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Abstract
Say that space is ‘gunky’ if every part of space has a proper part. Traditional theo-
ries of gunk, dating back to the work of Whitehead in the early part of last century,
modeled space in the Boolean algebra of regular closed (or regular open) subsets
of Euclidean space. More recently a complaint was brought against that tradition in
Arntzenius (2008) and Russell (2008): Lebesgue measure is not even finitely addi-
tive over the algebra, and there is no countably additive measure on the algebra.
Arntzenius advocated modeling gunk in measure algebras instead—in particular, in
the algebra of Borel subsets of Euclidean space, modulo sets of Lebesgue measure
zero. But while this algebra carries a natural, countably additive measure, it has some
unattractive topological features. In this paper, we show how to construct a model
of gunk that has both nice rudimentary measure-theoretic and topological proper-
ties. We then show that in modeling gunk in this way we can distinguish between
finite dimensions, and that nothing in lost in terms of our ability to identify points as
locations in space.

Keywords Regions · Gunk · Topology · Point-free space · Mereology ·
Mereotopology

1 Introduction

Space as we typically represent it in mathematics and physics is made up of points—
indivisible, zero-dimensional parts of space. But our experience of the world seems
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to put us in contact only with regions of space that are extended. Philosophers have
at various times doubted whether there are any point-sized regions of space, and
relatedly, whether we do well to take points as primitives in a theory of space.

According to an alternative view of space, every part of space has a proper part.
Mereologies that satisfy this condition are sometimes called ‘gunky.’ The term was
coined by Lewis [20], and has since been taken up by those interested in a kind of
infinite divisibility of space. If space is gunky, then no region of space is a point-sized
part. For points are indivisible, spatial atoms; they have no proper parts.

The possibility of gunk raises several immediate questions of both a philosoph-
ical and mathematical character. If space is gunky, what are the right primitives to
adopt in giving a theory of space? What axioms in these primitives best character-
ize space? And what models of gunky space are most realistic? These questions are
most closely associated with the work of de Laguna and Whitehead in the early part
of last century.1 Since that time, a lot of new and interesting work has been done
on these questions, in the areas of logic, philosophy, and computer science.2 Mod-
ern incarnations of the Whiteheadian project typically take as primitive the two-place
mereological relation of parthood and a topological predicate, ‘contact.’ (By topol-
ogy, of course, we do not mean ordinary topology as given by open sets of points.
Rather we mean, very loosely, something like the way in which parts of space are
‘glued together.’) Intuitively, two regions are in contact if they either overlap, or are
adjacent to one another. In addition to contact, some have adopted as primitive the
unary predicate ‘limited’; intuitively, a region is limited if it is bounded on every side.

Region-based theories of space are interpreted in non-degenerate Boolean algebras
together with some additional relations interpreting the primitive topological notions.
The basic idea is that regions of space correspond to the non-zero elements of the
algebra, and the partial order ≤ on the algebra interprets the mereological relation of
parthood. Thus a ≤ b if a is a part of b, and a < b if a is a proper part of b. In these
models, the whole of space is itself a region, corresponding to the top element, 1, of
the Boolean algebra. (The bottom element, 0, does not correspond to any region of
space, but is retained for mathematical convenience). Likewise, complements in the
Boolean algebra correspond to mereological differences between the whole of space
and a given region of space.

It will be useful to give a name to the mereological condition stated above:

Mereological Gunk Every region of space has a proper subregion.

Boolean algebras that satisfy Mereological Gunk are atomless: for every non-zero
element a of the algebra, there is a non-zero element b with b < a. Satisfaction of
Mereological Gunk is a basic requirement of any model of the alternative picture of
space sketched above, on which there are no spatial atoms. But someone interested in

1See de Laguna [9] and Whitehead [32].
2The literature here is extensive. For some examples in logic and computer science see, e.g., Tarski [28],
Grzegorczyk [16], De Vries [10], Clarke [7], Randell [21], Gerla [14], Roeper [22], Cohn and Hazarika
[18], Dimov and Vakarelov [11], Balbiani et al. [3], Vakarelov [29], among many others. For some exam-
ples in philosophy, see, e.g., Skyrms [27], Cohn and Varzi [8], Arntzenius and Hawthorne [2], Arntzenius
[1] and Russell [23]. Two very recent monographs are Gruszczyński [17] and Shapiro and Hellman [25].
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the gunky picture of space may want a further kind of infinite divisibility. Thinking
topologically now, consider the requirement that for every region a there is a sub-
region that sits well-inside it: that is not in contact with any region disjoint from a

(where regions x and y are disjoint if they do not share a common part). This con-
dition appears in many formal region-based theories of space, where it sometimes
goes under the name of ‘extensionality.’3 We borrow from Russell [23] in giving it
the following name.4

Topological Gunk Every region a of space contains a region that is not in contact
with any region disjoint from a.

One particularly important class of models of region-based theories of space arise
from the regular closed subsets of an ordinary (‘pointy’) topological space. These
sets form a complete Boolean algebra in which operations are not set-theoretic, as
we’ll see below. Moreover, we can equip the algebra with a standard contact relation
by saying that two regular closed sets are in contact if their intersection is non-empty.
The contact algebra of regular closed subsets of finite-dimensional Euclidean space,
R

n, is atomless, and hence a model of Mereological Gunk. It is also a model of Topo-
logical Gunk. (This follows from the fact that Euclidean space is regular, so every
non-empty open set contains the closure of a non-empty open set.) Nevertheless, in
Arntzenius [1] and Russell [23] that algebra came under fire as a model of gunk.
Simply put, the problem is that our ordinary notion of size—Lebesgue measure—
is not even finitely additive over the algebra, and no non-zero measure is countably
additive over the algebra.

For Arntzenius, this was a fundamental problem. For, in addition to whatever topo-
logical structure we give to gunky space, there must, he thought, be a workable and
realistic notion of size for regions of space. As a result, Arntzenius turned to a dif-
ferent model of gunk altogether: the Lebesgue measure algebra, or algebra of Borel
subsets of Rn modulo sets of (Lebesgue) measure zero. (Recall that the algebra of
Borel subsets of a topology X is the smallest collection of subsets of X containing all
the open sets and closed under complements and countable unions. Lebesgue mea-
sure is the standard measure on Euclidean space; the measure of any interval in R

is its length, the measure of any disc in R
2 its area. While Lebesgue measure is not

defined on every subset of Euclidean space, all Borel sets are Lebesgue-measurable.)
Like the algebra of regular closed subsets of Rn, the Lebesgue measure algebra is

atomless and complete. Moreover, Lebesgue measure is countably additive over the
Borel subsets of Rn. This allows us to define a countably additive measure on the
Lebesgue measure algebra in a natural way (namely, by assigning to each equivalence
class in the algebra the Lebesgue measure of any of its representatives). Then the

3See, for example, De Vries [10], Stell [26], Vakarelov [29], Vakarelov et al. [30, 31], among many others.
4Russell’s statement of the condition is slightly different. According to him, a region x is a boundary of a
region y if every part of x is in contact with both y and some region disjoint from y; x is open if no part
of x is a boundary of x; and finally, space is topologically gunky if every region is open. This definition
of topological gunk is equivalent to the definition given above, assuming standard axioms for a contact
relation on a Boolean algebra: (A1) − (A5) below.
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algebra satisfies a third kind of infinite divisibility condition, this time cashed out in
terms of the notion of size:

Measure-theoretic Gunk Every region of space has a subregion that is arbitrarily
small.

But what about topology? As Arntzenius [1] shows, we can define a very nat-
ural contact relation on the Lebesgue measure algebra. However, when we do so
the resulting contact algebra does not satisfy Topological Gunk: there are regions
of space that do not contain any region well-inside them. We can sum things up
by saying that the standard model of gunk (the algebra of regular closed subsets of
Euclidean space) has nice topological structure, but poor measure-theoretic structure,
whereas Arntzenius’ model of gunk has nice measure-theoretic structure, but poor
topological structure.

It would be nice to have everything we want all at once: a realistic model of gunky
space with nice mereological, topological, and measure-theoretic features. Unfortu-
nately, an impossibility result due to Russell [23] constrains any such hopes. Given
some very basic assumptions about the nature of space and the parthood relation, the
thesis Topological Gunk is in conflict with the existence of a countably subadditive
measure on regions of space that satisfies Measure-theoretic Gunk.5

These problems occasion, we think, a look ‘downward’—a turn, in other words,
to smaller algebras that sit inside either the algebra of regular closed subsets of
Euclidean space, or the Lebesgue measure algebra. In this paper we explore a model
of gunk that, in fact, sits inside both. It is atomless, of course, and hence a model of
Mereological Gunk. From the algebra of regular closed subsets of Euclidean space it
inherits nice topological features; and from the Lebesgue measure algebra, it inherits
nice rudimentary measure-theoretic features. More specifically, the algebra satis-
fies Topological Gunk, Measure-theoretic Gunk, and Lebesgue measure is finitely
(although not countably) additive over the algebra. Moreover, we can show that this
way of modeling space admits a distinction between different finite dimensions. And
when it comes to identifying points as locations in space (not regions), we lose noth-
ing in passing from the algebra of regular closed subsets of Euclidean space to the
smaller subalgebra.

In return for these advantages, we sacrifice certain infinitary operations. As we
said above, Lebesgue measure is not countably additive over the algebra. Moreover,
the algebra is not complete.

To what extent are these sacrifices problematic? That will in general depend on
one’s reasons for looking to gunky models of space to begin with. The attitude

5More precisely, Russell [23] shows that the following five theses are inconsistent:

1. Space has a transitive and reflexive parthood relation;
2. Space has a topology with a countable basis;
3. Space is topologically gunky;
4. Space has a non-trivial countably subadditive measure;
5. Every region has an arbitrarily small subregion.

where a countable basis for a space is a collection B of open regions such that every open region of space
is a mereological sum of elements in B. (The definition of ‘open’ is given in n. 4.)
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adopted here is one of exploration. We put forward this model of gunk not in the
spirit of adopting it as the one, true representation of space as it really is—or space as
it would be if space were gunky. Rather, this is a model, among many, that captures
some of what we want in a representation of infinitely divisible space. The existence
of this particular model shows that the calculus of regions presented below is com-
patible with some of the topological and measure-theoretic features of space that we
may be antecedently interested in.

Classical mereologists interested in the principle of Unrestricted Composition,
according to which every collection of things has a mereological sum, will perhaps
be tempted to conclude that this model violates that principle. That would be too
quick. It’s true that the algebra we present as a model of gunk is not closed under
arbitrary suprema. But if a collection of regions fails to have a supremum in the alge-
bra of regions, that does not mean that there is a collection of things that fails to
have a mereological sum. It means only that there is no region which is its mereolog-
ical sum. Philosophers who accept the principle of Unrestricted Composition need
not commit themselves to the further claim that the mereological sum of any collec-
tion of regions is itself a region. For the mereological sum may be an entity of some
kind—even a spatial entity—that is not a region. (Consider, for example, the view of
points adopted in Roeper [22]. Points, as Roeper sees it, are locations in space, and
hence presumably spatial entities of one kind or another. But they are not regions of
space. On such a view, not every spatial entity need be a region.) This will, of course,
not satisfy those metaphysicians who do buy into the idea that the mereological sum
of any collection of regions must itself be a region. Our point is simply that this is
a further principle—one that goes beyond the principle of Unrestricted Composition
defended in places like, e.g., Lewis [19] and Bricker [6].

The paper is organized as follows. In Section 2, we recall Roeper’s axioms
for region-based theories of space using the primitives ‘contact’ and ‘limited.’ In
Section 3, we discuss standard models of those axioms based on regular closed sets,
as well as Arntzenius’s alternative model of gunky space based on the Lebesgue
measure algebra. In Section 4, we introduce a new model that sits inside both the
algebra of regular closed subsets of Euclidean space and the Lebesgue measure alge-
bra, and in Section 5, we show that this model satisfies all ten of Roeper’s axioms.
In Section 6, we prove that in modeling gunk this way, we can distinguish between
different finite dimensions. In Section 7, we show that in passing to the new model
of gunk, nothing is lost in terms of our ability to identify points as locations in space.
And finally in Section 8, we briefly consider a related, ‘junky’ model of space.

2 Roeper’s Axioms

We take as our starting point an axiomatization of region-based theories of space
given by Roeper [22], using the primitives ‘parthood,’ ‘contact,’ and ‘limited.’ As
Roeper shows, this axiomatization is characteristic of locally compact, Hausdorff
spaces, in the following sense. Every complete algebra that satisfies the axioms is
isomorphic to the algebra of regular closed subsets of a locally compact, Hausdorff
space, and indeed, there is a one-to-one correspondence between complete algebras
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satisfying the axioms (up to isomorphism) and locally compact Hausdorff spaces (up
to homeomorphism). We note, however, that not every algebra that satisfies Roeper’s
axioms is atomless; therefore, not every such algebra is a model of Mereological
Gunk. Because of our interest in gunk, the specific models of Roeper’s axioms
we consider below are all mereologically gunky. (Moreover, additional first-order
axioms could easily be added to this axiomatization, which would preclude all but
atomless algebraic models.)

The first five axioms characterize the relation of contact between regions, and are
standard not just in Roeper’s axiomatization but in axiomatizations of region-based
theories of space that use the primitive ‘contact’ more generally. (We use ‘a �� b’ to
mean a is in contact with b.)

(A1) If a �� b, then b �� a;
(A2) If a �= 0, then a �� a;
(A3) 0 ��� a;
(A4) If a �� b and b ≤ c, then a �� c;
(A5) If a �� (b ∨ c) then a �� b or a �� c;

The next three axioms characterize the predicate ‘limited.’ Together they ensure
that in any algebra in which these axioms are modeled, the collection of limited
regions forms an ideal.

(A6) 0 is limited;
(A7) If a is limited and b ≤ a, then b is limited;
(A8) If a and b are both limited, then a ∨ b is limited;

Finally, the last two axioms govern the interaction between the predicates ‘limited’
and ‘contact’:

(A9) If a �� b, then there is a limited b′ ≤ b such that a �� b′;
(A10) If a is limited, b �= 0, and a ��� −b, then there is a non-zero limited c such

that a ��� −c and c ��� −b.

The intuitive idea behind (A9), as Roeper explains it, is that ‘a region that is con-
nected with another region is limited where it is so connected.’ (A10) on the other
hand expresses a kind of infinite divisibility of space that is different from the sim-
ple mereological gunky thesis that every region has a proper part. It says that if a is
limited, and is well-inside the (non-zero) region b, then there is a limited (non-zero)
region c ‘in between’ them (in the sense that a is well-inside c and c is well-inside
b). In particular, letting a = 0, axiom (A10) requires that every (non-zero) region has
a limited (non-zero) region that sits well-inside it. This entails what we called above
Topological Gunk.

Following Roeper, we will say that a region-based topology is a triple,

〈Ω, ��, Δ〉

where Ω is a non-degenerate Boolean algebra, and �� and Ω are, respectively, binary
and unary relations on Ω that satisfy axioms (A1) − (A10).
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3 Two Traditions

3.1 StandardModels

One very important class of region-based topologies arises from the regular closed
subsets of a topological space. Let X be a topological space. We denote the interior
and closure of a set S ⊆ X by Int(S) and Cl(S), respectively. Then S ⊆ X is regular
closed if S = Cl Int(S) and S is regular open if S = Int Cl(S).

We omit the simple proof of the next lemma.

Lemma 1 If F is a closed set and O is an open set, then

1. Cl(Int(F )) ⊆ F ;
2. Int(Cl(O)) ⊇ O;
3. Int(F ) is a regular open set;
4. Cl(O) is a regular closed set.

It is well-known that the regular closed subsets of X form a complete Boolean
algebra, RC(X), with operations −, ∨, ∧ and infinitary joins and meets

∨
,
∧

defined as follows:6

A ∨ B = A ∪ B

A ∧ B = Cl Int(A ∩ B)

−A = Cl(X \ A)
∨

{Ai | i ∈ I } = Cl (
⋃{Ai | i ∈ I })

∧
{Ai | i ∈ I } = Cl Int(

⋂{Ai | i ∈ I })

Note that the meet is not simply set-theoretic intersection, because in general
the intersection of two regular closed sets is not regular closed (the same holds
for infinitary operations in the algebra). The partial order on the algebra is simply
inclusion:

A ≤ B iff A ⊆ B

The relations ‘contact’ and ‘limited’ can be defined in RC(X) in a standard way.
For any two elements A, B ∈ RC(X), put

A ��X B if and only if A ∩ B �= ∅

6The regular open subsets of X also form a Boolean algebra, RO(X). Indeed, RO(X) is isomorphic to
RC(X) by the mapping that takes every regular open set to its closure. Following the recent literature on
region-based theories of space, we work with RC(X) instead of RO(X), but nothing significant rides on
this: everything that follows could have been done in the algebra RO(X), with the necessary modifications.
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Note that we mean here set-theoretic intersection, and not the Boolean meet! Thus
two regions in the algebra RC(X) are in contact if they have a point in common. We
put

A ∈ ΔX if and only if A is compact

Roeper [22] shows that if X is a locally compact, T2 space, then 〈RC(X), ��X, Δx〉
is a region-based topology—i.e., satisfies axioms (A1)− (A10). In particular, (A1)−
(A8) are satisfied in any topological spaceX; (A9) is satisfied ifX is locally compact;
and (A10) is satisfied if X is both locally compact and T2.7

Let us now turn to the difficulty mentioned above with modeling space in regular
closed algebras, as pointed out in Arntzenius [1], and further studied in Russell [23].
The ordinary notion of ‘size’ in n-dimensional Euclidean space is given by Lesbesgue
measure, which is defined over all measurable sets. This includes all Borel sets, and
in particular the regular closed sets. The problem is that Lebesgue measure is not
even finitely additive over the Boolean algebra of regular closed sets, RC(Rn).

There are many ways to see this. Here we use a ‘fat’ Cantor set in R; the example
can be generalized to R

n for any finite dimension n. To construct the fat Cantor set,
begin with the closed unit interval, I = [0, 1]. At stage n = 1, remove the open
middle interval of length 1/4 from I . We are left with two closed intervals, [0, 3/8]
and [5/8, 1]. At stage n = 2, remove the open middle intervals of length (1/4)2 from
each of these remaining intervals. We are left with four closed intervals. In general,
at stage n = k, remove the open middle interval of length (1/4)k from each of the
remaining closed intervals of the previous stage. Let Uk denote the union of intervals
removed at stage k, and let

K = [0, 1] −
⋃

k≥1

Uk

We refer to K as the fat Cantor set. By adding up the measures of the Uk’s, it is not
difficult to see that the Lebesgue measure of

⋃
k≥1 Uk is 1/2, and therefore also the

measure of K is 1/2:

μ

⎛

⎝
⋃

k≥1

Uk

⎞

⎠ =
∑

k≥1

2k−1
(
1

4

)k

= 1/2

It is easily verified that the fat Cantor set, K , has empty interior. Therefore while K

is closed, it is not regular closed.

Remark 2 The fat Cantor set is topologically identical to the ordinary Cantor set,
which is constructed by removing open middle thirds of remaining intervals at each
stage of construction. The difference between the two is that the fat Cantor set has
non-zero measure, whereas the ordinary Cantor set has measure zero.

Proposition 3 Lebesgue measure is not finitely additive over RC(R).

7See Roeper [22], Theorems 5.2, 5.3, 5.4, and Theorem 5.5.
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Proof Consider the union of all open intervals removed at odd stages of construction
of the fat Cantor set, and the union of all open intervals removed at even stages of
construction:

O =
⋃

k odd

Uk

E =
⋃

k even

Uk

Readers can convince themselves that Cl(O) = O ∪ K and Cl(E) = E ∪ K . By
Lemma 1, Cl(O) and Cl(E) are regular closed sets. Moreover, they are disjoint in the
algebra RC(R), since:

Cl(O) ∧ Cl(E) = Cl Int(Cl(O) ∩ Cl(E)) = Cl Int(K) = ∅
Lebesgue measure, μ, is not finitely additive over RC(R), because

μ(Cl(O) ∨ Cl(E)) �= μ(Cl(O)) + μ(Cl(E))

Indeed, the left-hand side is just μ([0, 1]), which is 1. But the right-hand side is
μ(O) + μ(K) + μ(E) + μ(K), which is 3/2.

The example shows that Lebesgue measure is not finitely additive over RC(R). Of
course, Lebesgue measure is finitely (indeed, countably) additive over the algebra of
Borel subsets of R, and over the bigger algebra of measurable subsets. The difficulty
comes from the fact that in RC(R), the Boolean meet is not simply set-theoretic inter-
section; thus (some) regular closed sets that are not disjoint as sets are nevertheless
disjoint in RC(R), and can lead to a failure of finite additivity.8

3.2 The LebesgueMeasure Contact Algebra

The results of the previous section pose an impediment to modeling space in the
algebra of regular closed subsets of Rn. In response to those difficulties, Arntzenius
[1] proposed to instead model gunk in the Lebesgue measure algebra.

Let Borel(Rn) denote the σ -algebra of Borel subsets of Rn, and let N denote
the ideal of (Lebesgue) measure zero Borel subsets of Rn. The Lebesgue measure
algebra is the quotient:

Bn = Borel(Rn) \ N

Elements of Bn are equivalence classes of Borel subsets of Rn. Two sets A and B

belong to the same equivalence class if their symmetric difference A � B belongs to
N . We denote by |A| the equivalence class containing the set A. Operations in the
quotient algebra are defined in the usual way in terms of representative sets:

|A| ∧ |B| = |A ∩ B|
|A| ∨ |B| = |A ∪ B|

−|A| = |Rn \ A|

8In addition, Birkhoff [5] showed that there is no non-zero measure on RC(Rn) that is countably additive.
See Birkhoff [5].

□ 
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We can define a natural measure m on Bn by putting:

m(|A|) = μ(A)

whereμ denotes Lebesgue measure. The measurem is well-defined, because if |A| =
|B|, then A and B differ by a set of measure zero, so μ(A) = μ(B).

Proposition 4 m is countably additive over Bn.

Proof Define the projection map f from Borel(Rn) to Bn by putting: f (A) = |A|.
Then f is a σ -homomorphism. In particular,

∨
|Ak| =

∣
∣
∣
∣
∣

⋃

k∈N

Ak

∣
∣
∣
∣
∣

Let {|Ak| | k ∈ N} be a collection of pairwise disjoint elements of Bn, and let Ck =
Ak −⋃

i<k Ai . Note that the Ck’s are pairwise disjoint Borel sets. Moreover, Ai ∩Aj

has measure zero for i �= j , soAk−Ck = Ak∩⋃
i<k Ai has measure zero. Therefore,

|Ck| = |Ak| for each k ∈ N. It follows that:

m

(
∨

k∈N
|Ak|

)

= m

(
∨

k∈N
|Ck|

)

= m

(

|
⋃

k∈N
Ck|

)

= μ

(
⋃

k∈N
Ck

)

=
∑

k∈N
μ(Ck)

=
∑

k∈N
m(|Ck|)

=
∑

k∈N
m(|Ak|)

Consider now the primitive topological notions ‘contact’ and ‘limited’ that appear
in Roeper’s axioms. Arntzenius [1] shows that we can interpret these notions in the
algebra Bn as follows. For any two elements a = |A| and b = |B| in Bn, say that a

and b are in contact (a �� b) just in case there is a point x ∈ R
n such that for every

open set O containing x,

μ(A ∩ O) > 0 and μ(B ∩ O) > 0

□ 
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The reader can check that μ is well-defined (i.e., independent of the choice of repre-
sentatives A and B). Say that a is limited just in case for some compact Borel set B,
a ≤ |B|. We denote the set of limited regions of Bn by Δ.

These definitions are very natural, but as Arntzenius [1] himself notes, the algebra
〈Bn, ��, Δ〉 satisfies only the first nine of Roeper’s axioms. To see that it does not
satisfy (A10), let K denote, as before, the fat Cantor set. By (A10) there is a non-zero
region c such that c is well-inside |K| (i.e., c is not in contact with the complement
of |K|). And this cannot be the case, as the following proposition shows. (Similar
examples can be constructed to show that (A10) fails in Bn for any n ∈ N.)

Proposition 5 Every non-zero element of B1 is in contact with |R \ K|.

Proof R\K is an open dense set, sinceK is closed and has empty interior. Therefore,
for any open set O, O ∩ (R \ K) is a non-empty open set, and hence has non-zero
Lebesgue measure. Let B be a countable open basis for R (for example, the set of
all rational intervals centered at rational points). Suppose that |A| is not in contact
with |R \ K|. Then for each x ∈ R there exists a basis set Bx containing x such that
μ(A ∩ Bx) = 0. Let S = {Bx | x ∈ X}. Then S is a countable open cover of R. So

μ(A) = μ

(
⋃

U∈S

(A ∩ U)

)

≤
∑

U∈S

μ(A ∩ U) = 0

Thus |A| = 0. We have shown that only the zero element of B1 is not in contact with
|R \ K|.

The failure of Axiom (A10) is important. It shows that the algebra Bn does not
satisfy Topological Gunk. While each region of space has a proper part, some regions
do not have proper parts that sits ‘well-inside’ them.

4 Looking ‘Downward’

This leaves us in a somewhat unsatisfactory position. The algebra RC(Rn) is a poor
model of gunk because the natural measure on the algebra is not even finitely addi-
tive. But likewise, for anyone interested in models of space that satisfy Topological
Gunk, the algebra Bn is a poor model of gunk because, while the natural measure on
Bn is countably additive, the algebra contains unintuitive regions of space like the fat
Cantor region, |K|, which contain no parts that are well-inside them.

The problems encountered in Section 3 motivate a search for smaller algebras that
are well-behaved in terms of both topology and measure—ones perhaps sitting inside
the regular closed algebra, RC(Rn), or the Lebesgue measure algebra, Bn. Let us
begin the search for such algebras by looking again at RC(Rn).

□ 

~ Springer 



T. Lando, D. Scott

4.1 Regular Closed Sets with ‘Null’ Boundary

Recall that in ordinary (pointy) topology, the boundary of a set A ⊆ R
n is the set:

∂(A) = Cl(A) − Int(A)

The following simple lemma about boundaries, which we state without proof, will
be useful in what follows.

Lemma 6 Let X be a topological space, and let S, T ⊆ X. Then,

1. ∂(S) = ∂(X \ S);
2. ∂(S ∪ T ) ⊆ ∂(S) ∪ ∂(T ).
3. ∂(S ∩ T ) ⊆ ∂(S) ∪ ∂(T ).
4. If S is closed, ∂(Cl Int(S)) ⊆ ∂(S);

Some elements of RC(Rn) have boundaries with non-zero Lebesgue measure.
Recall the sets O and E from the proof of Proposition 3. The boundary of both Cl(O)

and Cl(E) is the fat Cantor set K , which has measure 1/2. These regions lead, as we
saw, to a failure of finite additivity. It is natural to wonder what happens if we simply
remove all sets whose boundaries have non-zero measure from RC(Rn). Consider the
collection of regular closed subsets of Rn with boundaries of Lebesgue-measure zero
(henceforth, ‘null boundaries’). These sets form a subalgebra of RC(Rn); indeed,
they are closed under finite unions and complements by Lemma 6, parts 1. and 2.,
and hence closed under Boolean operations in the algebra by Lemma 6, part. 4. We
will denote this subalgebra by RCN(Rn), where ‘N’ is inserted to signify that bound-
aries are null. Since RCN(Rn) is a subalgebra of RC(Rn), we can interpret ‘contact’
and ‘limited’ in RCN(Rn) by simply restricting the interpretation of those relations
in RC(Rn) to the subalgebra. Thus two elements of RCN(Rn) are in contact if they
have non-empty intersection, and an element of RCN(Rn) is limited if it is compact.

Lemma 7 Lebesgue measure is finitely additive over RCN(Rn).

Proof Suppose that A, B ∈ RCN(Rn), and A ∧ B = ∅. Then Cl Int(A ∩ B) = ∅,
so Int(A ∩ B) = ∅. Thus A ∩ B = ∂(A ∩ B). Moreover, ∂(A ∩ B) has measure
zero, since ∂(A ∩ B) ⊆ ∂(A) ∪ ∂(B). Thus μ(A ∩ B) = 0. We have: μ(A ∨ B) =
μ(A ∪ B) = μ(A) + μ(B) − μ(A ∩ B) = μ(A) + μ(B).

Recall that a subalgebra B of A is dense in A if for every non-zero a ∈ A, there
exists a non-zero b ∈ B such that b ≤ a.

Proposition 8 RCN(Rn) is:

1. atomless;
2. dense in RC(Rn);
3. satisfies Topological Gunk;
4. satisfies Measure-theoretic Gunk (with Lebesgue measure).

□ 
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Proof Let A be a non-zero element of RC(R). Then Int(A) �= ∅, so there exists an
open ball B ⊆ A. Moreover, there exists a closed ball B ′ concentric with B but with
strictly smaller radius. This shows both that RCN(Rn) is dense in RC(Rn), and that
RCN(Rn) is atomless. Since B ′ is disjoint from the complement of A in RCN(Rn)”,
RCN(Rn) satisfies Topological Gunk. Since B ′ can be chosen with arbitrarily small
radius, RCN(Rn) satisfies Measure-theoretic Gunk.

The algebra RCN(Rn) is an interesting model of gunk. It is atomless, sits densely
inside the standard model RC(Rn), and Lebesgue measure is finitely additive over it.
Moreover, it satisfies Topological Gunk and Measure-theoretic Gunk.

We close this section by noting that RCN(Rn) is not complete, and Lebesgue
measure is not countably additive over the algebra. Thus in return for the advantages
of taking RCN(Rn) as a model of gunk, we give up certain infinitary operations. In
the proofs below we appeal freely to the following proposition, whose proof can be
found in, e.g., Givant and Halmos [15], Ch. 25.

Proposition 9 If A is a dense subalgebra of B, then

1. Every element in B is a least uppper bound of some set of elements in A;
2. If a set S of elements in A has a least upper bound b in A, then b is also the least

upper bound of S in B (i.e. A is a regular subalgebra of B).

Proposition 10 RCN(Rn) is not complete.

Proof This follows immediately from Proposition 9. For let A be an element of
RC(Rn) that is not an element of RCN(Rn)—for example, Cl(O), whereO is defined
in the proof of Proposition 3. Since RCN(Rn) is dense in RC(Rn), A is the least
upper bound of some set S of elements in RCN(Rn). If the latter is complete, then by
Proposition 9, the least upper bound of S in RC(Rn) would be equal to the least upper
bound of S in RCN(Rn), and therefore A would belong to RCN(Rn), contradicting
our assumption. Thus RCN(Rn) is not complete.

Proposition 11 Lebesgue measure is not countably additive over RCN(Rn).

Proof Let O be the complement of the fat Cantor set K . Then O can be written as
a disjoint union of open intervals

⋃
n On. Let Cn = Cl(On) and note that the Cn’s

are pairwise disjoint elements of RCN(R). Moreover, Cl(
⋃

n Cn) = [0, 1]. Therefore
the least upper bound of {Cn | n ∈ N} in the (complete) algebra RC(R) is [0, 1].
But [0, 1] ∈ RCN(R). So [0, 1] is also the least upper bound of {Cn | n ∈ N} in the
algebra RCN(R). However,

∑
n μ(Cn) = ∑

n μ(On) = 1/2. So:

μ

(
∨

n

Cn

)

= 1 �= 1/2 =
∑

n

μ(Cn)

This shows that Lebesgue measure is not countably additive over RCN(R). Similar
examples can be constructed in RCN(Rn) for any n ∈ N.

□ 

□ 
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4.2 Clopens in the LebesgueMeasure Algebra

In the previous subsection, we presented an interesting model of gunk that sits inside
the standard model, RC(Rn). But what about looking to subalgebras of Arntzenius’s
model Bn instead? Perhaps here we can also find a nice model of gunk that has both
nice rudimentary topological and measure-theoretic features.

The following simple idea presents itself. We can distinguish between ‘open’ and
‘closed’ elements in the algebra Bn as follows. (Scott [24] showed this in the context
of giving a new semantics for the modal logic S4; we recall the construction briefly
here.) An element a ∈ Bn is open if a = |A| for some open set A ⊆ R

n. An
element a ∈ Bn is closed if it is the Boolean complement of an open element. Not
every element of Bn is open; consider, for example, the fat Cantor region |K|. Its
complement in the algebra is open, so it is closed. And it is not open: K differs from
every open set by a set of non-zero measure.9 So we have a non-trivial distinction
between open and closed elements of Bn.

Say that an element a of Bn is clopen if it is both open and closed. (Thus a is
clopen if it contains both an open set and a closed set.) The collection of clopen
elements in Bn is clearly closed under Boolean operations −, ∨, ∧, and thus forms a
subalgebra of Bn. We will denote this algebra by CLOP(Bn).

Lemma 12 CLOP(Bn) is atomless.

Proof Let a be a non-zero element in CLOP(Bn). Then a = |A| for some non-empty
open set A. Pick an open ball B ⊆ A, and let B ′ be an open ball properly contained
in B. Then |B ′| is clopen, |B ′| < |B| ≤ a, and |B ′| �= 0.

Lemma 13 Lebesgue measure is finitely additive over the algebra CLOP(Bn).

Proof Immediate from the fact that CLOP(Bn) is a subalgebra of Bn and Lebesgue
measure is finitely (indeed, countably) additive over Bn.

The subalgebra CLOP(Bn) of Bn is also an interesting model of gunk. It is atom-
less, and hence satisfies Mereological Gunk. It also satisfies Measure-theoretic Gunk,
for we can let B ′ in the proof of Lemma 12 be an arbitrarily small open ball. More-
over, as we saw, Lebesgue measure is finitely additive over the algebra. Finally,
CLOP(Bn) does not contain the problematic region |K| ∈ Bn, since |K| is closed but
not open.

Of course, in choosing only the clopen elements of Bn we have, as it were, erased
the natural topology on Bn. But since CLOP(Bn) is a subalgebra of Bn, we can now
re-introduce topology via the relations ‘contact’ and ‘limited,’ by simply restricting

9See the proof of Proposition 5.

□ 
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those relations in Bn to the clopen elements. When we do this, as we’ll see below, the
algebra satisfies Topological Gunk: every region has a region that sits well-inside it.

4.3 Same Algebra, Different Clothing

Up to now, we have encountered two interesting candidates for modeling gunk: the
algebra RCN(Rn), which sits densely inside the standard model of gunk, RC(R), and
the algebra CLOP(Bn), which sits inside Arntzenius’ alternative model, Bn. What is
the relationship between the two?

In this section, we show that they are in fact one and the same: as Boolean algebras
with the relations ‘contact’ and ‘limited’, RCN(Rn) and CLOP(Bn) are isomorphic.
So RCN(Rn) sits inside both the standard model RC(Rn) and Arntzenius’ model, Bn,
inheriting nice topological properties from the former, and nice measure-theoretic
properties from the latter.

If R1 = 〈Ω1, ��1, Δ1〉 and R2 = 〈Ω2, ��2, Δ2〉 are region-based topologies, then
a mapping h : Ω1 → Ω2 is a Boolean isomorphism if it is a bijection that preserves
all Boolean operations. We say that h is an isomorphism of region-based topologies if
h is a Boolean isomorphism that also preserves the relations ‘contact’ and ‘limited’:

a ��1 b iff h(a) ��2 h(b).
a ∈ Δ1 iff h(a) ∈ Δ2.

If there is an isomorphism of region-based topologies from R1 to R2, we say that R1
and R2 are isomorphic.

Note that if A is a regular closed set with null boundary, then |A| is clopen in Bn.
Indeed, A is closed, so |A| is closed. Moreover, A has null boundary, so A is equal in
measure to Int(A). It follows that | Int(A)| = |A|, so |A| is also open, hence clopen.
Therefore we can define a mapping h : RCN(Rn) → CLOP(Bn) by putting:

h(A) = |A|

Proposition 14 h is an isomorphism of region-based topologies.

Proof The verification that h preserves Boolean operations is routine and is left to
the reader.

– h is injective.
Suppose F,G ∈ RCN(R), and F �= G. WLOG there exists x ∈ F \ G.

Since x �∈ G and G is closed, x is not a point of closure for G. Thus there exists
an open set O such that x ∈ O and O ∩ G = ∅. But since x ∈ F and F is
regular closed, x is a point of closure of Int(F ). So Int(F ) ∩ O is a non-empty
open set, and hence has non-zero measure. Moreover, Int(F ) ∩ O ⊆ F \ G. So
h(F ) = |F | �= |G| = h(G).

– h is surjective.
Let a ∈ CLOP(Bn), let F be a closed set in a, and let O be an open set in

a. Then O ⊆ F . (Suppose not. Then O \ F is a non-empty open set, and hence
has non-zero measure. But then |O| �= |F |.) Therefore O ⊆ Cl(O) ⊆ F . Since
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|O| = |F |, also |O| = |Cl(O)|. But then Cl(O) has null boundary. By Lemma
1, Cl(O) is a regular closed set. Therefore Cl(O) ∈ RCN(Rn) and h(Cl(O)) =
|Cl(O)| = a.

– h preserves ‘limited’.
Suppose that A ∈ RCN(Rn) is limited. Then A is compact. So h(A) = |A|

is limited in CLOP(Bn). Conversely, suppose that h(A) is limited in CLOP(Bn).
Then |A| ≤ |B| for some compact set B. Since B is a compact subset of a
Hausdorff space, B is closed. We show that A ⊆ B. Suppose not. Then A \ B is
non-empty. Let x ∈ A \ B. Since x ∈ R

n \ B and x ∈ A = Cl Int(A), we know
Int(A) ∩ (Rn \ B) is a non-empty open set, and hence has non-zero Lebesgue
measure. But Int(A) ∩ (Rn \ B) ⊆ A \ B, contradicting the fact that |A| ≤ |B|.
We conclude that A ⊆ B. Thus A is a closed subset of the compact set B, and
hence is compact. Equivalently, A is limited in RCN(Rn).

– h preserves ‘contact’.
Suppose that A �� B in RCN(Rn). Then A ∩ B �= ∅. Let x ∈ A ∩ B. Since

A and B are regular closed sets, x is a point of closure of Int(A) and of Int(B).
Let O be an open set with x ∈ O. Then O ∩ Int(A) and O ∩ Int(B) are non-
empty open sets, hence sets of non-zero Lebesgue measure. So μ(O ∩ A) > 0
and μ(O ∩ B) > 0. This shows that h(A) = |A| �� |B| = h(B).

Conversely, suppose that h(A) �� h(B) in CLOP(Bn). Then there is a point
x ∈ R

n such that for any open set O with x ∈ O, μ(A∩O) > 0 and μ(B∩O) >

0. In particular, A ∩ O �= ∅, and B ∩ O �= ∅. So x is a point of closure of A and
of B. But A and B are closed sets. So x ∈ A ∩ B, and A �� B.

5 The Axioms Satisfied

We have passed from the bigger algebra RC(Rn) to the subalgebra RCN(Rn), and
likewise from the bigger algebra Bn to the subalgebra CLOP(Bn). But we don’t yet
know whether these smaller algebras are region-based topologies—i.e., whether they
satisfy all ten of Roeper’s axioms. This section is devoted to answering that question
in the affirmative.

The first thing to note is that there is no difficulty with the axioms (A1) − (A8).
Satisfaction of those axioms in RCN(Rn) is immediate from the fact that they are sat-
isfied in RC(R), and RCN(Rn) is a subalgebra of RC(Rn). So we can focus entirely
on axioms (A9) and (A10):

(A9) If a �� b, then there is a limited b′ ≤ b such that a �� b′;
(A10) If a is limited, b �= 0, and a ��� −b, then there is a non-zero limited c such

that a ��� −c and c ��� −b.

The following lemma is proved in Roeper [22].

Lemma 15 Let X be a topology. If S1 ⊆ X is open, and S2 ⊆ X, then S1 ∩Cl(S2) ⊆
Cl(S1 ∩ S2).

□ 
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Proposition 16 RCN(Rn) satisfies (A9).

Proof Wemust show that ifA, B ∈ RCN(Rn) andA∩B �= ∅, then there is a compact
set B ′ ∈ RCN(Rn) such that B ′ ⊆ B and A ∩ B ′ �= ∅. Let x ∈ A ∩ B. Pick a closed
ball D ⊆ R

n such that x ∈ Int(D). Note that D ∈ RCN(Rn) and D is compact. Let
B ′ = D ∧ B = Cl Int(D ∩ B). Then B ′ ∈ RCN(Rn). Moreover, B ′ ⊆ B, and since
D is compact and B ′ is a closed subset of D, B ′ is compact.

We want to show that A ∩ B ′ �= ∅. We have:

x ∈ Int(D) ∩ B

= Int(D) ∩ Cl(Int(B)) since B is regular closed

⊆ Cl(Int(D) ∩ Int(B)) by Lemma 15

= Cl(Int(D ∩ B))

= B ′

So x ∈ A ∩ B ′, and A ∩ B ′ �= ∅.
Note that for X, Y ∈ RCN(Rn), X ��� −Y is equivalent to the condition that

X ∩ Cl(Rn \ Y ) = ∅, or simply X ⊆ Int(Y ). We use this repeatedly in the proof of
the next proposition.

Proposition 17 RCN(Rn) satisfies (A10).

Proof We need to show that for any A, B ∈ RCN(Rn), if A is compact, B �= ∅,
and A ⊆ Int(B), then there exists a non-empty, compact set C ∈ RCN(Rn) such
that A ⊆ Int(C) and C ⊆ Int(B). First, if A = ∅, then since B is a non-empty
regular closed set, Int(B) �= ∅. Let C be a closed ball contained in Int(B). Then C

satisfies the desideratum. Second, if A �= ∅, then since A ⊆ Int(B), A is disjoint
from Cl(Rn \ B). Since Rn is a normal topology and A is closed, there exist disjoint
open sets O and U such that A ⊆ O and Cl(Rn \ B) ⊆ U . Note that the set B
of all open balls centered at rational points (points whose coordinates are rational
numbers) with rational radii forms a countable open basis forRn, and for each V ∈ B,
Cl(V ) ∈ RCN(Rn). We can write O as a union

⋃
n∈N Bn of elements in B. Since

A is compact and {Bn | n ∈ N} is an open cover of A, there is a finite subcover
{Bn1 , . . . , Bnk

} of A. Let C = Cl(
⋃

i≤k Bni
) = ⋃

i≤k Cl(Bni
). Then C is non-empty,

since A is non-empty; C ∈ RCN(Rn); and C is compact because it is the finite
union of compact sets. Moreover, A ⊆ ⋃

i≤k Bni
⊆ C, so A ⊆ Int(C). Finally,

C ⊆ Cl(O) ⊆ R
n \ U , and since Cl(Rn \ B) ⊆ U , we have Rn \ U ⊆ Int(B). Thus

C ⊆ Int(B).

Theorem 18 RCN(Rn), hence also CLOP(Bn), is a region-based topology.

Proof Immediate from Propositions 16 and 17, and Proposition 14.

□ 

□ 
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Remark 19 Note that in the proof of Proposition 17, we did not make use of the fact
that A and B were elements of RCN(Rn); in fact, the proof goes through under the
weaker assumption that A and B are simply regular closed sets. It follows that if
A, B ∈ RC(Rn), A is limited, B �= 0, and A ��� −B, then there exists a non-zero
C ∈ RCN(Rn) such that A ��� −C and C ��� −B. We will use this fact repeatedly in
Section 7.

6 Dimension

We showed in the previous section that RCN(Rn) is a region-based topology. The
next question to consider is whether we can distinguish between finite dimensions
when modeling gunk in algebras of this kind. In particular, we would like to show that
for n �= m, the region-based topologies RCN(Rn) and RCN(Rm) are not isomorphic.

Our strategy will be to use the fact that the bigger region-based topologies RC(Rn)

and RC(Rm) are not isomorphic for n �= m, to show that the smaller region-based
topologies RCN(Rn) and RCN(Rm) cannot be isomorphic. In particular, we show
that any isomorphism between these smaller region-based topologies gives rise to an
isomorphism between the bigger region-based topologies, so there can be no such
isomorphism.

Recall that a Boolean algebra B is the completion of a Boolean algebra A if A is a
dense subalgebra of B and every set of elements in A has a least upper bound in B. In
fact, up to (Boolean) isomorphism, there is only one completion of a given Boolean
algebra (see, e.g., Givant and Halmos [15], p. 218, Theorem 24), so we can refer
without misunderstanding to the completion of a Boolean algebra. The following
proposition is well-known.10

Proposition 20 If B1 is the completion of A1, B2 is the completion of A2, and f :
A1 → A2 is a Boolean isomorphism, then there is a Boolean isomorphism from B1
to B2 that extends f .

Proposition 21 RC(Rn) is the completion of RCN(Rn).

Proof We saw above that RCN(Rn) is a subalgebra of RC(Rn), RC(Rn) is complete,
and RCN(Rn) is dense in RC(Rn). Thus RC(Rn) is the completion of RCN(Rn).

Lemma 22 If A ∈ RC(Rn) and A is limited, then there exists A′ ∈ RCN(Rn) such
that A′ ≥ A and A′ is limited.

10See, e.g., Givant and Halmos [15], p. 217–218. If A is isomorphic to A′ via a mapping f , B is a
completion of A and C is a completion of A′, then the same argument given in the proof of Theorem 23 on
p. 217 shows that there is an embedding g of B into C that extends f . So g(B) is a complete extension of
A′ that is a subalgebra of C. Since C is the completion of A′, by Corollary 1 on p. 218, g(B) is identical
to C. So B is isomorphic to C via an embedding that extends f : A → A′.

□ 
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Proof If A is limited, then A is a compact subset of Rn and is therefore contained in
a closed ball, A′. Clearly A′ is a compact element of RCN(Rn).

Lemma 23 If A, B ∈ RC(Rn) and A �� B, then there exist A′, B ′ ∈ RCN(Rn) such
that A′ ≤ A, B ′ ≤ B, and A′ �� B ′.

Proof Suppose A, B ∈ RC(Rn) and A �� B. Then there exists x ∈ A ∩ B. Since A

is regular closed and x ∈ A, x is a point of closure of Int(A). For each n ∈ N, let
Bn be an open ball centered at x with radius 1/n. Then Bn ∩ Int (A) is a non-empty
open set, so let Cn be a closed ball contained in Bn ∩ Int(A). Let

A′ = Cl

(
⋃

n∈N
Cn

)

We claim that: (1) A′ ⊆ A; (2) x ∈ A′; (3) A′ ∈ RCN(Rn).
For (1), note that

⋃
n∈N Cn ⊆ Int(A), so A′ = Cl(

⋃
n∈N Cn) ⊆ Cl(Int(A)) = A.

For (2), note that if O is an open set containing x, then Bn ⊆ O for some n ∈ N,
and Cn ⊆ Bn. So x is a point of closure of

⋃
n∈N Cn. Equivalently, x ∈ A′. Finally,

for (3) note that A′ is a regular closed set since each of the Cn’s are regular closed. It
remains to show that A′ has null boundary. To this end, we claim that:

A′ =
⋃

n∈N
Cn ∪ {x} (1)

To see this, suppose that y ∈ A′ and y �= x. Then there is some k ∈ N such that
y �∈ Cl(Bk). But then since

⋃
n≥k Cn ⊆ Bk , also y �∈ Cl(

⋃
n≥k Cn). Nevertheless,

y ∈ Cl

(
⋃

n∈N
Cn

)

=
⋃

n<k

Cn ∪ Cl

⎛

⎝
⋃

n≥k

Cn

⎞

⎠

Therefore y ∈ Cn for some n < k. This proves (1). It follows that:

∂(A′) = A′ \ Int(A′)

=
(

⋃

n∈N
Cn ∪ {x}

)

\ Int(A′) by (1)

⊆ {x} ∪
⋃

n∈N
(Cn \ Int(Cn))

= {x} ∪
⋃

n∈N
∂(Cn)

and RHS has measure zero, since ∂(Cn) has measure zero for each n ∈ N. Thus
A′ ∈ RCN(Rn).

□ 
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We have shown that there exists A′ ∈ RCN(Rn) such that A′ ≤ A and x ∈ A′. By
symmetry, there exists also B ′ ∈ RCN(Rn) such that B ′ ≤ B and x ∈ B ′. Therefore
A′ �� B ′ in RCN(Rn).11

Proposition 24 Region-based topologies RC(Rn) and RC(Rm) are not isomorphic,
for n �= m.

Proof Roeper [22] shows that if X1 and X2 are locally compact, T2 topologies, then
X1 is homeomorphic to X2 if and only if the region-based topologies RC(X1) and
RC(X2) are isomorphic. (See Roeper [22], Theorem 5.8, p. 278.) It thus follows from
the fact that Rn and R

m are locally compact, T2 topologies, and R
n and R

m are not
homeomorphic for n �= m, that the region-based topologies RC(Rn) and RC(Rm) are
not isomorphic.

Theorem 25 Region-based topologies RCN(Rn) and RCN(Rm) are not isomorphic,
for n �= m.

Proof Suppose (toward contradiction) that f : RCN(Rn) → RCN(Rm) is an iso-
morphism of region-based topologies. Since RC(Rn) is the completion of RCN(Rn)

and RC(Rm) is the completion of RCN(Rm), by Proposition 20 we can extend f to a
Boolean isomorphism g from RC(Rn) to RC(Rm). We need to show that g is an iso-
morphism of region-based topologies—i.e., that g preserves the relations ‘contact’
and ‘limited.’

– g preserves ‘contact’.
If A, B ∈ RC(Rn) and A �� B, then by Lemma 23, there exist A′, B ′ ∈

RCN(Rn) with A′ ≤ A, B ′ ≤ B, and A′ �� B ′. Since f : RCN(Rn) →
RCN(Rm) is an isomorphism of region-based topologies, f (A′) �� f (B ′). Since
g is an extension of f , g(A′) �� g(B ′). But g is a Boolean isomorphism, hence
preserves order. So g(A′) ≤ g(A) and g(B ′) ≤ g(B). Therefore, g(A) �� g(B).
We have shown that if A �� B in RC(Rn), then g(A) �� g(B) in RC(Rm).
The converse is proved by noting that g−1 is an extension of f −1 to a Boolean
isomorphism from RC(Rm) to RC(Rn), and using the same argument.

– g preserves ‘limited’.
If A ∈ RC(Rn) is limited, then by Lemma 22, there exists A′ ∈ RCN(Rn)

such that A ≤ A′ and A′ is limited. Since f : RCN(Rn) → RCN(Rm) is an iso-
morphism of region-based topologies, f (A′) is limited. Since g is an extension
of f , g(A′) is limited. But g is a Boolean isomorphism, hence preserves order.
So g(A) ≤ g(A′). Therefore, g(A) is limited. We have shown that if A is limited
in RC(Rn), then g(A) is limited in RC(Rm).

The converse is proved by noting that g−1 is an extension of f −1 to a Boolean
isomorphism from RC(Rm) to RC(Rn), and using the same argument.

11We thank an anonymous referee for a helpful suggestion that allowed us to simplify this proof.
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We have shown that g : RC(Rn) → RC(Rm) is an isomorphism of region-
based topologies, contradicting Proposition 24. We conclude that the region-based
topologies RCN(Rn) and RCN(Rm) are not isomorphic.

7 Points

Region-based theories of space take as primitive the notion of an extended region.
However, this does not mean that points must disappear altogether from such theories
of space. With Roeper [22], we can think of points as locations in space. Although
points are not themselves regions, Roeper shows that we can recover points from
region-based topologies via certain infinitary constructions.

The basic idea is familiar from the Stone representation theorem. Starting from a
region-based topology, R = 〈Ω, ��, �〉, we can consider the set of ultrafilters in Ω .
A first, naive thought is to identify points with ultrafilters—much as points in the
Stone space of a Boolean algebra B are the ultrafilters of B. However, this won’t
work for two reasons.

First, there may be ultrafilters in Ω that do not contain any limited region. It
is difficult to think of such ultrafilters as identifying any precise location in space.
Second, distinct ultrafilters may be ‘co-located.’ Consider, for example, the region-
based topology RC(R), and let a ∈ R. The collection of regions A ∈ RC(R) such
that [a, y] ⊆ A for some y > a form a proper filter F in RC(R). By the Ultra-
filter Lemma, F can be extended to an ultrafilter F ′. But also, the set of regions
A ∈ RC(R) with [y, a] ⊆ A for some y < a form a proper filter G in RC(R). By the
Ultrafilter Lemma, G can be extended to an ultrafilter G′. Both F ′ and G′ intuitively
identify the same point, a. But they are distinct ultrafilters.

Instead of identifying points with ultrafilters, the idea in Roeper [22] is to identify
points with equivalence classes of ‘limited’ ultrafilters, or ultrafilters that contain
some limited region. Let R = 〈Ω, ��, �〉 be a region-based topology, let ∇ and ∇′
be ultrafilters on the Boolean algebra Ω , and let α ∈ Ω . We say that α is connected
to ∇ (α �� ∇) if α �� β for each β ∈ ∇. We say that ∇ is connected to ∇′ (∇ �� ∇′)
if α �� β for all α ∈ ∇ and β ∈ ∇′. We say that ∇ is limited if there exists a limited
α ∈ ∇.

The following lemma is proved in Roeper [22].12

Lemma 26 The relation of connection on the set of limited ultrafilters in Ω is an
equivalence relation.

If ∇ is a limited ultrafilter, we denote by [∇]�� the equivalence class containing
∇. Following Roeper, we denote the set of points associated with R = 〈Ω, ��, �〉 by
PR:

PR = {[∇]�� | ∇ a limited ultrafilter in R}

12See Roeper [22], Theorem 2.2.
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Note that the Boolean structure of R determines what ultrafilters exist in R, whereas
the contact relation determines the equivalence classes. Thus what points are associ-
ated with a given region-based topology depends, as Roeper points out, on both the
mereological and ‘topological’ structure of the region-based topology.

Once we have points, we can define a topology on the set of points in a canonical
way. Recall that the topology of a space is fully given by specifying a closed (or open)
basis. A collection B of subsets of a set X forms a closed basis for some topology on
X if (1) X ∈ B; (2) if A, B ∈ B, and x �∈ A ∪ B, then there exists C ∈ B such that
A ∪ B ⊆ C and x �∈ C. The closed subsets of the topology given by B are arbitrary
intersections of elements in B.

Following Roeper, we associate to each region α ∈ R a set of points C(α) in PR

as follows.
C(α) = {[∇]�� | α ∈ ⋃[∇]��}

That is, [∇]�� ∈ C(α) if and only if α ∈ ∇′ for some ∇′ ∈ [∇]��. It is not difficult
to see that

B = {C(α) | α ∈ Ω}
is a closed basis for a topology on PR .13 LetCR be the family of closed subsets of PR .
Then we denote by PR the topological space 〈PR, CR〉. Thus to each region-based
topology R = 〈Ω, ��, �〉, we associate a pointy topological space PR . Roeper [22]
shows that the pointy topology PR is a locally compact, T2 space. Indeed, he shows
that there is a one-to-one correspondence between complete region-based topologies
(up to isomorphism) and locally compact, T2 spaces (up to homeomorphism).14,15

In modeling gunk above, we passed from RC(Rn) to the subalgebra RCN(Rn).
Both of these are region-based topologies, and so both have an associated pointy
topological space defined as above. It is natural to wonder about the relation-
ship between these associated pointy topological spaces. Does the smaller algebra
RCN(Rn) give rise to a different set of points, a different topology on the same set
of points, or the very same topology?

This section is devoted to answering that question. We show that the region-based
topologies RC(Rn) and RCN(Rn) give rise to homeomorphic pointy topological
spaces. Thus nothing is lost in terms of the identification of points (or locations) in
space when we pass from the bigger, standard model, RC(Rn), to the smaller one,
RCN(Rn).

In the remainder of this section, let R1 and R2 denote, respectively, the region-
based topologies RC(Rn) and RCN(Rn), and let ��1 and ��2 denote the contact
relations in R1 and R2.

Lemma 27 If ∇ is a limited ultrafilter in R1, then ∇ ∩ R2 is a limited ultrafilter in
R2.

13See Roeper [22], Theorem 4.2.
14A region-based topology R = 〈Ω, ��,�〉 is complete if Ω is a complete Boolean algebra.
15See Roeper [22], MAIN THEOREM, p. 279.
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Proof Clearly ∇ ∩ R2 is an ultrafilter in R2. Since ∇ is limited, there exists a limited
A ∈ ∇. By Lemma 22, there exists a limited A′ ∈ R2 with A ≤ A′. Since ∇ is an
ultrafilter (hence closed upward), A′ ∈ ∇ ∩ R2. So ∇ ∩ R2 is limited.

Let f be the map from the set of limited ultrafilters in R1 to the set of limited
ultrafilters in R2, defined by:

f (∇) = ∇ ∩ R2

Lemma 28 If ∇ and ∇′ are limited ultrafilters in R1, ∇ ��1 ∇′ if and only if
f (∇) ��2 f (∇′).

Proof The left-to-right direction is obvious. For the reverse direction, suppose that
∇ ���1 ∇′. Then there exist A ∈ ∇ and B ∈ ∇′ with A ���1 B. Since ∇ and ∇′ are
limited, we can assumeWLOG that bothA andB are limited. (Indeed, since∇ and∇′
are limited, there exists a limited C ∈ ∇ and a limited D ∈ ∇′. Then A′ = A∧C ∈ ∇
and B ′ = B ∧ D ∈ ∇′. Moreover, A′ and B ′ are limited and A′ ���1 B ′.)

Note that since A ∈ ∇, A �= 0. Therefore B �= 1 (else A ��1 B), so −B �= 0. By
Remark 19, there exists C ∈ R2 such that A ���1 −C and C ���1 B. So A ≤ C. Now
note that C �= 1 (else C ��1 B), so −C �= 0. By a similar argument, there exists
D ∈ R2 such that B ���1 −D and D ���1 C; and since D, C ∈ R2, we can write
D ���2 C. So B ≤ D. Clearly C ∈ ∇ ∩ R2 = f (∇) and D ∈ ∇′ ∩ R2 = f (∇′).
Finally, since D ���2 C, we have f (∇) ���2 f (∇′).

Since points are equivalence classes of limited ultrafilters under the equivalence
relation ��, we can define a mapping h : PR1 → PR2 by putting,

h([∇]��1) = [f (∇)]��2
The definition of h is correct (i.e., independent of the choice of ∇ ∈ [∇]��1 ) by
Lemma 28. We need to show that h is a homeomorphism, and hence that the region-
based topologies R1 and R2 give rise to the ‘same’ pointy space.

Lemma 29 h is a bijection.

Proof To see that h is injective, note that if h([∇]��1) = h([∇′]��1), then f (∇) ��2
f (∇′). By Lemma 28, ∇ ��1 ∇′, and therefore [∇]��1 = [∇′]��1 .

To see that h is surjective, note that for any Boolean algebras A and B, if A is
a subalgebra of B then every ultrafilter F in A can be written as G ∩ A for some
ultrafilter G in B. Indeed, F generates a filter in the algebra B and by the Ultrafilter
Lemma, this filter can be extended to an ultrafilter G in B. Then F = G ∩ A.
Therefore the map f from the set of limited ultrafilters in R1 to the set of limited
ultrafilters in R2 is surjective. It follows immediately that h is surjective.

It remains to show that h preserves closed sets. In the remainder of this section,
let C1 be the mapping of members of R1 to closed basis sets in PR1 , and C2 be the

□ 
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mapping of members of R2 to closed basis sets in PR2 defined above. That is, for any
A ∈ Ri , i = 1, 2,

Ci(A) = {[∇]��i
∈ PRi

| A ∈ ⋃[∇]��i
}

We begin by recalling the following useful lemma proved in Roeper [22].16

Lemma 30 Let A ∈ Ω . If ∇ is a limited ultrafilter in Ω and A �� ∇, then there
exists a limited ultrafilter ∇′ such that A ∈ ∇′ and ∇′ �� ∇.

Proposition 31 For any A ∈ R1, h(C1(A)) = ⋂{C2(B) | B ∈ R2 and A ≤ B}

Proof Suppose x ∈ h(C1(A)). Then x = h([∇]��1) for some [∇]��1 ∈ C1(A). Then
A ∈ ∇′ for some ∇′ ∈ [∇]��1 . Suppose B ∈ R2 and A ≤ B. Then B ∈ ∇′,
since ∇′ is an ultrafilter. So B ∈ ∇′ ∩ R2 = f (∇′) and f (∇′) ��2 f (∇). Thus
B ∈ ⋃[f (∇)]��2 and x = [f (∇)]��2 ∈ C2(B). This shows that h(C1(A)) ⊆⋂{C2(B) | B ∈ R2 and A ≤ B}.

For the reverse inclusion, suppose that x ∈ PR2 and x �∈ h(C1(A)). Since h is
surjective, x = h([∇]��1) for some limited ultrafilter ∇ in R1. Then [∇]��1 �∈ C1(A),
so A �∈ ⋃[∇]��1 . Thus A �∈ ∇′ for all ∇′ such that ∇′ ��1 ∇. By Lemma 30,
A ���1 ∇. So there exists C ∈ ∇ such that C ���1 A, and of course C is non-zero,
since ∇ is an ultrafilter. Since ∇ is limited, we can assume WLOG that C is limited
(else pick a limited D ∈ ∇ and let C′ = C ∧ D. Then C′ is limited and A ���1 C′).
Now A �= 1 (else A ��1 C). So −A �= 0. By Remark 19, there exists a non-zero
D ∈ R2 such that C ���1 −D and D ���1 A. Therefore A ≤ −D. We claim that
−D �∈ ⋃[f (∇)]��2 . (Suppose not. Then −D ∈ � for some limited ultrafilter � in R2
with � ��2 f (∇). By surjectivity of f , � = f (∇′′) for some limited ultrafilter ∇′′ in
R1. So f (∇′′) ��2 f (∇). By Lemma 28, ∇′′ ��1 ∇. Clearly −D ∈ ∇′′, contradicting
the fact that −D ���1 C.) So now we have: x = h([∇]��1) = [f (∇)]��2 �∈ C2(−D).
We have shown that if x �∈ h(C1(A)), then x �∈ ⋂{C2(B) | B ∈ R2 and A ≤ B}.

Corollary 32 For any A ∈ R2, h(C1(A)) = C2(A).

Proof Note that if A, B ∈ R2 and A ≤ B, then C2(A) ⊆ C2(B). Indeed, if
[∇]��2 ∈ C2(A), then A ∈ ∇′ for some ∇′ with ∇′ ��2 ∇. Since ∇′ is an ultrafil-
ter, B ∈ ∇′. So B ∈ ⋃[∇]��2 , and [∇]��2 ∈ C2(B). Therefore, for any A ∈ R2
we have:

⋂{C2(B) | B ∈ R2 and A ≤ B} = C2(A). The result now follows from
Proposition 31.

Proposition 33 A set F is closed in PR1 iff h(F ) is closed in PR2 .

Proof Let B1 be the closed basis {C1(A) | A ∈ R1} for PR1 , and let B2 be the closed
basis {C2(A) | A ∈ R2} for PR2 . It is sufficient to show that

16See Roeper [22], Lemma 2.7.
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1. If F ∈ B1, then h(F ) is closed;
2. If G ∈ B2 then h−1(G) is closed.

For 1., note that if F ∈ B1, then F = C1(A) for some A ∈ R1. By Proposition 31,
h(F ) = ⋂{C2(B) | B ∈ R2 and A ≤ B}, and RHS is and intersection of closed sets,
hence closed. For 2., note that if G ∈ B2, then G = C2(A) for some A ∈ R2. By
Corollary 32, h−1(G) = C1(A), and RHS is closed.

Proposition 34 PR1 is homeomorphic to PR2 .

Proof Immediate from Lemmas 29 and 33.

We showed that the pointy topology associated with RCN(Rn) is homeomoprhic
to the pointy topology associated with RC(Rn). In fact, the topology associated with
RC(Rn) is (up to homeomorphism) just Rn.17 Thus, both region-based topologies
RCN(Rn) and RC(Rn) give rise to ordinary, finite-dimensional Euclidean space, Rn.

8 Conclusion

The impossibility result proved in Russell [23] shows that there is no model of gunk
that satisfies all of the features we might antecedently be interested in. Nevertheless,
we showed that there is a nice model of gunk, RCN(Rn), that sits densely inside the
standard model RC(Rn); this model satisfies all of Roeper’s axioms (A1) - (A10),
and thus is a region-based topology; it is atomless; and finally, Lebesgue measure is
finitely (although not countably) additive over it. Moreover, RCN(Rn) is isomorphic
to an interesting region-based topology that sits inside of Arntzenius’s alternative
model of gunk: namely, the algebra of clopens in Bn. In modeling space in RCN(Rn),
we can distinguish between finite dimensions of any size: the region-based topologies
RCN(Rn) and RCN(Rm) are not isomorphic for n �= m. And in terms of points,
we can recover from RCN(Rn) the pointy topology R

n by identifying points with
equivalence classes of limited ultrafilters in RCN(Rn).
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