Noname manuscript No.
(will be inserted by the editor)

The Higher-Order Prover Leo-11

— In memoriam of Andrzej Trybulec, an inspiring pioneer of our field —*

Christoph Benzmiiller - Nik Sultana -
Lawrence C. Paulson - Frank Theif}

Received: date / Accepted: date

Abstract LeoO-II is an automated theorem prover for classical higher-order logic.
The prover has pioneered cooperative higher-order—first-order proof automation, it
has influenced the development of the TPTP THF infrastructure for higher-order
logic, and it has been applied in a wide array of problems.

Leo-IT may also be called in proof assistants as an external aid tool to save user
effort. For this it is crucial that LEo-II returns proof information in a standardised
syntax, so that these proofs can eventually be transformed and verified within
proof assistants. Recent progress in this direction is reported for the Isabelle/HOL
system.

1 Motivation and Background

Leo-II is a standalone, resolution-based higher-order (HO) automated theorem
prover (ATP) that is designed for cooperation with specialist provers for fragments
of HO logic. The idea is to combine the strengths of the different systems. On
the other hand, Leo-II itself, as an external reasoner, aims to support HO proof

* This article was originally submitted to the special issue ” Automated Proof Checking: 40
years of Mizar and Beyond”, but it has now been accepted as a regular paper.

The LEo-II project has been supported by the following grants: EPSRC grant EP/D070511/1
and DFG grants BE/2501 6-1, 8-1 and 9-1

Christoph Benzmiiller
Department of Mathematics and Computer Science, Freie Universitdt Berlin, Germany.
E-mail: c¢.benzmueller@fu-berlin.de

Nik Sultana
Cambridge University Computer Lab, UK. E-mail: nik.sultana@cl.cam.ac.uk

Lawrence C. Paulson
Cambridge University Computer Lab, UK. E-mail: lp15@cam.ac.uk

Frank Theif3
Saarland University and BoldSolutions, Saarbriicken, Germany.
E-mail: frank@boldsolutions.de

2 Christoph Benzmiiller et al.

assistants such as Isabelle/HOL (Nipkow et al, 2002), HOL (Gordon and Melham,
1993) or HOL Light (Harrison, 2009).

The predecessor of LEO-II, LEO-I (Benzmiiller and Kohlhase, 1998), was orig-
inally designed as a fully-automated subsystem of the interactive proof assistant
and proof planner 2MEGA (Siekmann et al, 2006). Similar in spirit to Andrews’
pioneering TPS system (Andrews et al, 1996), LEo-I was intended to solve selected
subgoals automatically in order to save user interaction or support a proof plan-
ner. Technically, however, the resolution-based LEO provers differ significantly from
the matings-based TPS system. LEO-I was hard-wired to the 2MEGA proof assis-
tant. The prover already supported native (versus Huet’s axiomatic) treatment of
the extensionality principles (Benzmiiller, 2002) and it cooperated with first-order
(FO) ATPs via the flexible 2ANTS agent architecture within 2MEGA (Benzmiiller
et al, 2008). Both native extensionality treatment and cooperation with specialist
reasoners for fragments of HO logic have been adopted in LEO-II, and also in
other systems, most notably in the recent Satallax prover by Brown (2012).

LEO-II’s calculus is based on Resolution by Unification and Equality (Digricoli
and Harrison, 1986)). That is, unification constraints are disagreement pairs, and
are amenable to resolution. The prover supports primitive equality handling (in
LEeo-I equality was expanded using Leibniz’ definition), calculus-level treatment of
choice, and depth-bounded HO pre-unification.

The rest of the article is structured as follows. More information on the theory
and background of Lro-II is provided in Sec. 2. The prover’s main loop and its
direct collaboration with FO ATPs are outlined in Sec. 3. An example proof of LEO-
IT is presented in Sec. 4. The prover can also be used in interactive mode; however,
this feature is not described here. LEO-II also implements term sharing and term
indexing (Sec. 5). LEO-II’s native input language is TPTP THFO0 (Sutcliffe and
Benzmiiller, 2010). Sec. 6 describes how the development of the THF0 language,
which in turn fostered significant improvements in HO theorem proving, has been
paralleled and influenced by the development of LEo-II. In that section it is also
explained why Lro-II (and other THF0 compliant provers) can readily be used
for automating a wide spectrum of quantified non-classical logics via semantic
embeddings. Proof certificates, which have been a central objective of the LEO
provers from the beginning, are covered in Sec. 7. LEO-II's proof certificates are
exploited in the prover’s recent integration with Isabelle/HOL, through which
LEo-II proofs can now be transformed and verified (Sec. 8). Section 9 summarises
selected applications of LEo-II and points to integrations of LEO-II with other
systems.

The Lro-II prover can be easily deployed and installed. The source code is
freely available from http://www.leoprover.org under a BSD-style license.

2 Foundation of Leo-II

ATPs based on the resolution principle, such as Vampire (Riazanov and Voronkov,
2002), E (Schulz, 2002), and SPASS (Weidenbach et al, 2002), have reached a high
degree of sophistication. They can often find long proofs even for problems having
thousands of axioms. However, they are limited to FO logic. HO logic extends
FO logic with lambda notation for functions, and with function and predicate
variables. It supports reasoning in set theory, using the obvious representation of

The Higher-Order Prover LEO-II 3

sets by predicates. HO logic is a natural language for expressing mathematics,
and it has also found much use in formal verification. Moving from FO to HO
logic requires a more complicated proof calculus, but it often allows much simpler
problem statements. HO logic’s built-in support for functions, predicates and sets
(as characteristic functions) often leads to shorter proofs. Moreover, elementary
identities (such as the distributive law for union and intersection) turn into difficult
problems when expressed in FO form.!

Benzmiiller et al (2004) give a tour of models for HO logic. A family of weak
models for HO logic is presented, for which complete calculi can be defined. In a
sense, equality is ‘native’ in HO logic — for instance, the weakest of these mod-
els validates B-equivalence. The strongest of these weak systems is called Henkin
semantics, and it is the semantics under which LEo-II works.

Unlike in FO logic, terms in HO logic have a native equality defined on them
through A-conversion. In Henkin semantics, this relation corresponds generally to
afin-conversion. In HO logic, terms may be function-valued, and formulas are sim-
ply Boolean-valued terms. Term equivalence is taken to be modulo A-conversion.
Terms are represented, and fn-reduced, in LEO-II as graphs.

Comprehension is another strength of HO logic over FO logic. Comprehension
is a device for defining sets through formulas. In FO logic, comprehension axioms
need to be explicitly stated, but these axioms are native to HO logic since sets
are defined as formulas.? Benzmiiller and Brown (2007) identify comprehension as
enabler for significantly shorter proofs in HO logic, compared with using FO logic.

Handling equality is more challenging in HO logic since it now applies to
function-valued and Boolean-valued terms, and arriving at Henkin complete-
ness requires handling the extensionality of functions and propositions. The re-
spective axiom and scheme for Boolean extensionality (or propositional extension-
ality) and functional extensionality are VX°Y. (X +— Y) — X = Y and
VFT7°G. (VXT. FX = GX) — F = G. As with equality-handling in FO logic,
better performance is achieved by extending a proof calculus with equality-related
rules rather than adding the characterising axioms to the logic — cf. Benzmiiller
et al (2009). The particular equality and extensionality rules of LEO-II have their
roots in the work of Benzmiiller (1999).

Leo-1II also provides a calculus-level treatment of the aziom of choice (AC).
The solution in LEo-IT (Benzmiiller and Sultana, 2013) is inspired by work of
Mints (1999). Choice is related to Skolemization. In HO logic, Skolemization is not
as straightforward as in FO logic (Miller, 1983). Naive Skolemization is unsound
wrt Henkin models that invalidate AC, and incomplete wrt Henkin models that
validate AC (Backes and Brown, 2011) (Benzmdiller and Brown, 2005, §3.2).

LEO-II is a resolution-based prover. In FO resolution-based theorem proving,
clause normalisation is only carried out once at the beginning of the process. In

1 Cf. TPTP problem files SET171+3.p and SET171"3.p and their solutions. These files contain
encodings of the distributive law for union and intersection. In a way, the FO encoding provided
in the former file is already tailored to simplify the proof search, since irrelevant but challenging
set theory axioms are omitted. This is not the case for the latter HO encoding. SET171°3.p
can be solved by LEO-II and Satallax in a few milliseconds, while prominent FO provers like
Vampire (version 3.0), E (version 1.9) and SPASS (version 3.7) time out (after 300 seconds)
for SET171+3.p according to the information provided on TPTP.

2 Andrews (2002, p207) gives the Comprehension Axiom scheme as IU° 7YV, UV = A"
which, when written in A-notation, shows up as the -conversion rule.

4 Christoph Benzmiiller et al.

HO theorem proving, clause normalisation might be carried out several times (at
different points during the proof process) since variables may be instantiated with
formulas, and this may turn normal clauses into non-normal ones.

In FO logic, unification is decidable, and it is used as an eager filter during res-
olution. HO unification is undecidable in general, so it is used more carefully. LEO-
IT relies on a variant of Huet’s pre-unification procedure, which is semi-decidable.
It works by accumulating flex-flex unification pairs as unification constraints (in
flex-flex unification pairs both terms to be unified have variables at head posi-
tion). When a clause consists only of flex-flex constraints then it is considered to
be empty, since, as Huet showed (Huet, 1975), such a system of equations always
has solutions. Thus, by employing unification constraints LEo-II delays and avoids
unnecessary enumerations and applications of certain unifiers. In addition to this,
LEO-IT’s unification procedure interprets logical constants, such as conjunction,
equality, etc.

Resolution and factorisation may be applied to the unification constraints too.
Despite the theoretical benefit of lazy filtering, this produces problems in prac-
tice owing to accumulation of clauses, as described by Benzmiiller (1997, §3.3).
Though it was originally intended as an alternative option for LEO-II’s architec-
ture, lazy unification has not yet been implemented. Eager unification in LEo-II
works as follows: pre-unification is applied to clauses with a predefined depth
bound (e.g. maximally five® nestings of the branching flex-rigid rule; modulo this
depth-bound HO pre-unification becomes decidable, but at the cost of incomplete-
ness — also for LEo-IT). The solved unification constraints are exhaustively applied
in the resulting clauses, and any remaining flex-flex unification pairs are kept as
unification constraints of the result clause. Pre-unification may return an empty
clause — that is, a clause which is either literally empty or which consists only of
flex-flex unification constraints, which always have a solution.

Unification is used to find instantiations of variables of arbitrary type. In HO
automated theorem proving, an additional form of instantiation is required for
completeness. This form of instantiation, which is called primitive substitution, only
concerns predicate variables. For example, in order to prove 3P.P or 3IP3X.P X
we cannot use unification. Guessing instantiations for such variables is a compre-
hensive challenge since the search is infinitely-branching. Whereas in FO logic one
can have a complete resolution calculus using only the factorisation and resolution
rules, in HO resolution we need an additional rule for primitive substitution.

2.1 Calculus

We sketch the rules of LEO-IT’s extensional RUE calculus. More details are pre-
sented in earlier publications (Sultana and Benzmiiller, 2013; Benzmiiller and Sul-
tana, 2013; Benzmiiller, 2015; Sultana, 2015).

Normalisation rules. These rules deal with the normalisation of clauses. They are
straightforward, except for a special purpose, additional rule used for the exhaus-
tive instantiation of some finite types 7 having cardinality n. The rule instantiates

3 The pre-unification depth is a parameter in LEO-II that can be specified at the command
line. By default LEO-II currently operates with values up to depth 8. So far there has been no
exhaustive empirical investigation of the optimal setting of the pre-unification depth.

The Higher-Order Prover LEO-II 5

n clauses, each with a different term of type 7. Currently, this only applies when
Tis 0,0 —>00r 0 — 0— 0.

Extensionality rules. To avoid the challenging extensionality axioms in the search
space, LEO-II implements a native support for extensionality reasoning based on
the following rules (where X7 is a fresh variable, sk” a Skolem term, [.]* and [.]T
denote positive and negative literals in a clause):

Cv [MU%T — NU—)T]& Cv [MO'*)T _ NO’*}T]E Cv [Mo _ NO}O&E{TI,E}
CvMX=NXx]* CV [Msk = NskT C Vv [M° +— NOJeltf}

The rules operating on negative equality literals, i.e., unification constraints,
are integrated with in LEO-II's pre-unification procedure. The positive rules are
combined with the normalisation rules.

Unification. This set of rules implements a variant of Huet’s pre-unification pro-
cedure that is augmented with the negative extensionality rules from above and
which employs a search depth limit as parameter). The rules operate on unification
constraints. The procedure, when applied to a given clause D V U, where U is set
of unification constraints, returns a finite set of clauses of form ¢(D) Vo (F)Vo(B),
where o is a substitution, F is a possibly empty set of flex-flex constraints, and
B is a possibly empty set of non-normal literals obtained from applications of the
Boolean extensionality rule.* Subsequent normalisation of such clauses may be
required.

Resolution, Factorisation and Primitive Substitution. The resolution and factorisa-
tion rules in LEO-II introduce unification constraints, which LEo-II attempts to
(extensionally) pre-unify eagerly modulo the given unification depth, instead of
permanently delaying them as in Huet’s constrained resolution approach (Huet,
1973a).

[AJP*vC [B]”* VD pi#p2 [A]" v [B]"vC
= res = fac_restr
CVvDV[A =B] [A]P v CV[A =B]

The primitive substitution rule, which is related to Huet’s splitting rule (Huet,
1972, 1973b) and Andrews’s primitive substitutions (Andrews, 1989), guesses the
top-level logical structure of the instantiation term P, while further decisions on P
are delayed. The hope is that they can eventually be determined by pre-unification
in subsequent resolution steps. Generally, however, subsequent applications of
primitive substitution rule are permitted and the deeper logical structure of P
may thus be guessed later. It is an open challenge to suitably restrict this rule
without threatening completeness.

[QTﬁn]p v C P is an approximate bindung for 7 and a connective c

([Q"T" vO)P/Q]

prim_subst

4 LEO-IT employs some constraints regarding the Boolean extensionality rule. In particular,
application of the rule is enabled only when unification constraint [M° = No]ﬂ is the result
of another pre-unification rule such as decomposition, that is, entry level applications of the
Boolean extensionality rule are not permitted.

6 Christoph Benzmiiller et al.

Translation

HOL Clauses FOL Clauses

External
prover

Refutation

C Main Loop)
C Human interface)

Fig. 1 The main components involved in LEO-II’s cooperation with other provers.

As an example consider the formula 3Q3X.Q X. Negating and normalising the
formula gives the clause [Q77° X]%. Rule prim_subst offers the clause [-H X% by
using AX.—H X as approximate binding for ¢ — 0 and —. Further normalisation
and resolution will yield a singleton clause consisting of a flex-flex constraint —
that is, an effectively empty clause.

Choice. Recent versions of LEO-II also support a native treatment of choice. As
for extensionality, the motivation is to avoid the choice axiom(s) in the search
space. More details have been published elsewhere (Benzmiiller, 2015; Benzmiiller
and Sultana, 2013).

3 Cooperative Theorem Proving in Leo-II

Like many other provers, LEO-II spends its time looping during its exploration of
the search space — executing its main loop. By search space we mean the totality of
clauses surveyed by LEo-II during its execution. Each iteration of this loop might
generate new clauses, thus contributing to the representation of the search space
that is kept by Lro-II. Each iteration does mot change the satisfiability of the
problem and its search space; this is an invariant of a prover’s main loop.

Unlike many provers LEO-II keeps an additional representation of the search
space. This is used to store the input to external provers. The contents of this
store are produced by translating the clauses in the main store. The source clauses
consist of HO clauses, and the target clauses are encoded in the target logic. Since
LEO-II currently only cooperates with FO provers, the target clauses consist of FO
clauses.

The FO clauses are accumulated during iterations of LEO-II’s main loop, and
are periodically sent to the external prover with which Leo-II is cooperating. If
the external prover finds the FO clauses to be inconsistent then, assuming that
the translation was sound, it implies that the original HO logic clauses must also
be inconsistent. This refutation is accepted by Leo-II, and presented to the user
as a refutation of the initial conjecture. This setup is sketched in Figure 3.

The Higher-Order Prover LEO-II 7

Various translations from HO logic to FO logic are implemented in LEO-II
(Benzmiiller and Sultana, 2013). These translations differ in the amount of infor-
mation they encode in the resulting FO formulas. Encoding less information can
lead to incompleteness. LEO-IT also implements a method devised by Claessen et al
(2011), who describe an analysis on the cardinalities of types in order to safely
erase some information. As part of this analysis, SAT problems are generated,
and these are processed by MiniSat via an interface adapted from Satallax. The
integration of more recent improvements of these methods (Blanchette et al, 2013)
remains future work.

4 Example Proof in Leo-II

We briefly illustrate Leo-II’s proof search for TPTP example SEV288~5, which
states that Leibniz equality is identical to primitive equality (in Henkin semantics):

(AXaAYVQ.QX — QY) = (AXAY.X =Y)

Initially, the prover negates the conjecture and expands any contained defined
constant symbols. In our example, — is defined as AAAB.—A vV B. Because all
terms in Leo-II are kept in Sn-normal form, the following clause is obtained (where
[]E denotes a literal with negative polarity):

[(AXaAYVQ.-QX V QY) = (AXAY.X =Y

Negated equation literals are treated by LEO2 as unification literals, to which
the prover applies its extensional pre-unification algorithm. First, the outermost
A-abstractions are replaced, that is, functional extensionality is applied to obtain

[VXa0.(AYVQ.-QX vV QY) = (A\YV.X = Y)]¥
Next, the leading quantifier is eliminated (a is a new Skolem constant)
[(AYVQ.~QaV QY) = (A\Y.a = Y)]F
This procedure is repeated to obtain (b is a new Skolem constant)
[(VQ.~Qa v Qb) = (a=b)]"

Syntactical pre-unification fails at this point, nevertheless LEO-II’s extended pre-
unification process continues and applies Boolean extensionality to obtain

[(VQ.~Qa Vv Qb) +— (a = b)]"
This clause is subsequently normalised and the following clauses are obtained
[@a]" v [@b]" v [a =" lga]” v [a = b]" [ab]" v [a = 5]

Then, Leo-1II applies primitive substitution (imitating primitive equality) and pre-
unification to the first of these clauses to derive

[a=0b" V=0’

8 Christoph Benzmiiller et al.

The latter three clauses (amongst others) have been identified by Leo-II as input
candidates for a FO prover, and suitably converted copies of these clauses have
been put into the FO store. In the next periodic call of a FO ATP (e.g. E) to
this store, a refutation based on these three clauses is found and reported. LEO-II
then stops its proof search, and, controlled by its flag settings, may even report a
merged proof consisting of LEo-II’s and E’s contributions.

The above proof is obtained when using the simple (and older) fully-typed
translation to FO logic (flag --translation fully-typed) and when the automated
detection and replacement of Leibniz equations by primitive equations is disabled
(flag --notReplLeibnixEq). The current version of LEO-IT employs more sophisti-
cated translations to FO logic by default, as well as detecting Leibniz equations.
Hence, in its latest default setting a shorter proof is obtained for SEV288-5. In this
proof clause [(VQ.—~Qa Vv Qb) = (a = b)]¥ is already converted into a refutable set
of FO clauses for E.

Proof problem SEV288~5 may be modified to obtain a slightly more challenging
example. For example, the outermost primitive equality may be replaced by a
Leibniz equation to obtain

VR.R(AXaAYVQ.QX — QY) — RAXAY.X =)

The initialisation process and clause normalisation in LEO-II turns this problem
into the following two clauses (where r is a new Skolem constant)

[rAXaAYVQ.-QX VY)Y [rOXAYV.X =Y))T
LEO-II resolves these two clauses to obtain the pre-unification problem
[r(AXaAYVQ.-QX V QY) = r(AXAY.X = V)|

After decomposing head symbol r the prover arrives at the situation as discussed
above.

Like many other ATPs LEo-II has many flags which influence its detailed proof
search behaviour (Benzmiiller and Sultana, 2013). Depending on their particular
choice the prover may perform quite differently.

5 Term Sharing and Term Indexing in Leo-II

Term indexing techniques are widely used in major FO ATPs (Riazanov and
Voronkov, 2002; Schulz, 2002; Weidenbach et al, 2002). The indexing data struc-
tures store large numbers of terms and, for a given query term ¢, support the fast
retrieval of terms from the index that satisfy a certain relation with ¢. Examples of
such relations include matching, unifiability, and syntactic equality (Nieuwenhuis
et al, 2001). Performance can be further enhanced by representing terms in efficient
data structures, such as shared terms — these are used in E (Schulz, 2002).

HO term indexing techniques are rarely addressed in the literature, which ham-
pers the progress of systems in this field. An exception is Pientka (Pientka, 2003).
LEo-II’s implementation at term level is based on a perfectly shared term graph,
i.e., syntactically equal terms are represented by a single instance. Ideas from FO
term sharing are adapted to HO logic by (i) keeping indexed terms in Bn-normal
form (i.e., n-short and B-normal) and (ii) using de Bruijn indices (de Bruijn, 1972)

The Higher-Order Prover LEO-II 9

to allow A-abstracted terms to be shared. The resulting data structure represents
terms in a directed acyclic graph (DAG). LEo-II also supports the visualization of
such term graphs® and, more importantly, their statistical analysis. Future work
will investigate whether such information can be exploited for improving heuristic
control.

Representation of terms in a shared graph naturally advances the performance
of a number of operations. For example, it allows fast lookup of all occurrences of
syntactically equal terms or subterms, and it improves the performance of rewrite
operations, such as global unfolding of definitions. Additionally, LEO-IT employs a
term-indexing data structure, which is based on structural indexing methods from
the FO domain (McCune, 1992; Stickel, 1989), as well as road-sign techniques.
Road signs are features of the data structure which guide operations based on
graph traversal. They help to cut branches of the subgraph to be processed early
and they are employed, e.g., in the construction of partial syntax trees (Theify and
Benzmiiller, 2006) in which all branches with no occurrences of a given symbol or
subterm are cut. This enables LEoO-II to avoid potentially costly operations, such
as occurs checks, and to speed up basic operations on terms, such as substitution.

6 TPTP THFO and Semantic Embeddings

LEO-ID’s native input language is TPTP THFO (Sutcliffe and Benzmdiller, 2010).
Particularly during 2008 and 2009, there has been a close collaboration and mutual
fertilization between both evolving projects, and LEo-II and TPTP THFO have
been applied as mutual « testers. Fostered by the evolution of the TPTP THF
infrastructure, HO ATP has recently made significant progress. At present there
are at least six THF0-compliant provers and model finders available. These systems
can be assessed online via the SystemOnTPTP tool (Sutcliffe, 2007), through
which they can be easily employed avoiding local installations.

The recent progress in automating HO logic is measurable in terms of improve-
ment rates in the yearly THF0 CASC competitions:® In 2010 the winner LEo-II
performed 56% better than the 2009 champion TPS, the 2011 winner Satallax was
21% better than the 2010 champion Leo-II, in 2012 Isabelle was 10% better than
2011 winner Satallax, and in 2013 winner Satallax-MalLeS was 21% better than
2012 winner Isabelle.

To illustrate THFO syntax we present in Fig. 2 a small example theory. This
example theory serves a second purpose for this article; namely it illustrates that
quantified non-classical logics can be modeled as natural fragments of classical HO
logic and that they can be be automated with provers like LEO-II. The particu-
lar logic embedded here is QCL—quantified conditional logic (Stalnaker, 1968).
Benzmiiller (2013a) presents the theory and more details on this embedding. The
interesting point for this article is that these few axioms turn Leo-II (and any
other THFO-compliant ATP) into a sound and complete reasoner for QCL. Note
that even flexible combinations of varying and constant domain quantification are

5 To further visualise the evolution of the term graph during proof search, LEO-II has been
modified to output a snapshot of its state after each processing step. This data was used to
create animations of dynamically changing term graphs during proof search. The video clips
can be obtained at http://christoph-benzmueller.de/leo/art.html.

6 http://www.cs.miami.edu/~tptp/CASC/

10 Christoph Benzmiiller et al.

%---- file: QCLAxioms.thf

%--- type mu for individuals; the type $i is reserved for possible worlds
thf (mu, type, (mu:$tType)) .

%--- reserved constant for selection function f

thf (f,type, (£:$i>($i>$0)>$i>$0)) .

%--- ‘exists in world’ predicate for varying domains;

%--- for each w we get a non-empty subdomain eiw@w

thf (eiw, type, (eiw:$i>mu>$o)) .
thf (nonempty,axiom, (! [V:$i]:?[X:mu] : (eiw@VEX))) .
%--- negation, disjunction, material implic. lifted to possible worlds
thf (not,type, (not: ($i>$0)>$i>$0)) .
thf (or, type, (or: ($1>$0)>($i>$0)>$i>$0)) .
thf (impl, type, (impl: ($i>$0)>($i>$0)>$i>$0)).
thf (not_def,definition, (not = ("[A:$i>$0,X:$i]:~(AGX)))).
thf (or_def,definition, (or = ("[A:$i>$0,B:$i>$0,X:$i]: ((AGX) | (BCX))))).
thf (impl_def,definition, (impl
= ("[A:$i>$0,B:$i>$0,X:$il: ((A@X)=>(B@X))))).
%--- conditionality lifted to possible worlds; f is the selection (cf.
%-—-- Stalnaker 1968)
thf (cond, type, (cond: ($i>$0)>($i>$o)>$i>$0)) .
thf (cond_def ,definition, (cond
= ("[A:$i>$0,B:$i>$0,X:$i]: ! [W:$i] : ((f@X@AGW)=>(BEW))))).
%--- quantification (constant & varying domain, propositional) lifted to
%-—-- possible worlds
thf(all_co,type, (all_co: (mu>$i>$o)>$i>$o0)).
thf (all_va,type, (all_va: (mu>$i>$o)>$i>$o)) .
thf (all,type, (all: (($i>$0)>$i>$0)>$i>$0)) .
thf (all_co_def,definition, (all_co = ("[A:mu>$i>$o,W:$il: ! [X:mul: (AGXEW)))).
thf (all_va_def,definition, (all_va
= ("[A:mu>$i>$o,W:$il: ! [X:mu] : ((eiw@WOX)=>(A@XEW))))).
thf (all_def,definition, (all = (" [A:($i>$0)>$i>$o,W:$i]:! [P:$i>$o]: (AGPQW)))).
%--- box operator based on conditionality (illustrates subsumtion of modal
%--- logics)
thf (box,type, (box: ($i>$0)>$i>$0)) .
thf (box_def ,definition, (box = ("[A:$i>$0]: (cond@(not@A)@A)))).
%--- validity of a conditional logic formula (grounding of lifted formulas)
thf (vld,type, (v1d: ($i>$0)>$0)).
thf (vld_def,definition, (vld = ("[A:$i>$0]:![S:$i]:(A@S)))).
%---- end file: QCLAxioms.thf

Fig. 2 Example THFO encoding of quantified conditional logics (QCLs). Kripke style seman-
tics of QCL (Stalnaker, 1968) is explicitly expressed in THF0. Varying and constant domain
quantification are supported simultaneously. This embedding turns LEO-II (and any other
THFO0-compliant prover) into an reasoner for QCL.

supported here. The family of QCLs have many applications, including AI and
computational linguistics. They are challenging to automate and no other imple-
mented provers for this logic currently exist. QCLs are very expressive and they
e.g. subsume quantified modal logic (cf. the definition of box).

We now briefly describe THFO syntax to explain the contents of Fig. 2. For
details we refer to Sutcliffe and Benzmiiller (2010). The symbols $i and $o repre-
sent the HO logic base types i (individuals) and o (propositions). The string $i>$o
denotes the type of a function (more precisely, a predicate). Function or predicate
application, for example, the proposition (eiwV X), is encoded as ((eiw@V)@X)
or simply as (eiw@V@X)—i.e., function application is represented by @, and it is
left-associative. Taking AA;.,VS;(A S) as an example expression, universal quan-

The Higher-Order Prover LEO-II 11

%
include (’QCLAxioms.ax’).
J%---axiom ID entails associated semantic condition
thf (id_corr,conjecture, (
(vld @ (all@"[P:$i>$o]: (cond@P@P)))
<=> ('[P:$i>$0,W:$i]: (' [Z:$i]: ((f@WEPQZ)=>(P@Z)))))).

Fig. 3 THFO0 encoding of a well known correspondence between QCL axiom ID and a semantic
condition of the selection function f.

tification and A-abstraction are THF0-encoded as ~[A:$i>$0]: ! [S:$i]: (A@S). The
symbol ? denotes the existential quantifier, and —,V,A,and — (material implica-
tion) are written as ~, |, & and =>. Comments begin with %. Better-formatted and
more readable presentations of our THFO0 code can easily be generated with the
TPTP tools of Sutcliffe (2009); here we optimised for less space.

Fig. 3 formulates a well-known meta-level correspondence theorem for QCL: the
axiom ID: VP(P = P), where = is the conditional operator (not be confused with
material implication —), is equivalent to the semantic condition VPYwVz(fwPz —
P 2) on the selection function f. (The conditional operator = appears as cond in
Fig. 2.) The statement in Fig. 3 can be proved in a few milliseconds by Leo-II.
Benzmiiller (2013a) presents prominent default reasoning examples from the Al
literature that have been automated with this approach.

The Leo-II project has been active in submitting proof problems to the THF
library. In particular, many examples in the spirit of Fig. 2 and 3, which illustrate
the immediate applicability of THFO0 reasoners for a wide range of non-classical
logics, stem from the Leo-II initiative.

7 Leo-II’s Proof Certificates

Running LEO-II on a problem can have several outcomes: the conjecture could
be found to be a theorem, or found to be a non-theorem, or the prover could
give up (because of a timeout, for instance). LEO-II conforms to the SZS standard
ontology (Sutcliffe, 2008) for communicating the outcome of a proof attempt. This
makes it easier for external tools to interpret this outcome.

In addition to this, LEO-II can also output a proof certificate. This details the
justification for the outcome given by LEO-II, by providing the reasoning steps used
by LEo-II to derive a refutation. This could then be used by an independent system
to check LEO-II’s reasoning, or to use that derivation in a bigger formalisation. In
Sec. 8 we describe how such certificates are imported into Isabelle/HOL, thus
allowing us to translate LEo-II theorems into Isabelle/HOL theorems.

LEo-1I can generate proof certificates in two levels of detail. When called with
the option -po 1, LEO-II produces a proof containing the reasoning steps made by
Leo-II alone — information on the reasoning made by the cooperating FO ATP
are omitted. When called with option -po 2, LEO-II tries to merge the proof steps
of the cooperating FO ATP with its own steps in order to return a joint THF-FOF
proof object (Sultana and Benzmiiller, 2013). The -po 2 mode is unfortunately still
very brittle and therefore not yet recommended for extensive use.

12 Christoph Benzmiiller et al.

LEO-II's proof certificates are encoded in the TPTP TSTP syntax (Sutcliffe,
2010), in which each inference is encoded as an annotated formula. The inference’s
conclusion appears as the formula (e.g., in THF0 or FOF syntax), and the infer-
ence’s hypotheses and other meta-data are referenced or encoded in the formula’s
annotations. Examples of proofs in both levels of detail are provided on the LEO-IT
website, at http://christoph-benzmueller.de/leo/download.html.

8 Importing Leo-II proofs into Isabelle/HOL

Proof certificates produced by ATPs are usually not for human consumption. Un-
like proofs in natural language, it is very difficult to extract an intuition from
such machine-found proofs, and this makes them difficult to understand and check
manually. This also applies to LEo-IT’s HO resolution proofs.

Additional automated tools can be used to check such proofs. LEo-II’s proofs
can be imported into the proof assistant Isabelle/HOL, and the import only suc-
ceeds if Isabelle/HOL succeeds in replaying LEo-II’s proof. Once a proof is im-
ported, it can be used in other formal developments within Isabelle/HOL.

The reconstruction involves the following stages:

1. The TPTP proof is parsed, and the Isabelle/HOL signature is extended with
the types and constants appearing in the TPTP proof. Then the formula com-
prising each inference is interpreted as an Isabelle/HOL formula.

2. The proof is represented as a directed acyclic graph: vertices consist of formulas,
and arcs connect conclusions with hypotheses. Formulas are annotated with
inference-related information, such as the name of the inference rule used by
LEo-1II to derive that formula.

3. Proofs often need to be transformed prior to reconstruction. Transformation
serves to simplify the proof — for instance, it could remove redundant infer-
ences, or break inferences down into simpler inferences — and to analyse the
proof to obtain information that can help guide reconstruction — such as find-
ing applications of splitting rules.

At the end of this process a proof skeleton is obtained, which is encoded using a
simple intermediate language. Expressions in this skeleton will be interpreted
by a virtual machine at a later stage, to complete the reconstruction.

4. The set of inferences involved in a proof is extracted, using the graph from
Step 2. Using the inference name for guidance, each LEO-II inference is inter-
preted as an Isabelle/HOL inference, using specialised tactics. The resulting
Isabelle/HOL inferences are stored in a dictionary. Taken together, these tac-
tics serve as a mechanical implementation of LEO-II’s calculus in Isabelle/HOL
— excluding key features related to proof-search, such as the given-clause al-
gorithm and related data structures. However, some limited proof-search capa-
bilities have been implemented. This was intended to make the reconstruction
more robust, and also to reconstruct compound inferences (from shorter proof
scripts). The resulting implementation is a mini-prover that is parametrised
by a set of rules: during proof search the prover only uses a rule if it is in that
set.

5. Finally, the proof skeleton from Step 3, enriched with the dictionary of infer-
ences from the previous step, is evaluated.

The Higher-Order Prover LEO-II 13

LEO-II’s reliance on collaboration with other provers complicates proof recon-
struction since LEO-II’s proofs may be hybrid proofs (cf. Sec 7), consisting of con-
tributions from different provers. We currently only handle pure LEo-IT proofs.
Our approach is compositional, and should be able to handle hybrid proofs, but
it remains to implement the FO ATP part.

The mapping of pure LEO-II proofs into Isabelle/HOL theorems is crucial to
Step 4. Intuitively, starting from the fact that every LEo-II type and term is an
Isabelle/HOL type or term, and then showing that every LEo-II inference can be
emulated in Isabelle/HOL, we can show that any LEo-II proof can be interpreted
as an Isabelle/HOL theorem. We tested the reconstructor on THF problems from
TPTP v5.4.0, and were able to reconstruct over 93% of the proofs found by LEo-II.

9 Applications of Leo-1I

Section 6 describes how QCLs can be modeled and automated as natural frag-
ments of classical HO logic. In fact, many well-known non-classical logics can be
analogously embedded in HO logic and automated with LEo-II. In recent years
this approach has inter alia been studied for a range of quantified modal log-
ics (Benzmiiller and Paulson, 2013), security logics (Benzmdiller, 2009) and intu-
itionistic logic (Benzmiiller and Paulson, 2010). Moreover, classical HO logic is
suited as a uniform framework for combining embedded logics (Benzmiiller, 2011,
2013b). In all this research the LEO-II prover has been the primary debugging tool
supporting the formalization process and initial experiments.

For many challenging logics, like QCLs or HO modal logics, no theorems
provers in the direct approach have been implemented yet. By exploiting the em-
bedding approach, LEo-IT and Satallax have pioneered the automation of such ex-
pressive logics, which have many applications (Benzmdiller and Woltzenlogel Paleo,
2015).

LEeo-II played a key role in the formalization, mechanization and automation of
Godel’s ontological proof of the existence of God (Benzmiiller and Woltzenlogel Pa-
leo, 2013, 2014); the THFO0 formalization and further information is available online
at http://github.com/FormalTheology/GoedelGod/. The system was extensively
used during the formalization, and it was the first prover to fully automate the
four steps as described in the notes on Gédel’s proof by Dana Scott (Sobel, 2004a).
LEO-IT’s result was subsequently confirmed by Satallax. Interestingly, LEO-II can
prove that Godel’s original axioms (Sobel, 2004b) are inconsistent: in these notes
definition D2 (An essence of an individual is a property possessed by it and necessarily
implying any of its properties: ¢ ess. x <> ¢(x) AV (Y(z) = OV (é(y) — ¥(y))))
is lacking conjunct ¢(z), which has been added by Scott. Godel’s axioms are con-
sistent only with this conjunct present. The guess of a suitable instantiation for
a predicate (set) variable via primitive substitution is a key step in LEO-II’s in-
consistency proof. LEO-II’s inconsistency result is new; it has not been reported in
philosophy publications. Meanwhile LEo-II has have been successfully employed
in further experiments in metaphysics (Benzmiiller et al, 2015).

LEO-IT also performed well in experiments related to the Flyspeck project of
Hales (2013), in which a formalised proof of the Kepler conjecture has been de-
veloped (mainly) in HOL Light. In those experiments (Kaliszyk and Urban, 2014,
Table 7), which inter alia investigated the potential of several ATPs for automating

14 Christoph Benzmiiller et al.

subgoals in the Flyspeck corpus, LEO-II performed better than many prominent
FO provers, including Vampire, Satallax, and SPASS. On the other hand, the E-
based LEO-II prover performed worse than E itself on this corpus. There are a
number of possible reasons, including the different input encodings used in the
experiments for HO and FO ATPs, and the fact that E serves in LEO-II only as
a subordinate reasoner whose full potential for automating FO fragments of HO
logic is still not optimally exploited.

It has also been shown that LEO-II can be employed for reasoning in expressive
ontologies, when it was integrated with the Sigma ontology engineering tool (Pease
and Benzmiiller, 2013). In recent experiments by Benzmiiller and Ziener (2013),
LEO-IT was used to detect errors in the SUMO ontology that cannot be detected
by FO ATPs when applied to SUMO (Alvez et al, 2012; Pease and Sutcliffe, 2007).

LEO-II has recently also been integrated with the heterogeneous tool set
Hets (Mossakowski et al, 2007).

10 Conclusion and Future Work

The development of the standalone resolution-based HO ATP Leo-II had a strong
influence on some relevant and important developments, most notably the devel-
opment of TPTP THFO0 (which, goaded by the yearly CASC competitions in the
THFO category, fostered significant overall progress in HO ATP), the automation
of quantified non-classical logics with HO ATPs, and the integration of hetero-
geneous provers. The latter aspect is pursued in the LEO-II project in two ways:
LEo-1II internally cooperates with external ATPs, and it has itself been integrated
with other systems (such as Isabelle/HOL) which can verify proofs produced by
Leo-II.

There remains much room for future work, including, for example, the incorpo-
ration of term orderings in LEO-II’s proof calculus and proof search, the integration
of integer arithmetic, polymorphism and a calculus level support for induction.

Acknowledgements We thank Geoff Sutcliffe for the TPTP THFO infrastructure, funded
by the ERC under grant PIIF-GA-2008-219982, and for his excellent collaboration with the
LEO-II project. Arnaud Fietzke contributed to code in early phases of the project, and Chad
Brown, who shared some Satallax code with LEO-II, has always been a good collaborator of
the project. The latter also applies to a range of other people, including Adam Pease, Jasmin
Blanchette, Florian Rabe, Carsten Schiirmann, Daniel Kiihlwein and Serge Autexier. We also
thank the anonymous reviewers for their valuable feedback.

The development of Leo-II was supported by the UK Engineering and Physical Sciences
Research Council [grant number EP/D070511/1]. Applications and further improvements of
LEO-II received support from the German Research Foundation [grant numbers BE/2501 6-1,
8-1 and 9-1].

References

Alvez J, Lucio P, Rigau G (2012) Adimen-SUMO: Reengineering an ontology for first-order
reasoning. Int J Semantic Web Inf Syst 8(4):80-116

Andrews PB (1989) On connections and higher order logic. J of Autom Reasoning 5(3):257-291

Andrews PB (2002) An Introduction to Mathematical Logic and Type Theory: To Truth
Through Proof, Applied Logic Series, vol 27. Springer

The Higher-Order Prover LEO-II 15

Andrews PB, Bishop M, Issar S, Nesmith D, Pfenning F, Xi H (1996) TPS: A Theorem-Proving
System for Classical Type Theory. Journal of Automated Reasoning 16(3):321-353

Backes J, Brown CE (2011) Analytic tableaux for higher-order logic with choice. Journal of
Automated Reasoning 47(4):451-479

Benzmiiller C (1997) A calculus and a system architecture for extensional higher-order res-
olution. Research Report 97-198, Department of Mathematical Sciences, Carnegie Mellon
University, Pittsburgh, USA

Benzmiiller C (1999) Extensional higher-order paramodulation and RUE-resolution. In:
Ganzinger H (ed) Automated Deduction - CADE-16, 16th International Conference on
Automated Deduction, Trento, Italy, July 7-10, 1999, Proceedings, Springer, no. 1632 in
LNCS, pp 399-413, DOI 10.1007/3-540-48660-7_39

Benzmiiller C (2002) Comparing approaches to resolution based higher-order theorem proving.
Synthese 133(1-2):203-235, DOI 10.1023/A:1020840027781

Benzmiiller C (2009) Automating access control logic in simple type theory with LEO-II. In:
Gritzalis D, Lépez J (eds) Emerging Challenges for Security, Privacy and Trust, 24th IFIP
TC 11 International Information Security Conference, SEC 2009, Pafos, Cyprus, May 18-20,
2009. Proceedings, Springer, IFIP, vol 297, pp 387-398, DOI 10.1007/978-3-642-01244-0_34

Benzmiiller C (2011) Combining and automating classical and non-classical logics in clas-
sical higher-order logic. Annals of Mathematics and Artificial Intelligence (Special is-
sue Computational logics in Multi-agent Systems (CLIMA XI)) 62(1-2):103-128, DOI
10.1007/s10472-011-9249-7

Benzmiiller C (2013a) Automating quantified conditional logics in HOL. In: Rossi F (ed) 23rd
International Joint Conference on Artificial Intelligence (IJCAI-13), Beijing, China, pp 746—
753

Benzmiiller C (2013b) A top-down approach to combining logics. In: Proc. of the 5th Inter-
national Conference on Agents and Artificial Intelligence (ICAART), SciTePress Digital
Library, Barcelona, Spain, pp 346-351, DOI 10.5220,/0004324803460351

Benzmiiller C (2015) Higher-order automated theorem provers. In: Delahaye D, Woltzenlo-
gel Paleo B (eds) All about Proofs, Proof for All, Mathematical Logic and Foundations,
College Publications, London, UK, pp 171-214

Benzmiiller C, Brown C (2005) A structured set of higher-order problems. In: Hurd J, Melham
TF (eds) Theorem Proving in Higher Order Logics, 18th International Conference, TPHOLs
2005, Oxford, UK, August 22-25, 2005, Proceedings, Springer, no. 3603 in LNCS, pp 66-81,
DOI 10.1007/11541868_-5

Benzmiiller C, Brown C (2007) The curious inference of Boolos in MIZAR and OMEGA. In:
Matuszewski R, Zalewska A (eds) From Insight to Proof — Festschrift in Honour of Andrzej
Trybulec, Studies in Logic, Grammar, and Rhetoric, vol 10(23), The University of Bialystok,
Polen, pp 299-388

Benzmiiller C, Kohlhase M (1998) LEO — a higher-order theorem prover. In: Kirchner C,
Kirchner H (eds) Automated Deduction - CADE-15, 15th International Conference on Au-
tomated Deduction, Lindau, Germany, July 5-10, 1998, Proceedings, Springer, no. 1421 in
LNCS, pp 139-143, DOI 10.1007/BFb0054256

Benzmiiller C, Paulson L (2010) Multimodal and intuitionistic logics in simple type theory.
The Logic Journal of the IGPL 18(6):881-892, DOI 10.1093/jigpal/jzp080

Benzmiiller C, Paulson L (2013) Quantified multimodal logics in simple type theory. Logica
Universalis (Special Issue on Multimodal Logics) 7(1):7-20, DOI 10.1007/s11787-012-0052-y

Benzmiiller C, Sultana N (2013) LEO-II version 1.5. In: Blanchette JC, Urban J (eds) PxTP
2013, EasyChair, EPiC Series, vol 14, pp 2-10

Benzmiiller C, Sultana N (2013) Update report: LEO-II version 1.5. CoRR abs/1303.3761

Benzmiiller C, Woltzenlogel Paleo B (2013) Formalization, mechanization and automation of
Godel’s proof of God’s existence, arXiv:1308.4526

Benzmiiller C, Woltzenlogel Paleo B (2014) Automating Godel’s ontological proof of God’s ex-
istence with higher-order automated theorem provers. In: Schaub T, Friedrich G, O’Sullivan
B (eds) ECAI 2014, I0S Press, Frontiers in Artificial Intelligence and Applications, vol 263,
pp 93 — 98, DOI 10.3233/978-1-61499-419-0-93

Benzmiiller C, Woltzenlogel Paleo B (2015) Higher-order modal logics: Automation and ap-
plications. In: Paschke A, Faber W (eds) Reasoning Web 2015, Springer, Berlin, Germany,
no. 9203 in LNCS, pp 1-43, DOI 10.1007/978-3-319-21768-0_2

Benzmiiller C, Ziener M (2013) Automated consistency checking of expressive ontologies —
beware of the wrong interpretation of success! In: Fink M, Homola M, Mileo A, Varzinczak

16 Christoph Benzmiiller et al.

1J (eds) The 5th International Workshop on Acquisition, Representation and Reasoning
with Contextualized Knowledge (ARCOE-LogIC 2013), Corunna, Spain

Benzmiiller C, Brown C, Kohlhase M (2004) Higher-order semantics and extensionality. Journal
of Symbolic Logic 69(4):1027-1088, DOI 10.2178/js1/1102022211

Benzmiiller C, Sorge V, Jamnik M, Kerber M (2008) Combined reasoning by automated co-
operation. Journal of Applied Logic 6(3):318-342, DOI 10.1016/j.jal.2007.06.003

Benzmiiller C, Brown C, Kohlhase M (2009) Cut-simulation and impredicativity. Logical Meth-
ods in Computer Science 5(1:6):1-21, DOI 10.2168/LMCS-5(1:6)2009

Benzmiiller C, Weber L, Woltzenlogel Paleo B (2015) Computer-assisted analysis of the
Anderson-Héjek ontological controversy. In: Silvestre RS, Béziau JY (eds) Handbook of
the 1st World Congress on Logic and Religion, Joao Pessoa, Brasil, pp 53-54

Blanchette JC, Bohme S, Popescu A, Smallbone N (2013) Encoding monomorphic and poly-
morphic types. In: Piterman N, Smolka SA (eds) Proceedings of TACAS 2013, Springer,
LNCS, vol 7795, pp 493-507, DOI 10.1007/978-3-642-36742-7_34

Brown C (2012) Satallax: an automatic higher-order prover. Journal of Automated Reasoning
pp 111-117

de Bruijn N (1972) Lambda-calculus notation with nameless dummies: a tool for automatic for-
mula manipulation with application to the Church-Rosser theorem. Indag Math 34(5):381—
392

Claessen K, Lilliestrom A, Smallbone N (2011) Sort it out with monotonicity. In: Proceedings
of CADE-23, LNAI, vol 6803, Springer, pp 207—221

Digricoli VJ, Harrison MC (1986) Equality-based binary resolution. J ACM 33(2):253-289,
DOI 10.1145/5383.5389

Gordon M, Melham T (1993) Introduction to HOL: A Theorem-Proving Environment for
Higher-Order Logic. Cambridge University Press

Hales T (2013) Mathematics in the Age of the Turing Machine. ArXiv e-prints 1302.2898

Harrison J (2009) HOL Light: An overview. In: Proceedings of TPHOLSs 2009, Springer, LNCS,
vol 5674, pp 60-66

Huet G (1973a) A Complete Mechanization of Type Theory. In: Proceedings of the 3rd Inter-
national Joint Conference on Artificial Intelligence , pp 139-146

Huet G (1975) A Unification Algorithm for Typed Lambda-Calculus. Theoretical Computer
Science 1(1):27-57

Huet GP (1972) Constrained resolution: A complete method for higher order logic. PhD thesis,
Case Western Reserve University

Huet GP (1973b) A mechanization of type theory. In: Proceedings of the 3rd International
Joint Conference on Artificial Intelligence, pp 139-146

Kaliszyk C, Urban J (2014) Learning-assisted automated reasoning with flyspeck. Journal of
Automated Reasoning 53(2):173-213, DOI 10.1007/s10817-014-9303-3

McCune W (1992) Experiments with discrimination-tree indexing and path indexing for term
retrieval. Journal of Automated Reasoning 9(2):147-167

Miller D (1983) Proofs in higher-order logic. PhD thesis, Carnegie Mellon University

Mints G (1999) Cut-elimination for simple type theory with an axiom of choice. Journal of
Symbolic Logic 64(2):479-485

Mossakowski T, Maeder C, Liittich K (2007) The heterogeneous tool set, Hets. In: Proceedings
of TACAS 2007, Springer, LNCS, vol 4424, pp 519-522

Nieuwenhuis R, Hillenbrand T, Riazanov A, Voronkov A (2001) On the evaluation of indexing
techniques for theorem proving. In: Proceedings of IJCAR-01, Springer, LNAI, vol 2083, pp
257271

Nipkow T, Paulson L, Wenzel M (2002) Isabelle/HOL: A Proof Assistant for Higher-Order
Logic. No. 2283 in LNCS, Springer

Pease A, Benzmiiller C (2013) Sigma: An integrated development environment for formal ontol-
ogy. Al Communications (Special Issue on Intelligent Engineering Techniques for Knowledge
Bases) 26(1):79-97, DOI 10.3233/AIC-120549

Pease A, Sutcliffe G (2007) First Order Reasoning on a Large Ontology. In: Urban J, Sut-
cliffe G, Schulz S (eds) Proceedings of the CADE-21 Workshop on Empirically Successful
Automated Reasoning in Large Theories, no. 257 in CEUR Workshop Proceedings, pp 59-69

Pientka B (2003) Higher-order substitution tree indexing. In: Palamidessi C (ed) Proceedings
of ICLP 2003, Springer, LNCS, vol 2916, pp 377-391

Riazanov A, Voronkov A (2002) The design and implementation of VAMPIRE. AI Communi-
cations 15(2):91-110

The Higher-Order Prover LEO-II 17

Schulz S (2002) E — A brainiac theorem prover. AI Communications 15(2):111-126

Siekmann J, Benzmiiller C, Autexier S (2006) Computer supported mathematics with
OMEGA. Journal of Applied Logic 4(4):533-559, DOI 10.1016/j.jal.2005.10.008

Sobel J (2004a) Logic and Theism: Arguments for and Against Beliefs in God, Cambridge U.
Press, chap Appendix B. Notes in Dana Scott’s Hand, pp 145-146

Sobel J (2004b) Logic and Theism: Arguments for and Against Beliefs in God, Cambridge U.
Press, chap Appendix A. Notes in Kurt Gédel’s Hand, pp 144-145

Stalnaker R (1968) A theory of conditionals. In: Studies in Logical Theory, Oxford, pp 98-112

Stickel M (1989) The path-indexing method for indexing terms. Tech. Rep. 473, Artificial
Intelligence Center, SRI International, 333 Ravenswood Ave., Menlo Park, CA 94025

Sultana N (2015) Higher-order proof translation. PhD thesis, Computer Laboratory, University
of Cambridge, available as Tech Report UCAM-CL-TR-867

Sultana N, Benzmiiller C (2013) Understanding LEO-II’s proofs. In: Korovin K, Schulz S,
Ternovska E (eds) IWIL 2012, EasyChair, Merida, Venezuela, EPiC Series, vol 22, pp 33-52

Sutcliffe G (2007) TPTP, TSTP, CASC, etc. In: Diekert V, Volkov M, Voronkov A (eds)
Proceedings of the 2nd International Computer Science Symposium in Russia, Springer,
LNCS, pp 7-23

Sutcliffe G (2008) The SZS ontologies for automated reasoning software. In: LPAR Workshops,
CEUR Workshop Proceedings (http://ceur-ws.org/), vol 418

Sutcliffe G (2009) The TPTP problem library and associated infrastructure. Journal of Auto-
mated Reasoning 43(4):337-362

Sutcliffe G (2010) The TPTP World - Infrastructure for Automated Reasoning. In: Proceedings
of LPAR-16, Springer, no. 6355 in LNAI, pp 1-12

Sutcliffe G, Benzmiiller C (2010) Automated reasoning in higher-order logic using the TPTP
THF infrastructure. Journal of Formalized Reasoning 3(1):1-27

Thei F, Benzmiiller C (2006) Term indexing for the LEO-II prover. In: IWIL-6 workshop at
LPAR 2006: The 6th International Workshop on the Implementation of Logics, Pnom Penh,
Cambodia

Weidenbach C, Brahm U, Hillenbrand T, Keen E, Theobald C, Topic D (2002) Spass version
2.0. In: Voronkov A (ed) Proceedings of CADE 2002, Springer, LNCS, vol 2392, pp 275-279

