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Abstract. We present an embedding of quantified multimodal logics into
simple type theory and prove its soundness and completeness. A corre-
spondence between QKπ models for quantified multimodal logics and
Henkin models is established and exploited.

Our embedding supports the application of off-the-shelf higher-
order theorem provers for reasoning within and about quantified mul-
timodal logics. Moreover, it provides a starting point for further logic
embeddings and their combinations in simple type theory.
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1. Motivation

There are two approaches to automate reasoning in modal logics. The direct
approach develops specific calculi and tools for the task; the translational
approach transforms modal logic formulas into first-order logic and applies
standard first-order tools.1

In previous work [10, 7, 11] we have extended the translational approach,
presenting a sound and complete embedding of propositional multimodal log-
ics into simple type theory (higher-order logic). In this paper we extend this
work to quantified multimodal logics.

Multimodal logics with quantification for propositional variables have
been studied by others before, including Kripke [26], Bull [14], Fine [16, 17],
Kaplan [24], and Kremer [25]. Also first-order modal logics [20, 22] have
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1An overview on tools and provers for both the direct and the translational approach is
available at http://www.cs.man.ac.uk/~schmidt/tools/.
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been studied in numerous publications. We are interested here in multimodal
logics with quantification over both propositional and first-order variables, a
combination investigated, for example, by Fitting [18]. In contrast to Fitting
we here pursue the translational approach. Moreover, Fitting has only studied
the particular case of quantified monomodal logic S5, while we are interested
in multimodal K structures.

Our approach has several advantages:

• The syntax and semantics of simple type theory are well understood
[21, 2, 1, 9]. Studying (quantified) multimodal logics as fragments of
simple type theory can thus help to better understand semantical issues.
• For simple type theory, various automated proof tools are available, in-

cluding Isabelle/HOL [29], HOL [30], LEO-II [12], and TPS [5]. Employ-
ing the transformation presented in this paper, these systems become
immediately applicable to quantified multimodal logics or fragments of
them.
• The embedding studied in this article provides a fruitful basis for fur-

ther logic embeddings and logic combinations in simple type theory [8].
Moreover, even meta properties of embedded logics and combinations
of logics can be formalized and automatically analyzed with the above
provers. In fact we conjecture that our approach will perform compara-
bly better on the meta level.
• The systematic study of embeddings of multimodal logics in simple type

theory can identify fragments of simple type theory that have interesting
computational properties. This can foster improvements to proof tactics
in interactive proof assistants.

Our paper is organized as follows. In Section 2 we briefly review simple
type theory and adapt Fitting’s [18] notion of quantified multimodal logics. In
Section 3 we extend our previous work [10, 7, 11] and present an embedding of
quantified multimodal logic in simple type theory. This embedding is shown
sound and complete in Section 4.

2. Preliminaries

2.1. Simple Type Theory

Classical higher-order logic or simple type theory STT [3, 15] is built on top
of the simply typed λ-calculus. The set T of simple types is usually freely
generated from a set of basic types {o, ι} (where o is the type of Booleans
and ι is the type of individuals) using the function type constructor �. Instead
of {o, ι} we here consider a set of base types {o, ι, µ}, providing an additional
base type µ (the type of possible worlds).

The simple type theory language STT is defined by (α, β ∈ T):

s, t ::= pα | Xα | (λXα sβ)α�β | (sα�β tα)β | (¬o�o so)o |
(so ∨o�o�o to)o | (sα =α�α�o tα)o | (Π(α�o)�o sα�o)o
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pα denotes typed constants and Xα typed variables (distinct from pα). Com-
plex typed terms are constructed via abstraction and application. Our logical
connectives of choice are ¬o�o, ∨o�o�o, =α�α�o and Π(α�o)�o (for each type
α). From these connectives, other logical connectives can be defined in the
usual way. We often use binder notation ∀Xα s for Π(α�o)�o(λXα so). We
denote substitution of a term Aα for a variable Xα in a term Bβ by [A/X]B.
Since we consider α-conversion implicitly, we assume the bound variables of
B avoid variable capture. Two common relations on terms are given by β-
reduction and η-reduction. A β-redex has the form (λX s)t and β-reduces to
[t/X]s. An η-redex has the form (λX sX) where variable X is not free in s;
it η-reduces to s. We write s =β t to mean s can be converted to t by a series
of β-reductions and expansions. Similarly, s =βη t means s can be converted
to t using both β and η. For each s ∈ L there is a unique β-normal form and
a unique βη-normal form.

The semantics of STT is well understood and thoroughly documented in
the literature [21, 1, 2, 9]; our summary below is adapted from Andrews [4].

A frame is a collection {Dα}α∈T of nonempty sets Dα, such that Do =
{T, F} (for truth and falsehood). The Dα�β are collections of functions
mapping Dα into Dβ . The members of Dι are called individuals. An in-
terpretation is a tuple 〈{Dα}α∈T, I〉 where function I maps each typed con-
stant cα to an appropriate element of Dα, which is called the denotation
of cα (the logical symbols ¬o�o, ∨o�o�o, Π(α�o)�o, and =α�α�o are always
given the standard denotations). A variable assignment φ maps variables
Xα to elements in Dα. An interpretation 〈{Dα}α∈T, I〉 is a Henkin model
(equivalently, a general model) if and only if there is a binary function V

such that Vφ sα ∈ Dα for each variable assignment φ and term sα ∈ L,
and the following conditions are satisfied for all φ and all s, t ∈ L: (a)
VφXα = φXα, (b) Vφ pα = Ipα, (c) Vφ(sα�β tα) = (Vφ sα�β)(Vφtα), and
(d) Vφ(λXα sβ) is that function from Dα into Dβ whose value for each argu-
ment z ∈ Dα is V[z/Xα]φsβ , where [z/Xα]φ is that variable assignment such
that ([z/Xα]φ)Xα = z and ([z/Xα]φ)Yβ = φYβ if Yβ 6= Xα. (Since I¬, I∨,
IΠ, and I= always denote the standard truth functions, we have Vφ (¬s) = T
if and only if Vφ s = F , Vφ (s ∨ t) = T if and only if Vφ s = T or Vφ t = T ,
Vφ (∀Xα so) = Vφ (Πα(λXα so)) = T if and only if for all z ∈ Dα we have
V[z/Xα]φ so = T , and Vφ (s = t) = T if and only if Vφ s = Vφ t. Moreover, we
have Vφ s = Vφ t whenever s =βη t.) It is easy to verify that Henkin models
obey the rule that everything denotes, that is, each term tα always has a
denotation Vφ tα ∈ Dα. If an interpretation 〈{Dα}α∈T, I〉 is a Henkin model,
then the function Vφ is uniquely determined.

We say that formula A ∈ L is valid in a model 〈{Dα}α∈T, I〉 if and only
if VφA = T for every variable assignment φ. A model for a set of formulas H
is a model in which each formula of H is valid. A formula A is Henkin-valid
if and only if A is valid in every Henkin model. We write |=STT A if A is
Henkin-valid.
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2.2. Quantified Multimodal Logic

First-order quantification can be constant domain or varying domain. Below
we only consider the constant domain case: every possible world has the same
domain. We adapt the presentation of syntax and semantics of quantified
modal logic from Fitting [18]. In contrast to Fitting we are not interested in
S5 structures but in the more general case of K.

Let IV be a set of first-order (individual) variables, PV a set of proposi-
tional variables, and SYM a set of predicate symbols of any arity. Like Fitting,
we keep our definitions simple by not having function or constant symbols;
our language has no terms other than variables. While Fitting [18] studies
quantified monomodal logic, we are interested in quantified multimodal logic.
Hence, we introduce multiple 2r operators for symbols r from an index set
S. The grammar for our quantified multimodal logic QML is thus

s, t ::= P | k(X1, . . . , Xn) | ¬ s | s ∨ t | ∀X s | ∀P s | 2r s

where P ∈ PV, k ∈ SYM, and X,Xi ∈ IV.

Further connectives, quantifiers, and modal operators can be defined
as usual. We also obey the usual definitions of free variable occurrences and
substitutions.

Fitting introduces three different notions of semantics: QS5π−, QS5π,
and QS5π+. We study related notions QKπ−, QKπ, and QKπ+ for a modal
context K, and we support multiple modalities.

A QKπ− model is a structure M = (W, (Rr)r∈S , D, P, (Iw)w∈W ) such
that (W, (Rr)r∈S) is a multimodal frame (that is, W is the set of possible
worlds and the Rr are accessibility relations between worlds in W ), D is a
non-empty set (the first-order domain), P is a non-empty collection of subsets
of W (the propositional domain), and the Iw are interpretation functions
mapping each n-place relation symbol k ∈ SYM to some n-place relation on
D in world w.

A variable assignment g = (giv, gpv) is a pair of maps giv : IV −→ D
and gpv : PV −→ P , where giv maps each individual variable in IV to a an
object in D and gpv maps each propositional variable in PV to a set of worlds
in P .

Validity of a formula s for a model M = (W, (Rr)r∈S , D, P, Iw), a world
w ∈ W , and a variable assignment g = (giv, gpv) is denoted as M, g,w |= s
and defined as follows, where [a/Z]g denotes the assignment identical to g
except that ([a/Z]g)(Z) = a:

M, g,w |= k(X1, . . . , Xn) if and only if 〈giv(X1), . . . , giv(Xn)〉 ∈ Iw(k)

M, g,w |= P if and only if w ∈ gpv(P )

M, g,w |= ¬ s if and only if M, g,w 6|= s

M, g, w |= s ∨ t if and only if M, g,w |= s or M, g,w |= t

M, g, w |= ∀X s if and only if M, ([d/X]giv, gpv), w |= s

for all d ∈ D
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M, g,w |= ∀Q s if and only if M, (giv, [p/Q]gpv), w |= s

for all p ∈ P
M, g, w |= 2r s if and only if M, g, v |= s for all v ∈W

with 〈w, v〉 ∈ Rr
A QKπ− model M = (W, (Rr)r∈S , D, P, (Iw)w∈W ) is a QKπ model if for

every variable assignment g and every formula s ∈ QML, the set of worlds
{w ∈W |M, g,w |= s} is a member of P .

A QKπ model M = (W, (Rr)r∈S , D, P, (Iw)w∈W ) is a QKπ+ model if
every world w ∈W is member of an atom in P . The atoms of P are minimal
non-empty elements of P : no proper subsets of an atom are also elements of
P .

A QML formula s is valid in model M for world w if M, g,w |= s for all
variable assignments g. A formula s is valid in model M if M, g,w |= s for
all g and w. Formula s is QKπ-valid if s is valid in all QKπ models, when we

write |=QKπ s; we define QKπ−-valid and QKπ+-valid analogously.
In the remainder we mainly focus on QKπ models. These models natu-

rally correspond to Henkin models, as we shall see in Section 4.

3. Embedding Quantified Multimodal Logic in STT

The idea of the encoding is simple. We choose type ι to denote the (non-
empty) set of individuals and we reserve a second base type µ to denote
the (non-empty) set of possible worlds. The type o denotes the set of truth
values. Certain formulas of type µ � o then correspond to multimodal logic
expressions. The multimodal connectives ¬ , ∨ , and 2 , become λ-terms of
types (µ � o) � (µ � o), (µ � o) � (µ � o) � (µ � o), and (µ � µ � o) �
(µ � o) � (µ � o) respectively.

Quantification is handled as usual in higher-order logic by modeling
∀X s as Π(λX s) for a suitably chosen connective Π, as we remarked in Sec-
tion 2. Here we are interested in defining two particular modal Π-connectives:
Πι, for quantification over individual variables, and Πµ�o, for quantifica-
tion over modal propositional variables that depend on worlds, of types
(ι � (µ � o)) � (µ � o) and ((µ � o) � (µ � o)) � (µ � o), respectively.

In previous work [10] we have discussed first-order and higher-order
modal logic, including a means of explicitly excluding terms of certain types.
The idea was that no proper subterm of tµ�o should introduce a dependency
on worlds. Here we skip this restriction. This leads to a simpler definition of
a quantified multimodal language QMLSTT below, and it does not affect our
soundness and completeness results.

Definition 3.1 (Modal operators). The modal operators ¬ , ∨ ,2,Πι, and
Πµ�o are defined as follows:

¬ (µ�o)�(µ�o) = λφµ�o λWµ ¬(φW )

∨ (µ�o)�(µ�o)�(µ�o) = λφµ�o λψµ�o λWµ φW ∨ ψW
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2 (µ�µ�o)�(µ�o)�(µ�o) = λRµ�µ�o λφµ�o λWµ ∀Vµ ¬(RW V ) ∨ φV
Πι

(ι�(µ�o))�(µ�o) = λφι�(µ�o) λWµ ∀Xι φXW

Πµ�o
((µ�o)�(µ�o))�(µ�o) = λφ(µ�o)�(µ�o) λWµ ∀Pµ�o φP W

Note that our encoding actually only employs the second-order fragment of
simple type theory enhanced with lambda-notation.

Further operators can be introduced, for example,

>(µ�o)�(µ�o) = ∀Pµ�o P ∨ ¬P
⊥(µ�o)�(µ�o) = ¬>

∧ (µ�o)�(µ�o)�(µ�o) = λφµ�o λψµ�o ¬ (¬φ ∨ ¬ψ)

⊃ (µ�o)�(µ�o)�(µ�o) = λφµ�o λψµ�o ¬φ ∨ ψ

3 (µ�µ�o)�(µ�o)�(µ�o) = λRµ�µ�o λφµ�o ¬ (2R (¬φ))

Σι
(ι�(µ�o))�(µ�o) = λφι�(µ�o) ¬ (Πι(λXι ¬ (φX)))

Σµ�o
((µ�o)�(µ�o))�(µ�o) = λφ(µ�o)�(µ�o) ¬ (Πµ�o(λPµ�o ¬ (φP )))

We could also introduce further modal operators, such as the difference
modality D, the global modality E, nominals with !, or the @ operator (cf.
the recent work of Kaminski and Smolka [23] in the propositional hybrid logic
context):

D(µ�o)�(µ�o) = λφµ�o λWµ ∃Vµ W 6= V ∧ φV
E(µ�o)�(µ�o) = λφµ�o φ ∨ Dφ

!(µ�o)�(µ�o) = λφµ�o E (φ ∧ ¬ (Dφ))

@µ�(µ�o)�(µ�o) = λWµ λφµ�o φW

For defining QMLSTT-propositions we fix a set IVSTT of individual
variables of type ι, a set PVSTT of propositional variables of type µ � o, and a
set SYMSTT of n-ary (curried) predicate constants of types ι � . . . � ι︸ ︷︷ ︸

n

� (µ �

o). The latter types will be abbreviated as ιn � (µ � o) in the remainder.
Moreover, we fix a set SSTT of accessibility relation constants of type µ �
µ � o.

Definition 3.2 (QMLSTT-propositions). QMLSTT-propositions are defined as
the smallest set of simply typed λ-terms for which the following hold:

• Each variable Pµ�o ∈ PVSTT is an atomic QMLSTT-proposition, and
if Xj

ι ∈ IVSTT (for j = 1, . . . , n) and kιn�(µ�o) ∈ SYMSTT, then the

term (kX1 . . . Xn)µ�o is an atomic QMLSTT-proposition.
• If φ and ψ are QMLSTT-propositions, then so are ¬ φ and φ ∨ ψ.
• If rµ�µ�o ∈ SSTT is an accessibility relation constant and if φ is an

QMLSTT-proposition, then 2 r φ is a QMLSTT-proposition.
• If Xι ∈ IVSTT is an individual variable and φ is a QMLSTT-proposition

then Πι(λXι φ) is a QMLSTT-proposition.
• If Pµ�o ∈ PVSTT is a propositional variable and φ is a QMLSTT-

proposition then Πµ�o(λPµ�o φ) is a QMLSTT-proposition.
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We write 2r φ, ∀Xι φ, and ∀Pµ�o φ for 2 r φ, Πι(λXι φ), and
Πµ�o(λPµ�o φ), respectively.

Because the defining equations in Definition 3.1 are themselves formu-
las in simple type theory, we can express proof problems in a higher-order
theorem prover elegantly in the syntax of quantified multimodal logic. Using
rewriting or definition expanding, we can reduce these representations to cor-
responding statements containing only the basic connectives ¬ , ∨ , =, Πι,
and Πµ�o of simple type theory.

Example. The following QMLSTT proof problem expresses that in all acces-
sible worlds there exists truth:

2r ∃Pµ�o P

The term rewrites into the following βη-normal term of type µ � o

λWµ ∀Yµ ¬(rW Y ) ∨ (¬∀Pµ�o ¬(P Y ))

Next, we define validity of QMLSTT propositions φµ�o in the obvious
way: a QML-proposition φµ�o is valid if and only if for all possible worlds wµ
we have wµ ∈ φµ�o, that is, if and only if φµ�o wµ holds.

Definition 3.3 (Validity). Validity is modeled as an abbreviation for the fol-
lowing simply typed λ-term:

valid = λφµ�o ∀Wµ φW

Alternatively, we could define validity simply as Π(µ�o)�o.

Example. We analyze whether the proposition 2r ∃Pµ�o P is valid or not.
For this, we formalize the following proof problem

valid (2r ∃Pµ�o P )

Expanding this term leads to

∀Wµ ∀Yµ ¬(rW Y ) ∨ (¬∀Xµ�o ¬(X Y ))

It is easy to check that this term is valid in Henkin semantics: put X =
λYµ >.

An obvious question is whether the notion of quantified multimodal
logics we obtain via this embedding indeed exhibits the desired properties.
In the next section, we prove soundness and completeness for a mapping of
QML-propositions to QMLSTT-propositions.

4. Soundness and Completeness of the Embedding

In our soundness proof, we exploit the following mapping of QKπ models
into Henkin models. We assume that the QML logic L under consideration
is constructed as outlined in Section 2 from a set of individual variables IV,
a set of propositional variables PV, and a set of predicate symbols SYM. Let
2r1 , . . . , 2rn for ri ∈ S be the box operators of L.
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Definition 4.1 (QMLSTT logic LSTT for QML logic L). Given an QML logic
L, define a mapping ˙ as follows:

Ẋ = Xι for every X ∈ IV

Ṗ = Pµ�o for every P ∈ PV

k̇ = kιn�(µ�o) for every n-ary k ∈ SYM

ṙ = rµ�µ�o for every r ∈ S

The QMLSTT logic LSTT is obtained from L by applying Def. 3.2 with
IVSTT = {Ẋ | X ∈ IV}, PVSTT = {Ṗ | P ∈ PV}, SYMSTT = {k̇ | k ∈
SYM}, and SSTT = {ṙ | r ∈ S}. Our construction obviously induces a one-

to-one correspondence ˙ between languages L and LSTT.
Moreover, let g = (giv : IV −→ D, gpv : PV −→ P ) be a variable

assignment for L. We define the corresponding variable assignment

ġ = (ġiv : IVSTT −→ D = Dι, ġ
pv : PVSTT −→ P = Dµ�o)

for LSTT so that ġ(Xι) = ġ(Ẋ) = g(X) and ġ(Pµ�o) = ġ(Ṗ ) = g(P ) for all
Xι ∈ IVSTT and Pµ�o ∈ PVSTT.

Finally, a variable assignment ġ is lifted to an assignment for variables
Zα of arbitrary type by choosing ġ(Zα) = d ∈ Dα arbitrarily, if α 6= ι, µ � o.

We assume below that L, LSTT, g and ġ are defined as above.

Definition 4.2 (Henkin model HQ for QKπ model Q). Given a QKπ model
Q = (W, (Rr)r∈S , D, P, (Iw)w∈W ) for L, a Henkin model HQ = 〈{Dα}α∈T, I〉
for LSTT is constructed as follows. We choose

• the set Dµ as the set of possible worlds W ,
• the set Dι as the set of individuals D (cf. definition of ġiv),
• the set Dµ�o as the set of sets of possible worlds P (cf. definition of
ġpv),2

• the set Dµ�µ�o as the set of relations (Rr)r∈S ,
• and all other sets Dα�β as (not necessarily full) sets of functions from
Dα to Dβ ; for all sets Dα�β the rule that everything denotes must be
obeyed, in particular, we require that the sets Dιn�(µ�o) contain the
elements Ikιn�(µ�o) as characterized below.

The interpretation I is as follows:

• Let kιn�(µ�o) = k̇ for k ∈ SYM and let Xi
ι = Ẋi for Xi ∈ IV. We choose

Ikιn�(µ�o) ∈ Dιn�(µ�o) such that

(I k)(ġ(X1
ι ), . . . , ġ(Xn

ι ), w) = T

for all worlds w ∈ Dµ such that Q, g, w |= k(X1, . . . , Xn), that is, if
〈g(X1), . . . , g(Xn)〉 ∈ Iw(k). Otherwise (I k)(ġ(X1

ι ), . . . , ġ(Xn
ι ), w) =

F .

2To keep things simple, we identify sets with their characteristic functions.
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• Let rµ�µ�o = ṙ for r ∈ S. We choose Irµ�µ�o ∈ Dµ�µ�o such that
(Irµ�µ�o)(w,w

′) = T if 〈w,w′〉 ∈ Rr in Q and (Irµ�µ�o)(w,w
′) = F

otherwise.

It is not hard to verify that HQ = 〈{Dα}α∈T, I〉 is a Henkin model.

Lemma 4.3. Let Q = (W, (Rr)r∈S , D, P, (Iw)w∈W ) be a QKπ model and let
HQ = 〈{Dα}α∈T, I〉 be a Henkin model for Q. Furthermore, let sµ�o = ṡ
for s ∈ L. Then for all worlds w ∈ W and variable assignments g we have
Q, g, w |= s in Q if and only if V[w/Wµ]ġ (sµ�oWµ) = T in HQ.

Proof. The proof is by induction on the structure of s ∈ L.
Let s = P for P ∈ PV. By construction of Henkin model HQ and by def-

inition of ġ, we have for Pµ�o = Ṗ that V[w/Wµ]ġ (Pµ�oWµ) = ġ(Pµ�o)(w) =
T if and only if Q, g, w |= P , that is, w ∈ g(P ).

Let s = k(X1, . . . , Xn) for k ∈ SYM and Xi ∈ IV. By construction

of Henkin model HQ and by definition of ġ, we have for k̇(Ẋ1, . . . , Ẋn) =
(kιn�(µ�o)X

1
ι . . . X

n
ι ) that

V[w/Wµ]ġ ((kιn�(µ�o)X
1
ι . . . X

n
ι )Wµ) = (I k)(ġ(X1

ι ), . . . , ġ(Xn
ι ), w) = T

if and only if Q, g, w |= k(X1, . . . , Xn), that is, 〈g(X1), . . . , g(Xn)〉 ∈ Iw(k).
Let s = ¬ t for t ∈ L. We have Q, g, w |= ¬s if and only Q, g, w 6|= s,

which is equivalent by induction to V[w/Wµ]ġ (tµ�oWµ) = F and hence to
V[w/Wµ]ġ ¬(tµ�oWµ) =βη V[w/Wµ]ġ ((¬ tµ�o)Wµ) = T .

Let s = (t ∨ l) for t, l ∈ L. We have Q, g, w |= (t ∨ l) if and only if
Q, g, w |= t or Q, g, w |= l. The latter condition is equivalent by induction
to V[w/Wµ]ġ (tµ�o Wµ) = T or V[w/Wµ]ġ (lµ�o Wµ) = T and therefore to
V[w/Wµ]ġ (tµ�o Wµ) ∨ (lµ�oWµ) =βη V[w/Wµ]ġ (tµ�o ∨ lµ�o Wµ) = T .

Let s = 2r t for t ∈ L. We have Q, g, w |= 2r t if and only if for all u
with 〈w, u〉 ∈ Rr we have Q, g, u |= t. The latter condition is equivalent by
induction to this one: for all u with 〈w, u〉 ∈ Rr we have V[u/Vµ]ġ (tµ�o Vµ) =
T . That is equivalent to

V[u/Vµ][w/Wµ]ġ (¬(rµ�µ�oWµ Vµ) ∨ (tµ�o Vµ)) = T

and thus to

V[w/Wµ]ġ (∀Yµ (¬(rµ�µ�oWµ Yµ) ∨ (tµ�o Yµ))) =βη V[w/Wµ]ġ (2r tWµ) = T.

Let s = ∀X t for t ∈ L and X ∈ IV. We have Q, g, w |= ∀X t if and
only if Q, [d/X]g, w |= t for all d ∈ D. The latter condition is equivalent by
induction to V[d/Xι][w/Wµ]ġ (tµ�oWµ) = T for all d ∈ Dι. That condition is
equivalent to

V[w/Wµ]ġ (Πι
(ι�o)�o(λXι tµ�oWµ)) =βη

V[w/Wµ]ġ ((λVµ (Πι
(ι�o)�o (λXι tµ�o Vµ)))Wµ) = T

and so by definition of Πι to V[w/Wµ]ġ ((Πι
(ι�(µ�o))�(µ�o) (λXι tµ�o))Wµ) =

V[w/Wµ]ġ ((∀Xι tµ�o)Wµ) = T .
The case for s = ∀P t where t ∈ L and P ∈ PV is analogous to

s = ∀X t. �
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We exploit this result to prove the soundness of our embedding.

Theorem 4.4 (Soundness for QKπ semantics). Let s ∈ L be a QML proposi-

tion and let sµ�o = ṡ be the corresponding QMLSTT proposition. If |=STT

(valid sµ�o) then |=QKπ s.

Proof. By contraposition, assume 6|=QKπ s: that is, there is a QKπ model Q =
(W, (Rr)r∈S , D, P, (Iw)w∈W ), a variable assignment g and a world w ∈ W ,
such that Q, g, w 6|= s. By Lemma 4.3, we have V[w/Wµ]ġ (sµ�oWµ) = F in a

Henkin model HQ for Q. Thus, Vġ (∀Wµ (sµ�oW )) =βη Vġ (valid sµ�o) = F .

Hence, 6|=STT (valid sµ�o). �

In order to prove completeness, we reverse our mapping from Henkin
models to QKπ models.

Definition 4.5 (QML logic LQML for QMLSTT logic L). The mapping ¯ is
defined as the reverse map of ˙ from Def. 4.1.

The QML logic LQML is obtained from QMLSTT logic L by choosing
IV = {X̄ι | Xι ∈ IVSTT}, PV = {P̄µ�o | Pµ�o ∈ PVSTT}, SYM = {k̄ιn�(µ�o |
kιn�(µ�o) ∈ SYMSTT}, and S = {r̄µ�µ�o | rµ�µ�o ∈ SSTT}.

Moreover, let g : IVSTT∪PVSTT −→ D∪P be a variable assignment for

L. The corresponding variable assignment ḡ : IV ∪ PV −→ D ∪ P for LQML

is defined as follows: ḡ(X) = ḡ(X̄ι) = g(Xι) and ḡ(P ) = ḡ(P̄µ�o) = g(Pµ�o)
for all X ∈ IV and P ∈ PV.

We assume below that L, LQML, g and ḡ are defined as above.

Definition 4.6 (QKπ− model QH for Henkin model H). Given a Henkin
model H = 〈{Dα}α∈T, I〉 for QMLSTT logic L, we construct a QML model

QH = (W, (Rr)r∈S , D, P, (Iw)w∈W ) for LQML by choosing W = Dµ, D = Dι,
and P = Dµ�o. Moreover, let k = k̄ιn�(µ�o) and let Xi = X̄i

ι . We choose

Iw(k) such that 〈ḡ(X1), . . . , ḡ(Xn)〉 ∈ Iw(k) if and only if

(I k)(g(X1
ι ), . . . , g(Xn

ι ), w) = T.

Finally, let r = r̄µ�µ�o. We choose Rr such that 〈w,w′〉 ∈ Rr if and only if
(Irµ�µ�o)(w,w

′) = T .

It is not hard to verify that QH = (W, (Rr)r∈S , D, P, (Iw)w∈W ) meets
the definition of QKπ− models. Below we will see that it also meets the
definition of QKπ models.

Lemma 4.7. Let QH = (W, (Rr)r∈S , D, P, (Iw)w∈W ) be a QKπ− model for a
given Henkin model H = 〈{Dα}α∈T, I〉. Furthermore, let s = s̄µ�o. For all
worlds w ∈ W and variable assignments g we have V[w/Wµ]g (sµ�oWµ) = T

in H if and only if QH , ḡ, w |= s in QH .

Proof. The proof is by induction on the structure of sµ�o ∈ L and it is similar
to the proof of Lemma 4.3. �
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With the help of Lemma 4.7, we now show that the QKπ− models we
construct in Def. 4.6 are in fact always QKπ models. Thus, Henkin models
never relate to QKπ− models that do not already fulfill the QKπ criterion.

Lemma 4.8. Let QH = (W, (Rr)r∈S , D, P, (Iw)w∈W ) be a QKπ− model for a
given Henkin model H = 〈{Dα}α∈T, I〉. Then QH is also a QKπ model.

Proof. We need to show that for every variable assignment ḡ and formula
s = s̄µ�o the set {w ∈ W | Qh, ḡ, w |= s} is a member of P in QH .
This is a consequence of the rule that everything denotes in the Henkin
model H. To see this, consider Vgsµ�o = Vg(λVµ sµ�o V ) for variable Vµ
not occurring free in sµ�o. By definition of Henkin models this denotes
that function from Dµ = W to truth values Do = {T, F} whose value for
each argument w ∈ Dµ is V[w/Vµ]g(s V ), that is, sµ�o denotes the char-
acteristic function λw ∈ W V[w/Vµ]g (sµ�oVµ) = T which we identify with
the set {w ∈ W | V[w/Vµ]g (sµ�oVµ) = T}. Hence, we have {w ∈ W |
V[w/Vµ]g (sµ�oVµ) = T} ∈ Dµ�o. By the choice of P = Dµ�o in the con-

struction of QH we know {w ∈W | V[w/Vµ]g (sµ�oVµ) = T} ∈ P . By Lemma

4.7 we get {w ∈W | Qh, ḡ, w |= s} ∈ P . �

Theorem 4.9 (Completeness for QKπ models). Let sµ�o be a QMLSTT propo-

sition and let s = s̄µ�o be the corresponding QML proposition. If |=QKπ s then

|=STT (valid sµ�o).

Proof. By contraposition, assume 6|=STT (valid sµ�o): there is a Henkin model
H = 〈{Dα}α∈T, I〉 and a variables assignment g such that Vg (valid sµ�o) =
F . Hence, for some world w ∈ Dµ we have V[w/Wµ]g (sµ�oWµ) = F . By

Lemma 4.7 we then get QH , ḡ, w 6|=QKπ−
s for s = s̄µ�o in QKπ− model QH

for H. By Lemma 4.8 we know that QH is actually a QKπ model. Hence,

6|=QKπ s. �

Our soundness and completeness results obviously also apply to frag-
ments of QML logics.

Corollary 4.10. The reduction of our embedding to propositional quantified
multimodal logics (which only allow quantification over propositional vari-
ables) is sound and complete.

Corollary 4.11. The reduction of our embedding to first-order multimodal
logics (which only allow quantification over individual variables) is sound
and complete.

Corollary 4.12. The reduction of our embedding to propositional multimodal
logics (no quantification) is sound and complete.

5. Conclusion

We have presented a straightforward embedding of quantified multimodal
logics in simple type theory and we have shown that this embedding is sound
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and complete for QKπ semantics. This entails further soundness and com-
pleteness results of our embedding for fragments of quantified multimodal
logics. We have formally explored the natural correspondence between QKπ
models and Henkin models.

Non-quantified and quantified (normal) multimodal logics can thus be
uniformly seen as natural fragments of simple type theory and their seman-
tics (except some weak notions such as QKπ− models) can be studied from
the perspective of the well understood semantics of simple type theory. Vice
versa, via our embedding we can characterize some computationally interest-
ing fragments of simple type theory, which in turn may lead to some powerful
proof tactics for higher-order proof assistants.

In experiments we applied the embedding presented in this paper for
reasoning within and about combinations of multimodal logics [8]. For exam-
ple, a formulation of the well known wise men puzzle in quantified multimodal
logic can be solved with our theorem prover LEO-II in a few milliseconds.
We obtain similar performance results for the verification of meta-properties
such as the equivalence of different axiomatizations of modal logic S5. Inter-
estingly, even higher-order model finders such as Nitpick [13] can be fruitfully
applied, for example, to verify the consistency of our logic embeddings and
their combinations within our framework.

Future work includes further extensions of our embedding to full higher-
order modal logics [19, 27]. A first suggestion in direction of higher-order
modal logics has already been made [10]. This proposal does not yet address
intensionality aspects. However, combining it with non-extensional notions
of models for simple type theory [9, 28] appears a promising direction.
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