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Abstract. We study straightforward embeddings of propositional nor-
mal multimodal logic and propositional intuitionistic logic in simple
type theory. The correctness of these embeddings is easily shown. We
give examples to demonstrate that these embeddings provide an effec-
tive framework for computational investigations of various non-classical
logics. We report some experiments using the higher-order automated
theorem prover LEO-II.

1 Introduction

There are two well investigated approaches to automate reasoning in modal log-
ics: the direct approach and the translational approach. The direct approach [9,
10, 18, 28] develops specific calculi and tools for the task; the translational ap-
proach [29, 30] transforms modal logic formulas into first-order logic and applies
standard first-order tools. Embeddings of modal logics into higher-order logic,
however, have not yet been widely studied, although multimodal logic can be
regarded as a natural fragment of simple type theory. Gallin [19] appears to
mention the idea first. He presents an embedding of modal logic into a 2-sorted
type theory. This idea is picked up by Gamut [20] and a related embedding
has recently been studied by Hardt and Smolka [22]. Carpenter [16] proposes to
use lifted connectives, an idea that also underlies the embeddings presented by
Merz [27], Brown [15], Harrison [23, Chap. 20], and Kaminski and Smolka [25].

In this article we pick up and extend the embedding of multimodal logics
in simple type theory as proposed by Brown [15]. The starting point is a char-
acterization of multimodal logic formulas as particular λ-terms in simple type
theory. A distinctive characteristic of the encoding is that the definiens of the
2R operator λ-abstracts over the accessibility relation R. We prove this encod-
ing sound and complete. Moreover, we illustrate that this encoding supports the
formulation of meta properties of encoded multimodal logics such as the corre-
spondence between certain axioms and properties of the accessibility relation R.
We show that some of these meta properties can even be efficiently automated
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within our higher-order theorem prover LEO-II [14] via cooperation with the
first-order automated theorem prover E [31]. We also discuss some challenges to
higher-order reasoning implied by this application direction.

New in this article with regard to previous (non-reviewed) work [13, 14] are
the soundness and completeness proofs for the embedding. So far this has only
been proven for the monomodal logics S4 and T [11]. In the second part of this
article we then combine our results with Gödel’s interpretation [21] of propo-
sitional intuitionistic logic in modal logic S4 to obtain a sound and complete
embedding of propositional intuitionistic logic in simple type theory.

2 Preliminaries

We assume familiarity with the syntax and semantics of multimodal logics and
simple type theory and only briefly review the most important notions.

The multimodal logic language MM is defined by

s, t ::= p | ¬ s | s ∨ t | 2r s

where p denotes atomic primitives and r denotes accessibility relations (distinct
from p). Other logical connectives can be defined from the chosen ones in the
usual way.

A Kripke frame for MM is a pair 〈W, (Rr)r∈S〉, where W is a non-empty
set (called possible worlds), S = {1, . . . , n} is an index set and the Rr are binary
relations onW (called accessibility relations). A Kripke model forMM is a triple
〈W, (Rr)r∈S , |=〉, where 〈W, (Rr)r∈S〉 is a Kripke frame, and |= is a satisfaction
relation between nodes of W and formulas of MM satisfying w |= ¬ s if and
only if w 6|= s, w |= s ∨ t if and only if w |= s or w |= t, w |= 2r s if and only
if for all u with Rr(w, u) holds u |= s. The satisfaction relation |= is uniquely
determined by its value on the atomic primitives p. A formula s is valid in a
Kripke model 〈W, (Rr)r∈S , |=〉, if w |= s for all w ∈ W . Also s is valid in a
Kripke frame 〈W, (Rr)r∈S〉 if it is valid in 〈W, (Rr)r∈S , |=〉 for all possible |=. If
s is valid for all possible Kripke frames 〈W, (Rr)r∈S〉 then s is called valid and
we write |=K s.

Classical higher-order logic or simple type theory ST T [4, 17] is a formalism
built on top of the simply typed λ-calculus. The set T of simple types is usually
freely generated from a set of basic types {o, ι} (where o denotes the type of
Booleans) using the right-associative function type constructor �.

The simple type theory language ST T is defined by (α, β, o ∈ T ):

s, t ::= pα | Xα | (λXα sβ)α�β | (sα�β tα)β | (¬o�o so)o |
(so ∨o�o�o to)o | (Π(α�o)�o sα�o)o

Here pα denotes typed constants and Xα typed variables (distinct from pα).
Complex typed terms are constructed via abstraction and application. Our logi-
cal connectives of choice are ¬o�o, ∨o�o�o and Π(α�o)�o (for each type α). From
these connectives, other logical connectives can be defined in the usual way. We



often use binder notation ∀Xα s for (Π(α�o)�o(λXα so)). We denote substitu-
tion of a term Aα for a variable Xα in a term Bβ by [A/X]B. Since we consider
α-conversion implicitly, we assume the bound variables of B avoid variable cap-
ture. Two common relations on terms are given by β-reduction and η-reduction.
A β-redex has the form (λX s)t and β-reduces to [t/X]s. An η-redex has the
form (λX sX) where the variable X is not free in s; it η-reduces to s. We write
s =β t to mean s can be converted to t by a series of β-reductions and expan-
sions. Similarly, s =βη t means s can be converted to t using both β and η. For
each s ∈ ST T there is a unique β-normal form and a unique βη-normal form.

The semantics of ST T is well understood and thoroughly documented in the
literature [1, 2, 12, 24]; our summary below is adapted from Andrews [5].

A frame is a collection {Dα}α∈T of nonempty domains (sets) Dα, such that
Do = {T, F} (where T represents truth and F represents falsehood). The Dα�β

are collections of functions mapping Dα into Dβ . The members of Dι are called
individuals. An interpretation is a tuple 〈{Dα}α∈T , I〉 where function I maps
each typed constant cα to an appropriate element of Dα, which is called the
denotation of cα (the logical symbols ¬, ∨ and Π are always given the stan-
dard denotations). A variable assignment φ maps variables Xα to elements in
Dα. An interpretation 〈{Dα}α∈T , I〉 is a Henkin model (equivalently, a general
model) if and only if there is a binary function V such that Vφ sα ∈ Dα for
each variable assignment φ and term sα ∈ L, and the following conditions are
satisfied for all φ and all s, t ∈ L: (a) VφXα = φXα, (b) Vφ pα = Ipα, (c)
Vφ(sα�β tα) = (Vφ sα�β)(Vφtα), and (d) Vφ(λXα sβ) is that function from Dα

into Dβ whose value for each argument z ∈ Dα is V[z/Xα],φsβ , where [z/Xα], φ is
that variable assignment such that ([z/Xα], φ)Xα = z and ([z/Xα], φ)Yβ = φYβ

if Yβ 6= Xα. Since I¬, I∨, and IΠ always denote the standard truth functions,
we have Vφ (¬s) = T iff Vφ s = F , Vφ (s ∨ t) = T iff Vφ s = T or Vφ t = T , and
Vφ (∀Xα so) = Vφ (Πα(λXα so)) = T iff for all z ∈ Dα we have V[z/Xα],φ so = T .
Moreover, we have Vφ s = Vφ t whenever s =βη t; in order to emphasize this cor-
respondence we sometimes write Vφ s =βη Vφ t.

If an interpretation 〈{Dα}α∈T , I〉 is a Henkin model, then the function Vφ

is uniquely determined. An interpretation 〈{Dα}α∈T , I〉 is a standard model if
and only if for all α and β, Dα�β is the set of all functions from Dα into Dβ .
Each standard model is also a Henkin model.

We say that formula A ∈ L is valid in a model 〈{Dα}α∈T , I〉 if and only if
VφA = T for every variable assignment φ. A model for a set of formulas H is a
model in which each formula of H is valid.

A formula A is Henkin-valid (resp., standard-valid) if and only if A is valid
in every Henkin (resp., standard) model. Clearly each formula which is Henkin-
valid is also standard-valid, but the converse of this statement is false. We write
|=ST T A if A is Henkin-valid and we write Γ |=ST T A if A is valid in all Henkin
models in which all formulas of Γ are valid.



3 Propositional Normal Multimodal Logics in Simple
Type Theory

Simple type theory is an expressive logic and it is thus no surprise that modal
logic can be encoded in several ways in it. Harrison [23], for instance, presents
a ‘deep embedding’ of modal logics by formalizing standard Kripke semantics
and a ‘shallow embedding’ of the temporal logic LTL. The latter encoding more
naturally exploits the expressiveness of higher-order logic. Harrison’s shallow
embedding is an instance of the encoding due to Brown [15]. Here we adapt and
further extend Brown’s suggestion and show that this approach is well suited for
reasoning within and about modal logics.

The idea of the encoding is simple: Choose a base type — we choose ι —
to denote the set of all possible worlds. Certain formulas of type ι � o then
correspond to multimodal logic expressions. The multimodal connectives ¬ , ∨ ,
and 2r become λ-terms of types (ι � o) � (ι � o), (ι � o) � (ι � o) � (ι � o),
and (ι � ι � o) � (ι � o) � (ι � o) respectively. Note that ¬ forms the comple-
ment of a set of worlds, while ∨ forms the union of two such sets. Our encoding
actually only exploits the first-order fragment of simple type theory enhanced
with lambda-notation. Some examples below additionally employ quantification
over relations.

Definition 1 (Propositional Multimodal Logic MMST T ). Let MM be a
propositional multimodal logic with atomic primitives p1, . . . , pm (m ≥ 1) and
box-operators 2r1 , . . . , 2rn (n ≥ 1) for accessibility relations r1, . . . , rn.

We define the set MMST T of corresponding propositional multimodal logic
propositions in ST T as follows.

1. For the atomic primitives p1, . . . , pm we introduce corresponding predicate
constants p1

ι�o, . . . , p
m
ι�o and for the accessibility relations r1, . . . , rn we

provide corresponding relation constants r1ι�ι�o, . . . , rn
ι�ι�o.

2. We introduce the logical connectives of MMST T as abbreviations for the
following λ-terms:

¬ (ι�o)�(ι�o) = λAι�o λXι ¬AX
∨ (ι�o)�(ι�o)�(ι�o) = λAι�o λBι�o λXι AX ∨BX

2 (ι�ι�o)�(ι�o)�(ι�o) = λRι�ι�o λAι�o λXι ∀Yι ¬RX Y ∨AY

3. We define the set of MMST T -propositions as the smallest set of simply
typed λ-terms for which the following hold:
– The predicate constants p1

ι�o, . . . , pm
ι�o define the atomic MMST T -

propositions.
– If φ and ψ are MMST T -propositions, then so are ¬ φ, φ ∨ ψ and

(2 ri
ι�ι�o)φ, where ¬ , ∨ , and 2 are defined as above and where ri

ι�ι�o

for 1 ≤ i ≤ n is a relation constant. (In the following we write 2ri
ι�ι�o

instead of (2 ri
ι�ι�o).)

4. The propositional multimodal logic operators ⊃ , ⇔ , 3r , etc. can be defined
in terms of ¬ , ∨ and 2r in the usual way.



Note that the encoding of the modal operator 2r depends explicitly on an
accessibility relation r of type ι � ι � o given as its first argument. Hence, we
basically introduce a generic framework for modeling multimodal logics. This
idea is where Brown [15] differs from the LTL encoding of Harrison. The latter
chooses the interpreted type num of numerals and then uses the predefined
relation ≤ over numerals as a fixed accessibility relation in the definitions of 2

and 3 .
By making the dependency of 2r and 3r on the accessibility relation R

explicit, we can formalize and automatically prove some properties of multimodal
logics in simple type theory, as we will illustrate later in Example 4.

Example 1. Given a multimodal logic MM with an atomic proposition a and
box operators 2r and 2s . The MM proposition1 2s (2r a ⊃ 2r a) is trans-
lated into the corresponding MMST T term 2s (2r a ⊃ 2r a) for constant sym-
bols sι�ι�o, rι�ι�o and aι�o. By unfolding the abbreviations and by βη-reduction
we obtain

λXι ∀Yι ¬sX Y ∨ (¬(∀Zι ¬r Y Z ∨ aZ) ∨ (∀Zι ¬r Y Z ∨ aZ))

of type ι � o.

Next, we define validity of modal logic expressions Aι�o ∈ MMST T : the
formula A is valid iff for all possible worlds Wι we have W ∈ A, that is, iff AW
holds.

Definition 2 (Validity). Validity is modeled as an abbreviation for the follow-
ing simply typed λ-term:

valid := λAι�o ∀Wι AW

Note that we could define validity also as valid := Π(ι�o)�o.

Example 2 (Ex. 1 contd.). The validity statement for the multimodal logic for-
mula 2s (2r a ⊃ 2r a) is transformed into theMMST T formula (valid (2s (2r a ⊃
2r a))). By unfolding the abbreviations and by βη-reduction we obtain

∀Wι ∀Yι ¬sW Y ∨ (¬(∀Zι ¬r Y Z ∨ aZ) ∨ (∀Zι ¬r Y Z ∨ aZ)).

It is easy to verify that this is a tautology in ST T .

3.1 Soundness and Completeness

In our soundness proof we exploit the following mapping of Kripke frames into
Henkin models.
1 We assume that 2r binds more strongly than the propositional connectives, and

hence, 2r a ⊃ 2r a stands for (2r a) ⊃ (2r a).



Definition 3 (Henkin model MK for Kripke model K). Let p1, . . . , pm be
the atomic primitives occuring in modal language MM. Furthermore, let 2r1 ,
. . . , 2rn be the box operators for accessibility relations r1, . . . , rn in MM.
Note that the pj (1 ≤ j ≤ m) are mapped to predicate constants pj

ι�o and the
ri (1 ≤ i ≤ n) to relation constants ri

ι�ι�o. These are the only constant symbols
provided in MMST T .

Now, given a Kripke model K = 〈W, (Rr)r∈S , |=〉, the corresponding Henkin
model MK = 〈{Dα}α∈T , I〉 is defined as follows. We choose the set of individuals
Dι as the set of possible worlds W and we choose the Dα�β as the set of all
functions from Dα to Dβ. Furthermore, for 1 ≤ j ≤ m we choose Ipj

ι�o ∈ Dι�o

such that (Ipj
ι�o)(w) = T for all worlds w ∈ Dι with w |= pj in Kripke model K

and (Ipj
ι�o)(w) = F otherwise. Similarly, we choose Iri

ι�ι�o ∈ Dι�ι�o such that
(Iri

ι�ι�o)(w,w
′) = T if Rri(w,w′) in Kripke model K and (Iri

ι�ι�o)(w,w
′) = F

otherwise. It is easy to check that MK = 〈{Dα}α∈T , I〉 is a Henkin model. In
fact it is a standard model since the function spaces are full.

Lemma 1. Let MM be a multimodal language and MMST T its corresponding
logic in ST T . Let q ∈MM be arbitrary and let qι�o be the corresponding term
in MMST T . Furthermore, let K = 〈W, (Rr)r∈S , |=〉 be a Kripke model for MM
and let MK = 〈{Dα}α∈T , I〉 be the corresponding Henkin model for K. For all
worlds w ∈ W and variable assignments φ we have w |= q in K if and only if
V[w/Xι],φ (qι�oXι) = T in MK for all variables Xι.

Proof. The proof is by induction on the structure of q ∈MM. Let q = p for some
atomic primitive p ∈MM. By construction ofMK , we have V[w/Xι],φ (pι�oXι) =
(I pι�o)(w) = T if and only if w |= p. Let q = ¬ s for s ∈MM. We have w |= ¬s
if and only w 6|= s, which is equivalent by induction to V[w/Xi],φ (sι�oXι) = F
and hence to V[w/Xι],φ ¬(sι�oXι) =βη V[w/Xι],φ ((¬ sι�o)Xι) = T . Let q =
(s ∨ t) for s, t ∈ MM. We have w |= (s ∨ t) if and only if w |= s or w |= t.
The latter condition is equivalent by induction to V[w/Xι],φ (sι�o Xι) = T or
V[w/Xι],φ (tι�o Xι) = T and therefore to V[w/Xι],φ (sι�o Xι) ∨ (tι�oXι) =βη

V[w/Xι],φ ((sι�o ∨ tι�o) Xι) = T . Let q = 2r s for s ∈ MM. We have w |=
2r s if and only if for all u with Rr(w, u) we have u |= s. The latter condi-
tion is equivalent by induction to this one: for all u with Rr(w, u) we have
V[u/Vι],φ (sι�o Vι) = T . That is equivalent to V[u/Vι],[w/Xι],φ (¬(rι�ι�oXι Vι) ∨
(sι�o Vι)) = T and thus to V[w/Xι],φ (∀Yι (¬(rι�ι�oXι Yι) ∨ (sι�o Yι))) =βη

V[w/Xι],φ ((2rι�ι�o sι�o)Xι) = T .

We exploit this result to prove the soundness of our embedding of proposi-
tional multimodal logics into ST T .

Theorem 1 (Soundness of Embedding MMST T ). Suppose that MM is
a multimodal language and MMST T its corresponding logic in ST T . Let s ∈
MM be a multimodal logic proposition and let sι�o be the corresponding term
in MMST T . If |=ST T (valid sι�o) then |= s.

Proof. The proof is by contraposition. For this, assume 6|= s, that is, there is a
Kripke model K = 〈W, (Rr)r∈S , |=〉 with w 6|= s for some w ∈ W . By Lemma



1, for arbitrary φ we have V[w/Wι],φ (sι�oWι) = F in Henkin model MK for K.
Thus, Vφ (∀Wι (sι�oW )) =βη Vφ (valid sι�o) = F . Hence, 6|=ST T (valid sι�o).

In order to prove completeness, we reverse our mapping from Henkin models
to Kripke models.

Definition 4 (Kripke Model KM for Henkin model M). Let p1, . . . , pm

be the atomic primitives occuring in the modal language MM. Furthermore, let
2r1 , . . . , 2rn

be the box operators for accessibility relations r1, . . . , rn in MM.
Remember that the pj (1 ≤ j ≤ m) are mapped to predicate constants pj

ι�o and
the ri (1 ≤ i ≤ n) to relation constants ri

ι�ι�o. Except for these, there are no
other constant symbols given in language MMST T .

Now, let Henkin model M = 〈{Dα}α∈T , I〉 be given. The Kripke model KM =
〈W, (Rr)r∈S , |=〉 for M is defined as follows: We choose the set of worlds W as
the set of individuals Dι. Moreover, we choose |= such that w |= pj in KM if
(Ipj

ι�o)(w) = T in M and w 6|= pi otherwise. Similarly, we choose Rri such that
wRri w′ in KM if (Iri

ι�ι�o)(w,w
′) = T in M and ¬(wRri w′) otherwise. It is

easy to check that KM is a Kripke model.

Lemma 2. Let KM = 〈W, (Rr)r∈S , |=〉 be a Kripke model for Henkin model
M = 〈{Dα}α∈T , I〉. Furthermore, let q ∈MM be a multimodal logic proposition
and let qι�o be the corresponding term in MMST T . For all worlds w ∈W and
variable assignments φ, we have w |= q if and only if V[w/Xι],φ (qι�oXι) = T for
all variables Xι.

Proof. The proof is by induction on the structure of qι�o ∈ MMST T . Let
q = pι�o for some predicate constant pι�o ∈ MMST T . By definition, pι�o cor-
responds to atomic primitive p ∈MM. By construction of Kripke model KM we
have w |= p if and only if V[w/Xι],φ (pι�oXι) = I(pι�o)(w) = T . Let q = ¬ sι�o

for sι�o ∈MMST T . Since KM is a Kripke model, w |= ¬ s if and only if w 6|= s.
By induction, w 6|= s if and only if V[w/Xι],φ (sι�oXι) = F . Since M is a Henkin
model this is equivalent to V[w/Xι],φ (¬(sι�oXι)) =βη V[w/Xι],φ ((¬ sι�o)Xι) =
T . Let q = sι�o ∨ tι�o for sι�o, tι�o ∈MMST T . KM is a Kripke model, so w |=
s ∨ t is equivalent to w |= s or w |= t. By induction, w |= s or w |= t is equivalent
to V[w/Xι],φ (sι�oXι) = T or V[w/Xι],φ (tι�oXι) = T , and, since M is a Henkin
model, to V[w/Xι],φ ((sι�oXι) ∨ (sι�oXι)) =βη V[w/Xι],φ (( sι�o ∨ tι�o)Xι) =βη

T . Let q = 2rι�ι�o sι�o for sι�o ∈ MMST T and accessibility relation constant
rι�ι�o. rι�ι�o corresponds to r resp. Rr, that is, for all u we have wRr u if and
only if (I rι�ι�o)(w, u) = T . KM is a Kripke model, so w |= 2r s if and only if
for all u with Rr(w, u) we have u |= s. By induction and the above correspon-
dence, this is equivalent to the following: for all u with (I rι�ι�o)(w, u) = T we
have V[u/Vι],φ (sι�o Vι) = T . This is equivalent to the statement for all u we have
V[u/Vι],[w/Xι],φ (¬(rι�ι�oXι Vι) ∨ (sι�o Vι)) = T , and hence to V[w/Xι],φ (∀Yι

(¬(rι�ι�oXι Yι) ∨ (sι�o Yι))) =βη V[w/Xι],φ ((2rι�ι�o sι�o)Xι) = T .

Theorem 2 (Completeness of Embedding MMST T ). Let s ∈ MM be a
monomodal logic proposition and let sι�o be the corresponding term in MMST T .
If |= s then |=ST T (valid sι�o).



Proof. The proof is by contraposition. Assume 6|=ST T (valid sι�o), that is,
for a Henkin model M = 〈{Dα}α∈T , I〉 and a variable assignment φ we have
Vφ (valid sι�o) = F in M . This implies that there is some w ∈ Di such that
V[w/Wι],φ (sι�oWι) = F in M . By Lemma 2 we know that w 6|= s in Kripke
model KM = 〈W, (Rr)r∈S , |=〉 for M . Hence, 6|= s.

3.2 Reasoning in and about Propositional Normal Multimodal
Logics

A prominent monomodal logic is logic S4. For modeling S4 in our framework
we consider a single 2r -operator, and therefore one single accessibility relation
r. In S4 the accessibility relation r is is required to be reflexive and transitive.
These semantic properties of r correspond to the well known axioms 2r a ⊃ a
and 2r a ⊃ 2r 2r a. Any proof problem t ∈ MM for modal logic S4 can thus
be translated using our embedding into the following proof problem t′ in ST T :

t′ := (∀Aι�o valid2r A ⊃ A) ∧ (∀Aι�o valid2r A ⊃ 2r 2r A) ⊃ valid tι�o

Similarly, we can model other normal multimodal and monomodal logics in sim-
ple type theory. Hence, we can exploit off-the-shelf automated higher-order the-
orem provers such as our LEO-II [14] as generic reasoners for reasoning in these
logics. For simple problems, the performance results of LEO-II are encouraging
[13]. For instance, Example 2 can be proven automatically in less than 0.1 sec-
onds on a standard notebook computer and similar performance results can be
achieved with the prover TPS [6, 7].

We can even use higher-order theorem provers to investigate meta-theoretic
properties of various modal logics automatically. This issue has been studied in
our previous work [13]; here we give two examples.

Example 3. The equivalence between axioms 2r a ⊃ a and 2r a ⊃ 2r 2r a
and the reflexivity and transitivity properties of the accessibility relation r is
encoded as the following proof problem in ST T :

∀Rι�ι�o ((∀Aι�o valid 2RA ⊃ A)
∧(∀Aι�o valid 2RA ⊃ 2R 2RA))
⇔ (refl R ∧ trans R)

where refl and trans are abbreviations for the terms λRι→ι→o ∀Xι RX X and
λRι→ι→o ∀Xι ∀Yι ∀Zι RX Y ∧RY Z ⇒ RX Z resp. LEO-II can prove this well
known modal logic meta-level problem in less than 0.3 seconds.

As example Example 3 confirms, we can translate a proof problem t ∈MM
for modal logic S4 alternatively into a problem t′′ in ST T of the following form:

t′′ := (refl r) ∧ (trans r) ⊃ valid tι�o

Example 4. We can exploit our higher-order framework to study questions such
as,



Is the axiom 2r a ⊃ a valid in basic modal logic K for arbitrary acces-
sibility relations r?

This question is encoded as ∀R ∀A valid 2RA ⊃ A. As expected, LEO-II fails
to prove this problem. But we may also formalize the question,

Is there a relation r such that for all modal propositions a, axiom 2r a ⊃
a is valid in K?

This is encoded as ∃R ∀A valid 2RA ⊃ A. LEO-II can solve this problem
in 3.0 seconds. A clever instantiation for relation R is actually needed to solve
this problem. (R obviously needs to be reflexive.) This instantiation cannot be
synthesized in LEO-II by higher-order pre-unification. In fact, LEO-II needs
to guess an appropriate instantiation by applying primitive substitutions (also
called set instantiations) [3] and what LEO-II essentially proposes based on prim-
itive substitutions is to consider the universal relation as a candidate relation (a
predecessor version of LEO-II suggested the equality relation [13]).

It is no surprise that LEO-II can also prove in 0.2 seconds the correspondence
of the reflexivity axiom and the reflexivity property of the accessibility relation.

Example 4 illustrates that our embedding is generally suited to support the
computational exploration of multimodal logics and their properties within a
uniform framework. However, non-trivial challenges are raised; for effectively an-
swering questions as illustrated in Example 4 within a higher-order automated
theorem prover, further progress is required for handling primitive substitutions
and set instantiations. So far, primitive substitutions blindly guess some logical
structure for free predicate or set variables in a clause that cannot be synthesized
otherwise, and they introduce new free variables in order to delay some further
decisions. The instantiation of the new and the remaining free variables is ide-
ally supported by higher-order pre-unification. Generally, however, the primitive
substitution process has to be iterated which leads to very challenging search
space for clause sets containing many free variables.

4 Propositional Intuitionistic Logic in Simple Type
Theory

In this section we combine Gödels interpretation of propositional intuitionistic
logic in propositional modal logic S4 [21] with our results from the previous
section in order to provide a sound and complete embedding of propositional
intuitionistic logic into simple type theory.

Gödel studies the propositional intuitionistic logic IPL defined by

s, t ::= p | ¬̇ s | s ⊃̇ t | s ∨̇ t | s ∧̇ t

He introduces a mapping from IPL into propositional modal logic S4 which
maps ¬̇ s to ¬2r s, s ⊃̇ t to 2r s ⊃ 2r t, s ∨̇ t to 2r s ∨ 2r t, and s ∧̇ t to s ∧ t.
(Alternative mappings have been proposed and studied in the literature which



we could employ here equally as well.) By simply combining Gödel’s mapping
with our mapping from before we obtain the following embedding of IPL in
simple type theory.

Definition 5 (Propositional Intuitionistic Logic IPLST T ). Let IPL be a
propositional intuitionistic logic with atomic primitives p1, . . . , pm (m ≥ 1) .

We define the set IPLST T of corresponding propositional intuitionistic logic
propositions in ST T as follows.

1. For the atomic primitives p1, . . . , pm we introduce corresponding predicate
constants p1

ι�o, . . . , pm
ι�o. Moreover, we provide the single accessibility rela-

tion constant rι�ι�o.
2. Corresponding to Gödel’s mapping we introduce the logical connectives of

IPLST T as abbreviations for the following λ-terms (we omit the types here):

¬̇ = λA λX ∀Y ¬r X Y ∨AY
⊃̇ = λA λB λX ¬(∀Y ¬r X Y ∨AY ) ∨ (∀Y ¬r X Y ∨B Y )
∨̇ = λA λB λX (∀Y ¬r X Y ∨AY ) ∨ (∀Y ¬r X Y ∨B Y )
∧̇ = λA λB λX ¬(¬AX ∨ ¬BX)

3. We define the set of IPLST T -propositions as the smallest set of simply typed
λ-terms for which the following hold:
– The predicate constants p1

ι�o, . . . , pm
ι�o define the atomic MMST T -

propositions.
– If φ and ψ are IPLST T -propositions, then so are ¬̇ φ, φ ⊃̇ψ, φ ∨̇ψ, and
φ ∧̇ψ.

The notion of validity we adopt is the same as given before in Definition 2.
However, since Gödel connects IPL with modal logic S4, we transform each
proof problem t ∈ IPL into a corresponding proof problem t′ in ST T of the
following form

t′ := (∀Aι�o valid2r A ⊃ A) ∧ (∀Aι�o valid2r A ⊃ 2r 2r A) ⊃ valid tι�o

where tι�o is the IPLST T term for t according to Definition 5. Alternatively we
may translate t into t′′:

t′′ := (refl r) ∧ (trans r) ⊃ valid tι�o

Combining soundness [21] and completeness [26] of Gödel’s embedding with
our soundness and completeness theorems 1 and 2 we obtain the following corol-
lary:

Corollary 1 (Soundness and Completeness of Embedding IPLST T ).
Let t ∈ IPL and let t′ ∈ ST T as constructed above. t is valid in propositional
intuitionistic logic if and only if t′ is valid in ST T .



5 Conclusion

In this paper we have explored an interesting and promising research direction:
the embedding of propositional normal multimodal logic and propositional in-
tuitionistic logic in simple type theory. We argue that simple type theory can
thus provide a fruitful, uniform basis for modeling and exploring different non-
classical logics. Our results provide a theoretical foundation for reasoning not
only within but also about these logics in simple type theory by employing off-the-
shelf higher-order proof assistants and higher-order automated theorem provers.
Preliminary experiments with our approach have been promising [13]. A small
corpus of related example problems has meanwhile been entered into the new
TPTP library for automated higher-order theorem proving [32] in order to stim-
ulate further experiments with our approach and to foster the improvement of
existing higher-order automated theorem provers for the task.

Future work includes the study of further embeddings of non-classical logics
into simple type theory. For example, access control logics, which are important
in the field of computer security, can be embedded analogously [11]. Ongoing and
future work also includes extending our embeddings to first-order and higher-
order multimodal logics (or intuitionistic logics).

Acknowledgements: We thank the anonymous reviewers of this paper for their
comments.
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296–302.

22. Moritz Hardt and Gert Smolka. Higher-order syntax and saturation algorithms
for hybrid logic. Electronic Notes in Theoretical Computer Science, 174(6):15–27,
2007.

23. John Harrison. HOL Light Tutorial (for version 2.20). Intel JF1-13, September
2006. http://www.cl.cam.ac.uk/~jrh13/hol-light/tutorial\_220.pdf.

24. Leon Henkin. Completeness in the theory of types. Journal of Symbolic Logic,
15:81–91, 1950.

25. Mark Kaminski and Gert Smolka. Terminating tableaux for hybrid logic with the
difference modality and converse. In Armando et al. [8], pages 210–225.

26. John Charles Chenoweth McKinsey and Alfred Tarski. Some theorems about the
sentential calculi of lewis and heyting. Journal of Symbolic Logic, 13:1–15, 1948.

27. Stephan Merz. Yet another encoding of TLA in Isabelle. Available on the Internet:
http://www.loria.fr/~merz/projects/isabelle-tla/doc/design.ps.gz, 1999.



28. Linh Anh Nguyen. A fixpoint semantics and an SLD-resolution calculus for modal
logic programs. Fundamenta Informaticae, 55(1):63–100, 2003.

29. Andreas Nonnengart. How to use modalities and sorts in Prolog. In Craig MacNish,
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