very interesting to in-
vestigate if and how these examples can be tackled in a pure term rewriting approach.

Chapter 10

Conclusion and Outlook

The role of equality and extensionality higher-order automated theorem proving is not well under-
stood, in particular with respect to its potential for a mechanical treatment. To this end we have
developed three calculi ER, EP, and ERUE, which improve the current situation. The practicability
of calculus &R has been demonstrated in case studies with the LEO-system.

Future work should be concerned with the calculi ER, EP, and ERUE as stated in Section 8.7,
namely to investigate the role of the FlexFler-rule, to further restrict the application of the exten-
sionality and equality rules, and to compare the three approaches in practical applications in order
to find out, whether a primitive treatment of equality (as in EP and ERUE) yields any advantages
over a purely defined equality treatment (as in ER). Furthermore, the link to general higher-order
FE-unification needs further study.

Although the experiments with the MIZAR set theory were successful, T do not expect that
such a classical theorem-proving approach will ever attain the problem solving expertise of human
mathematicians. An integration of various heterogeneous reasoners (e.g., an integration of TPs
with the extensionality reasoner LEO and first-order provers like OTTER as motivated in [BBS99])
is a more promising alley. Clearly, in order to model human problem solving behaviour the crucial
task will be to appropriately guide the collaboration of the integrated systems. Two options
in this respect are: (i) to guide their collaboration by a proof planner (deliberative approach),
and (ii) to realise the integrated systems as autonomous, specialised proof agents and to guide
their collaboration on the basis of evaluations and resource allocations in a resource adaptive
agent architecture (reactive approach). Also a mix of these two approaches as in the INTERRAP-
architecture [Mil96] may be worthwhile to explore.

We shall concentrate on the latter option in order to realise a cooperation between Tps, LEO,
and OTTER in QMEGA, thereby exploiting the agent architecture that is already provided by the
QOMEGA-system (see [FHJ199, BS98a, BS99]).

117

Bibliography

[ABI+96]

[AHMS99]

[ATNPY0]

[ALCMP84]

[A1£99]

[AMS98]

[AndT71]

[AndT2a]

[And72b)]

[And73]
[And76]

[AndS80]

[AndS81]

[And86]

Peter B. Andrews, Matthew Bishop, Sunil Issar, Dan Nesmith, Frank Pfenning, and
Hongwei Xi. TPS: A theorem proving system for classical type theory. Journal of
Automated Reasoning, 16(3):321-353, 1996.

Serge Autexier, Dieter Hutter, Heiko Mantel, and Axel Schairer. Inka 5.0 — a logic
voyager. To appear in the Proceedings of the 16th International Conference on
Automated Deduction (CADE-16), Trento, Ttaly, 1999.

Peter B. Andrews, Sunil Issar, Dan Nesmith, and Frank Pfenning. The TPS theorem
proving system. In Stickel [Sti90].

Peter B. Andrews, Eve Longini-Cohen, Dale Miller, and Frank Pfenning. Automating
higher order logics. Contemp. Math, 29:169-192, 1984.

Thorsten Altenkirch. Extensional equality in intensional type theory. To appear at
the IEEE Symposium on Logic in Computer Science (LICS’99), Trento, July 1999,
1999.

Serge Autexier, Heiko Mantel, and Werner Stephan. Simultaneous quantifier elimina-
tion. In Otthein Herzog and Aandreas Gunter, editors, K1-98: Advances in Artificial
Intelligence, 22nd Annual German Conference on Artificial Intelligence, number 1504
in LNAI, Bremen, Germany, 1998. Springer.

Peter B. Andrews. Resolution in type theory. Journal of Symbolic Logic, 36(3):414-
432, 1971.

Peter B. Andrews. General models and extensionality. Journal of Symbolic Logic,

37(2):395-397, 1972.

Peter B. Andrews. General models descriptions and choice in type theory. Journal

of Symbolic Logic, 37(2):385-394, 1972.
Peter B. Andrews, 1973. Letter to James Roger Hindley dated January 22, 1973.

Peter B. Andrews. Refutations by matings. [EEE Trans. Comp., C-25(8):801-807,
1976.

Peter B. Andrews. Transforming matings into natural deduction proofs. In Wolfgang
Bibel and Robert Kowalski, editors, Proceedings of the 5th International Conference
on Automated Deduction (CADE-5), number 87 in LNCS, pages 281-292. Springer,
1980.

Peter B. Andrews. Theorem proving via general matings. Journal of the Association
for Computing Machinery, 28(2):193-214, April 1981.

Peter B. Andrews. An Introduction to Mathematical Logic and Type Theory: To
Truth Through Proof. Academic Press, 1986.

118

BIBLIOGRAPHY 119

[And89]

[BA9S]

[Bar84]

[Bar92]

[BBS99]

[BCF+97]

[Ben97]

[Ben98§]

[BF94]

[BHJB92]

[Bib83]

[BK97a]

[BK97h]

[BK98a]

[BK9Sh]

[BS94]

[BS98a

Peter B. Andrews. On Connections and Higher Order Logic. Journal of Automated
Reasoning, 5:257-291, 1989.

Matthew Bishop and Peter B. Andrews. Selectively instantiating definitions. In
Kirchner and Kirchner [KK98a].

Hendrik P. Barendregt. The Lambda Calculus — Its Syntar and Semantics. North
Holland, 1984.

Hendrik P. Barendregt. Lambda-calculi with types. In Samson Abramsky, Dov M.
Gabbay, and Thomas S. Maibaum, editors, Handbook of Logic and Computer Science,
volume 2, pages 118-309. Oxford University Press, 1992.

Christoph Benzmiiller, Matthew Bishop, and Volker Sorge. Integrating TPs and
QMEGA. Journal of Universal Computer Science, 5(3):188-207, March 1999. Special
issue on Integration of Deduction System.

Christoph Benzmuller, Lassaad Cheikhrouhou, Detlef Fehrer, Armin Fiedler, Xi-
aorong Huang, Manfred Kerber, Michael Kohlhase, Karsten Konrad, Erica Melis,
Andreas Meier, Wolf Schaarschmidt, Jorg Siekmann, and Volker Sorge. QMEGA:
Towards a mathematical assistant. In McCune [McC97a], pages 252-255.

Christoph Benzmiiller. A calculus and a system architecture for extensional higher-
order resolution. Research Report 97-198, Department of Mathematical Sciences,

Carnegie Mellon University, Pittsburgh,USA, June 1997.

Christoph Benzmiiller. An adaption of paramodulation and RUE-resolution to
higher-order logic. SEKI-Report SR-98-07, Fachbereich Informatik, Universitat des
Saarlandes, 1998.

Peter Baumgartner and Ulrich Furbach. PROTEIN: A PROver with a Theory Ex-
tension INterface. In Bundy [Bun94], pages 769-773.

Karl Hans Blasius and editors Hans-Jirgen Burckert. Deduktionssysteme, Automa-
tisterung des Logischen Denkens. R. Oldenbourg Verlag, 2nd edition, 1992.

Wolfgang Bibel. Matings in matrices. Communications of the ACM, 26:844-852,
1983.

Christoph Benzmiiller and Michael Kohlhase. Model Existence for Higher-Order
Logic. SEKI-Report SR-97-09, Fachbereich Informatik, Universitat des Saarlandes,
1997. Also submitted to Journal of Symbolic Logic.

Christoph Benzmiller and Michael Kohlhase. Resolution for Henkin Models. SEKI-
Report SR-97-10, Fachbereich Informatik, Universitat des Saarlandes, 1997.

Christoph Benzmiiller and Michael Kohlhase. Extensional higher-order resolution.
In Kirchner and Kirchner [KK98a], pages 56—72.

Christoph Benzmuiiller and Michael Kohlhase. LEO — a higher-order theorem prover.
In Kirchner and Kirchner [KK98a], pages 139-144.

Franz Baader and Jorg Siekmann. Unification theory. In Dov Gabbay, editor, Logic
mn Artificial Intelligence and Logic Programming. Oxford University Press, 1994.

Christoph Benzmiller and Volker Sorge. A blackboard architecture for guiding in-
teractive proofs. In Giunchiglia [Giu98], pages 102-114.

120

[BS9Sb]

[BS98c¢]

[BS99]

[Bungg]

[Bun94]

[Byl&9]

[Chu40]

[CrS98]

[Dah97]

[Dar71]

[Dav83]

[DCK93]

[DCK96]

[DHK98]

[Dig79]

[DJ92]

BIBLIOGRAPHY

Christoph Benzmuller and Volker Sorge. Integrating TPs with QMEGA. In Jim
Grundy and Malcolm Newey, editors, Theorem Proving in Higher Order Logics:
Emerging Trends, Technical Report 98-08, Department of Computer Science and
Computer Science Lab, The Australian National University, pages 1-19, Canberra,
Australia, October 1998.

Wolfgang Bibel and Peter Schmitt, editors. Automated Deduction — A Basis for
Applications. Kluwer, 1998.

Christoph Benzmiller and Volker Sorge. Critical agents supporting interactive theo-
rem proving. SEKI-Report SR-99-02, Fachbereich Informatik, Universitat des Saar-
landes, 1999.

Alan Bundy. The use of explicit plans to guide inductive proofs. In Ewing L. Lusk
and Ross A. Overbeek, editors, Proceedings of the 9th Conference on Automated
Deduction (CADE-9), number 310 in LNCS, pages 111-120, Argonne, Illinois, USA,
1988. Springer.

Alan Bundy, editor. Proceedings of the 12th Conference on Automated Deduction
(CADE-12), number 814 in LNAI, Nancy, France, 1994. Springer.

Czeslaw Bylinski. Basic properties of sets. Journal of Formalized Mathematics, 1,

1989.

Alonzo Church. A formulation of the simple theory of types. Journal of Symbolic
Logic, 5:56—-68, 1940.

Lassaad Cheikhrouhou and Jorg Siekmann. Planning diagonalization proofs. In

Giunchiglia [Giu98], pages 167-180.

Ingo Dahn. Integration of automated and interactive theorem proving in ILF. In

McCune [McC97al, pages 57-60.

J. L. Darlington. Deductive plan formation in higher-order logic. Machine Intelli-
gence, 7:129-137, 1971.

Martin Davis. The prehistory and early history of automated deduction. In Jorg Siek-
mann and Graham Wrightson, editors, Automation of Reasoning, volume 2 Classical
Papers on Computational Logic 1967-1970 of Symbolic Computation. Springer, 1983.

Roberto Di Cosmo and Delia Kesner. A confluent reduction for the extensional typed
A—calculus with pairs, sums, recursion and terminal object. In Andrzej Lingas, Rolf
Karlsson, and Svante Carlsson, editors, Proceedings of International Conference on
Automata, Languages and Programming (ICALP ’91), volume 700 of LNCS, pages
645—656. Springer, 1993.

Roberto Di Cosmo and Delia Kesner. Combining algebraic rewriting, extensional
lambda calculi, and fixpoints. Theoretical Computer Science, 169(2):201-220, 1996.

Gilles Dowek, Thérese Hardin, and Claude Kirchner. Theorem proving modulo.
Rapport de Recherche 3400, Institut National de Recherche en Informatique et en
Automatique, April 1998.

Vincent J. Digricoli. Resolution by unification and equality. In William H. Joyner,
editor, Proceedings of the jth Workshop on Automated Deduction, Austin, Texas,
USA, 1979.

Daniel Dougherty and Patricia Johann. A combinatory logic approach to higher-order
E-unification. In Kapur [Kap92], pages 79-93.

BIBLIOGRAPHY 121

[DSPI1]
[ErnT71]

[FHI*+99]

[Fit96]

[Fra22al

[Fra22b)
[Fra2s8]
[Gen35]
[Giu98]
[GJ98]

[GK96a]

[GK96b]

[GK97]
[GLMS94]
[GM93]
[G&d30]

[G5d31]

[G5d40]

Mary Dalrymple, Stuart Shieber, and Fernando Pereira. Ellipsis and higher-order-
unification. Linguistics and Philosophy, 14:399-452, 1991.

G. W. Ernst. A matching procedure for type theory. Technical report, Case Western
Reserve University, 1971.

Andreas Franke, Stephan Hess, Christoph Jung, Michael Kohlhase, and Volker Sorge.
Agent-Oriented Integration of Distributed Mathematical Services. Journal of Uni-
versal Computer Science, 5(3):156-187, March 1999. Special issue on Integration of
Deduction System.

Melvin Fitting. Furst-Order Logic and Automated Theorem Proving. Springer, 2nd
edition, 1996.

Adolf A. Frankel. Der Begriff definit und die Unabhangigkeit des Auswahlaxioms.
Sitzungsberichte der Preussischen Akademie der Wissenschaften, Physikalisch Math-
ematische Klasse, pages 253-257, 1922.

Adolf A. Frankel. Zu den Grundlagen der Cantor-Zermeloschen Mengenlehre. Math-
ematische Annalen, 86:230-237, 1922.

Adolf A. Frankel. Zusatz zu vorstehendem Aufsatz Herrn v. Neumanns. Mathema-

tische Annalen, 99:392-393, 1928.

Gerhard Gentzen. Untersuchungen uber das logische Schliefien I & I1. Mathematische
Zeitschrift, 39:176-210, 405-431, 1935.

Fausto Giunchiglia, editor. Proceedings of the of the 8th International Conference
(AIMSA’98), number 1480 in LNAI, Sozopol, Bulgaria, 1998. Springer.

Sambin Giovannin and Smith Jan. Twenty-five Years of Constructive Type Theory.
Oxford University Press, 1998.

Claire Gardent and Michael Kohlhase. Focus and higher—order unification. In Pro-
ceedings of the 16th International Conference on Computational Linguistics, Copen-
hagen, 1996.

Claire Gardent and Michael Kohlhase. Higher—order coloured unification and natural
language semantics. In Proceedings of the 34th Annual Meeting of the Association
for Computational Linguistics, Santa Cruz, 1996. ACL.

Claire Gardent and Michael Kohlhase. Computing parallelism in discourse. In Pro-
ceedings of IJCAI ‘97, pages 1016-1021, Tokyo, 1997.

Christoph Goller, Reinhold Letz, Klaus Mayr, and Johann Schumann. SETHEO
v3.2: Recent developments. In Bundy [Bun94], pages 778-782.

Michael J. C. Gordon and Tom F. Melham. Introduction to HOL — A theorem proving
environment for higher order logic. Cambridge University Press, 1993.

Kurt Godel. Die Vollstandigkeit der Axiome des logischen Funktionenkalkuls. Monat-
shefte fiir Mathematik und Physik, 37:349-360, 1930. English translation in [vH67].

Kurt Gédel. Uber formal unentscheidbare Sitze der Principia Mathematica und
verwandter Systeme 1. Monatshefte der Mathematischen Physik, 38:173-198, 1931.
English translation in [vH67].

Kurt Godel. The Consistency of the Aziom of Choice and of the Generalized
Continuum-Hypothesis with the Azioms of Set Theory, volume 3 of Annals of Math-
ematics Studies. Princeton University Press, Princeton, New Jersey; eighth printing

1970, 1940.

122

[Gol81]

[Gou66]

[Gra95]

[HBVLY7]

[Henb0]

[Hen96]

[Her30]

[Hes99]

[Fi104]

[Hil27]

[Hinb5]

[HK97]

[HK99]

[HKK*94]

[Fof97]

[HS86]

[FIS96]

[HueT2]

[HueT73a]

BIBLIOGRAPHY

Warren D. Goldfarb. The undecidability of the second-order unification problem.
Theoretical Computer Science, 13:225-230, 1981.

William Eben Gould. A matching procedure for w-order logic. Technical report,
Applied Logic Corporation, One Palmer Square, Princeton, NJ, 1966.

Peter Graf. Term Indexing. PhD thesis, Fachbereich Informatik, Universitat des
Saarlandes, Saarbriicken, Germany, July 1995.

Thomas Hillenbrand, Arnim Buch, Roland Vogt, and Bernd Lochner. Waldmeister:
High-performance equational deduction. Journal of Automated Reasoning, 18(2),

1997.

Leon Henkin. Completeness in the theory of types. Journal of Symbolic Logic,
15(2):81-91, 1950.

Leon Henkin. The discovery of my completeness proofs. The Bulletin of Symbolic
Logic, 2(2):127-157, 1996.

Jaques Herbrand. Recherches sur la théorie de la démonstration. PhD thesis, Uni-
versité de Paris, 1930. Englisch translation in [vH67].

Stephan Hess. Software-Ergonomie in einer Beweisentwicklungsumgebung. Master’s
thesis, Fachbereich Informatik, Universitat des Saarlandes, 1999. Forthcoming.

David Hilbert. Uber die Grundlagen der Logik und der Arithmetik. In Verhandlungen
des Dritten Internationalen Mathematiker-Kongress in Heidelberg, pages 174-185.
Teubner, Leibzig, 1904.

David Hilbert. Die Grundlagen der Mathematik. In Abhandlungen aus dem mathe-
matischen Seminar der Hamburgischen Universitat 6, pages 65—85, 1927.

K. J. J. Hintikka. Form and content in quantification theory. Acta Philosophica
Fennica, 8:7-55, 1955.

Dieter Hutter and Michael Kohlhase. A coloured version of the A-calculus. In McCune
[McC9T7a], pages 291-305.

Dieter Hutter and Michael Kohlhase. A coloured version of the A-calculus. Journal
of Automated Reasoning, 1999. Forthcoming.

Xiaorong Huang, Manfred Kerber, Michael Kohlhase, Erica Melis, Dan Nesmith,
Jorn Richts, and Jorg Siekmann. Keim: A toolkit for automated deduction. In
Bundy [Bun94], pages 807-810.

Martin Hofmann. Fztensional Constructs in Intensional Type Theory. Springer,

London, 1997.

James R. Hindley and Jonathan P. Seldin. Introduction to Combinators and Lambda
Calculus. Cambridge University Press, 1986.

Dieter Hutter and Claus Sengler. INKA - the next generation. In McRobbie and
Slaney [MS96].

Gérard P. Huet. Constrained Resolution: A Complete Method for Higher Order Logic.
PhD thesis, Case Western Reserve University, 1972.

Gérard P. Huet. A mechanization of type theory. In Donald E. Walker and Lewis
Norton, editors, Proceedings of the 3rd International Joint Conference on Artificial

Intelligence (IJCAIT3), pages 139-146, 1973.

BIBLIOGRAPHY 123

[Hue73b)

[Hue75]

[JecTT]

[IPT72]

[TROS]

[TROY]

[Kap92]

[KK98a]

[KK98b]

[K1e97]

[Koh94a]

[Koh94b]

[Koh95]

[Koh98]

[Kon98]

[LP95]

[Luc72]

Gérard P. Huet. The undecidability of unification in third order logic. Information
and Control, 22(3):257-267, 1973.

Gérard P. Huet. An unification algorithm for typed A-calculus. Theoretical Computer
Science, 1:27-57, 1975.

Thomas J. Jech. About the axiom of choice. In Jon Barwise, editor, Handbook of
Mathematical Logic, pages 345—371. North Holland, Amsterdam, 1977.

D. C. Jensen and T. Pietrzykowski. A complete mechanization of (w)-order type
theory. In Proceedings of the ACM annual Conference, volume 1, pages 82-92, 1972.

Jean-Pierre Jouannaud and Albert Rubio. Rewrite orderings for higher-order terms
in n-long F-normal form and the recursive path ordering. Theoretical Computer

Science, 1998.

Jean-Pierre Jouannaud and Albert Rubio. The higher-order recursive path ordering.
To appear at the IEEE Symposium on Logic in Computer Science (LICS’99), Trento,
July 1999, 1999.

Deepak Kapur, editor. Proceedings of the 11th Conference on Automated Deduction
(CADE-11), number 607 in LNCS, Saratoga Spings, NY, USA, 1992. Springer.

Claude Kirchner and Helene Kirchner, editors. Proceedings of the 15th Conference
on Automated Deduction, number 1421 in LNAI, Lindau, Germany, 1998. Springer.

Michael Kohlhase and Karsten Konrad. Higher-order automated theorem proving
for natural language semantics. Seki Report SR-98-04, Fachbereich Informatik, Uni-
versitat Saarbriicken, 1998.

Lars Klein. Indexing fur Terme hoherer Stufe. Master’s thesis, Fachbereich Infor-
matik, Universitat des Saarlandes, 1997.

Michael Kohlhase. Higher-order order-sorted resolution. Seki Report SR-94-1, Fach-
bereich Informatik, Universitat des Saarlandes, 1994.

Michael Kohlhase. A Mechanization of Sorted Higher-Order Logic Based on the
Resolution Principle. PhD thesis, Fachbereich Informatik, Universitat des Saarlandes,
1994.

Michael Kohlhase. Higher-Order Tableaux. In Peter Baumgartner, Rainer Hahnle,
and Joachim Posegga, editors, Theorem Proving with Analytic Tableauzr and Related
Methods, number 918 in LNAI, pages 294-309, 1995.

Michael Kohlhase. Higher-order automated theorem proving. In Bibel and Schmitt
[BS98c].

Karsten Konrad. HOT: An automated theorem prover based on higher-order
tableaux. In Jim Grundy and Malcolm Newey, editors, Proceedings of the 11th In-
ternational Conference on Theorem Proving in Higher Order Logics (TPHOLs’98),
number 1479 in LNCS, Canberra, Australia, 1998. Springer.

Olav Lysne and Javier Piris. A termination ordering for higher-order rewrite systems.
In Jieh Hsiang, editor, Proceedings of the 6'" International Consference on Rewriting
Techniques and Applications, number 914 in LNCS, pages 26—-40. Springer, 1995.

Claudio. L. Lucchesi. The undecidability of the unification problem for third order
languages. Report CSRR 2059, University of Waterloo, Waterloo, Canada, 1972.

124

[McC94]

[McC97a]

[McC9Th]

[Mel94]

[Mel95]

[Mil83]

[Mil91]

[Mil92]

[ML94]

[MNPS91]

[MS96]

[Miil96]

[MW97]

[Nad87]

[Neu25]

[Nip95]

[NM94]

[NM98a]

BIBLIOGRAPHY

William McCune. Otter 3.0 reference manual and guide. Technical Report ANTL-94-6,
Argonne National Laboratory, Argonne, Tllinois 60439, USA, 1994.

William McCune, editor. Proceedings of the 14th Conference on Automated Deduc-
tion, number 1249 in LNAI, Townsville, Australia, 1997. Springer.

William McCune. Solution of the Robbins problem. Journal of Automated Reasoning,
19(3):263-276, 1997.

Erica Melis. How mathematicians prove theorems. In Proc. of the Annual Conference
of the Cognitive Science Society, Atlanta, Georgia U.S.A. 1994.

Erica Melis. A model of analogy-driven proof-plan construction. In Chris S. Mellish,
editor, Proceedings of the 14th International Joint Conference on Artificial Intelli-
gence (IJCAI95), pages 182-189, Montreal, Canada, 1995. Morgan Kaufmann.

Dale Miller. Proofs in Higher-Order Logic. PhD thesis, Carnegie-Mellon University,
1983.

Dale Miller. A logic programming language with lambda-abstraction, function vari-
ables, and simple unification. Journal of Logic and Computation, 4(1):497-536, 1991.

Dale Miller. Unification under a mixed prefix. Journal of Symbolic Computation,
14:321-358, 1992.

Per Martin-Lof. Intuitionistic Type Theory. Bibliopolis, 1994.

Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andrew Scedrow. Uniform
proofs as a foundation for logic programming. Annals of Pure and Apllied Logic,

51:125-157, 1991.

Michael A. McRobbie and John K. Slaney, editors. Proceedings of the 13th Conference
on Automated Deduction (CADE-13), number 1104 in LNAI, New Brunswick, NJ,
USA, 1996. Springer.

Jorg P. Miller. The Design of Intelligent Agents: A Layered Approach. Number
1177 in LNAI. Springer, December 1996.

William McCune and Larry Wos. Otter CADE-13 competition incarnations. Jour-
nal of Automated Reasoning, 18(2):211-220, 1997. Speacial Issue on the CADE-13
Automated Theorem Proving System Competition.

Gopalan Nadathur. A Higher-Order Logic as the Basis for Logic Programming. PhD
thesis, University of Pennsylvania, Philadelphia, 1987.

John von Neumann. Eine Axiomatisierung der Mengenlehre. Journal fir die reine
und angewandte Mathematik, 154:219-240, 1925.

Tobias Nipkow. Higher-order rewrite systems. In Jieh Hsiang, editor, Proceedings of
the 6th International Conference on Rewriting Techniques and Applications (RTA-
95), number 914 in LNCS, pages 256-256, Kaiserslautern, Germany, 1995. Springer.

Gopalan Nadathur and Dale Miller. Higher-order logic programming. Technical
Report CS-1994-38, Department of Computer Science, Duke University, 1994.

Gopalan Nadathur and Dale Miller. Higher-Order Logic Programming. To appear
in the Handbook of Logic in Artificial Intelligence and Logic Programming, Dov M.
Gabbay, Christopher J. Hogger, and John A. Robinson (eds.), Oxford University
Press, 1998.

BIBLIOGRAPHY 125

[NMO8h]

[NP9S]

INQ91]

[ORS92]

[Pad95]

[Pau94]

[Pfe]

[Pfe87]

[Pfe91]

[Pfe96]

[PieT3]

[Pra65]

[Pre94]

[Pre95]

[Pre98]

[Qia93]

[QW96]

[Rob65]

Tobias Nipkow and Richard Mayr. Higher-order rewrite systems and their confluence.
Theoretical Computer Science, 192:3-29, 1998.

Tobias Nipkow and Christian Prehofer. Higher-order rewriting and equational rea-

soning. In Bibel [BS98c].

Tobias Nipkow and Zhenyu Qian. Modular higher-order E-unification. In Ronald V.
Book, editor, Proceedings of the 4" International Conference on Rewriting Tech-
niques and Applications, number 488 in LNCS, pages 200-214. Springer, 1991.

Sam Owre, John Rushby, and Natarajan Shankar. PVS: a prototype verification
system. In Kapur [Kap92], pages 748-752.

V. Padovani. On equivalence classes of interpolation equations. In M. Dezani-
Ciancaglini and G. Plotkin, editors, Typed Lambda Calculi and Apllications, number
902 in LNCS. Springer, 1995.

Lawrence C. Paulson. Isabelle. A Generic Theorem Prover, volume 828 of Lecture
Notes in Artificial Intelligence LNAI Springer, 1994.

Frank Pfenning. Computation and deduction. Unpublished lecture notes, 312 pp.
April 1997.

Frank Pfenning. Proof Transformations in Higher-Order Logic. PhD thesis, Carnegie-
Mellon University, Pittsburgh Pa., 1987.

Frank Pfenning. Logic programmingin the LF logical framework. In Gérard P. Huet
and Gordon D. Plotkin, editors, Logical Frameworks. Cambridge University Press,
1991.

Frank Pfenning. The practice of logical frameworks. In Helene Kirchner, editor,
Proceedings of the Collquium on Trees in Algebra and Programming, number 1059 in
LNCS, pages 119-134. Springer, 1996.

Thomasz Pietrzykowski. A complete mechanization of second-order type theory.
Journal of the Association for Computing Machinery, 20:333-364, 1973.

Dag Prawitz. Natural Deduction. Almquist & Wiksell, 1965.

Christian Prehofer. Higher-order narrowing. In Logic in Computer Science (LICS
’94), pages 507-516. IEEE Computer Society Press, 1994.

Christian Prehofer. Solving higher-order equations: From logic to program-
ming. Technical Report TUM-19508, Institut fiir Informatik, Technische Universitat
Miinchen (TUM), Miinchen, 1995.

Christian Prehofer. Solving Higher-Order Equations: From Logic to Programming.
Progress in theoretical computer science. Birkhauser, 1998.

Zhenyu Qian. Linear unification of higher-order patterns. In J.-P. Jouannaud M.-
C. Gaudel, editor, Proceedings of TAPSOFT(CAAP)’93, number 668 in LNCS, pages
391-405. Springer, 1993.

Zhenyu Qian and Kang Wang. Modular higher-order equational preunification. Jour-
nal of Symbolic Computation, 22:401-424, 1996.

John A. Robinson. A machine-oriented logic based on the resolution principle. Jour-
nal of the Association for Computing Machinery, 12(1):23-41, 1965.

126

[Rob68]

[Rob69]

[RSGIS]

[Rud92]

[Rus02]
[Rus03]

[Rus08]

[RW69]

[Sbog]

[Sch60]

[Scob7]

[SG89]

[SHB+98]

[SHB+99]

[Sie84]

[Sko28]

[Smu63]

[Smu68]
[Sny90]

BIBLIOGRAPHY

John A. Robinson. New directions in theorem proving. In Proceedings of IFIP
Congress in Information Processing, volume 68, pages 63-67. North Holland, 1968.

John A. Robinson. Mechanizing higher order logic. Machine Intelligence, 4:151-170,
1969.

Julian Richardson, Alan Smaill, and Tan Green. Proof planning in higher-order logic
with AClam. In Kirchner and Kirchner [KK98a], pages 129-133.

Piotr Rudnicki. An overview of the mizar project. In Proceedings of the 1992 Work-
shop on Types and Proofs as Programs, pages 311-332, 1992.

Bertrand Russell. Letter to Frege. Printed in [vH67], 1902.

Bertrand Russell. The principles of mathematics. Cambridge University Press, Cam-
bridge, England, 1903.

Bertrand Russell. Mathematical logic as based on the theory of types. American
Journal of Mathematics, XXX:222-262, 1908.

George A. Robinson and Larry Wos. Paramodulation and TP in first order theories
with equality. Machine Intelligence, 4:135-150, 1969.

Programming Systems Laboratory Saarbriicken, 1998. The Oz Webpage:
http://www.ps.uni-sb.de/oz/.

Kurt Schiitte. Semantical and syntactical properties of simple type theory. Journal
of Symbolic Logic, 25:305-326, 1960.

Dana S. Scott. Existence and description in formal logic. In Schoenmann, editor,

Bertrand Russell: Philosopher of the Century. Allen and Unwin, 1967.

Wayne Snyder and Jean Gallier. Higher-Order Unification Revisited: Complete Sets
of Transformations. Journal of Symbolic Computation, 8:101-140, 1989.

Jorg Siekmann, Stephan Hess, Christoph Benzmiiller, Lassaad Cheikhrouhou, Detlef
Fehrer, Armin Fiedler, Michael Kohlhase, Karsten Konrad, Erica Melis, Andreas
Meier, and Volker Sorge. Loui: A Distributed Graphical User Interface for the
QMEGA Proof System. Proceedings of the International Workshop on User Interfaces
for Theorem Provers, 1998.

Jorg Siekmann, Stephan Hess, Christoph Benzmiller, Lassaad Cheikhrouhou, Armin
Fiedler, Helmut Horacek, Michael Kohlhase, Karsten Konrad, Andreas Meier, Erica
Melis, Martin Pollet, and Volker Sorge. Lour: Lovely QMEGA User Interface. sub-
mitted, 1999.

Jorg Siekmann. Universal unification. In R. E. Shostak, editor, Proceedings of the 7th
International Conference on Automated Deduction (CADE-7), number 170 in LNCS,
pages 1-42. Springer, 1984.

Thoralf Skolem. Uber die mathematische Logik. Norsk matematisk tidsskrift 10,
1928.

Raymond M. Smullyan. A unifying principle for quantification theory. Proc. Nat.
Acad Sciences, 49:828-832, 1963.

Raymond M. Smullyan. First-Order Logic. Springer, 1968.
Wayne Snyder. Higher order E-unification. In Stickel [Sti90], pages 573-578.

BIBLIOGRAPHY 127

[Sny91]

[SP98]

[SSW94]

[Ste90]

[Sti90]

[Str93]

[Takb3]

[Tak67)

[Tak68]

[Tak87]
[Tam98]

[Try89]

[TS89]

[Unkar]

[VH6T)

[Vir95]

[vO94]

[WeidT]

[WGR96]

Wayne Snyder. A Proof Theory for General Unification. Progress in Computer
Science and Applied Logic. Birkhauser, 1991.

Carsten Schirmann and Frank Pfenning. Automated theorem proving in a simple
meta-logic for LF. In Kirchner and Kirchner [KK98a], pages 286-300.

Christian Schulte, Gert Smolka, and Jorg Wirtz. Encapsulated search and constraint
programming in Oz. In Alan H. Borning, editor, Proceedings of the 2*¢ PPCP,
volume 874 of LNCS, pages 134-150, Orcas Island, Washington, USA, May 1994.
Springer.

Guy L. Steele. Common Lisp: The Language, 2nd edition. Digital Press, Bedford,
Massachusetts, 1990.

Mark Stickel, editor. Proceedings of the 10th Conference on Automated Deduction
(CADE-10), number 449 in LNCS, Kaiserslautern, Germany, 1990. Springer.

Thomas Streicher. Investigations into intensional type theory. Unknown Publisher,
1993. Habilitationsschrift.

Gaisi Takeuti. On a generalized logic calculus. Japan Journal of Mathematics, 23:39
f., 1953.

Moto-o Takahashi. A proof of cut-elimination in simple type theory. Journal of the
Mathematical Society of Japan, 19:399-410, 1967.

Moto-o Takahashi. Cut-elimination in simple type theory with extensionality. Journal
of the Mathematical Society of Japan, 19, 1968.

Gaisi Takeuti. Proof Theory. North Holland, 1987.

Tanel Tammet. Towards efficient subsumtion. In Kirchner and Kirchner [KK98a],
pages 427-441.

Andrzej Trybulec. Tarski grothendieck set theory. Journal of Formalized Mathemat-
tcs, Axiomatics, 1989.

Zinaida Trybulec and Halina Swieczkowska. Boolean properties of sets. Journal of
Formalized Mathematics, 1, 1989.

Unknown. Unknown Title. PhD thesis, Worcester College, Unknown Year. I have
a manuscript of the thesis without a title page. (the author is a student advised by
Professor Gandy).

Jean van Heijenoort. From Frege to Godel : a source book in mathematical logic
1879-1931. Source books in the history of the sciences series. Harvard University
Press, Cambridge, MA, USA, 3rd printing, 1997 edition, 1967.

Roberto Virga. Higher-order superposition for dependent types. Carnegie mellon
university, Carnegie Mellon Univ., Pittsburgh, PA | 1995.

V. van Qostrom. Confluence for Abstract and Higher-Order Rewriting. PhD thesis,
Vrije Universiteit, Amsterdam, 1994.

Christoph Weidenbach. SPASS: Version 0.49. Journal of Automated Reasoning,
18(2):247-252, 1997. Special Issue on the CADE-13 Automated Theorem Proving
System Competition.

Christoph Weidenbach, Bernd Gaede, and Georg Rock. Spass & flotter, version 0.42.
In McRobbie and Slaney [MS96].

128

[Wol93]
[Wol94]

[WR10]

[Zer04]

[Zer08]

BIBLIOGRAPHY

David A. Wolfram. The Clausal Theory of Types. Cambridge University Press, 1993.

David A. Wolfram. A semantics for A-PROLOG. Theoretical Computer Science,
136(1), 1994.

Alfred N. Whitehead and Bertrand Russell. Principia Mathematica, volume I. Cam-
bridge University Press, Cambridge, Great Britain; 2nd edition, 1910.

Ernst Zermelo. Beweis, daf} jede Menge wohlgeordnet werden kann. Mathematische

Annalen, 59:514-516, 1904.

Ernst Zermelo. Untersuchungen uber die Grundlagen der Mengenlehre. 1. Mathema-
tische Annalen, 65:261-281, 1908.

Index

Y-algebra, 21
full, 21

Y-model, 22

Y-valuation, 22

A-calculus, 3
simply typed, 3, 14

A-conversion, 3

POST, 80

KeiMm, 12

LEo, 2, 12, 80

LEo clause store
CONT, 83-85
Uni-Cont, 85
Ext-Mod, 85
EXT, 83-86
Factorised, 85
Lightest, 84
Paramod, 85
Prim-Subst, 85
Processed, 85
Resolved, 84, 85
Sos, 83, 84
Unified, 85, 86
USABLE, 83, 84
set of support, 83

QMEGA, 80

Tps, 2,5, 7-9

KEeim-toolbox, 81

abstract consistency classes, 8, 31
compactness of, 32
non-atomic, 31
properties for, 30
abstract consistency method, 5
abstract consistency properties, 30, 36
with primitive equality, 36
abstract extension lemma, 39
admissibility, 16
of generalised paramodulation rule, 70
of generalised paramodulation rule, 75
application operator, 17
approximating binding, 15
assignment, 18
atom, 15

129

axiom of choice, 4
axioms of choice, 5

base type, 14

binding
approximating, 15
general, 15
imitation, 15
projection, 15

bound variable, 15

calculus, 16

Ep, 11

ER, 10, 11

ERUE, 11
calculus ratiocinator, 1
canonical projection, 18
carrier set, 17
characteristic function, 90
clause, 15

empty, 16

normal form, 16

normalisation, 48

pre-, 15, 16

proper, 15, 16
closed under subsets, 30
compactness, 30, 32
completeness, b

Henkin, 2

of &P, T1

of &Ry, 53

of ERUE., T8
comprehension

principles, 3
comprehension principles, 3
congruence, 17
connective, 14
consistency

non-atomic, 31
constant, 14
constraint, 16

flex-flex, 16

flex-riged, 16

convention, 55

130

conversion
a-, 31
577‘; 15
A, 15
A, 3

denotation, 19, 20
Denotatpflicht, 3
derivability, 16

of proper clauses, 55
description operator, 4, 5
difference-reduction, 29
domain, 17

eager unification, 54
empty clause, 16
equality
properties of Leibniz equality, 25
at defining, 5
defined, 11, 27, 28
Leibniz, 2, 5, 7, 11, 24, 27, 37
meta-, 5
notions of, 5
of clauses, 47
primitive, 5, 7, 8, 11, 26, 27, 37
semantical relation, 5, 7
evaluation
function, 6
in functional structures, 21
evaluation function, 18
expressivness, 90
extension lemma, 30, 39
extensional higher-order paramodulation, 61
extensional higher-order resolution, 49, 72
extensional higher-order RUE-Resolution, 72
extensionality
additional rules for primitive equality, 11
Boolean, 2, 4, 5,9, 11
Boolean, for Leibniz equality, 23, 27
Boolean, for primitive equality, 26, 27
for Leibniz equality, 23
for negative primitive equations, 61
for positive primitive equations, 61
for primitive and Leibniz equality, 27
for primitive equality, 26
full, for Leibniz equality, 23, 27
full, for primitive equality, 26, 27
functional, 2, 4, 5, 7,9, 11
functional, for Leibniz equality, 23
functional, for primitive equality, 26
in models, 24
in models with primitive equality, 27
treatment, 7, 85

INDEX

factorisation
generalised rules, 64
falsity, 22
fix-point free functions, 60
flexible literal heads, 10
formula, 14
frame, 17
free variable, 15
full pre-X-algebra, 21
fully invariant, 17
function application, 17
functional
congruence relation, 17, 40
pre-structure, 17
types, 14
functionality, 17

general binding, 10, 15

generalised factorisation rule, 64
generalised paramodulation rule, 63
generalised primitive substitution rule, 64
generalised resolution rules, 64

Henkin model, 7, 23
Henkin model with primitive equality, 26
higher-order logic, 14
Hilbert style calculus, 5
Hilbert’s program, 1
Hintikka lemma

for Acegp, 35

for QAceg, 33

for QAcege, 38

for Accgep, 38

for Q[CC@f, 35

for Acesq, 35
Hintikka set, 8, 30, 33
homomorphic extension, 20
homomorphism, 17

imitation bindings, 15
incompleteness, 80, 87, 88

of EPpaive, 59

of naive RUE-Resolution, 72
incompleteness theorems, 1
individuals, 6
interpretation, 6

function, 8

of constants, 17

Lego, Coq, type theory
constructive, 115
lifting lemma
for &Py, 62
for &Ry, 51

INDEX

for ERUE., T3

for clause normalisation, 50
lingua characteristica, 1
literal, 15

negative, 15

positive, 15

pre-, 15

proper, 15

unification constraint, 15
logical connectives, 14

maximal, 33
model, 6
Henkin, 23
Henkin, with primitive equality, 26
quotient, 23
standard, 6, 23
with primitive equality, 26
model class
Mpe, 23
mﬁfa 23
Moo, 23
Mpq, 23
Mpqe, 23
model existence, 39
model existence theorem, 40
models
functional, 8
non-functional, 8

normal form
577-; 4a 14
#n-head-, 4
head-, 16, 52, 63, 74

order, 14, 112

paradoxes, 3
Russel’s, 3
parameters, 14
paramodulation, 57
first-order, 11
higher-order, 11
into unification constraints, 58
partial binding, 10
polarity, 15
pre-X-algebra, 21
pre-clause, 15
pre-literal, 15
pre-structure, 16, 17
singleton, 17
total, 17
primitive equality, 10, 36
primitive substitution, 10, 82, 88

131

generalised rules, 64
restricted, 112
projection bindings, 15
proper
clause, 15
clause in EP and &Py, T1
clause in ERUE and ERUE;, T9
derivation, 50, 73
proper derivations, 62
property
b, 7,8, 22
f, 22
q, 7,8, 22,23
property e, 26
proposition, 14
pure, 30

quotient
model, 23
pre-structure, 18
structure, 18, 19

reduction
577‘; 15
reflexivity resolution, 58
resolution
extensional higher-order, 49, 72
extensional higher-order RUE-, 72
generalised rules, 64
higher-order, 1, 8
higher-order constrained, 1
on unification constraints, 72
rule
GFac, 64
GPrim, 64
GRESl, 64
GRESQ, 64
Fquiv’, 62
Func’, 62
GPara, 63
Leib’, 61
Leib, 54
Para’, 57
Para, 57
Prim, 10
Sym, 73
admissible, 16
derivable, 16

satisfies, 22
saturated, 32
atomically, 32
saturation, 8
semantics

132

Henkin, 2, 5

standard, 2, 5, 7
semi-valuation, 8
sentence, 14
set

of support, 12

of variables, 14

theory, 3, 90
set, of constants, 14
set of support, 80
signature, 14
singleton pre-X-structure, 17
Skolem term, 15
Skolemisation, 9, 15
solved

for, 16

variable, 16
SOS-architecture, 80, 83
soundness

of B-equality, 20

of CNF, 48

of 8Pnaiue; 59

of extensional higher-order paramodula-

tion, 62

of extensional higher-order resolution,
49

of extensional higher-order RUE-resolu-
tion, 73

standard model, 23

structure, 16, 18

substitution, 15
application of, 15

subsumption, 12, 81
extensional higher-order, 89
higher-order, 89

sufficiently pure, 30

symmetric unification constraints, 73

term indexing, 12
extensional higher-order, 89
higher-order, 12, 81
syntactical higher-order, 89
term rewriting, 4, 29
higher-order, 10
syntactical, 4
term structure, 19
ﬁ_a 19
577-; 19
theorem equivalence
of ERys. and ERy, 55
of ERUEs. and ERUE; | T9
of &P and &Py, 71
of R and &Ry, 56
of ERUE and ERUE;. (or ERUE:), T9

INDEX

truth, 22
truth values, 6
type, 14
function, 17
type theory
classical, 1, 3, 5
extensional, 114
intensional, 114
typed
collection, 17
collection of sets, 17
mapping, 17
typed binary relation, 17
typed function, 17

unification, 48
continuation, 87
eager, 54, 82, 88
extensional higher-order, 82, 87
higher-order, 1, 48, 49, 81
higher-order -, 10, 49
higher-order pre-, 1, 48
unification constraint, 15
unifying principle, 5

universe of type a, 17

valid, 22

valuation, 7, 22
with equality, 26

value, 20

variable, 14
assignment, 6
conditions, 9
solved, 16

variable assignment, 18

weak derivability
of generalised factorisation rule, 65, 74
of generalised paramodulation rule, 68

of generalised primitive substitution

rule, 65, 74

of generalised resolution rules, 65, 74

Symbol Index

[A/X] ... substitution, 15

[A/X]T ... application of substitution, 15
Accgp . . . abstract consistency class, 31, 41
Accg ... abstract consistency class, 40

Accg, ... abstract consistency class, 36, 41
Accgep . .. abstract consistency class, 36, 41
Accgs . .. abstract consistency class, 31, 40
Accgsp . . . abstract consistency class, 31, 41
Accgy ... abstract consistency class, 31, 41
Accgqp .. . abstract consistency class, 31
BT ... base types, 14

O ... empty clause, 16

C; ... set of constants, 14

q ... semantical equality relation, 5, 14

Efara . example for incompleteness of
gpnaivea 59

Efare . example for incompleteness of
gpnaivea 59

Efore . example for incompleteness of
gpnaivea 60

EPara example for incompleteness of
gpnaivea 60

EPara . example for incompleteness of
gpnaivea 60

EPy. ... extensional higher-order paramodu-

lation with full unification and un-
folded clause normalisation, 61

ERye ... extensional higher-order resolution
with full unification and unfolded
clause normalisation, 49

ERUE. ... extensional higher-order RUE-re-
solution with full unification and
unfolded clause normalisation, 72

EPs ... extensional higher-order paramodula-
tion with full unification, 61
ER; ... extensional higher-order resolution

with full unification, 49
ERUE; ... extensional higher-order RUE-re-

solution with full unification, 72

EPraive --- naive higher-order paramodula-
tion, 59

EP ... extensional higher-order paramodula-
tion, 11, 61

ER ... extensional higher-order resolution,
10, 11, 49

ERUE . .. extensional higher-order RUE-reso-
lution, 11, 72

H ... model class, 8

= ... Leibniz equality, 5, 14, 37

EXT%_W ... functional extensionality for

133

Leibniz equality, 9, 23, 27

EXTJ ... Boolean extensionality for Leibniz
equality, 9, 23, 27

Mg ... model class, 8

My ... model class, 6, 8

Mgy ... model class, 7, 8

Msie . .. model class, 7, 8

Msq ... model class, 7, 8

... meta-equality, 5, 14

o --- a-equality, 15

gy - .- Bn-equality, 15, 17

g ... P-equality, 15, 17

g - . g-equality, 15

... logical connective, 14

... primitive equality, 5, 14, 37

EXT*?? ... functional extensionality for
primitive equality, 26, 27

EXT? ... Boolean extensionality for primi-

1= | e A LT

tive equality, 26, 27
&% ... model class, 6
¥ ... signature, 14
Y= ... signature with primitive equality, 14
Tia/x] ... application of substitution with
subsequent head-normalisation, 15
Ty,y .. Pp-normal form, 15
T,, ... B-normal form, 15
Ty, ... n-normal form, 15
Ty, ... head-normal form, 15
TS(X) ... term structure, 19
’TS(E)’B ... p-term structure, 19
TS(E)W ... Bn-term structure, 19
T ...set of types, 14
V, ...set of variables, 14
wff,(X5) ... set of Z=-terms of type o, 14
wff(£7) ... set of T=-terms, 14
wff, (X) ... set of all E-terms of type «, 14
wff(X) ... set of X-terms, 14
wff,(X) ... set of propositions, 14
cwff,(X) ... set of sentences, 14
VA ... abstract consistency property, 30
Ve ... abstract consistency property, 30
V; ... abstract consistency property, 30
Vs ... abstract consistency property, 30
V. ... abstract consistency property, 30
V3 ... abstract consistency property, 30
Vy ... abstract consistency property, 30
VE ... abstract consistency property, 36
V. ... abstract consistency property, 30
Vo ... abstract consistency property, 30
V= ... abstract consistency property, 36
Vi ... abstract consistency property, 30
@ ... application operator, 17
@™~ ... application operator for equivalence

B

134

classes modulo ~, 18
@>? ... application operator, 17
... type constructor, 14
. set operator in classical type theory, 90
... domain of equivalence classes modulo
~, 18
... domain of type «a, 17
... domain of truth values, 6
... domain of individuals, 6
. evaluation function, 18
... evaluation function, 18
... set of imitation bindings, 15
... set of projection bindings, 15
. interpretation function, 6, 8, 17

R RN

NN
.

... interpretation of constants modulo ~;,
18

I, ... evaluation function, 6, 20

N ...set operator in classical type theory, 90

—p ... B-reduction, 15

—y ... n-reduction, 15

U ... set operator in classical type theory, 90

= ... equality at defining, 5, 14

— ... set operator in classical type theory, 90

F, ... falsity, defined concept, 22

free(T) ... free variables of, 15

AB" .. set of partial bindings, 15

Vi ... Hintikka set property, 33

YV, ... Hintikka set property, 35

... Hintikka set property, 35
V; ... Hintikka set property, 35
Vs ... Hintikka set property, 33

. Hintikka set property, 33
. Hintikka set property, 33

.. Hintikka set property, 33
.~ ... Hintikka set property, 35
V- ... Hintikka set property, 35

Ve ... Hintikka set property, 33
Vis ... Hintikka set property, 33
i;r ... Hintikka set property, 33
zisy ... Hintikka set property, 33
V3 ... Hintikka set property, 33
W ... Hintikka set property, 33
V. ... Hintikka set property, 33
Y ... Hintikka set property, 33
Y.~ ... Hintikka set property, 38
?:J’ ... Hintikka set property, 38
V:q-l- ... Hintikka set property, 38
V{7 ... Hintikka set property, 38
?_I’J’ ... Hintikka set property, 38
AV . Hintikka set property, 38
i”_ . Hintikka set property, 38

INDEX

V. ... Hintikka set property, 38
V. ... Hintikka set property, 38
V. ... Hintikka set property, 38
i" ... Hintikka set property, 38
. . .

sz ... Hintikka set property, 38
Vq_ ... Hintikka set property, 35
Yq-l- ... Hintikka set property, 35
V; ... Hintikka set property, 33

@tf_ ... Hintikka set property, 35

VL” ... Hintikka set property, 35

€ ... set operator in classical type theory, 90

[f]. --. equivalence class of f modulo ~, 17

meets . . . set operator in classical type theory,
90

misses ... set operator in classical type the-
ory, 90

E ... semantical validity, 22

Fo ...semantical satisfiability, 22
= ... logical connective, 14

ord ... order of a type, 14

@ ... variable assignment, 6, 18
T~ ...canonical projection, 18

b ... property for models, 7, 8, 22
¢ ... property for models, 26

f ... property for models, 22

q ... property for models, 7, 22, 23
A/. ... quotient structure, 19
A/. ... quotient model, 23

A/. ... quotient pre-structure, 18

v ... valuation, 7, 22
~ ... congruence, 17
~z ... functional congruence relation, 40
Ay ... functional congruence relation, 40

C ...set operator in classical type theory, 90
T, ... truth, defined concept, 22

F= .. .single step derivation with rule r,, 16

Fr ... derivation in calculus R, 16

F% ... derivation in calculus R of length n,
16

V ... logical connective, 14

