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Abstract

Classical automated theorem proving of today is based on ingenious search techniques
a proof for a given theorem in very large search spaces—often in the range of several billion c
But in spite of many successful attempts to prove even open mathematical problems autom
their use in everyday mathematical practice is still limited.

The shift from search based methods to more abstract planning techniques however op
a paradigm for mathematical reasoning on a computer and several systems of that kind now
a mix of interactive, search based as well as proof planning techniques.

The�MEGA system is at the core of several related and well-integrated research projects
�MEGA research group, whose aim is to develop system support for a working mathematic
well as a software engineer when employing formal methods for quality assurance. In par
�MEGA supports proof development at a human-oriented abstract level of proof granularity.
modular system with a central proof data structure and several supplementary subsystems in
automated deduction and computer algebra systems.�MEGA has many characteristics in comm
with systems like NUPRL, COQ, HOL, PVS, and ISABELLE. However, it differs from these system
with respect to its focus onproof planningand in that respect it is more similar to the proof plann
systems CLAM andλCLAM at Edinburgh.
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1. Introduction

The vision of computer-supported mathematics and a system which provides
grated support for all work phases of a mathematician has always fascinated rese
in artificial intelligence, particularly in the deduction systems area, and more recen
mathematics as well. The dream of mechanizing (mathematical) reasoning dates
Gottfried Wilhelm Leibniz in the 17th century with the touching vision that two philo
phers engaged in a dispute would one day simply code their arguments into an appr
formalism and thencalculate(Calculemus!) who is right. At the end of the 19th centu
modern mathematical logic was born with Frege’s Begriffsschrift and an important
stone in the formalization of mathematics was Hilbert’s program and the 20th ce
Bourbakism.

With the logical formalism for the representation and calculation of mathematical
ments emerging in the first part of the twentieth century it was but a small step to impl
these techniques now on a computer as soon as it was widely available.

In 1954 Martin Davis’ Presburger Arithmetic Program was reported to the US A
Ordnance and the Dartmouth Conference in 1956, which is not only known for g
birth to artificial intelligence in general but also more specifically for the demonstrati
the first automated reasoning programs for mathematics by Herb Simon and Alan N

However, after the early enthusiasm of the 1960s, in particular the publication
resolution principle in 1965[84], and the developments in the 70s a more sober realiz
of the actual difficulties involved in automating everyday mathematics set in and the
increasingly fragmented into many subareas which all developed their specific tech
and systems.1

It is only very recently that this trend appears to be reversed, with the CALCULE-
MUS2 and MKM 3 communities as driving forces of this movement. In CALCULEMUS

the viewpoint is bottom-up, starting from existing techniques and tools developed
computer-algebra and deduction systems communities. MKM 3 approaches the goal o
computer-based mathematics for the new millennium by a complementary top-dow
proach starting from existing, mainly pen and paper based mathematical practice d
system support.

The�MEGA project aims at an integrated approach since its start in the mid 80s
is deeply rooted in both initiatives. The�MEGA system is at the core of the project and
has many characteristics in common with systems like NUPRL [1], COQ [34], HOL [47],
PVS [79], and ISABELLE [80,78]. However, it differs from these systems with respect to
focus onproof planningand in that respect it is more similar to the proof planning syst
CLAM andλCLAM at Edinburgh[83,29]. In this article we shall first provide an overvie
of the main developments of the�MEGA project and then point to current research a
some future goals.

1 The history of the field is presented in a classical paper by Martin Davis[35] and also in[36] and more
generally in his history of the first electronic computers[37]. Another source is Jörg Siekmann[86] and more
recently[87].

2 http://www.calculemus.org.
3 http://www.mkm-ig.org.

http://www.calculemus.org
http://www.mkm-ig.org
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2. �MEGA

The�MEGA project represents one of the major attempts to build an all encompa
assistance tool for the working mathematician or for the formal work of a softwar
gineer. It is a representative of systems in the paradigm ofproof planningand combines
interactive and automated proof construction for domains with rich and well-struc
mathematical knowledge. The inference mechanism at the lowest level of granula
an interactive theorem prover based on a higher-order natural deduction (ND) varia
soft-sorted version of Church’s simply typedλ-calculus[33]. The logical language, whic
also provides some support for partial functions, is calledPOST , for partial functions
andorder sorted type theory. The search for a proof, however, is usually conducted
higher level of granularity defined bytacticsandmethods. Automated proof search at th
‘abstract’ (i.e., less granular) level is calledproof planning(see Section2.3). Proof con-
struction is also supported by already proven assertions, i.e., theorems and lemma
by calls to external systems to simplify or solve subproblems. Resource-guided sea
applicable tactics, methods, and external systems is conducted by�ANTS, an agent-base
reasoning system.

2.1. System overview

At the core of�MEGA is theproof plan data structurePDS [32], in whichproofsand
proof plansare represented at various levels of granularity (seeFig. 1). ThePDS is a di-

Fig. 1. The proof plan datastructurePDS is at the core of the�MEGA system.
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rected acyclic graph, whereopen nodesrepresent unjustified propositions that still need
be proved andclosed nodesrepresent propositions that are already proved. The proof p
are developed and classified with respect to a taxonomy of mathematical theories
mathematical knowledge base MBASE [42,56]. The user of�MEGA, or the proof planne
MULTI [73,64], or else the agent-based reasoning system�ANTS [19] modify thePDS
during proof development until a complete proof plan, where all nodes are closed, ha
found. They can also invoke external reasoning systems, whose results are include
PDS after appropriate transformation. Once a complete proof plan at an appropriat
of granularity has been found, this plan must be expanded by sub-methods and sub
into lower levels of granularity until finally a proof at the level of the logical calculu
established. After expansion of these high-level proofs to the underlying ND-calculu
PDS can be checked by�MEGA’s proof checker.

Hence, there are two main tasks supported by this system, namely (i) to find a
plan, and (ii) to expand this proof plan into a calculus-level proof; and both jobs c
equally difficult and time consuming. Task (ii) employs a combination of an LCF-s
tactic based expansion mechanism as well as deductive proof search in order to g
a lower-level proof object. It is a design objective of thePDS that variousproof levels
coexist with their respective dynamic relationships being maintained.

The graphical user interfaceL�UI [90] provides both a graphical and a tabular vi
of the proof under consideration, and the interactive proof explanation systemP.rex [40,
39,41]generates a natural language presentation of the proof (seeFigs. 5 and 6).

The previously monolithic system has been split up and separated into severa
pendent modules (seeFig. 2), which are connected via the mathematical software
MATHWEB-SB [99]. An important benefit is that MATHWEB-SB modules can be distrib
uted over the Internet and are then remotely accessible by other research groups
There is now a very active MathWeb user community with sometimes several tho
theorems and lemmata being proven per day. Many theorems are generated autom
as (currently non-reusable and non-indexed) subproblems in natural language pro
(see the Doris system4), proof planning and verification tasks.

2.2. Proof objects

The central data structure for the overall search is the proof plan data structurePDS
in Fig. 1 and the subsystems cooperate to construct a proof whose status is store
in thePDS . The facilities provided by the subsystems include support for interactive
mixed-initiative theorem proving by the user, the proof planner, and by external sy
such as automated theorem provers and computer algebra systems. These facilities
in particular, the representation of proof steps at different levels of granularity ranging
abstract, human-oriented reasoning to logic-level justifications.

Therefore�MEGA provides a hierarchical proof plan data structure that represe
(partial) proof at different levels of granularity (called partial proof plans). Technically
PDS is a directed acyclic graph consisting of nodes, justifications and hierarchical

4 http://www.cogsci.ed.ac.uk/~jbos/doris/.

http://www.cogsci.ed.ac.uk/~jbos/doris/
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Fig. 2. The vision of an all encompassing mathematical assistance environment: we have now modular
out-sourced many of the support tools (whose names are printed in red) such that they can also be used
systems via the MATHWEB-SB software bus. (For interpretation of the references in color in this figure leg
the reader is referred to the web version of this article.)

(see[32] for more details). Each node represents a sequent and can beopenor closed. An
open node corresponds to a sequent that is to be proved and a closed node to a
which is already proved or reduced to other sequents using an inference ruleR := A1...Ak

B
;

whereR may represent a calculus rule, a tactic, a method, or a call to an externa
tem. Such a rule denotes that we can concludeB from A1, . . . ,Ak or reading it the othe
way round thatB can be reduced toA1, . . .Ak . Thus, an inference step is represented
a justificationR which connects a nodenb containing the sequentB to nodesn1, . . . , nk

containing the sequentsA1, . . .Ak . If a node has more than one outgoing justificati
each of them represents a proof attempt of the sequent stored in the source node
different granularity. These justifications are ordered with respect to their granulari
ing hierarchical edges. A hierarchical edge connects two justificationsj1 andj2 with the
meaning that justificationj1 represents a more detailed proof attempt than justificationj2.
Thus,�MEGA’s PDS explicitly maintains the original proof plan as well as intermedi
expansion layers in an expansion hierarchy.

Normally, the user wants to see the proof only at a specific level of granularity
therefore he can chose the granularity by selecting the justification for each node
PDS . Fig. 3shows an example of how the selection of a justification of a node determ
the level of granularity. It shows a noden with two outgoing justificationsj1 andj2, which
are connected by a hierarchical edgeh from j1 to j2 indicating thatj1 is a more granula
justification thanj2. The user can decide whether he wants to see the more detailed v
of the proof given byj1 (and its subtreet1) or the more abstract version given byj2 (and
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Fig. 3. Representation of aPDS node with justifications at different levels of granularity.

Fig. 4. Possible views of proofs at different levels of granularity inside aPDS .

its subtreet2). The two different possible selections are shaded. Selecting the justific
for each node the user gets a view into thePDS-graph, called aPDS-view (seeFig. 4),
at the selected level of granularity.

Note that in contrast to the traditional LCF approach, it is not mandatory to imm
ately expand a high-level proof plan to a lower-level, because we explicitly represe
high-level proof plans in thePDS and thus conceptually separate plan formation fr
plan validation (by recursive expansion). Validation of proof plans can thus be post
and executed at any time later on. In case of an unsuccessful expansion attempt,�MEGA’s
PDS provides mechanisms which change the status of the affected proof nodes frojus-
tified, i.e.,closed, to openand then consistently clean up all structures, which depen
these nodes. Thus, failing expansion may in particular introduce new gaps into a prev
closed proof plan and hence proof planning has to start again in order to fill the ga
search for a new plan.

Because thePDS represents the dependencies among goals and subgoals as
between high-level inference rules and lower-level inference rules, we can traver
datastructure in many ways for different purposes like visualization, proof explan
natural language generation and dependency-directed pruning of the proof object.

In summary, coexistence of several granularity levels and the dynamical mainte
of their relationship is a central and distinguishing design objective of�MEGA’s PDS .
ThePDS makes the hierarchical structure of proof plans explicit and retains it for fu
applications such as proof expansion, proof explanation withP.rexor an analogical transfe
of plans.
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Currently, however, we cannot change the representationinsideof a proof node, which is
still something to be desired. For example, it would be nice to be able to change the
propositions in naive set theory into Venn diagrams such that a diagrammatic rea
system could be used. Support for representational shifts of this kind in combinatio
different levels of granularity is future work.

The proof object generated by�MEGA for the theorem “
√

2 is irrational”, which has
a well known human proof of less than a dozen lines, is recorded in a technical
[14], where the unexpanded and the expanded proof objects are presented in gr
tail: The most abstract proof at the level of the proof plan has about twenty steps a
fully expanded proof has about 750. The final proof in natural language generated
�MEGA-system is shown inFig. 6. A general presentation of this interesting case st
is [88].

2.3. Proof planning

�MEGA’s main focus is on knowledge-based proof planning[25,26,74], where proofs
are not conceived in terms of low-level calculus rules, but at a less detailed granulari
a more abstract level, that highlights the main ideas and de-emphasizes minor log
mathematical manipulations on formulae.

Knowledge-based proof planning is a paradigm in automated theorem pro
which swings its motivational pendulum back to the AI origins in that it empl
and further develops many AI principles and techniques such as hierarchical
ning, knowledge representation in frames and control rules, constraint solving,
cal theorem proving, and meta-level reasoning. It differs from traditional search
techniques in automated theorem proving not least in its level of granularity:
proof of a theorem is planned at an abstract-level where an outline of the
is found first. This outline, that is, the abstract proof plan, can be recursively
panded to construct a proof within a logical calculus provided the expansion o
proof plan does not fail. The plan operators, calledmethods, represent mathematic
techniques familiar to a working mathematician. While the knowledge of a m
matical domain as represented by methods and control rules is specific to the
ematical field, the representational techniques and reasoning procedures are g
purpose. For example, one of our first case studies[74] used the limit theorems pro
posed by Woody Bledsoe[23] as a challenge to automated reasoning systems.
general-purpose planner makes use of the mathematical domain knowledge ofε–δ-proofs
and of the guidance provided by declaratively represented control rules, which
spond to mathematical intuition about how to prove a theorem in a particular situ
These rules are the basis for our meta-level reasoning and the goal-directed
ior.

Domain knowledge is encoded into methods, control rules, and strategies. Mor
methods and control rules can employ external systems (e.g., one method is to call
the computer algebra systems) and make use of the knowledge in these systems.�MEGA’s
multi-strategy proof planner MULTI [73,64] searches then for a plan using the acqui
methods and strategies guided by the control knowledge in the control rules.



ARTICLE IN PRESS

S1570-8683(05)00073-X/FLA AID:88 Vol.•••(•••) [DTD5] P.8 (1-27)
JAL:m1a v 1.50 Prn:17/11/2005; 11:16 jal88 by:Jolanta p. 8

8 J. Siekmann et al. / Journal of Applied Logic••• (••••) •••–•••

ate that

l state

s
ally

tions
set of

rmulae
ble
ented
ng
ptions.
g
of the
.
d to a

ists of
state.

ethods
proof
ich all

d
es for
for the
,
g

straint
liar re-

or in-
ints and
or
2.3.1. AI principles in proof planning
A planning problemis a formal description of aninitial state, agoal, and someopera-

tors that can be used to transform the initial state via some intermediate states to a st
satisfies the goal. Applied to a planning problem, aplannerreturns a sequence ofactions,
that is, instantiated operators (i.e., methods), which reach a goal state from the initia
when executed. Such a sequence of actions is called asolution plan.

Proof planning considers mathematical theorems as planning problems[25]. The initial
state of a proof planning problem consists of the proofassumptionsof the theorem, wherea
the goal is thetheoremitself. The operators in proof planning are the methods, tradition
they are tactics augmented by pre- and postconditions.

In �MEGA, proof planning is the process that computes actions, that is, instantia
of methods, and assembles them sequentially in order to derive a theorem from a
assumptions. The effects and the preconditions of an action in proof planning are fo
in the higher-order languagePOST , where the effects are considered as logically infera
from the preconditions using this method. A proof plan under construction is repres
in the proof plan data structurePDS , which consists initially of an open node containi
the conjecture to be proven, and closed, i.e., justified nodes for the proof assum
The introduction of a method changes thePDS by adding new proof nodes and justifyin
the effects of the method by applications of the method to its premises. The aim
proof planning process is to reach aclosedPDS , that is, aPDS without open nodes
Thesolution proof planproduced is then a record of the sequence of actions that lea
closedPDS .

By allowing for forward and backward methods,�MEGA’s proof planner MULTI com-
bines forward and backward state-space planning. Thus, aplanning statein MULTI is a
pair of the current world state and the current goal state. The initial world state cons
the given proof assumptions and is transferred by forward methods into a new world
The goal state consists of the initial open node and is transferred by backward m
into a new goal state containing new open nodes. From this point of view the aim of
planning is to compute a sequence of actions that derives a current world state in wh
the goals are satisfied.

As opposed to precondition achievement planning (e.g., see[96]), effects of methods
in proof planning do not cancel each other. For instance, a method with effect¬F intro-
duced for an open nodeL1 does not threaten the effectF introduced by another metho
for an open nodeL2. Dependencies among open nodes result from shared variabl
witness terms and their constraints. Constraints can, for instance, be instantiations
variables but they can also be mathematical constraints such asx < c, which states that
whatever the instantiation forx is, it has to be smaller thanc. The constraints created durin
the proof planning process are collected in the constraint store of theCoSIE system[76,
100], which is a domain-independent extension of existing propagation-based con
solvers. The extension turned out to be necessary, since proof planning has pecu
quirements that are not met by off-the-shelf constraint solvers:CoSIE computes symbolic
constraint inferences while respecting the logical side-conditions of proof planning, f
stance, the Eigenvariable condition and the logical dependencies between constra
their context. The search procedure ofCoSIE computes logically correct instantiations f
the meta-variables.
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A proof-planning method is applicable only if its constraints are consistent with
constraints collected so far. Dependencies among goals with shared variables are
to analyze and can cause various kinds of failures in a proof planning attempt (see[63] for
more details).

2.3.2. Methods, control rules, and strategies
Methodsare traditionally perceived as tactics in tactical theorem proving[78] aug-

mented with preconditions and effects, calledpremisesand conclusions, respectively.
A method represents a large inference of the conclusion from the premises based
body of the tactic. For instance,NotI-m is a (very low-level) method whose purpose is
prove a goalΓ � ¬P by contradiction. IfNotI-m is applied to a goalΓ � ¬P then it closes
this goal and introduces the new goal to prove falsity,⊥, under the assumptionP , that
is, Γ,P �⊥. Thereby,Γ � ¬P is the conclusion of the method, whereasΓ,P �⊥ is the
premise of the method.NotI-m is a backwardmethod, which reduces a goal (the conc
sion) to new goals (the premises).Forward methods, in contrast, derive new conclusio
from given premises. For instance,=Subst-m performs equality substitutions, for exam
ple, by deriving from the two premisesΓ � P [a] andΓ � a = b the conclusionΓ � P [b],
where an occurrence ofa is replaced by an occurrence ofb. Note thatNotI-m and=Subst-
m are simple examples of domain-independent, logic-related methods, which are ne
addition to domain-specific, mathematically motivated methods as illustrated below in
tion 2.3.3. Knowledge-based proof planning expands on these ideas and allows for
general mathematical methods to be encapsulated into the proof planningmethods.

Control rules represent mathematical knowledge about how to proceed in the
planning process. They can influence the planner’s behavior at choice points (e.g.,
goal to tackle next or which method to apply next) by preferring members of the c
sponding list of alternatives (e.g., the list of possible goals or the list of possible meth
This way promising search paths are preferred and the search space can be pruned

Strategiesemploy a fixed set of methods and control rules and, thus, tackle a the
by some mathematical standard that happens to be typical for this theorem. The rea
as to which strategy to employ on a problem is an explicit choice point in MULTI . In par-
ticular, MULTI can backtrack from a chosen strategy and commence search with dif
strategies.

Detailed discussions of�MEGA’s method and control rule language can be found
[63,65]. A detailed introduction to proof planning with multiple strategies is given in[73,
64] and more recently in[69]. In the following we briefly sketch how proof planning wi
generic and domain specific methods along with domain specific control strategies
applied to plan “irrationality ofj

√
l ”-conjectures for arbitrary natural numbersj andl (see

also[88]).

2.3.3. Exploiting domain specific knowledge: proof planningj
√

l-problems
�MEGA can successfully proof plan and proof/disprove the irrationality ofj

√
l for arbi-

trary natural numbersj andl. In order to find a general approach to tackle these proble
we first showed the challenge problem “

√
2 is irrational” (see[97]) and then analyze

proofs for statements such as
√

8,
√

(3 · 3) − 1, or 3
√

2. We found that some of the concep
and inference steps we used for

√
2 are particular to this problem and do not genera
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whereas others do. Thus, the analysis led to some generalized concepts, theore
proof steps, which we encoded into methods and control rules, which together for
planner strategyfor this kind of problems. We shall now discuss the acquired methods
control rules.

The essential idea of the proofs is as follows:

1. Use the MBASE-theoremRAT-CRITERION (it states that for each rational numberx,
there are integersy andz, such thatx · y = z, wherey andz have no common diviso
besides 1) and construct an indirect proof.

2. In order to derive the contradiction show that the two witnesses (i.e., the exis
variablesy and z) in RAT-CRITERION, which are supposed to have no comm
divisor, actually do have a common divisord .

3. In order to find a common divisor transform equations (for example,
√

2 · n = m →
2 · n2 = m2), derive new divisor statements (for example, from 2· n2 = m2 derive that
m2 has divisor 2, or from the statement thatm2 has divisor 2 derive thatm has divisor
2), and derive from given divisor statements new representations of terms, whic
be used again for equational transformations (for example, from the statementm

has divisor 2 derive thatm = 2 · k for somek).
Note that we are particularly interested in prime divisors, since only for prime num
d is it true that ifd is a divisor ofmj thend is also a divisor ofm. A corresponding
theorem is available in�MEGA’s knowledge base MBASE.

To realize the first idea (1), the planner MULTI has to decide for an indirect proof, app
the theoremRAT-CRITERION, and derivel · nj = mj for integersm andn, which are
supposed to have no common divisor. These steps are canonical for arbitraryj

√
l problems.

Hence, we could implement them all into one method. However, to avoid the well k
problem of over-fitting methods, i.e., to make them special just for a particular theore
decided to employ already existing methods from other domains:NotI-m (contradiction of
negated statements),MAssertion-m (apply a theorem or an axiom from the theory),ExistsE-
Sort-m (decompose existentially quantified formulae),AndE-m (decompose conjunctions

The application of the methodsExistsE-Sort-m, AndE-m, andNotI-m do not need any
further control, but the application ofMAssertion-m has to be guided by selecting the the
rem or axiom to be applied. This is achieved by a control ruleapply-ratcriterion,
which determines that the theoremRAT-CRITERION should be used forMAssertion-m,
whenever there is a goal formulaj

√
l.

The second idea (2) is realized with the methodContradictionCommonDivisor-m. When
MULTI tries to apply the method it searches first for an assumption stating that two
t1, t2 have no common divisor, and then it searches for two (derived) assumptions s
thatt1 andt2 both have a divisord . This method is not guided by control rules, but MULTI

tries to apply it to some derived assumptions in each planning cycle.
The third idea (3) of the proof technique is encoded into several collabor

methods:TransFormEquation-m, =Subst-m, PrimeFacsProduct-m, PrimeDivPower-m, and
CollectDivs-m. The methodTransFormEquation-m contains knowledge about suitab
equational transformations for our problem domain. It is applied to an equation and d
a new equation. For instance,TransFormEquation-m derivesl · nj = mj from j

√
l · n = m,
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or it derivesn2 = 2 · k2 from 2 · n2 = (2 · k)2. The method=Subst-m performs equality
substitutions.

PrimeFacsProduct-m andPrimeDivPower-m encapsulate the knowledge of how to der
divisor statements.PrimeFacsProduct-m is applied to equationsx = l · y (or l · y = x)
and derives a new assumption which is a conjunction of statements thatx has particular
prime divisors. The method employs MAPLE to compute the prime divisors ofl using
MAPLE’s functionwith(numtheory, factorset). It derives thatx has to have al
prime divisors ofl. For instance, from 2· n2 = m2 PrimeFacsProduct-m derives thatm2

has the prime divisor 2, from 6· n2 = m2 it derives thatm2 has the prime divisors 2 and
PrimeDivPower-m is applied to an assumption that states thatyj has prime divisord and
derives thaty has prime divisord .

For a termt CollectDivs-m searches for assumptions stating thatt has some prime divi
sors. Then, it computes different possible representations oft based on the set of the prim
divisors{p1, . . . , pn}. That is, for each subset{p′

1, . . . , p
′
n′ } of {p1, . . . , pn} it adds a new

assumptiont = p′
1 · · ·p′

n′ · c′ for some integerc′.
TransFormEquation-m, PrimeFacsProduct-m andPrimeDivPower-m are applied when

ever possible and no guidance is required. The application of the methodCollectDivs-m,
however, is guided by the control ruleapply-collectdivs, which prefersCollectDivs-
m with respect to a termt as soon as there are assumptions stating thatt has some prime
divisors. The application of=Subst-m is guided by the control ruleapply-=subst,
which states that, after an application ofCollectDivs-m, the method=Subst-m should be
applied in order to use the equations resulting fromCollectDivs-m. When a method such a
=Subst-m, PrimeFacsProduct-m, or PrimeDivPower-m is applied to some premises, th
the same method is afterwards applicable again to the same premises, deriving th
result. To avoid endless loops of such methods, we added the control rulereject-loop,
which blocks the repeated application of a forward method to the same premises.

2.4. �ANTS: agent-oriented theorem proving

�ANTS has originally been developed to support interactive theorem proving[18] and
later its was extended to a fully automated reasoning system[19,92]. The basic idea o
�ANTS is to encapsulate each inference rule into a pro-active agent, which chec
tomatically for its own applicability. For each proof situation thePDS is continuously
checked by these agents and thus composes a ranked list of potentially applicable in
rules. In this process all calculus rules, tactics, external system calls and methods,
tively called inference rules, are uniformly viewed with respect to three sets: premi
conclusions, and additional parameters. The elements of these three sets are calleargu-
mentsof the inference rule and they usually depend on each other. An inference r
applicable if at least some of its arguments can be instantiated with respect to the
proof context. The task of the�ANTS-system is now to determine the applicability
inference rules by computing instantiations for their arguments.

The�ANTS-architecture consists of two layers. On the bottom layer, possible in
tiations of the arguments of individual inference rules are computed. In particular,
inference rule is associated with a blackboard and some concurrent processes,
each argument of the inference rule. The role of every process is to compute poss
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stantiations for its designated argument of the inference rule, and to record these
blackboard. The computation is carried out with respect to the given proof contex
exploits the information already present on the blackboard, that is, argument instant
computed by other processes. On the upper layer, the information from the lowe
is used for computing and heuristically ranking the inference rules that are applica
the current proof state. The heuristically most promising rule is then applied to the c
proof object and the data on the blackboards is cleared for the next round of compu

�ANTS uses resource reasoning to guide the search[22]. The integration of externa
reasoning systems such as automated theorem provers, computer algebra systems,
generators into the architecture of�ANTS presupposes the declaration of some reso
limits these reasoning agents are allowed to spend (e.g., by specifying time-outs
external systems are encapsulated into inference rules, usually one for each system
ample, an inference rule modeling the application of an ATP has its conclusion arg
set as “open goal”. A process can then place this open goal onto the blackboard,
it is picked up by a process that applies the prover to it. Any computed proof or p
proof from the external system is again written onto the blackboard from where it is s
quently inserted into thePDS when the inference rule is applied. While this setup ena
proof construction by a collaborative effort of diverse reasoning systems, the coopera
achieved via the centralPDS . This means that all partial results have to be translated
and forth between the syntaxes of the integrated systems and the representation la
of thePDS . In some cases efficient communication between inference systems is d
to achieve[15]. Therefore we have recently developed an alternative model of coope
systems in�ANTS which has been successfully applied to the combination of autom
higher-order and first-order theorem provers[20].

2.5. External systems

Proof problems require many different skills for their solution and it is desirable to
access to several systems with complementary capabilities, to orchestrate their u
to integrate their results.�MEGA interfaces heterogeneous external systems such ascom-
puter algebra systems(CASs), higher- and first-orderautomated theorem proving syste
(ATPs), constraint solvers(CSs), andmodel generation systems(MGs).

Their use is twofold: they may provide a solution to a subproblem, or they may
hints for the control of the search for a proof. In the former case, the output of an
porated reasoning system is translated and inserted as a subproof into thePDS . This is
beneficial for interfacing systems that operate at different levels of granularity, and
for a human-oriented display and inspection of a partial proof. In particular we can
check the soundness of each contribution by expanding the inserted subproof to
logic-level proof in thePDS and then verify it by�MEGA’s proof checker.

Currently, the following external systems are integrated and used in�MEGA:

CASs provide symbolic computation, which can be used in two ways: first, to com
hints to guide the proof search (e.g., witnesses for existential variables), an
ond, to perform some complex algebraic computation such as to normal
simplify terms. In the latter case the symbolic computation is directly trans
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into proof steps in�MEGA. CASs are integrated via the transformation and tra
lation module SAPPER [91]. Currently,�MEGA uses the systems MAPLE [30]
and GAP[85].

ATPs are employed to solve subgoals. Currently�MEGA uses the first-order prove
BLIKSEM [38], EQP[60], OTTER [61], PROTEIN [10], SPASS[95], WALD MEIS-
TER [50], the higher-order systems TPS [2], andLEO [16,11], and we plan to
incorporate VAMPIRE [82]. The first-order ATPs are connected via TRAMP [62],
which is a proof transformation system that transforms resolution-style proof
assertion-level ND-proofs which can then be integrated into�MEGA’s PDS . TPS

already provides ND-proofs, which can be further processed and checked w
tle transformational effort[12].

MGs provide either witnesses for free (existential) variables, or counter-models, w
show that some subgoal is not a theorem. Hence, they help to guide the
search. Currently,�MEGA uses the model generators SATCHMO [58] and SEM

[98].
CSs construct mathematical objects with theory-specific properties as witness

free (existential) variables. Moreover, a constraint solver can help to reduc
proof search by checking for inconsistencies of constraints. Currently,�MEGA

employsCoSIE [76,100], a constraint solver for inequalities and equations o
the field of real numbers.

2.6. Interface and system support

�MEGA’s graphical user interfaceL�UI [90] displays the currentPDS in multiple
modalities: a graphical map of the proof tree, a linearized presentation of the proof
with their formulae and justifications, a term browser, and a natural language prese
of the proof viaP.rex (seeFigs. 5 and 6).

When inspecting a part of a proof, the user can switch between alternative lev
granularity coexisting in thePDS , for example, by expanding an abstract justification
a proof node into its associated, less abstract partial subproof, which causes app
changes in the other presentation modes. Moreover, an interactive natural languageexpla-
nation of the proof is provided by the systemP.rex [40,39,41], which is adaptive in the
following sense: it explains a proof step at the most abstract level (which the user
sumed to know) and then reacts flexibly to questions and requests, possibly at a low
of granularity, for example, by detailing some ill-understood subproof.

Another system support is the guidance mechanism provided by the suggestion m
�ANTS (see Section2.4), which searches pro-actively for possible actions that ma
helpful in finding a proof and presents them in a preference list.

2.7. Case studies

Early developments of proof planning in Alan Bundy’s group at Edinburgh used p
by induction as their favorite case studies[25]. The �MEGA system has been used
several other case studies, which illustrate in particular the interplay of the various c
nents, such as proof planning supported by heterogeneous external reasoning syst
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Fig. 5. Multi-modal proof presentation in the graphical user interfaceL�UI .

A typical example for a class of problems that cannot be solved by traditional auto
theorem provers is the class ofε–δ-proofs[74,71]. This class was originally proposed b
Woody Bledsoe[23] as a challenge and it comprises theorems such as LIM+ and L
where LIM+ states that the limit of the sum of two functions equals the sum of their
its and LIM* makes the corresponding statement for multiplication. The difficulty of
domain arises from the need for arithmetic computation in order to find a suitable ins
ation of free (existential) variables (such as aδ depending on anε). Crucial for the succes
of �MEGA’s proof planning is the integration of suitable experts for these tasks: the
metic computation is done by the computer algebra system MAPLE, and an appropriat
instantiation forδ is computed by the constraint solverCoSIE . We have been able to solv
all challenge problems suggested by Bledsoe and many more theorems in this clas
from a standard textbook on real analysis[9].

Another class of problems we tackled with proof planning is concerned with re
classes[67,66]. In this domain we showed theorems such as: “the residue class str
(Z5, +̄) is associative”, “it has a unit element”, and similar properties, whereZ5 is the
set of all congruence classes modulo 5 (i.e.,{0̄5, 1̄5, 2̄5, 3̄5, 4̄5}) and+̄ is the addition on
residue classes. We have also investigated whether two given structures are isom
or not and altogether we have proved more than 10,000 theorems of this kind (see[92]).
Although the problems in this domain are not too difficult and still within the success r
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Fig. 6. Natural language proof presentation byP.rex in L�UI .

of a traditional automated theorem prover, it was nevertheless an interesting case st
proof planning, since multi-strategy proof planning generated substantially different p
based on entirely different proof ideas.

Another important proof technique is Cantor’s diagonalization technique and we
developed methods and strategies for this class[31]. Important theorems we have been a
to prove are the undecidability of the halting problem and Cantor’s theorem (cardina
the set of subsets), the non-countability of the reals in the interval[0,1] and of the set o
total functions, and similar theorems.

Finally, a good example for a standard proof technique is the excess-literal-nu
technique. This is routinely used for completeness proofs of refinements of reso
where the theorem is usually first shown at the ground level using the excess-literal-n
technique and then ground completeness is lifted to the predicate calculus level. W
done this for many refinements of resolution with�MEGA [45].
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However,�MEGA’s main aim is to become a proof assistant for the working m
ematician. Hence, it should support interactive proof development at a human-or
level of granularity. The already mentioned theorem that

√
2 is irrational, and its well-

known proof dating back to the School of Pythagoras, provides an excellent challe
evaluate whether this ambitious goal has been reached. In[97] seventeen systems that ha
solved the

√
2-problem show their results. The protocols of their respective sessions

been compared on a multi-dimensional scale in order to assess the “naturalness” b
real mathematical problems of this kind can be shown. This represents an important
emphasis in the field of automated deduction away from the somehow artificial pro
of the past—as represented, for example, in the test set of the TPTP library[93]—back to
real mathematical challenges. We participated in this case study essentially with thr
ferent contributions. Our initial contribution was an interactive proof in�MEGA without
adding any special domain knowledge to the system. This demonstrates the use of�MEGA

as a tactical theorem prover (see[14]). The most important albeit not entirely new lesson
be learned from this experiment is that the level of granularity common in most auto
and tactical theorem proving environments is far too low. While our proof representat
this first study is already an abstraction (called theassertion levelin [51]) from the calculus
level typical for most ATPs, it is nevertheless clear that as long as a system does n
all these excruciating details, no working mathematician will feel inclined to use s
system. In fact, this is in our opinion one of the critical impediments for using first-o
ATPs and one, albeit not the only one, of the reasons why they are not used as wi
computer algebra systems. This is the crucial issue of the�MEGA project and our main
motivation for departing from the classical paradigm of automated theorem proving
fifteen years ago.

Our second contribution to the case study of the
√

2-problem is based on interactiv
island planning[70], a technique that expects an outline of the proof, i.e., the user pro
main subgoals, calledislands, together with their assumptions. In fact, we are able to p
plan arbitrary j

√
l-problems as sketched in Section2.3.3. Hence, the user can write dow

his proof idea in a natural way with as many gaps as there are open at this first st
the proof. Closing the gaps is ideally fully automatic, in particular, by exploiting exte
systems. However, for difficult theorems it is necessary more often than not that th
provides additional information and applies the island approach recursively. In comp
to our first tactic-based solution the island style supports a much more abstract an
friendly interaction level. The proofs are now at a level of granularity similar to proo
mathematical textbooks.

Our third contribution to the case study of the
√

2-problem are fully automaticall
planned and expanded proofs ofj

√
l-problems for arbitrary natural numbersj and l. The

details of this important case study, that shows best what can (and what cannot) be a
with current proof planning technology are presented in[88,89,14].

2.8. Discussion

2.8.1. Proof-planning as an alternative approach to automated theorem proving?
The most important question to ask here is: Can we find the essential and creativ

automatically, for example, for the
√

2-problem discussed in Section2.3.3? The answer is
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yes, as we have shown in[88]. However, while we can answer the question in the affirm
tive, not every reader may be convinced, as our solution touches upon a subtle point
opens the Pandora Box of critical issues in the paradigm of proof planning[28]: It is always
easy to write some specific methods, which perform just the steps in the interactively
proof and then calls the proof planner MULTI to fit the methods together into a proof pl
for the given problem. This, of course, shows nothing of substance: Just as we coul
down all the definitions and theorems required and sufficient for the problem in first-
predicate logic and then hand them to a first-order prover,5 we would just hand-code th
final solution into appropriate methods.

Instead, the goal of the game is to findgeneralmethods for a whole class of theorem
within some theory that can solve not only this particular problem, but also all the
theorems in that class. While our approach essentially follows the proof idea of the in
tively constructed proof for the

√
2-problem, it relies essentially on more general conce

However, this is certainly not the end of the story. In order to evaluate the approp
ness of a proof planning approach we suggest the following four criteria:

(1) How general and how rich in mathematical content are the methods and control
(2) How much search is involved in the proof planning process?
(3) What kind of proof plans, that is, what kind of proofs, can we find?
(4) If the proof planning procedure fails on some given conjecture, how likely is it tha

given conjecture is not a theorem?

These criteria should allow us to judge how general and how robust our solution is
art of proof planning is to acquire domain knowledge that, on the one hand, com
meaningful mathematical techniques and powerful heuristic guidance, and, on the
hand, is general enough to tackle a broad class of problems. For instance, as one e
we could have methods that encode�MEGA’s ND-calculus and we could run MULTI with-
out any control. This approach would certainly be very general, but MULTI would fail to
prove any interesting problems. As the other extreme, we could cut a known proo
pieces, and code the pieces as methods. Guided by control rules that always pick t
right piece of the proof, MULTI would assemble the methods again to the original p
without performing any search. However, in that case if MULTI fails to find a proof then it
is not unlikely that the conjecture is nevertheless a theorem.

2.8.2. What lessons have we learned?
The problem domains on which proof planning has been applied so far are sm

nevertheless typical. Some interesting observations gained from this experience
following:

(1) The devil is in the detail, that is, it is always possible to hide the crucial creative
(represented as a specific method or represented in the object language by an
priate lemma) and to pretend a level of generality that has not actually been ach

5 This was done when OTTER tackled the
√

2-problem; see[97] for the original OTTER case study and[14] for
its replay with�MEGA.
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To evaluate a solutionall tactics, methods, theorems, lemmata and definitions ha
be made explicit.

(2) The enormous distance between the well-known (top-level) proof of the Pythag
School, which consists of about a dozen proof steps in comparison to the final
optimized) proof at�MEGA’s ND-calculus level with about 750 inference steps
striking. This is, of course, not a new insight. While mathematics canin principle be
reduced to purely formal logic-level reasoning as demonstrated by Russell and W
head as well as the Hilbert School, nobody would actually want to do soin practice
as the Bourbaki group of French mathematicians states explicitly: The first q
of the first volume in the several dozen volume set on the foundation of math
ics starts with elementary, logic-level reasoning and then proceeds with the c
sentence[24]: “No great experience is necessary to perceive that such a proje
complete formalization] is absolutely unrealizable: the tiniest proof at the begin
of the theory of sets would already require several hundreds of signs for its com
formalization”.

(3) Finally and more to the general point of interest in mathematical support systems
that we can prove theorems in thej

√
l-problem class, the skeptical reader may still a

So what?Will this ever lead to ageneralsystem for mathematical proof assistance
We have shown that the class ofε–δ-proofs for limit theorems can indeed be solv
with a few dozen mathematically meaningful methods and control rules (see[74,72,
63]). Similarly, the domain of group theory with its class of residue theorems ca
formalized with even fewer methods (see[68,66,67]).6 An interesting observation i
also that these methods by and large correspond to the kind of mathematical kno
a freshman would have to learn to master this level of professionalism.

Do the above observations now hold for ourj
√

l-problems? The unfortunate answer
probablyNo! Imagine the subcommittee of the United Nations in charge of the ma
nance of the global mathematical knowledge base in a hundred years from now.
they accept the entry of our methods, tactics and control rules for thej

√
l-problems? Prob

ably not!
Factual mathematical knowledge is preserved in books and monographs,but the art of

doing mathematics[81,49] is passed on by word of mouth from generation to genera
The methods and control rules of the proof planner correspond to important mathem
techniques and “ways to solve it”[81], and they make this implicit and informal math
matical knowledge explicit and formal.

The theorems aboutj
√

l-problems are shown by contradiction, that is, the planner
rives a contradiction from the equationl · nj = mj , wheren andm are integers with no
common divisor. However, these problems belong to the more general class to det
whether two complex mathematical objectsX andY are equal. A general mathematic
principle for comparison of two complex objects is to look at their characteristic prope
for example, their normal forms or some other uniform notation in the respective the

6 The generally important observation is not, of course, whether we need a dozen or a hundred meth
that we don’t need a few thousand or a million. A few dozen methods seem to be generally enough for a re
mathematical domain.
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And this is the crux of the matter: to find general mathematical principles and en
them into appropriate methods, control rules and strategies such that an appropriate
class of problemscan be solved with these methods.

3. The future: what next?

The longterm goal of the�MEGA project is an integrated environment of tools supp
ing a wide range of typical mathematical activities. Examples of mathematical activitie
computing, proving, solving, modeling, verifying, structuring, searching, inventing,
lishing, explaining, illustrating, etc. We anticipate that in the long run assistance sy
for mathematics will change mathematical practice and they will have a strong so
impact, not least in the sense that a powerful infrastructure for mathematical resear
education will become commercially available. Computer supported mathematical re
ing tools and integrated assistance systems will be further specialized to have a
impact also in many other theoretical fields such as safety and security verification o
puter software and hardware, theoretical physics and chemistry and other related su

The research questions we plan to investigate in the immediate future arise fro
following scenario of preparing a mathematical research article with formalized cont
a textbook style and in professional type-setting quality.

Mathematical research article preparation scenario.The author starts writing a ne
mathematical document in a format suitable for publication by using mathematica
cepts from different mathematical domains. New mathematical concepts or lemma
troduced in the paper should result in corresponding new formal objects. Further
when writing the document appropriate service tools can be used to compute inte
ate results for an illustrating example, querying mathematical databases for mathe
publications introducing similar concepts and send subproblems to be solved to s
reasoning or computation systems. Proofs of lemmata and theorems contained in t
ument should be amenable to formal proof checking techniques such that the sub
paper can be proof checked semi-automatically by the journal. A long-term goal m
fully automated verification.

3.1. Formalization and proving at a higher level of granularity

Mathematical reasoning with the�MEGA system is at the comparatively high level
the proof planning methods. However, as these methods have to be expanded ev
to our base-level ND-calculus, the system still suffers from the effect and influenc
logical representation has. In contrast, the proofs developed by a mathematician,
a mathematical publication, and the proofs developed by a student in a mathemat
toring system are typically developed at a less fine-grained argumentative level. Thi
has been formally categorized asproofs at the assertion level[51]. While so far assertion
level proofs needed to be constructed from the underlying ND-calculus proof in�MEGA,
the recently developed CORE system[3,4] supports proof construction directly on the a
sertion level and defines a communication infrastructure, i.e., a mediator, between th
and the automatic reasoning procedures. Currently, we exchange�MEGA’s ND-calculus
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by the CORE calculus, which supports the presentation of the proof state via rel
contextual information about possible proof continuations and also supports hiera
proof development. The proof theory of CORE is uniform for a variety of logics and ex
ploits proof-theoretic annotations in formulas for an assertion-level contextual reas
style.

An unfortunate aspect of typical mathematical proofs is theirunder-specification,7 for
example, missing references to premise assertions, to rule and instantiation specifi
or simply the specific part of the formula the author is talking about. One parti
challenge here is to define an appropriate proof format which allows to represent h
constructed proofs as they are and to develop means to resolve the under-spec
later by deductive methods. First steps in that direction and a description of the ty
under-specifications can be found in[5,13].

3.2. Mathematical knowledge representation

A mathematical proof assistance system relies upon different kinds of knowledge
of course, the formalized mathematical domain as organized in structured theories
finitions, lemmata, and theorems. Secondly, there is mathematical knowledge on
prove a theorem, which is encoded in tactics and methods, in�ANTS agents, in contro
knowledge and in strategies. This type of knowledge can be general, theory specific
problem specific.

The integration of a mathematical proof assistant into the typical and everyday ac
of a mathematician requires, however, other types of knowledge as well. For exa
a tutoring system for maths students may rely upon a database with different sam
proofs and proof plans linked by meta-data in order to advise the student. Another ex
is the support for mathematical publications: The documents containing both form
and non-formalized parts need to be related to specific theories, lemmata, theorem
proofs. This raises the research challenge on how the usual structuring mechanis
mathematical theories (such as theory hierarchies or the import of theories via ren
or general morphisms) can be extended to tactics and methods as well as to proof
plans and mathematical documents. Furthermore, changing any of these elements
maintenance support as any change in one part may have consequences in other p
example, the validity of a proof needs to be checked again after changing parts of a
which in turn may affect the validity of the mathematical documents. Thus, techn
supporting themanagement of change[7,8,6,52,77], originally developed for evolutionar
formal software engineering at the DFKI,8 will now be integrated into the�MEGA system
as well.

Hierarchically structured mathematical knowledge, i.e., an ontology of mathe
cal theories and assertions has initially been stored in�MEGAs hardwired mathematica

7 “Under-specification” is a technical term borrowed from research on the semantics of natural lan
Roughly it means that certain aspects in the semantic representation of a natural language utterance are
terpreted, such that their proper treatment can be deferred to later stages of processing in which more c
information is available.

8 http://www.dfki.de.

http://www.dfki.de
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knowledge base. This mathematical knowledge base was later (end of the 90s) out-s
and linked to the development of MBASE [43]. We now assume that a mathemati
knowledge base also maintains domain specific control rules, strategies, and lin
knowledge. While this is not directly a subject of research in the�MEGA project, rely-
ing here on other groups of the MKM community and especially the OMDOC format,9 we
shall nevertheless concentrate on one aspect, namely how to find the appropriate in
tion as outlined in the next paragraph.

3.2.1. Semantic mediators for mathematical knowledge bases
Knowledge acquisition and retrieval in the currently emerging large repositories o

malized mathematical knowledge should not be based purely on syntactic matching
needs to be supported bysemanticmediators.

To prove a mathematical theorem in a particular domain is initially blind. Indee
order to prevent a search space explosion, only part of the relevant knowledge is
available at the start. For instance, in the�MEGA system the proof planner MULTI selects
a subset of the available knowledge which consists, for each theorem, of a set of ass
(axioms, definitions, lemmata), tactics and proof-planning methods. As this select
naturally incomplete, there is the need to incrementally incorporate additional know
if needed.

We are working on appropriately limited higher-order reasoning agents for dom
and context-specific retrieval of mathematical knowledge from a mathematical know
base. For this we shall adapt a two stage approach as in[17], which combines syntacticall
oriented pre-filtering with semantic analysis. The pre-filter employ efficiently proces
criteria based on meta-data and ontologies that identify sets of candidate theorem
mathematical knowledge base that are potentially applicable to a focused proof c
The higher-order agents then act as post-filters to exactly determine the applicabl
rems of this set.

3.3. MathServ: a global web for mathematical services

The Internet provides a vast collection of data and computational resources. For
ple, a travel booking system combines different information sources, such as the
engines, price computation schemes, and the travel information in distributed very
databases, in order to answer complex booking requests. The access to such spe
travel information sources has to be planned, the obtained results combined, and
dition, the consistency of time constraints has to be guaranteed. We want to trans
apply this methodology to mathematical problem solving and develop a system tha
the combination of several mathematical information sources (such as mathematica
bases), computer algebra systems, and reasoning processes (such as theorem p
constraint solvers). Based on the well-developed MATHWEB-SB network of mathemati
cal services, the existing client-server architecture will be extended by advanced pr
solving capabilities and semantic brokering of mathematical services (see[101]).

9 http://www.mathweb.org/omdoc/.

http://www.mathweb.org/omdoc/
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Fig. 7. Documents in TeXmacs: The user will be supported by different mathematical reasoning servi
“understand” the document content.

3.4. Support for mathematical activities

Proof construction is an important but only a small part of a much wider range of m
ematical activities an assistance system for mathematics should support.

3.4.1. Certified mathematics texts
A mathematician or software engineer writes a paper usually in a LaTeX-like env

ment. The definitions, lemmata, theorems and especially their proofs give rise to exte
of the original theory he started with. If the proofs of the new theorems and their co
tency with previous assertions are computer checked, we have mathematical doc
in a publishable style which in addition are formally validated, hence obtainingcertified
mathematical documents. A first step in that direction is currently under development
linking the WYSIWYG mathematical editor TEXMACS [94] with the�MEGA system (see
Fig. 7).

The TEXMACS-system provides LaTeX-like editing and macro-definition features,
we are defining macros for theory-specific knowledge such as types, constants, axio
lemmata. This allows us to translate new textual definitions and lemmata into the f
representation, as well as to translate (partial) textbook proofs into (partial) proof pla

3.4.2. Mathematical advice in tutoring systems
We are also involved in the DFKI project ActiveMath[75], which develops an e-learnin

tool for tutoring maths students, in particular in advising a student how to prove a the
This scenario is currently also under investigation in the DIALOG10 project [13,21] and,
aside from all linguistic analysis problems, gives rise to the problem to bridge th

10 The DIALOG project is a collaboration between the Computer Science and Computational Linguist
partments of Saarland University as part of the Collaborative Research Center onResource-Adaptive Cognitiv
Processes, SFB 378 (http://www.coli.uni-saarland.de/projects/sfb378/).

http://www.coli.uni-saarland.de/projects/sfb378/
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between the human style of proofs and machine-oriented proof representations. H
authored proofs are often imprecise in several respects, namely (i) the used inferen
is not mentioned, (ii) some of the premises needed for a step in the derivation a
mentioned, and (iii) some steps of the derivation are completely omitted.

Another interesting and novel application for theorem proving systems in the DIALOG

project is proof step evaluation (see[21]): Each proof step uttered by a student within
tutorial context has to be analyzed with respect to the following criteria:

Soundness: Can the proof step be reconstructed by a formal inference system and log
and tutorially verified?

Granularity: Is the ‘argumentative complexity’ or ‘size’ of the proof step logically a
tutorially acceptable?

Relevance: Is the proof step logically and tutorially useful for achieving the final goal
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