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Abstract

This article addresses the automation of higher-order aspects in expressive ontologies such as the Suggested Upper Merged Ontol-
ogy SUMO. Evidence is provided that modern higher-order automated theorem provers like LEO-II can be fruitfully employed for
the task. A particular focus is on embedded formulas (formulas as terms), which are used in SUMO, for example, for modeling
temporal, epistemic, or doxastic contexts. This modeling is partly in conflict with SUMO’s assumption of a bivalent, classical
semantics and it may hence lead to counterintuitive reasoning results with automated theorem provers in practice. A solution is
proposed that maps SUMO to quantified multimodal logic which is in turn modeled as a fragment of classical higher-order logic.
This way automated higher-order theorem provers can be safely applied for reasoning about modal contexts in SUMO.

Our findings are of wider relevance as they analogously apply to other expressive ontologies and knowledge representation
formalisms.
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1. Introduction

Expressive ontologies such as the Suggested Upper Merged
Ontology SUMO [1, 2] or Cyc [3] contain a small but signifi-
cant number of higher-order representations.

This article investigates higher-order aspects in the SUMO
ontology with the aim to improve the automation support for
such aspects in practice. The particular focus is on embedded
formulas (formulas as terms), which are employed in SUMO,
for example, for modeling temporal, epistemic, or doxastic con-
texts.

The basic idea for modeling contexts in SUMO is simple. A
statement like (loves Bill Mary) is restricted, for instance, to
the year 2009 by wrapping it (at subterm level) into respective
context information:

(holdsDuring
(YearFn 2009)
(loves Bill Mary))

Similarly, the statement can be put into an epistemic or doxastic
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context:

(knows/believes
Ben
(loves Bill Mary))

Moreover, contexts can be flexibly combined:

(believes
Bill
(knows

Ben
(loves Bill Mary)))

Contexts have been discussed in the literature as a means to
achieve both generality [4, 5] and locality [6]. Flexible nest-
ings of contexts, as illustrated above, support the generality as-
pect. The locality aspect, which calls for a separation of the
knowledge that is relevant in a given situation from all avail-
able knowledge, is also addressed in our work. The technique
adopted for this is relevance filtering, that is, the goal directed
selection of axioms from a large knowledge base.

The work presented in this article is pioneering the appli-
cation of higher-order automated theorem proving to expres-
sive ontologies like SUMO. Since this entails the automation
of embedded formulas it also entails reasoning with contexts.
Moreover, as part of our work we reveal and subsequently fix a
problem in SUMO that has been unnoticed before: some modal
contexts are in conflict with the assumption of a bivalent2, clas-

2Bivalence expresses that there are exactly two truth values. This aspect of
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sical semantics.
Our findings are not exclusive for SUMO and they anal-

ogously apply to other expressive knowledge representation
frameworks, in particular to McCarthy’s pioneering work [5]
and its descendants.

The structure of the article is as follows. Section 2 intro-
duces SUMO and presents some background information on
higher-order logic and on higher-order theorem proving. Sec-
tion 3 provides an overview on higher-order aspects in SUMO
using small examples. Moreover, the mentioned conflict be-
tween SUMO’s modeling of modal contexts and SUMO’s im-
plicit assumption of a bivalent, classical semantics is discussed.
In Section 4 a mapping from SUMO’s SUO-KIF representation
language [7] to the TPTP THF0 language [8, 9] is presented.
TPTP THF0 is a practical syntax format for classical higher-
order logic that enables the application of various off-the-shelf
higher-order theorem provers. We have exploited this mapping
in some experiments with our running examples. These exper-
iments, which are reported in Section 5, provide first evidence
that higher-order automated reasoning in SUMO is useful and
feasible in practice. In particular the prover LEO-II [10], which
now also supports relevance filtering, appears suited for the
task. In Section 6 we present a solution for SUMO’s conflict
with Boolean extensionality, which we revealed in Section 3.
The solution is to translate SUMO into quantified multimodal
logic which is in turn modeled and mechanized as a fragment
of THF0.

2. Preliminaries

2.1. The Suggested Upper Merged Ontology SUMO

SUMO [2] is an open source3, formal ontology. In addi-
tion to the expressive logic it was authored in, it has also been
translated into the OWL semantic web language. It has un-
dergone ten years of development, review by a community of
hundreds of people, and application in expert reasoning, lin-
guistics and performance testing for theorem provers. SUMO
has been subjected to partial formal verification with automated
theorem provers. This consisted of asking a first-order theorem
prover to prove the negation of each axiom in the knowledge
base. While necessarily incomplete, this did focus the attention
of the prover with more success than simply asking it to prove
”false”. With repeated testing on incrementally more generous
time allotments, this method caught a number of non-obvious
contradictions. It has been one method of many partial methods
to ensure quality and consistency.

SUMO covers areas of knowledge such as temporal and spa-
tial representation, units and measures, processes, events, ac-
tions, and obligations. The upper ontology contains about 4000
axioms. SUMO has been extended with a mid-level ontol-
ogy and with a number of domain specific ontologies, which
are also public. Together they number some 20,000 terms

classical logics is also addressed by the notion of Boolean extensionality, cf.
Section 3.3. In the remainder of this article we use both notions synonomously.

3www.ontologyportal.org

and 70,000 axioms. Domain specific ontologies extend and
reuse SUMO, for example, in the areas of finance and in-
vestment, country almanac information, terrain modeling, dis-
tributed computing, and biological viruses. SUMO has also
been mapped by hand [11] to the entire WordNet lexicon of
approximately 100,000 noun, verb, adjective and adverb word
senses, which not only acts as a check on coverage and com-
pleteness, but also provides a basis for application to natural
language understanding tasks. Moreover, SUMO has recently
been extended by large factbases of millions of statements, in-
cluding YAGO [12].

SUMO has natural language generation templates and a mul-
tilingual lexicon that allows statements in SUMO to be auto-
matically paraphrased in multiple natural languages.

The formal language of SUMO is SUO-KIF, a simplified ver-
sion of the original KIF [13], with extensions for higher-order
logic. Since SUO-KIF syntax is rather self-explaining we avoid
a formal introduction here and provide some explanations on
the fly. For further details we refer to [7].

Sigma [14] is a browsing and inference system that is both
a stand-alone system for ontology development and an embed-
dable component for reasoning. We have developed a set of
optimizations that improve the performance of reasoning on
SUMO, typically by “trading space for time” — pre-computing
certain inferences and storing them in the knowledge base [14].
In many cases this results in speedups of several orders of
magnitude. While Sigma originally included only the Vampire
prover [15] for performing logical inference on SUMO, it now
embeds the TPTPWorld environment [16], giving it access to
some 40 different systems, including the world’s most power-
ful automated theorem provers and model generators. Sigma
integrates the SInE reasoner [17], which was the winner of
the SUMO division of the CASC international theorem prov-
ing competition [18]. Use of the SInE axiom selection sys-
tem has been shown to provide orders of magnitude improve-
ments in theorem proving performance compared to using top-
performing theorem prover, such as E [19] or Vampire, alone.
By selecting its best guess at axioms relevant to a particular
query, it can dramatically reduce the search space for solving
queries on large knowledge bases, such as SUMO, where only
a small number of axioms are likely to be relevant to any given
query. Sigma handles making statements and posing queries to
the different reasoners, optimizing the knowledge sent to them
to support efficient inference, and handling their output, for-
matting answers and proofs in a standard and attractive format.
Sigma includes a Java API and XML messaging interface.

2.2. Higher-Order Logic and Higher-Order Theorem Proving

There are many quite different frameworks that fall under
the general label of “higher-order logic”. The notion reaches
back to Frege’s original predicate calculus [20]. Inconsisten-
cies in Frege’s system, caused by the circularity of construc-
tions such as “the set of all sets that do not contain themselves”,
made it clear that the expressivity of the language had to be re-
stricted in some way. One line of development, which became
the traditional route for mathematical logic, and which is not
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addressed further here, is the development of axiomatic first-
order set theories, e.g. Zermelo-Fraenkel set theory. Russell
suggested using type hierarchies, and worked out ramified type
theory. Church (inspired by work of Carnap) later introduced
simple type theory [21], a higher-order framework built on his
simply typed λ-calculus, employing types to reduce expressiv-
ity and to remedy paradoxes and inconsistencies. Simple type
theory is often also called classical higher-order logic (HOL).

Via the Curry-Howard isomorphism, typed λ-calculi can also
be exploited to encode proofs as types. The simply typed λ-
calculus, for example, is sufficient for encoding propositional
logic. More expressive logics can be encoded using depen-
dent types and polymorphism [22, 23, 24]. In combination with
Martin Löf’s intuitionistic theory of types [25], originally de-
veloped for formalizing constructive mathematics, this research
led the foundations of modern type theory.

During the last decades various proof assistants have been
built for both classical higher-order logic and type theory.
Prominent interactive provers for classical higher logic include
HOL [26], HOL Light [27], PVS [28], Isabelle/HOL [29], and
OMEGA [30]. Prominent interactive type theory provers in-
clude the pioneering Automath system [31], Nuprl [32], Lego
[33], Matita [34], and Coq [35]. The latter three are based on
the calculus of constructions [36]. Further type theory systems
are the logical frameworks Elf [37] and Twelf [38].

Automation of HOL has been pioneered by the work of
Andrews on resolution in type theory [39], by Huet’s pre-
unification algorithm [40] and his constrained resolution cal-
culus [41], and by Jensen and Pietroswski’s [42] work. More
recently extensionality and equality reasoning in HOL has been
studied [43, 44, 45, 46]. The TPS system [47, 48], which is
based on a higher-order mating calculus, is a pioneering ATP
system for HOL.

The automation of HOL currently experiences a renaissance
that has been fostered by the recent extension of the success-
ful TPTP infrastructure for first-order logic [49] to higher-order
logic, called TPTP THF [9, 50]. THF0, which is a concrete
syntax for HOL, is the starting point for the development of
more expressive languages in the THF family. Meanwhile sev-
eral higher-order provers and model finders accept the THF0
language as input. These systems are available online via the
SystemOnTPTP tool [51], where they can be easily employed
for experiments without need for local installations. As a result
of our work all of these systems are now applicable to SUMO.
We briefly describe these THF0 reasoners in more detail (their
descriptions are adapted from [9]):

LEO-II. LEO-II [10], the successor of LEO [52], is an auto-
mated theorem prover for HOL which is based on extensional
higher-order resolution [43]. More precisely, LEO-II employs
a refinement of extensional higher-order RUE resolution [44].
LEO-II is designed to cooperate with specialist systems for
fragments of HOL; this was motivated by findings in previous
work [53]. By default, LEO-II cooperates with the first-order
ATP systems E [54]. LEO-II is often too weak to find a refu-
tation amongst the steadily growing set of clauses on its own.
However, some of the clauses in LEO-II’s search space attain

a special status: they are first-order clauses modulo the appli-
cation of an appropriate transformation function. The default
transformation is Hurd’s fully typed translation [55]. Therefore,
LEO-II launches a cooperating first-order ATP system every n
iterations of its (standard) resolution proof search loop (e.g., n =
10). If the first-order ATP system finds a refutation, it commu-
nicates its success to LEO-II, which causes LEO-II to terminate
and to report overall success. Communication between LEO-II
and the cooperating first-order ATP system uses the TPTP lan-
guage and standards.

TPS. TPS is a pioneering higher-order theorem proving sys-
tem [47, 48]. It can be used to prove theorems of HOL auto-
matically, interactively, or semi-automatically. When searching
for a proof automatically, TPS first searches for an expansion
proof [56] or an extensional expansion proof [46] of the the-
orem. Part of this process involves searching for acceptable
matings [57]. Using higher-order unification, a pair of occur-
rences of subformulas (which are usually literals) is mated ap-
propriately on each vertical path through an expanded form of
the theorem to be proved. The behavior of TPS is controlled
by hundreds of flags. A set of flags, with values for them, is
called a mode. Forty-nine modes have been found that collec-
tively cover the automation power of TPS. As the modes have
quite different capabilities, and it is expected that any proofs
found by any mode will be found quickly, strategy scheduling
the modes is a simple way of obtaining greater coverage. A
Perl script has been used to do this, running selected modes for
a specified amount of time.

Satallax. Satallax [58] is a higher-order automated theorem
prover with additional model finding capabilities. The system
is based on a complete ground tableau calculus for HOL with
a choice operator [59]. An initial tableau branch is formed
from the axioms of the problem and negation of the conjec-
ture (if any is given). From this point on, Satallax tries to de-
termine unsatisfiability or satisfiability of this branch. Satallax
progressively generates higher-order formulas and correspond-
ing propositional clauses. These formulas and propositional
clauses correspond to instances of the tableau rules. Satallax
uses the SAT solver MiniSat as an engine to test the current set
of propositional clauses for unsatisfiability. If the clauses are
unsatisfiable, then the original branch is unsatisfiable. If there
are no quantifiers at function types, the generation of higher-
order formulas and corresponding clauses may terminate. In
such a case, if MiniSat reports the final set of clauses as satisfi-
able, then the original set of higher-order formulas is satisfiable
(by a standard model in which all types are interpreted as finite
sets).

Isabelle. The higher-order proof assistant Isabelle/HOL [29] is
normally used interactively. In this mode it is possible to apply
various automated tactics that attempt to solve the current goal
without further user interaction. Examples of these tactics are
blast, auto, and metis. It is also possible to run Isabelle from
the command line, passing in a theory file containing a lemma
to prove. Finally, Isabelle theory files can include ML code to
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be executed when the file is processed. While it was probably
never intended to use Isabelle as a fully automatic system, these
three features have been combined to implement a fully auto-
matic Isabelle/HOL. The TPTP2X Isabelle format module out-
puts a THF problem in Isabelle/HOL syntax, augmented with
ML code that runs tactics in sequence, each with a CPU time
limit until one succeeds or all fail.

Refute and Nitpick. The ability of Isabelle to find models or
countermodels using the refute [60] and nitpick [61] commands
has also been integrated into automatic systems. This provides
the capability to find models for THF0 formulas, which confirm
the satisfiability of axiom sets, or the countersatisfiability of
non-theorems. This has been particularly useful for exposing
errors in some THF0 problem encodings, and revealing bugs in
the THF0 theorem provers (and conversely, the theorem provers
have been useful in debugging Refute and Nitpick).

3. Higher-Order Aspects in SUMO – Examples

Our goal has been to enable and study applications of higher-
order automated theorem proving for reasoning in expressive
ontologies, exemplary in SUMO. In this section we present and
discuss some motivating examples.

3.1. Embedded Formulas and Context

Embedded formulas are one prominent source of higher-
order aspects in SUMO. This is illustrated by the following
example, which has been adapted from [62]. (Premises are
prefixed with P and the query is prefixed with Q. In SUMO
variables always start with a ’?’. Free variables in queries are
implicitly existentially quantified and those in premises are im-
plicitly universally quantified.)

Example 1 (During 2009 Mary liked Bill and Sue liked Bill.
Who liked Bill in 2009?).

(holdsDuring (P1.1)
(YearFn 2009)
(and

(likes Mary Bill)
(likes Sue Bill)))

——
(holdsDuring (Q1)

(YearFn 2009)
(likes ?X Bill))

The challenge is to reason about the embedded formulas
(and (likes Mary Bill) (likes Sue Bill)) and (likes ?X Bill) within
the temporal context (holdsDuring (YearFn 2009) . . . ).

In our example, the embedded formula in the query does not
match the embedded formula in the premise, however, it is in-
ferable from it. The first-order quoting technique for reason-
ing with such embedded formulas presented by Pease and Sut-
cliffe [62], which encodes embedded formulas as strings, fails
for this query. There are possible further “tricks” though which

could eventually be applied. For example, we could split P1.1
in a pre-processing step into

(holdsDuring (YearFn 2009) (likes Mary Bill))

and

(holdsDuring (YearFn 2009) (likes Sue Bill))

However, such simple means quickly reach their limits when
considering more involved embedded reasoning problems. The
following modifications of Example 1 illustrate the challenge.

Example 2 (Example 1 modified; ’and’ reformulated).

(holdsDuring (P2.1)
(YearFn2009)
(not

(or
(not (likes Mary Bill))
(not (likes Sue Bill)))))

——
(holdsDuring (Q2)

(YearFn 2009)
(likes ?X Bill))

Example 3 (At all times Mary likes Bill. During 2009 Sue liked
whomever Mary liked. Is there a year in which Sue has liked
somebody?).

(holdsDuring (P3.1)
?Y
(likes Mary Bill))

(holdsDuring (P3.2)
(YearFn 2009)
(forall (?X)

(=>
(likes Mary ?X)
(likes Sue ?X))))

——
(holdsDuring (Q3)

(YearFn ?Y)
(likes Sue ?X))

The embedded quantified formula in Example 3 well illus-
trates that the reasoning tasks may quickly become non-trivial
for approaches based on translations to first-order logic. This
example can be further modified as follows. Here we use a uni-
versal propositional variable ?P in order to encode that what
generally holds also holds in all holdsDuring-contexts.

Example 4 (What holds that holds at all times. Mary likes Bill.
During 2009 Sue liked whomever Mary liked. Is there a year in
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which Sue has liked somebody?).

(=> (P4.1)
?P
(holdsDuring ?Y ?P))

(likes Mary Bill) (P4.2)
(holdsDuring (P4.3)

(YearFn 2009)
(forall (?X)

(=>
(likes Mary ?X)
(likes Sue ?X))))

——
(holdsDuring (Q4)

(YearFn ?Y)
(likes Sue ?X))

We may instead of P4.1 express that true things hold at all
times in an alternative way, cf. P5.1 below.

Example 5 (Example 4 modified).

(holdsDuring ?Y True) (P5.1)
(likes Mary Bill) (P5.2)
(holdsDuring (P5.3)

(YearFn 2009)
(forall (?X)

(=>
(likes Mary ?X)
(likes Sue ?X))))

——
(holdsDuring (Q5)

(YearFn ?Y)
(likes Sue ?X))

Some key steps of the informal argument for the latter
query are: Since True is always valid and since we assume
(likes Mary Bill) we know that these two formulas are equiv-
alent. Hence, they are equal. We can thus replace True in
(holdsDuring ?Y True) by (likes Mary Bill). Now the query
easily follows.

Note that instead of P5.1 we may equally well use
(holdsDuring ?Y (equal Chris Chris)) or any other embedded
tautology.

3.2. Set Abstraction

Another higher-order construct used in SUMO is the set (or
class) constructor KappaFn. It takes two arguments, a variable
and a formula, and returns the set (or class) of things that satisfy
the formula. We illustrate the use of KappaFn in Example 6.

Example 6 (The number of people John is grandparent of is
less than or equal to three. How many grandchildren does John

at most have?).

(<=> (P6.1)
(grandchild ?X ?Y)
(exists (?Z)

(and
(parent ?Z ?X)
(parent ?Y ?Z))))

(<=> (P6.2)
(grandparent ?X ?Y)
(exists (?Z)

(and
(parent ?X ?Z)
(parent ?Z ?Y))))

(lessThanOrEqualTo (P6.3)
(CardinalityFn

(KappaFn ?X
(grandparent John ?X)))

3)
——
(lessThanOrEqualTo (Q6)

(CardinalityFn
(KappaFn ?X

(grandchild ?X John)))
?Y)

This query can easily be proved valid independent
of the specific axiomatizations of CardinalityFn and
lessThanOrEqualTo, since the two embedded set abstrac-
tions can be shown equal with the help of axioms P6.1 and
P6.2.

3.3. Extensionality

In the examples discussed so far we have (silently) assumed
that the semantics of our logic is classical and that the Boolean
and functional extensionality principles are valid. While func-
tional extensionality has actually been discussed as an option
for the semantics of KIF [63], the validity of Boolean exten-
sionality has never been questioned though in the literature for
KIF and SUO-KIF.

We briefly illustrate the case of Boolean extensionality. For a
detailed discussion of functional and Boolean extensionality in
classical higher-order logic we refer to Benzmüller, Brown and
Kohlhase [45].

Boolean extensionality expresses that two formulas P and Q
are equal if and only if they are equivalent, in SUO-KIF syntax:

(<=>
(<=> ?P ?Q)
(equal ?P ?Q))

The left to right direction says that there are not more than
two truth values, respectively that whenever two formulas A
and B can be shown equivalent then their denotations must
be the same, namely either true or false. Logics with exactly
two truth values are also called bivalent logics. Once we have
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established equivalence between formulas A and B in a biva-
lent logic, then, in any formula C in this logic, we may sub-
stitute occurrences of A by B (and vice versa). The impor-
tant aspect is that this principle not only applies to occurrences
of A or B at formula level but also to occurrences at term
level. For example, (and (likes Mary Bill) (likes Sue Bill)) and
(and (likes Sue Bill) (likes Mary Bill)) are obviously equivalent,
and hence, by Boolean extensionality, they have identical de-
notations. Thus, they can always be substituted by each other,
also in the term level positions of the following example.

Example 7 (During 2009 Mary liked Bill and Sue liked Bill. Is
it the case that in 2009 Sue liked Bill and Mary liked Bill?).

(holdsDuring (P7.1)
(YearFn 2009)
(and

(likes Mary Bill)
(likes Sue Bill)))

——
(holdsDuring (Q7)

(YearFn 2009)
(and

(likes Sue Bill)
(likes Mary Bill)))

If Boolean extensionality is not postulated then this sub-
stitution principle is blocked. The reason is that we
may well consider more than two truth values, for exam-
ple, true1 and true2 and false1 and false2. In such a
situation we could, for example, map the denotation of
(and (likes Mary Bill) (likes Sue Bill)) to true1 and the deno-
tation of (and (likes Sue Bill) (likes Mary Bill)) to true2. We
could still consider both formulas as equivalent, since both de-
note a representative of truth. But obviously the formulas no
longer have identical denotations. Hence, they can no longer be
substituted one by another in term level positions.

The examples so far have been chosen to raise the impression
that Boolean extensionality is a natural and useful requirement
for SUO-KIF and SUMO. However, this is not the case in gen-
eral as we will discuss next.

3.4. Boolean Extensionality is in Conflict with Modal Contexts

Boolean extensionality seems fine for the temporal contexts
of our previous examples. However, it leads to counterintuitive
inferences when applied in other contexts. We illustrate this for
epistemic and doxastic contexts. When Boolean extensionality
is assumed for either of these contexts, inferences are enabled
that do obviously contradict our intuition. We give an example
that is very similar to Example 5. The main difference is that
the temporal context has been replaced by an epistemic context.

Example 8 (Adapted Example 5 within epistemic context: Ev-
erybody knows that Chris is equal to Chris. Mary likes Bill.
Chris knows that Sue likes whomever Mary likes. Does Chris

know that Sue likes Bill?).

(knows (P8.1)
?Y
(equal Chris Chris))

(likes Mary Bill) (P8.2)
(knows (P8.3)

Chris
(forall (?X)

(=>
(likes Mary ?X)
(likes Sue ?X)))

——
(knows (Q8)

Chris
(likes Sue Bill))

Assuming Boolean extensionality the query is valid,
even though we have not explicitly stated the fact
(knows Chris (likes Mary Bill)). Intuitively, however, as-
suming that Chris actually knows that Mary likes Bill seems
mandatory for enabling the proof of the query. Hence, we here
(re-)discover an issue that some logicians possibly claim as
widely known: modalities have to be treated with great care
in classical, bivalent logics. In general, there is a relation to
the question whether we are willing to accept the following
principles as theorems (where <tautology> stands for an
arbitrary tautology):

(=> (A)
(and

?PROP
(holdsDuring ?TIME <tautology>))

(holdsDuring ?TIME ?PROP))
(=> (B,C)

(and
?PROP
(knows/believes ?AGENT <tautology>))

(knows/believes ?AGENT ?PROP))

While principle A appears acceptable4 (even in the stronger
form (=> ?PROP (holdsDuring ?TIME ?PROP)), the principles
B and C are clearly counterintuitive.

In Section 6 we therefore adapt the modeling of affected
modalities in SUMO in order to appropriately address this con-
flict with Boolean extensionality.

3.5. Relation and Function Variables

Relation and function variables are another prominent
higher-order challenge in SUMO. For example, the follow-
ing query asks about a relation ?R that holds between Bob
and Bill and between Sue and Bob. A possible answer in
the given situation is the sibling relation, that is, the relation

4However, if our interest is in an appropriate modeling of temporal granu-
larity, then we might even want to reject principle A.
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(or (sister ?X ?Y) (brother ?X ?Y)).5 The automated synthe-
sis of complex relations (and functions) from more basic, al-
ready given ones is generally possible in higher-order order au-
tomated theorem provers, though there are still many practical
limitations.

Example 9 (Mary, Sue, Bill and Bob are mutually distinct.
Mary is neither a sister of Sue nor of Bill, and Bob is not a
brother of Mary. Sue is a sister of Bill and of Bob, and Bob is a
brother of Bill. Is there a relation that holds both between Bob
and Bill and between Sue and Bob).

(and (P9.1)
(not (equal Mary Sue))
(not (equal Mary Bill))
(not (equal Mary Bob)))
(not (equal Sue Bill))
(not (equal Sue Bob))
(not (equal Bob Bill)))

(and (P9.2)
(not (sister Mary Sue))
(not (sister Mary Bill))
(not (brother Bob Mary)))

(and (P9.3)
(sister Sue Bill)
(sister Sue Bob)
(brother Bob Bill))

——
(and (Q9)

(?R Bob Bill)
(?R Sue Bob))

A first-order approach for reasoning with predicate and
function variables has been proposed and implemented for
SUMO [62, 64]. This approach is based on some practically
motivated restrictions in the search for instantiations of pred-
icate and function variables. More concretely, the search for
possible instantiations is restricted to already known concepts
in SUMO. The synthesis of the sibling relation above is an ex-
ample which is already beyond the capabilities of this first-order
approach.

4. Mapping SUMO to Classical Higher-Order Logic

A main objective of our work has been to support automa-
tion of queries in SUMO as discussed above. In order to enable
the application of off-the-shelf higher-order automated theorem
provers and model finders for the task we have realized a trans-
lation from SUMO’s SUO-KIF language into the TPTP THF0
language, which is a syntax for HOL.

5There are other possible answers for ?R, including inequality and the uni-
versal relation. Enumerating them all and separating trivial, uninteresting an-
swers from interesting ones is a challenge for future work.

4.1. THF0 — A Syntax for HOL
The language HOL is defined by (where α, β, o ∈ T ; the set

of simple types T is freely generated over a set of base types,
usually consisting of the types ι (for individuals) and o (for truth
values), and the function type constructor �):

s, t ::= pα | Xα | (λXα sβ)α�β | (sα�β tα)β | (¬o�o so)o |

(so ∨o�o�o to)o | (sα =α�α�o tα)o | (Π(α�o)�o sα�o)o

pα denotes typed constants and Xα typed variables (distinct
from pα). Complex typed terms are constructed via abstrac-
tion and application. Our logical connectives of choice are
¬o�o, ∨o�o�o, =α�α�o and Π(α�o)�o (for each type α).6 From
these connectives, other logical connectives can be defined in
the usual way (e.g., ∧ and ⇒). We often use binder notation
∀Xα s for Π(α�o)�o(λXα so). We use the -notation to avoid
brackets; the convention is as follows: stands for a pair of
brackets whose right counterpart reaches as far to the right as is
consistent with the logical structure and the type structure of an
expression.

We assume familiarity with α-conversion, β- and η-
reduction, and the existence of β- and βη-normal forms (see
e.g. [66]). Moreover, we obey the usual definitions of free vari-
able occurrences and substitutions.

The semantics of HOL is well understood and thoroughly
documented in the literature [67, 68, 45, 69]. The semantics of
choice for our work is Henkin semantics.

The encoding of HOL in THF0 syntax is straightfor-
ward. For example, $i and $o represent the stan-
dard base types ι and o, and $i>$o encodes a func-
tion (predicate) type. Function or predicate application as
e.g. in the HOL formula (loves ben mary) is encoded
in THF0 as ((loves @ Ben) @ Mary) or simply as
(loves @ Ben @ Mary), that is, in THF0 we explic-
itly represent function application with the operator @. Uni-
versal and existential quantification and λ-abstraction as in
∀X ∃Y (loves X Y) and λX (loves ben X) are represented
in THF0 as ![X:$i]: ?[Y:$i]: (loves @ X @
Y) and ˆ[X:$i]: (loves @ Ben @ X); note that we
have here explicitly assigned type $i to variables X and Y. The
logical connectives ¬,∨,∧,⇒ and⇔ are written as ˜, |, &, =>,
and <=>.

THF0 encodings obey the convention that the types of con-
stant symbols and variable symbols have to be declared before
their first use. Type declarations for constant symbols are typi-
cally provided in a type signature part at the beginning of each
THF0 file while types of variable symbols are provided in their
binding positions.

For further details on THF0 we refer to Sutcliffe and
Benzmüller [9].

4.2. Translating SUMO to THF0
In our translation of SUMO to THF0 we recursively analyze

all SUMO terms and subterms in order to assign consistent type

6This choice is not minimal (from =α�α�o all other logical constants can
already be defined [65]). It is useful though in the context of resolution based
theorem proving.
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information to them. In particular, we extract type information
for all constant and variable symbols as required in THF0 files.
For example, when applying our transformation procedure to
P6.3 we generate the THF0 information given below.

%%% The extracted Signature %%%
thf(type_decl_1,type,(

grandparent_IiioI: $i > $i > $o )).

thf(type_decl_2,type,(
lCardinalityFn_IIioIiI: ( $i > $o ) > $i )).

thf(type_decl_3,type,(
lJohn_i: $i )).

thf(type_decl_4,type,(
ltet_IiioI: $i > $i > $o )).

thf(type_decl_5,type,(
n3_i: $i )).

%%% The translated axioms %%%
thf(a1,axiom,(

ltet_IiioI
@ (lCardinalityFn_IIioIiI

@ (ˆ[X:$i]: (grandparent_IiioI
@ lJohn_i
@ X)))

@ n3_i )).

Thereby we employ the following mapping of SUMO
symbols to THF0 symbols: grandparent is mapped to
grandparent IiioI, and CardinalityFn and John to
lCardinalityFn IIioIiI and lJohn i, respectively.
These constant symbols are of types $i > $i > $o, ($i
> $o) > $i and $i. In our mapping we have chosen to rep-
resent type information as suffixes in the mapped names. For
example, suffix IIioIiI in lCardinalityFn IIioIiI
encodes the type ($i > $o) > $i; I is used for bracket-
ing. This is in addition to the type declaration we anyway have
to provide; the reason for doing this will become clear below.
Moreover, THF0 constant symbols have to start with a lower
case symbol which explains the leading l’s.

Some mappings of SUMO symbols are treated in a special
way. For example, the arithmetic relation lessThanOrEqualTo
and the number 3 are mapped to distinguished symbols
ltet IiioI and n3 i; the motivation thereby is to provide
some special support for arithmetic reasoning in THF0 provers
in the future.

The output of our SUMO to THF0 transformation is not in-
tended for user consumption. It serves the main purpose of
communicating SUMO reasoning problems to higher-order au-
tomated theorem provers and model finders.

So far, we use THF0 type $i as only base type other
than $o. Hence, SUMO formulas are mapped to type $o
while basic constants such as lJohn i and n3 i are cur-
rently both declared of type $i. Function types, e.g. for
lCardinalityFn IIioIiI, are determined by our trans-
lation algorithm. The introduction of further base types (includ-
ing, for example, a special type for naturals) in combination

with a better exploitation of the richer ’type’ information al-
ready available in SUMO should be straightforward, and future
work should study which improvements are possible in THF0
reasoners when a richer type system is exploited.

Assigning types to SUMO terms is in fact not as straightfor-
ward as this small example suggests. A major problem is that
SUMO supports self-applications as illustrated, for example, by
the SUMO axiom

(instance instance BinaryPredicate)

In order to translate such axioms we currently split af-
fected constants like instance in the THF0 mapping into
separate constants, here we get instance IiioI of
type $i>$i>$o and instance IIiioIioI of type
($i>$i>$o)>$i>$o. This explains why we have cho-
sen to include type information in the mapped symbol names.

%%% The extracted Signature %%%
thf(type_decl_1,type,(

lBinaryPredicate_i: $i )).

thf(type_decl_2,type,(
instance_IIiioIioI:

( $i > $i > $o ) > $i > $o )).

thf(type_decl_2,type,(
instance_IiioI: $i > $i > $o )).

%%% The translated axiom(s) %%%
thf(a1,axiom,(

instance_IIiioIioI
@ instance_IiioI
@ lBinaryPredicate_i )).

Obviously we may thereby lose relevant information. In our
example we now only know for symbol instance IiioI
that it denotes a binary relation. If we want this informa-
tion restored also for instance IIiioIioI we can iter-
ate the process and generate another symbol instance-
IIIiioIioIioI and another axiom

thf(a2,axiom,(
instance_IIIiioIioIioI
@ instance_IIiioIioI
@ lBinaryPredicate_i )).

Future work will study the practical need for such an iterated
generation of axioms more closely. So far we have not come
across practically motivated examples that do require it.

An important intermediate goal has thus been achieved,
namely to provide a first translation of the SUMO up-
per ontology into THF0 that can be parsed and type
checked by all THF0 reasoners in the TPTP. This THF0
translation of the SUMO upper ontology is available
at: http://christoph-benzmueller.de/papers/
SUMO.thf. SUMO documentation axioms are not relevant
for the theorem provers and they have not been translated into
THF0. This is why we obtain only 3577 THF0 axioms out of
the approx. 4000 axioms in the original SUMO upper ontology.
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5. Experiments

We have implemented the SUMO to THF0 translation algo-
rithm as part of the Sigma ontology engineering environment.
This enabled the reuse of already existing infrastructure, for ex-
ample, for manipulating formulas and knowledge bases. Addi-
tionally, we have integrated the LEO-II system with Sigma.

There are now three modes in which LEO-II can be applied
to queries in Sigma. The local mode only translates the user
assertions and the query, the global mode translates the entire
SUMO upper level ontology (resulting in the mentioned 3577
THF0 axioms) and then adds the user assertions and the query,
and the SInE mode employs Hoder’s SInE relevance filtering
system [17] to extract a (hopefully) relevant subset of the ax-
ioms from the SUMO knowledge base, which is then translated
into THF0.

We have conducted an initial experiment with the LEO-II
prover (version v1.2.8). LEO-II provides an own relevance fil-
tering mechanism, and in our experiment this relevance filtering
was always enabled.7 In the following we call this flag setting
of LEO-II the SUMO setting.

LEO-II’s relevance filtering mechanism is in fact still very
basic. It is based on a symbol distance rating between the
axioms and the given user query. The algorithm computes
for each axiom Ai in the knowledge base the set Consts(Ai)
of constant symbols in Ai. A respective computation of con-
tained constant symbols is also done for the formula set Q1,
which initially only contains the given user query; this set
is called Consts(Q1). Next, we compute the set Filtered1 =

{Ai|Consts(Ai) ∩ Consts(Q1) , ∅}. The process can be iter-
ated as follows. For n > 1 take Filteredn = Filteredn−1 ∪

{Ai|Consts(Ai) ∩ Consts(Qn−1) , ∅}, where Qk is defined as
Qk−1∪Filteredk−1 for all k > 1. In the SUMO setting of LEO-II
the iteration of this filtering mechanism is currently applied up
to level n = 2.

In our experiment the maximum timeout for LEO-II was set
to 300 seconds. All experiment runs were done on a standard
iMac8,1 with a 2.8 GHz Intel Core 2 Duo processor and 2 GB
of memory.

The results of this experiment are presented in Table 1. We
report LEO-II’s reasoning times in SUMO setting (in seconds)
when solving the example problems as generated by Sigma in
the respective modes. For practical use the SInE mode appears
the most appropriate approach. However, even LEO-II alone
is already capable of dealing with large knowledge bases as
the results in the global mode confirm. This is due to LEO-
II’s own relevance filtering capabilities. In Examples 6 and 8
LEO-II finds a different proof in SInE mode than in local mode,
which explains LEO-II’s good performance for the SInE modes
of these examples.

Several related example problems, including the ones from
Table 1 and/or adaptations of them, have been added to the
TPTP library. They are available under TPTP identifiers
CSR119–CSR153.

7The exact command options for LEO-II employed in our experiments were:
leo <problem-file> -rf 2 -t 300.

We have conducted a second series of experiments in
which the higher-order reasoning systems TPS (version
3.110228S1a), Satallax (version 2.3), and Isabelle (version
2011) were applied in addition to LEO-II. These systems are
all available online via the SystemOnTPTP tool [51]. Exploit-
ing the TPTP World infrastructure [70], all experiment runs re-
ported in Table 2 were done remotely at the University of Mi-
ami on 2.80GHz computers with 1GB memory and running the
Linux operating system. The timeout in each run was set to 300
seconds. In this experiment LEO-II was employed in its stan-
dard setting as opposed to the SUMO setting. In the standard
setting LEO-II first tackles a problem with relevance filtering
disabled. Subsequently LEO-II then tries different reasoning
modes some of which also have relevance filtering enabled.

Some interesting observations are:

• When LEO-II is applied in its standard setting, in which
relevance filtering only gets enabled after some time, then
then the reasoning times in the global mode of the exper-
iments get significantly worse. That shows that relevance
filtering is essential for LEO-II to solve these global mode
problems on its own. However, in the SInE mode of the ex-
periments the problem files were still small enough so that
additional relevance filtering in LEO-II was not needed to
obtain fast results.

• None of the other THF0 provers can solve the problems
in global mode. Relevance filtering is obviously a missing
feature in (the standard settings of) these systems.

• In SInE mode, where LEO-II still solves all of the prob-
lems effectively, only Satallax and Isabelle show some
small successes.

• In local mode all our problems can be effectively solved
not only by LEO-II but also by Satallax and TPS. Isabelle,
however, performs weak and it surprisingly even fails on
Problem 6 which it solves in the harder SInE mode.

Form these observations we conclude that LEO-II is cur-
rently the most promising reasoner for SUMO. If this picture
should change in the future, then our flexible infrastructure sup-
ports an easy replacement of the prioritized THF0 reasoner in
Sigma.

An overall conclusion from our experiments is that higher-
order automated reasoners apparently can advance the automa-
tion of higher-order aspects in SUMO, provided they are ap-
plied with relevance filtering enabled (if available) or in com-
bination with an additional relevance filtering systems such as
SInE as preprocessor. We conjecture that this result is trans-
ferable to other expressive ontologies. However, much further
work is needed to confirm this conjecture.

Note that first-order translation tricks such as employed, for
example, by Pease and Sutcliffe [62] fail for the examples stud-
ied here, except probably for the trivial Examples 1 and 7. The
added value of higher-order automated reasoning in SUMO has
also been confirmed by the detection (and subsequent fixing)
of some problematic axioms in the course of our experiments.
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Mode Ex.1 Ex.2 Ex.3 Ex.4 Ex.5 Ex.6 Ex.7 Ex.8 Ex.9
local 0.112 0.109 0.116 0.082 0.079 0.277 0.143 0.080 0.063
SInE 0.309 0.294 0.396 0.213 0.363 0.124 0.394 0.071 0.111

global 3.818 3.791 3.320 3.246 3.189 2.590 4.522 2.820 2.532

Table 1: Performance of the LEO-II prover (in SUMO setting) for the examples problems in this article; three different problem modes were investigated.

Mode System Ex.1 Ex.2 Ex.3 Ex.4 Ex.5 Ex.6 Ex.7 Ex.8 Ex.9
local LEO-II 0.21 0.21 0.18 0.13 0.12 0.44 0.31 0.15 0.09

TPS 4.46 4.47 8.64 8.65 6.65 8.69 0.39 0.41 21.45
Satallax 0.01 0.01 1.13 0.21 2.37 14.81 0.01 0.01 0.03
Isabelle - - - - - - 2.60 - 18.65

SInE LEO-II 0.61 0.62 0.61 0.37 0.57 0.27 0.80 2.46 0.21
TPS - - - - - - - - -

Satallax - 0.12 - - - 3.46 0.03 0.62 -
Isabelle - - - - - 48.12 12.03 - -

global LEO-II 46.49 44.55 41.17 46.03 45.51 41.36 47.99 44.09 43.08
TPS - - - - - - - - -

Satallax - - - - - - 6.77 87.42 -
Isabelle - - - - - - - - -

Table 2: Performance of the TPTP THF0 reasoners (in standard setting) for the example problems in this article; three different problem modes were investigated.

These problem-axioms have remained undetected by the incre-
mental tests with first-order provers as reported in Section 2.1.
For example, in the following axiom for ‘pretending’ the last
occurrence of True has been detected as semantically wrong
and was subsequently replaced by False (‘pretending’ is is a
social interaction where a cognitive agent or group of cogni-
tive agents attempts to make another cognitive agent or group
of cognitive agents believe something that is false):

(=>
(instance ?PRETEND Pretending)
(exists (?PERSON ?PROP)

(and
(hasPurpose

?PRETEND
(believes ?PERSON ?PROP))

(truth ?PROP True)))

Most importantly, not only are various higher-order theo-
rem provers now in principle applicable to SUMO but also the
higher-order model finders Refute and Nitpick. For example,
with their help it has been easy to detect typos in earlier model-
ings of our running examples.

6. A Proper Treatment of Modal Contexts in SUMO

We have illustrated in Section 3.4 that assuming Boolean ex-
tensionality for SUMO is in conflict with SUMO’s modeling
of epistemic and doxastic contexts. A solution to this prob-
lem is to model SUMO’s modal operators as proper modali-
ties in quantified multimodal logic (QML). That is, instead
of translating SUMO directly into classical higher-order logic
we now translate SUMO into QML. This enables the map-
ping of epistemic contexts like (knows Peter <whatever>) or

doxastic contexts like (believes Peter <whatever>) to proper
modalities in modal logic like 2KnowledgePeter <whatever> and
2BelievesPeter <whatever>. The need for quantifiers and for mul-
tiple modalities is obvious from our examples so far. We may
add respective axioms in order to appropriately characterize the
modalities we obtain and to specify their interaction. For ex-
ample, to appropriately characterize 2KnowledgePeter as an epis-
temic modality we may use the S5 axioms and to characterize
2BelievesPeter as an doxastic modality we may use the S45 ax-
ioms. Moreover, an inclusion axiom between Peter’s knowl-
edge and Peter’s beliefs can be added.

This approach connects SUMO’s modeling of modal con-
texts with solid and well understood modelings of modalities
as studied in the modal logics world. While this is theoret-
ically interesting it raises concerns regarding its practicality.
The challenge clearly is to provide powerful practical reason-
ing systems for QML. In particular, these systems would need
to support varying combinations of modal operators. Unfor-
tunately, however, there are currently only very few special-
ist reasoners available for quantified monomodal logics. The
available reasoners include MleanTAP and MleanSeP [71],
GQML [72], and f2p+MSPASS (which is an extension of the
MSPASS prover [73]). To the best of our knowledge, none of
these systems currently supports flexible combinations of dif-
ferent modalities as required for SUMO. Moreover, these sys-
tems are generally restricted to first-order quantification only,
so that they cannot (easily) address other higher-order aspects
as mentioned in Section 3.

For this reason we have developed an alternative automation
approach for QML. This approach exploits our recent seman-
tic embedding of QML in HOL [74]. This embedding demon-
strates that QML is actually just a natural fragment of HOL
respectively THF0.

Hence, instead of mapping SUMO directly to THF0 as in
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Section 4, we now take a detour via QML. In the end we nev-
ertheless obtain a proper THF0 encoding, which enables the
application of off-the-shelf higher-order reasoners such as our
LEO-II prover. An advantage of this approach is its flexibility,
since arbitrary numbers and combinations of (not only) epis-
temic and doxastic modalities are supported. Moreover, the ap-
proach still scales to other higher-order aspects in SUMO.

A recent case study by Otten and Raths on automating quan-
tified monomodal logics [71] actually confirms that higher-
order automated theorem provers such as Satallax and LEO-II
can in fact compete with the above mentioned specialist reason-
ers for reasoning in quantified monomodal logics when using
our semantic embeddings based approach. Moreover, a num-
ber of alternative examples requiring combinations of modali-
ties have been studied and automated [75]. These examples to-
gether with their performance results are available in the TPTP
THF library (cf. [75] for further details) and they provide first
evidence for the practicality of our proposed solution.

6.1. Embedding QML in THF0

Quantified modal logics have been studied by Fitting [76]
(further related work is available by Blackburn and Marx [77]
and Braüner [78]). In contrast to Fitting we are here not in-
terested only in S5 structures but in the more general case of
K from which more constrained structures (such as S5) can
be easily obtained by adding axioms. First-order quantifica-
tion can be constant domain or varying domain. Below we only
consider the constant domain case: every possible world has the
same domain. While Fitting [76] studies quantified monomodal
logic, we are interested in multiple modalities. Hence, we in-
troduce multiple 2r operators for symbols r from an index set
S . The grammar for our quantified multimodal logic QML thus
is

s, t ::= P | k(X1, . . . , Xn) | ¬ s | s ∨ t | ∀X s | ∀P s | 2r s

where P ∈ PV denotes propositional variables, X, Xi ∈ IV de-
note first-order (individual) variables, and k ∈ SYM denotes
predicate symbols of any arity (n ≥ 0). Further connectives,
quantifiers, and modal operators can be defined as usual. We
also obey the usual definitions of free variable occurrences and
substitutions.

Fitting introduces three different notions of Kripke semantics
for QML: QS5π−, QS5π, and QS5π+. In our work [74, 79]
we study related notions QKπ−, QKπ, and QKπ+ for a modal
context K, and we support multiple modalities.

HOL is an expressive logic and it is thus not surprising that
QML can be elegantly modeled and even automated as a frag-
ment of HOL. The idea of the encoding, called QMLHOL,
is simple. Choose type ι to denote the (non-empty) set of
individuals and choose an additional base type µ to denote
the (non-empty) set of possible worlds. As usual, the type
o denotes the set of truth values. Certain formulas of type
µ � o then correspond to multimodal logic expressions.
The multimodal connectives ¬, ∨, and 2, become λ-terms
of types (µ � o) � (µ � o), (µ � o) � (µ � o) � (µ � o), and
(µ � µ � o) � (µ � o) � (µ � o) respectively.

Quantification is handled as in HOL by modeling ∀X p as
Π(λX .p) for a suitably chosen connective Π. Here we are inter-
ested in defining two particular modal Π-connectives: Πι, for
quantification over individual variables, and Πµ�o, for quan-
tification over modal propositional variables that depend on
worlds. They become terms of type (ι � (µ � o)) � (µ � o)
and ((µ � o) � (µ � o)) � (µ � o) respectively.

The QMLHOL modal operators ¬,∨,2,Πι, and Πµ�o are
now simply defined as follows:

¬ (µ�o)�(µ�o) = λφµ�o λWµ ¬φW

∨ (µ�o)�(µ�o)�(µ�o) = λφµ�o λψµ�o λWµ φW ∨ ψW

2 (µ�µ�o)�(µ�o)�(µ�o) = λRµ�µ�o λφµ�o

λWµ ∀Vµ ¬R W V ∨ φV

Πι(ι�(µ�o))�(µ�o) = λφι�(µ�o) λWµ ∀Xι φ X W

Π
µ�o
((µ�o)�(µ�o))�(µ�o) = λφ(µ�o)�(µ�o) λWµ ∀Pµ�o φ P W

Note that this encoding actually only employs the second-
order fragment of HOL enhanced with lambda-abstraction.
However, if we decide to include further Π operators for higher
types (which is straightforward to do [80]) then the second-
order fragment of HOL is not sufficient anymore.

Further modal operators can be introduced as usual, for ex-
ample, > = λWµ >,⊥ = ¬>, ∧ = λφ, ψ ¬ (¬ φ ∨ ¬ψ),
⊃= λφ, ψ ¬ φ ∨ ψ, ⇔= λφ, ψ (φ ⊃ ψ) ∧ (ψ ⊃ φ),
3 = λR, φ ¬ (2R (¬ φ)), Σι = λφ ¬Πι(λX ¬ φ X), Σµ�o =

λφ ¬Πµ�o(λP ¬ φ P).
For defining QMLHOL propositions we fix a set IVHOL of in-

dividual variables of type ι, a set PVHOL of propositional vari-
ables8 of type µ � o, and a set SYMHOL of n-ary (curried) pred-
icate symbols of types ι � . . . � ι︸       ︷︷       ︸

n

� (µ � o). Moreover, we fix

a set SHOL of accessibility relation constants of type µ � µ � o.
QMLHOL propositions are now defined as the smallest set of
HOL-terms for which the following hold:

• if P ∈ PVHOL, then P ∈ QMLHOL

• if X j ∈ IVHOL ( j = 1, . . . , n; n ≥ 0) and k ∈ SYMHOL, then
(k X1 . . . Xn) ∈ QMLHOL

• if φ, ψ ∈ QMLHOL, then ¬ φ ∈ QMLHOL and φ ∨ ψ ∈
QMLHOL

• if r ∈ SHOL and φ ∈ QMLHOL, then 2 r φ ∈ QMLHOL

• if X ∈ IVHOL and φ ∈ QMLHOL, then Πι(λX φ) ∈
QMLHOL

• if P ∈ PVHOL and φ ∈ QMLHOL, then Πµ�o(λP φ) ∈
QMLHOL

We write 2r φ for 2 r φ, ∀Xι φ for Πι(λXι φ), ∀Pµ�o φ for
Πµ�o(λPµ�o φ), ∃Xι φ for ¬Πι(λXι ¬ φ), and ∃Pµ�o φ for
¬Πµ�o(λPµ�o ¬ φ),

If type information is obvious we may avoid displaying it.

8Note that the denotation of propositional variables depends on worlds.

11



Note that the defining equations for our QML modal opera-
tors are themselves formulas in HOL. Hence, we can express
QML formulas in a higher-order prover elegantly in the usual
syntax (and the theorem prover may subsequently expand the
definitions of the contained modal operators). For example,

2r ∃Pµ�o P

is a QMLHOL proposition; it has type µ � o.
Validity of QMLHOL propositions is defined in the obvious

way: a QMLHOL proposition φµ�o is valid if and only if for all
possible worlds wµ we have w ∈ φµ�o, that is, if and only if
φµ�o wµ holds. Hence, the notion of validity is modeled via the
following equation (alternatively we could define vld simply as
Π(µ�o)�o):

vld = λφµ�o ∀Wµ φW

Now we can formulate proof problems in QMLHOL, e.g.,

vld 2r ∃Pµ�o P

By rewriting the definitions we can reduce such proof prob-
lems to corresponding statements containing only the basic con-
nectives ¬, ∨, =, Πι, and Πµ�o of HOL. In contrast to the many
other approaches no external transformation mechanism is re-
quired. For our example formula vld 2r ∃Pµ�o P unfolding
and βη-reduction leads to

∀Wµ ∀Yµ ¬r W Y ∨ (¬∀Xµ�o ¬(X Y))

It is easy to check that this formula is valid in Henkin semantics:
put X = λYµ >.

We have proved soundness and completeness for this embed-
ding [74, 79].

The THF0 encoding of our embedding of quantified multi-
modal logic in HOL is available for inspection and easy reuse
in the TPTP library under identifier LCL013ˆ0.ax.

6.2. Mapping SUMO via QML to THF0

Exploiting the above embedding of quantified multimodal
logic in HOL we can now suitably map SUMO problems via
quantified multimodal logics to THFO. We illustrate the ap-
proach with an example. Local premises such as

(knows
Chris
(forall (?X)

(=>
(likes Mary ?X)
(likes Sue ?X))))

(likes Mary Bill)

and SUMO ontology axioms such as

(=>
(knows ?AGENT ?FORMULA)
(truth ?FORMULA True))

are first lifted to respective QMLHOL terms. For these example
formulas we obtain (note that likes is now of type ι � ι � µ �
o)

(2KnowsChris ∀Xι ((likes Mary X) ⊃ (likes Sue X))) (1)
(likes Mary Bill) (2)
∀Aι�ι�o, Fµ�o ((2A F) ⊃ (truth F >)) (3)

These terms are all of type µ � o, that is, they are applicable to
possible worlds. Subsequently, we have to ground these lifted
terms to type o. To do so, terms related to T-Box like informa-
tion (axioms) in SUMO, such as (3), are interpreted as universal
for all possible worlds:

∀Wµ ((∀Aι�ι�o, Fµ�o (2A F) ⊃ (truth F >)) W)

which is equivalent to

vld (∀Aι�ι�o, Fµ�o (2A F) ⊃ (truth F >))

A-Box like information such as our local premises (1) and (2)
and queries are modeled with respect to a current world cw of
type µ. For example, the query

(knows Chris (likes Sue Bill))

is mapped to

((2KnowsChris (likes Sue Bill)) cw)

Moreover, appropriate axioms are generated and added for
each epistemic and doxastic modal operator. For example, for
the epistemic modality 2KnowsChris the following S5 axioms are
added:

vld (∀φµ�o 2KnowsChris φ ⊃ φ)
vld (∀φµ�o 3KnowsChris φ ⊃ 2KnowsChris 3KnowsChris φ)

The disputed and rejected Example 8 is mapped in our modi-
fied translation approach to the following quantified multimodal
logic encoding.9

Example 10 (Example 8 mapped to QMLHOL).

∀Yµ�µ�o ((2Y >) cw) (P10.1)
((likes Mary Bill) cw) (P10.2)
((2KnowsChris (∀Xι ((likes Mary X) ⊃ (likes Sue X)))) cw)

(P10.3)

vld (∀φµ�o 2KnowsChris φ ⊃ φ) (P10.4)
vld (∀φµ�o 3KnowsChris φ ⊃ 2KnowsChris 3KnowsChris φ)

(P10.5)
——
((2KnowsChris (likes Sue Bill)) cw) (Q10)

9It does not make a difference whether we use tautology > or
(equal Chris Chris) in Premise P10.1
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Exploiting our QMLHOL embedding we can thus obtain a
proper THF0 problem encoding for Example 10 and we can
hence apply higher-order automated reasoners to it.

Example 10 is not valid anymore, which is what we wanted
to achieve. LEO-II fails to prove the query (within a 24 hours
timeout). However, when Premise P10.2 is moved into the con-
text of Chris’ knowledge, then we get the following modified
situation:

Example 11 (Modified Example 10).

∀Yµ�µ�o ((2Y >) cw) (P11.1)
((2KnowsChris (likes Mary Bill)) cw) (P11.2)
((2KnowsChris (∀Xι ((likes Mary X) ⊃ (likes Sue X)))) cw)

(P11.3)

vld (∀φµ�o 2KnowsChris φ ⊃ φ) (P11.4)
vld (∀φµ�o 3KnowsChris φ ⊃ 2KnowsChris 3KnowsChris φ)

(P11.5)
——
((2KnowsChris (likes Sue Bill)) cw) (Q11.6)

In this modified situation the query is valid (also without
P11.4 and P11.5) and it is proved by LEO-II in a fraction of
a second. (A closer look at LEO-II’s proof protocol reveals that
premise P11.1 is not used in the proof, which is what we ex-
pected.)

The extension of our translation to other modal operators in
SUMO besides knows and believes is straightforward. More-
over, there is already some evidence that our automation ap-
proach scales to at least some reasonable number of combina-
tions and nestings of modal operators [75]. Since there is cur-
rently no practical system in the direct or first-order approach
available that supports flexible combinations and nestings of
modalities, a solid comparison with alternative approaches is
not feasible at this stage.

7. Related Work

The study of notions of context has a long history in phi-
losophy, linguistics, and artificial intelligence. In artificial in-
telligence, a main motivation has been to resolve the problem
of generality of computer programs as identified by McCarthy
[4]. Giunchiglia [6] additionally emphasizes locality and the
need for structured representations of knowledge. Different
approaches to formalizing context have been proposed in the
last decades and they have been discussed in overview articles
[81, 82].

McCarthy [5] pioneered the modeling of contexts as first
class objects and he introduced the predicate ist. For ex-
ample, in his approach the query Q8 would be encoded as
ist(context of(“Chris’s Knowledge”),likes(Sue,Bill)). A main
motivation of McCarthy’s approach actually is to avoid modal
logics and, moreover, to support rich and structured context de-
scriptions. His line of research has been followed by a number
of researchers, including, for example, Guha (who has put con-
texts into Cyc), Buvac, and Mason [83, 84]. Also Giunchiglia

and Serafini [85] avoid modal logics and propose the use of
so called multilanguage systems. They show various equiva-
lence results to common modal logics, but they also discuss
several properties of multilanguage systems not supported in
modal logics.

All of the above approaches avoid a higher-order perspective
on context. This is the main difference to the work presented
here. However, we argue that a solid higher-order perspective
on context can be very valuable for various reasons. On the
theory side the twist between formalisms based on modal logic
and formalisms based on first-order logic seems to dissolve,
since both modal logics and first-order logics are just natural
fragments of classical higher-order logics. Most importantly,
encodings based on modal logics and first-order logic can be
elegantly combined in classical higher-order logics. It is this
representational power which we have exploited in our recent
work [75, 79, 74, 86, 87] and which we do also employ here.
Moreover, deeper semantic issues can be clarified when taking
a solid higher-order perspective. On the practical side there are
now several automated higher-order reasoning systems avail-
able in our approach that can be uniformly applied to (intu-
itively sound) formalizations of context.

This article combines and extends previous results [88, 89].
A main extension is that relevance filtering and scalability to
large knowledge bases, which was still mentioned as future
work before, has been included in the studies in this article. Rel-
evance filtering can be seen as our means to address the local-
ity criterion. Here we have provided evidence that well known
relevance filtering techniques can be appropriately adapted to
HOL and be combined with our approach to context reasoning
in SUMO. Regarding practical relevance of our entire approach
this evidence has been regarded as a crucial missing cornerstone
by reviewers of the earlier work.

8. Conclusion

The work presented in this article initially had a very simple
and practical motivation, namely to provide better automated
reasoning support for SUMO problems containing temporal,
epistemic and doxastic contexts. However, our overall findings
are of much wider relevance:

• The Boolean extensionality conflict applies to SUMO op-
erators other than knows and believes. Consider, for ex-
ample, the operator hasPurpose and let us assume that the
following axioms are given:

(hasPurpose
MedicationForBen
(recoversFromIllness Ben))

(recoversFromIllness Ben)
(recoversFromIllness Bill)

Boolean extensionality allows us to infer the intuitively
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unsound statement

(hasPurpose
MedicationForBen
(recoversFromIllness Bill))

In SUMO further operators like hasPurpose may be intro-
duced in user defined domain ontologies. Hence, an intu-
itively sound reasoning support is required in which each
such operator can be flexibly assigned with an appropri-
ate semantics. The HOL based approach sketched in this
paper is well suited for this purpose.

• The Boolean extensionality conflict analogously applies to
a range of related knowledge representation frameworks.
Most prominently, it applies to McCarthy’s ist-operator for
which it analogously enables counterintuitive inferences.
For example, using Boolean extensionality we can infer
from

ist(context of(“KnowledgeOfChris”),
1 + 1 = 2 )

that also

ist(context of(“KnowledgeOfChris”),
<FermatsLastTheorem> )

holds (where <FermatsLastTheorem> abbreviates a re-
spective longer formula expression). To enable this in-
ference all we need to know is that 1 + 1 = 2 and
<FermatsLastTheorem> are both valid (and hence equiva-
lent and hence equal).

Our findings may also apply to frameworks that evolved
from McCarthy’s pioneering work, including the language
CycL.10

Future work includes the combination of temporal, epistemic
and doxastic contexts as discussed in this article with further
kinds of contexts and other challenge aspects in SUMO. This
line of research will adapt, extend and exploit our recent em-
beddings of intuitionistic logics [74], logics for spatial reason-
ing [75], conditional logics [87, 90] and logics for security [86]
in HOL. Further case studies are required to determine the scal-
ability of the presented approach for flexible combinations and
nestings of contexts. Moreover, the scalability of relevance fil-
tering for knowledge bases larger than SUMO needs further in-
vestigation. However, based on the evidence provided in this
article we conjecture that recent improvements of relevance fil-
tering techniques in first-order provers [91, 92, 18] can be easily
adopted for the higher-order case.

The transferability of our approach to other expressive on-
tologies, such as Cyc or DOLCE, needs further investigation.

10http://en.wikipedia.org/wiki/CycL; the website says that
CycL considers 5 different truth values, but a document with a clear seman-
tics of CycL and in particular with a precise semantics of embedded formulas
could not be found by the authors.

For this we have already started to encode the DOLCE ontol-
ogy in THF0.11

Future work could also try to systematically reconstruct and
embed several of the most prominent other notions of con-
text. Such a project should in particular re-investigate the sim-
ple type theory based proposals by Church [93, 94, 95], Mon-
tague [96], and Thomason [97].
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