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UITP 2006

Preface

This volume contains the papers of the 7th Workshop on User
Interfaces for Theorem Provers (UITP 2006), which was held
on 21st of August, 2006, in Seattle, Washington, USA. UITP
2006 was affiliated with the International Joint Conference on
Automated Reasoning (IJCAR 2006) and organized as a part of
The 2006 Federated Logic Conference (FLoC 2006) which took
place in Seattle from 10th to 22nd of August, 2006.

The User Interfaces for Theorem Provers workshop series brings
together researchers interested in designing, developing and eval-
uating interfaces for interactive proof systems, such as theorem
provers, formal methods tools, and other tools manipulating and
presenting mathematical formulas. UITP provides a forum for
all those interested in improving human interaction with and us-
ability of proof systems.

The first workshop in the UITP series was held in 1995 in Glas-
gow (organized by Phil Gray, Tom Melham, Muffy Thomas and
Stuart Aitken). Further meetings took place in 1996 in York (or-
ganized by Nicholas Merriam, Michael Harrison and Andy Dear-
den), 1997 in Antibes (organized by Yves Bertot) and 1998 in
Eindhoven (organized by Roland Backhouse). There followed a
break until 2003 when the workshop was revived by David As-
pinall and Christoph Liith and organized as part of the Theo-
rem Proving in Higher Order Logics (TPHOLs 2003) conference
in Rome. UITP 2005 (again organized by David Aspinall and
Christoph Liith) was held as a satellite workshop of the European
Joint Conferences on Theory and Practice of Software (ETAPS

2005) in Edinburgh. The present organizers were asked to orga-

This paper is electronically published in
Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs



nize another UITP workshop in 2006 and we decided to do this
in affiliation with IJCAR at this years FLoC.

The high quality papers published in this volume (and the
previous ENTCS UITP volumes) document the liveliness and
innovative strength of the UI'TP community. Despite the recently
increasing interest in better interfaces for theorem provers and
mathematical support tools, however, we are convinced that the
UITP initiative requires and deserves a regular and sustainable
fostering and also better visibility in and communication with
the wider Artificial Intelligence community.

We would like to thank several people who helped us in the
organization of this workshop. First of all, many thanks to all
program committee members

David Aspinall Ewen Denney Florina Piroi
Yves Bertot Christoph Lith ~ Aarne Ranta
Paul Cairns Michael Norrish ~ Makarius Wenzel

and all additional reviewers
Loic Pottier Laurence Rideau Hua Yang

for their support and productive collaboration. Many thanks
to the organizers of FLoC’06 and IJCAR’06, in particular Tom
Ball, for setting up the FLoC workshop environment, and Andrei
Voronkov, for his EasyChair conference tool that simplified our
organizational work a lot. Last but not least, many thanks to all
authors who submitted papers and to all active participants at
the workshop.

Serge Autexier and Christoph Benzmaller
Edinburgh and Saarbriicken, July 2006
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A Graphical User Interface for
Formal Proofs in Geometry

Julien Narboux!

LIX, Ecole Polytechnique
91128 Palaiseau, France

Abstract

‘We present in this paper the design of a graphical user interface to deal with proofs in geometry. The software
developed combines three tools: a dynamic geometry software to explore, measure and invent conjectures,
an automatic theorem prover to check facts and an interactive proof system (Coq) to mechanically check
proofs built interactively by the user.

Keywords: geometry, theorem prover, proof assistant, interface, Coq, dynamic geometry, automated
theorem proving

1 Introduction

Dynamic Geometry Software (DGS) and Computer Algebra Software (CAS) are the
most widely used software for mathematics in the education. DGS allow the user to
create complex geometric constructions step by step using free objects such as free
points and predefined atomic constructions depending on other objects (for instance
the line passing through two points, the midpoint of a segment, etc.). The free
objects can be dragged using the mouse and the figure is updated in real time. CAS
allow symbolic manipulations of mathematical expressions.

The most widely used systems are the historical ones which appeared in the 90s,
namely Geometer’s sketchpad [22] and Cabri Geometer [26]. But there exists a large
number of free and commercial software as well 2.

The education community has studied the impact of the use of these software on
the proving activity [41,16]. DGS are used for mainly two activities:

¢ to make the student create geometric constructions;

1 Email: Julien.Narboux@inria.fr

2 We can cite (the list is not intended to be exhaustive): CaR, Chypre Cinderella, Déclic, Defi, Dr. Geo,
Fuclid, Euklid DynaGeo, Eukleides, Gava, GeoExp, GeoFlash, GeoLabo, GeoLog, Geometria, Geometrix,
Geometry Explorer, Geometry Tutor, GeoPlanW, GeoSpaceW, GEUP, GeoView, GEX, GRACE, KGeo,
KIG, Mentoniezh, MM-Geometer, Non-Euclid, XCas, etc.

This paper is electronically published in
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¢ to make the student explore the figure and conjecture and check facts.

We believe that these software should also be used to help the student in the proving
activity itself. Work has been performed in this direction and several DGS with proof
related features have been produced. Theses systems can be sorted in in roughly
two categories:

(i) the systems which permit to build proofs;

(ii) the systems which permit to check facts using an automated theorem prover.

The Geometry Tutor |3|, Mentoniezh (33|, Defi |1|, Chypre |8]|, Cabri-Euclide

[27], Geometriz [19] and Baghera |6] systems belongs to the first category. Using
these systems the student can produce proofs interactively using a set of known
theorems. In most of these systems the student can not invent a proof very dif-
ferent from what the program had pre-computed using automated theorem proving
methods. As far as we know, the exception is Cabri-Euclide which contains a small
formal system and therefore gives more liberty to the student. Baghera includes also
e-learning features, such as task management and network communication between
teachers and their students.
MMP-Geometer|18],Geometry Expert [17|, Geometry Ezplorer|36] and Cinderella
[24,25,34,35] belongs to the second category. Geometry Expert and MMP-Geometer
are DGS which are used as a graphical interface for an implementation of the main
decision procedures in geometry. Geometry Ezplorer provides a diagrammatic visu-
alization of proofs generated automatically by a prolog implementation of Chou’s
full angle method [14]. Cinderella includes a “probabilistic theorem prover” to allow
the user to check facts and allows to export the description of the figure to computer
algebra software to perform algebraic proofs.

The work closest to ours is [9]. The GeoView software provides a visualization
tool for some formal geometric statements using an off-the-shelf DGS and the PCoq
user interface for Coq [10,2|. It is intended to be used with the formalization of
geometry for the French curriculum by Frédérique Guilhot |20] in the Coq proof
assistant |15].

We present in this paper the design of a system whose aim is to combine au-
tomatic theorem proving, interactive theorem proving using a formal proof system
(the Coq proof assistant) and diagrammatic visualization. The difference between
our approach and the other systems we have cited (except GeoView) is that we use
of a general purpose proof assistant and combine interactive and automated theorem
proving. The difference between our system and GeoView is that communication
with Coq goes in the other direction.

Our approach is guided by the following motivations:

e It is very natural in geometry to illustrate a proof by a diagrammatic represen-
tation and even sometimes a diagram can be seen as a high level description of
a proof [7,23,29,36,37,38|. But sometimes a diagram can be misleading. That is
why the verification of the proof by a formal proof system is crucial as it provides
a very high level of confidence.

¢ Compared to an adhoc proof system specialized in geometry, the use of a general
purpose proof assistant such as the Coq proof assistant provides a way to combine
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geometrical proofs with larger proofs. For example, it is possible to use the Coq
system to prove facts about polygons by induction on the number of edges, or
facts about transformations using complex numbers.

e There are facts than can not be visualized graphically and there are facts that
are difficult to understand without a graphical representation. Hence, we need to
combine both approaches.

¢ We should have both the ability to make arbitrarily complex proofs or to use a
base of known lemmas, depending on the level of the user/student.

We will first give a short introduction of our prototype named GeoProof. Then
we will focus on the proof related features of GeoProof: autormnatic theorem proving
and interactive generation of Coq statements.

2 An overview of GeoProof

GeoProof is a free and open source Dynamic Geometry Software. It is distributed
under the term of the GPL Version 2 license. It has been implemented by starting
from a project called DrGeoCaml initially developed by Nicolas Frangois. GeoProof
is written in the Ocaml programming language using only portable libraries in such a
way that it can be compiled for Linux, Windows and MacOSX. GeoProof permits the
main geometric constructions and transformations involving points, circles and lines.
The documents are saved using an open format based on the XML technology. It
can export the figures using a bitmap (PNG, BMP, JPEG) or vector graphic format
(SVG). The figure description can also be exported to the input language of the
Eukleides software to ease the insertion of figures in a IWTEX document . Figure 1
gives a quick overview of the graphical user interface of GeoProof. But its main
features consist in the proof oriented functionality, which will be described in the
next sections.

3 Automatic proof

We present in this section how GeoProof can communicate with automatic theorem
proving tools. We have implemented automatic theorem proving in GeoProof using
two different systems: the first one takes advantage of an implementation of the
Grébner basis and Wu methods [40,11] written by John Harrison [21]%, the second
one consist in exporting to our own implementation of Chou’s decision procedure
for affine geometry [13] in the Coq proof assistant [30].

3.1 Using embedded automatic theorem prover

The formalization used by John Harrison is based on a theory with only points as
basic objects whereas GeoProof uses points, lines and circles as the basic mathemat-
ical objects. We need to translate from one language to the other one. The input of
the ATP is a first order formula with the following predicates: collinear, parallel,

3 http://www.eukleides.org/

4 Warning this implementation was designed to accompany a textbook on automated theorem proving and
is not intended to be efficient.


http://www.eukleides.org/

NARBOUX

" GeoProo B EC
File Edit Create Tools Proofs Layers View Configuration Help

I OCRA o6 ~[F&0iraadb0+ |
1° s OXNSASXEOB NN N=2HLAIO000] A Y
RPEIWSY I VST (T A

Graphic window | Natural language 'SVG Preview!

b Input in natural language
Object acquired, you can move it | y

Fig. 1. A screen-shot of GeoProof, the example displayed represent the points of interest of a triangle.

perpendicular, eq distance (written as AB = C'D) and eq angles. These predi-
cates are defined using an algebraic formula using the coordinates of the points.
Let zp and yp be the x and y coordinates of P.

col(A, B,(C) = (xa—2B)lyp —yc) — (B —20)(ya —yn) =0
par(A,B,C,D) = (xa — xB)(yc — yp) — (¢ — xp)(ya —yp) =0
per(A,B,C,D) = (xa — 2B)(zc — zp) + (ya —yB)(Yyc —yp) =0

eq distance(A,B,C,D) =
(x4 —2B)* + (ya —yp)* — (vc —2p)* = (yo —yp)* =0

eq_angle(A,B,C,D,E,F) =

((yp —ya) * (xp —xc) — (yB — yo) * (xB — x4))*

((xg —ap) * (xp —xp) + (yg — yp) * (yg — yr))

((ye —yp) * (g —2F) — (yg — yr) * (g — TD))*
((zB —xa) * (B —xc) + (YyB —ya) * (YB — Y0))

6
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3.1.1 Translating a construction into a statement for ATP.

We need to translate from one language to the other one. The idea of the trans-
lation consist in maintaining the invariant that lines and circles are always defined
by two points. Of course this is not true in GeoProof. For instance one can build a
line as the parallel of another line passing through a point. In such a case we need
to define a second defining point for the line. For that purpose we generate new
points during the translation. We define the translation by case distinction on the
construction. Table 1 gives the defining points for each line and circle depending on
how these objects have been constructed. P1;,P2; and O, are fresh variables. For
each line and circle we associate some fresh variables. These new variables which do
not appear in the original figure are used to define lines and circles when we do not
have two points on the object on the figure we translate from.

Lines are defined by two points Py (1) and P2(l). When we already know at least one
of the defining points we use it instead of creating a new point because it simplifies
the generated formulas.

Circles are defined by their center O(c) and a point P(c) on the circle.

Table 2 provides the translation of GeoProof constructions® into the language ac-
cepted by the embedded theorem prover. Incidentally, it gives a subset of the con-
structions of the language of GeoProof. The non degeneracy conditions are inspired
by those in [12]. The predicate isotropic is defined by:

isotropic(A, B) = perpendicular(A, B, A, B)

In Euclidean geometry it is equivalent to A = B but not in metric geometry. We
produce a statement which is interpreted in the metric geometry because Wu and
Grobner bases methods are complete only for metric geometry. For more information
about this see [12,11]. Moreover if I; and I are the two intersections of a circle and
of a line or a circle then we add the fact that Iy # Is in the hypotheses. Note that
different constructions of the same figure can lead to different degeneracy conditions
and hence different formulas.

3.1.2 An example
Let’s take the midpoint theorem as an example, it states that:

Theorem 3.1 (midpoint) Let ABC be a triangle, and C
let D and E be the midpoints of AC and BC respec-
tively. Then the line DE is parallel to the base AB. b .
A B

The construction is translated into the following state-
ment:

(((((is_midpoint(D,C,A) /\ is_midpoint(E,C,B))/\
~C=A) /\ "A=B) /\ "B=C) /\ “D=E) /\ "A=B

The fact that AB || DE is then checked using the Grobner basis method.

5 To simplify the presentation we only provide the translation for the main GeoProof constructions.
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GeoProof Construction Defining points
[ passing through A and B Pi(l) =APy(l)=B
[ parallel line to m passing through A Pi(l) = A Py(l) = P2
[ perpendicular line to m passing through A Py(l) = A Ps(l) = P2,
[ perpendicular bisector of A and B Pi(l) = P1; Py(l) = P2
[ bisector of the angle formed by A, B and C  Py(l) = B Py(l) = P2
¢ circle of center O passing through A Oc)=0P(c)=4
¢ circle passing through A,B and C O(c) =0, P(c) = A
¢ circle whose diameter is A B O(c) =0, P(c) = A
Definition of the deﬁn;rr‘lag?lp(:o%nts of circles and lines
(=1 5 eopror 200

File Edit Creats Tools Proofs Layers View Configuration Help

OVWHE 66 X[+ & 222 KO+
le 5, ONSASXPABRINNSYNYN=LY LY IOO O = &
INTEYWE2YVE (VIS (T, A

Documentl

Graphic window |Natural language SVG Preview

o8 X automatic theorem proving 086
-1- Choose the fact you want to check
Hypothesis
({(({is_midpoint(D.C.A) A is_midpointiEC.B)) A ~C = A} A ~A = B) A ~B =
ElA~A=

C)n~D=

B

Conclusion
paralle|(D,EAB)

-2- Choose the method you want to Use
® Grobner bases method
*) WU method

-3- Get the result

The theorem is true

Help Close \

b Inputin natural language
Too far | P

Fig. 2. Checking the midpoint theorem using the embedded theorem prover.

3.1.8 Dealing with non-degeneracy conditions

Non degeneracy conditions play a crucial role in formal geometry, this has been
emphasized by most papers about formalization of geometry [20,28,30]. This trans-
lation is not an exception, we must be careful about the semantics of the generated
statements. For this translation we have decided to consider GeoProof as a tool

8
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GeoProof Construction Predicate form

Free point true

Point P on line [ collinear (P, P1(l), P2(1))

Point P on circle ¢ O(c)P(c) = PO(c)

I midpoint of A and B IA = IB A collinear(I, A, B)
collinear(I,P1(l1), P2(l1))A

I intersection of [; and Iy collinear(I,P1(l2), Pa(l2))A
—parallel(Pr(l1), P2(l1), P1(l2), P2(l2)
IO0(c1) = O(e1)P(er)A

I an intersection of ¢; and ca TO(cy) = O(c2)P(c

¢l )
(c2)P(e2)A
—isotropic(O(cy), O(c2))

IO(c) = O(c)P(c)A
I an intersection of ¢ and [ collinear(I,P1(l), P2(1))A

—isotropic(Pi(l), P2 (1))

[ passing through A and B A#B

arallel(A, Pa(l), Pr(m), Pa(m))A
[ parallel to m passing through b ( 2(1), P1(m), Pa(m))
A A # Po(l)

perpendicular(A, Pa(l), Pr(m), Pa(m))A

[ perpendicular to m passing

through A A # Pa(l)

P1(l)A =P1(l)B AN Py(l)A = P(l)BA
[ perpendicular bisector of A 1) 1) 2(!) 2(!)
and B Pi(l) A Pa(l)NA# B

eq_angle(A, B,Py(1),P2(), B,C)A
B#Py)AA£BAB#C

[ bisector of the angle A,B,C

¢ circle of center O passing true
through A

collinear(O(c), A, B)A
O(c)A=0(c)B

c circle whose diameter is A B

Table 2
Predicate form for each type of construction
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Sauprusf 1T

File Edit Create Tools Proofs Layers View Configuration Help

[JORE 66 x+@ 0100060+
1« s ONAAXEANRNNN=
N7 | |

Documentl

|\
<

| Graphic window \Nstura\ language SVG Preview -1- Choose the fact you want to check :
Hypothesis :

(is_midpoint(C.A,B) A is_midpoint(D.B.A)) A ~C =

D

Conclusion :
true

oA

-2- Choose the method you want to use :
‘@ Grébner bases method

) Wu method

-3- Get the result

The theorem is true (because the hypotheses are contradictory!)

Help Close

b Input in natural language
Line created.

Fig. 3. Trying to prove a property with contradictory hypotheses.

which permits to define a geometric formula and it does not build a model of this
formula. The user can define “impossible” figures. For instance if we perform the
following construction:

First, create two points A and B and then create the midpoint C' of the segment [AB]|
and the midpoint D of the segment [BA]. Finally, create the line passing through C'
and D. Then if we try to prove that C # D, GeoProof should answer “yes”, as the
hypotheses of the theorem are inconsistent (ex falso quod libet). This is consistent
with logic but not with the user’s intuition because the “impossible” objects are not
displayed by GeoProof. This is why in fact we need to check first if we can prove
false, if this is the case we can warn the user that its construction is impossible as
shown on Figure 3. Note that on the example shown we have not created exactly
the line passing through A and A, because GeoProof does not allow this particular
degenerated construction. We have created two points which are equal (C' and D)
using the midpoint construction applied twice to the same segment.

3.2 Using Coq

In [30] we have described the implementation of Chou, Gao and Zhang’s decision
procedure for affine geometry in the Coq proof assistant. Here we want to export
a construction built using GeoProof into a statement in the language of the Coq
development. Our implementation of Chou, Gao and Zhang’s decision procedure
is restricted to affine plane geometry. Hence in GeoProof the tools which do not
have any corresponding concept in the Coq implementation are greyed out. The
Coq development is based on the axiom system shown on Table 3. To ease the Coq

10
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Points Point : Set

F is a field
2#0

Field

~ : Point — Point — F

AB=0 < A=2RB

Signed distance

S : Point — Point — Point — F
Signed area Suapc = Sc AR

SaBc = — Sac

Chasles’axiom Sypc=0— AB+ BC = A

JA,B,C : Point, Sapc # 0

Dimension
Sapc = Sppc +Sapc + Sasp
Vr: F 3P : Point, Sapp = 0N AP =rAB
Construction A Sapp =0AN AP =rAB

A#B _—>P:P,
ANSsgp =0N AP =rAB

Proportions A # C — Spac #0 — Sapc=0— ﬁ:ﬁ = %

Table 3
The Chou axiom system (slightly modified for the formalization in Coq).

formalization, this axiom system has been slightly modified compared to the axiom

system found in [13]. In the original axiom system the ratio of two oriented distances
AB
oD : : . :
the axiom system level but only when we state theorems involving ratios. It is clear

that this axiom system is based on points. Hence we have to perform a translation
similar to those described in the last section. Table 4 gives the translation of some

is defined only when AB is parallel to CD. Here we do not put this restriction at

common geometric notions in the language of the axiom system. Figure 4 shows the
translation of the statement corresponding to the midpoint theorem in the syntax
of Coq.

11
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Geometric notions Formalization
A.B and C are collinear Sapc =0
AB || CD Sapc = SaBp
I is the midpoint of AB 48 =2 A Sypr =0
Table 4

Expressing some common geometric notions using S and ratios

=] ¥ coqide eee

File Edit Nawvigation Try Tactics Templates Queries Compile Windows Help
3 ¢+ 0 F 2O Y

[F}Unnamed Bufferk
Regquire Export area_method.
Section Page_1.

Varable A:RPaoint

Variable BiPoint,

Variable C:Paint.

Mariable D:Poirt.

Hypothesis HD: (is_midpoint D C A).
Variable E:Point.

Hypathesis HE:{is_midpoint E C BJ,

Goal [parallel ED B A),

Proaf. AutoGeom. | |
AuteGeam. Unnamed_thm is defined
Qed,
Ready in Page_1 kine 16 Char. 5 i

Fig. 4. The midpoint theorem, expressed in the Coq language for Chou decision procedure.
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4 Interactive input

In this section we describe the interactive proof mode of GeoProof. Thanks to the
configuration menu, the user can choose between two interactive modes, the first
one uses the language described in section 3.2 and the second one uses the language
of the Coq development for high school geometry by Frédérique Guilhot [20]. In
the first mode the user can deal with affine plane geometry and in the second mode
with Euclidean plane geometry. The interaction with Coq is performed through
the CoqIDE user interface. GeoProof communicates with CogqIDE® thanks to a
private clipboard. We have started by implementing the translation from a GeoProof
construction to a Coq statement. We perform the same translation as in [9] except
that it is in the reverse direction (here we translate to Coq) 7.
The interactive mode of GeoProof is decomposed in four steps:

e e . Goal
Initialization Construction Definition Proof

In the initialization phase, the communication between CoqlDE and GeoProof
is started. Depending on the language used some construction tools which can not
be exported to Coq are greyed out in GeoProof. The Coq definitions corresponding
to the language used are loaded using the Coq command Require. A new section
is opened. If the user had already constructed some objects before starting the
interactive proof mode, these objects are now exported to Coq. Objects which do
not have any meaning in the language selected are ignored.

In the construction phase the objects created by the user are added in the Coq
context with their corresponding assumptions. On the example shown?® on Figure
8 this corresponds to the Variable and Hypothesis commands.

In the goal phase the user needs to define what he wants to prove.

In the context of education this phase can be presented as an exercise consisting
in finding an interesting conjecture about the figure. For that purpose GeoProof
provides several features:

(i) The user can move the free points of the figure to guess the invariants.

(ii) When the user has guessed a conjecture, he can make a first experiment to
check the conjecture by building a dynamic label to perform mesures on the
figure.

A dynamic label is a text element enriched with the possibility to display the
result of a computation defined using a small language (|32|). Thanks to a
configuration file the user can choose at which precision (which may be arbi-
trary large) the computations are performed. If the mathematical expressions
contained in the text elements depend on other points of the figure, the text
is updated in real time when the user change the position of the free points.

6 This feature requires CoqIDE version 8.1 or later.

7 In the future we should merge our developments to allow communication in both directions, this requires
a more complex communication system as explained in the future work section.

8 The predicates names are in French because this development is focused on the French high-school cur-
riculum

13
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XU and/or eXprassons

Input the text you want to display.
If wou want to have dynamic parts or perform some computations
you can Use expressions enclosed between #, for example :

The length of AB is #length(A.B)# and 2*3=#2+3#
Epite#
#if arealA,B.C) > area(B,C,D) then "bigger" else "smaller"#

AB and C seem to be #if collinear{&,B,C) then " else "not "#collinear

Help
You can use the following fonctions

+- 80T
sin,costan,arcsin.arccos.arctan,
sqrt.In.exp.log.pow,
abs.min,max,

e e P

and,or,not,
signed_area,area,anglelength
collinear.between,left_turn,
parallelorthegonal,
eq_lengths,eq_angles

The following constants :
truefalse.epi
The following constructions

if cond then expr else expr
letid = exprin expr

s =T

Fig. 5. The definition of a dynamic label.

Labels :

Rename

Hide

Lock

Trace

Delete

Calor *
Edit text

Width »
Layer L4
Prove that collineariA,C,B) using embedded ATP
Prove that collineariA,C,B) using Coq

Fig. 6. The contextual menu associated to a dynamic label.

The dynamic part of the labels can contain measures and predicate tests using
variables depending on other objects. Figure 5 shows an example of a dynamic
label to test if three points are collinear. Using predefined dynamic labels the
user can check easily for example if two lines are parallel (on the specific in-
stance of the figure displayed). Then if he wants to prove the fact represented
by the label, he can right click on the label and choose the corresponding menu
entry. Figure 6 shows the contextual menu of a dynamic label.

In the proof phase the user proves his statement within CoqIDE. Hence, the
current implemantation of GeoProof requires to know how to use Coq. This will

14
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Ltac DecompEx H P := elim H;intro P;intro;clear H.

Ltac let_intersection I A B C D :=

let id1l := fresh in ((assert (idl:exists I,

I = pt_intersection (line A B) (line C D));

lapply (existence_pt_intersection) |DecompEx idl I])).

Fig. 7. The tactic to prove the existence of the point of intersection.

=] ¥ coqlde 068
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Fig. 8. The midpoint theorem in the language used by Frédérique Guilhot’s Coq development.

be improved in future versions by adding some features to allow the application of
theorems within GeoProof. If during the proof a new object needs to be created,
he can do it using GeoProof. Indeed when a new object is added in GeoProof a
Coq tactic is pasted into CoqlDE. This tactic applies the theorem which proves the
existence of the object which has just been created and introduce in the context
the knowledge about this new object. In some cases this generates non-degeneracy
conditions which need to be proved by the user. Figure 7 shows the command
(defined in Ltac - the tactic language of Coq) which is used when the user creates a
point at the intersection of two lines.

If the user deletes an object in GeoProof it is removed from the Coq context thanks
to the clear command of Coq. If the user wants to delete some object without
deleting it in Coq, he can hide the object in GeoProof.
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Fig. 9. Integrating GeoProof in the proof general infrastructure

5 Future Work

The current prototype of GeoProof uses a private clipboard? as a communication
pipe between GeoProof and the Coq Interactive Development Environment. This
approach has the advantage to be both easy to implement and easy to use. The user
can start the interaction without any configuration step, he just needs to launch
GeoProof and CoqIDE on the same computer. But this infrastructure has some
limitations. First, the communication with Coq is done using the Coq syntax,
which is easy to produce but hard to parse. Second, the synchronization between
what is typed in CoqlDE and the input generated by GeoProof is not ensured.
A better infrastructure for the communication between Coq and GeoProof would
be to use the Proof General Interaction Protocol (PGIP) framework [39,4|. This
framework is based on XML and allow to have several interfaces interacting at
the same time with one proof assistant. This is exactly what we need because as
mentioned before, some proofs are easier to grasp diagrammatically and some are
better presented the classic way (proofs using complex numbers for instance). In our
example, GeoProof and CoqlDE would interact with the Coq proof assistant. But
this could be generalized to other proof assistants and graphical user interfaces such
as Isabelle, Eclipse/Proof General and PCoq as shown on Figure 9. This approach
would require implementation of PGIP within Coq, CoqlDE and GeoProof.

The proving features of GeoProof in itself should also be extended. We need
to add the possibility to apply a theorem diagrammatically by drag and drop and
to mark facts on the diagram to produce new assertions in Coq. We could also
transform macro constructions into proof of existence of geometric objects verifying
some properties.

Another planned extension of GeoProof is to adapt it to deal with diagrammatic
proofs in abstract term rewriting (see the first chapter of [5]). We have formalized
in [31] the kind of diagrams which are usually found in the rewriting literature. The
next step is to implement this formalization in GeoProof to provide a high level
input language for proofs in abstract rewriting. The design presented in this paper
can be adapted to abstract term rewriting.

9 Technically, we use a feature provided by GTK: we create a clipboard identified by a name (here
“GeoProof”) which is different from the standard clipboard.

16



NARBOUX

6 Conclusion

Proof is a crucial aspect of mathematics and hence must have a prominent role in
the education. The most widely used software in the teaching of mathematics are
mainly used to explore, visualize, calculate, find counter examples, conjectures, or
check facts, but most of them can not be used to build a proof in itself. We believe
that proof assistants should be adapted to fulfill this need.

We have presented in the paper a prototype which aims at integrating dynamic
geometry, automatic theorem proving and formal proof. This should be considered
as a first step toward the use of a proof assistant in the classroom.

Availability

GeoProof is available at: http://home.gna.org/geoproof/
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Abstract

GeoThms is a web-based framework for exploring geometrical knowledge that integrates Dynamic Geometry
Software (DGS), Automatic Theorem Provers (ATP), and a repository of geometrical constructions, figures
and proofs. The GeoThms users can easily use/browse through existing geometrical content and build new
contents. In this paper we describe GeoThms functionalities, focusing on the interface solutions required for
a system aimed at supporting studying and teaching geometry via Internet. GeoThms is a publicly accessible
system with a growing body of geometrical constructions and formally proven geometrical theorems. We
believe that, with the help of all its users it will become an important Internet resource for geometry.

Keywords: Web interfaces for proof systems, automated geometry theorem proving, dynamic geometry
software.

1 Introduction

Our motivation is to build and maintain a publicly accessible and widely used Inter-
net based framework for constructive geometry. It should be used for teaching and
studying geometry, but also as a major Internet repository for geometrical construc-
tions. We have built a system, GeoThms, that links Dynamic Geometry Software
(DGS), Automatic Theorem Provers (ATP), and GeoDB, a database of geometri-
cal constructions, figures and proofs. The DGSs currently used within GeoThms
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are GCLC [7,12] and Eukleides [16,18], two widely used dynamic geometry pack-
ages. The ATP used, GCLCprover [13,17], is based on the area method [4,6,15,17],
and it produces human readable, synthetic geometrical proofs. GeoThms provides
a web workbench that tightly integrates mentioned tools into a single framework
for constructive geometry. The web interface is a server-side solution written in
PHP, designed to enable GeoThms users to easily browse through the list of ge-
ometric problems, their statements, illustrations and proofs, and also to inter-
actively use the drawing and automatic proof tools. GeoThms is accessible at
http://hilbert.mat.uc.pt/~geothms.

There are several systems related to GeoThms. Some of them combine features of
DGS and automated theorem provers, some of them have web interfaces, and some of
them provide repositories of geometrical theorems. We are not aware of any system
that, like GeoThms, gives full, web-based access to DGS, use theorem proving
with human-readable proofs generated and provides open repository of geometrical
constructions and conjectures. Section 6 gives more details about related work.

Paper overview.

Section 2 describe GeoThms components; Section 3 presents the structure of the
web interface; Section 4 is about communication and representation issues; Section 5
presents GeoThms through some illustrated examples. Section 6 discuss related
work. Section 7 discusses further work, and Section 8 draws final conclusions.

2 Framework Components

GeoThms, is a framework that links dynamic geometry software, geometry auto-
matic theorem provers, and a repository of geometry problems providing a common
web interface for all these tools (see Figure 1). In this section, we give a brief
description of the tools that are currently integrated in GeoThms:

GCLC and Eukleides

GCLC?® [7,12] and Eukleides® [16,18] are two DGSs. They both use declar-
ative languages to specify geometrical constructions. Hence, in using these tools,
producing mathematical illustrations is based on “describing figures” rather than
on “drawing figures”. These descriptions directly reflect meaning of mathematical
objects to be presented, and are easily understandable to mathematicians. Both
tools have graphical user interfaces and produce, in KTEX form, illustrations that
correspond to geometric constructions.

GCLCprover
GCLCprover is an ATP based on the area method [4,6,15]. It allows formal
deductive reasoning about objects constructed within DGSs. It produces proofs that

5 GCLC package is freely available from www.matf.bg.ac.yu/~ janicic/gclc/. The mirrored version is

available from EMIS (The European Mathematical Information Service) www.emis.de/misc/index.html.
There are versions of GCLC for Windows and for Linux.

6 Fukleides is available from http://www.eukleides.org, There are versions for a number of languages.
The first author of this paper is responsible for the Portuguese version of Eukleides: EukleidesPT is available
from http://gentzen.mat.uc.pt/”~ EukleidesPT/
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Fig. 1. The GeoThms Framework

are human-readable (in KTEX and XML formats), and with an explicit justification
for every proof step. GCLCprover is tightly integrated with GCLC, so one can use
the prover to reason about a GCLC construction, without changing and adapting
it for the deductive process, the users only need to add a conclusion they want to
prove. The geometrical constructions made within GCLC are internally transformed
into primitive constructions of the area method, and in some cases, some auxiliary
points are introduced. We have developed a tool euktogclcprover, that converts
Eukleides files to GCLCprover files, allowing the prover to be used with geometric
constructions described within Fukleides.

The geoDB database

geoDB keeps geometric constructions, illustrations, conjectures, and proofs. Fig-
ure 2 shows the structure of the database. The main entities of the database are:
figures, descriptions of geometrical constructions; theorems, statements of theorems,
written in INXTEX form; proofs, geometrical constructions with conjectures.

Geometrical constructions are described and stored in the database in declar-
ative languages of dynamic geometry tools such as GCLC and Eukleides, and in
a common XML format. Figures are generated directly on the basis of geometric
specifications, by GCLC and Eukleides and stored as JPEG files and SVG files.
Conjectures are described and stored in a form that extends descriptions of geo-
metrical constructions. The specifications of conjectures are used (directly or via
a converter) by GCLCprover. Proofs are generated by GCLCprover and stored as
XML files (rendered by XSLT, using a layout specified by GeoCons_proof .xsl) and
as PDF files (produced by KTEX, using a layout specified by gclc_proof.sty).
A geometric theorem can have more than one figure and/or more than one proof,
made by different tools and made by different users.
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The database also has the following auxiliary entities: bibrefs, bibliographic ref-
erences, in BIBTEX format; drawers & provers, information about the available pro-
grams; authors, information about the authors; users, information about registered
users; computer, information about computers used as the test benches. The tables
codeTmp and codeTmpProver are used to store temporary information, deleted after
each session, for the interactive section of GeoThms.

3 The Web Interface General Structure

The structure of the web interface has two main levels (see Figure 3).

GeoThm%

‘ Help ‘% Entry Level

‘ Registration/Login

Workbench

Forms 2nd Level

Listings of: Interaction with Insert/Update info

Geometric Theorems Drawing tools Geometric Theorems
Statements Provers Statements
Figures Figures
Proofs Proofs
all the info together Provers

Provers Drawers

Drawers Authors

Authors BibRefs

BibRefs

Fig. 3. GeoThms — Web Interface

The entry level (see Figure 4), accessible to all web-users, has some basic infor-
mation about GeoThms, including documents about the GCLCprover and the area
method. There is also an entry point to the GeoThms forums. This level offers
registering options, and it gives access to other levels of the system. Regular users
have access to the second level, where they can browse the data from the database
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(in a formatted, or in a plain textual form) and use the drawing/proving programs
for interactive work. Regular users can apply for the contributor status with which
they can also insert new data and can update the data inserted previously in the
database. There is also an administration level, invisible to the user. It is used to
change the status of the users, and other administrative tasks.

~| @ [Frneis
|| RCV60-SP. |ICltheirs - Pesquisa Google || GeoThms - Geometry Fram... J [x]
AT GeoThms Foagln s
Q/ LY, Geometry Framework \ O

| s |

GeoThms - Geometry Framework

© Pedro Quaresma (Univ. Coimbra) & Predrag Janicic (Univ. Belgrade)

Terminado

Fig. 4. GeoThms — Home Page

4 Communication and Representation Issues

GeoThms is a server side web system with integrated DGSs and ATPs tools. It is
not oriented to some particular browser and/or operating system. As a web service
GeoThms emphasise:

¢ a simple interface, based on using geometrical specification languages of the un-
derlying geometrical tools;

e a low communication burden.

To achieve these goals we decided to use a server side Apache/PHP/MySQL solu-
tions, and standard features of HTML language to deal with input/output.

A basic communication, concerning describing geometrical constructions and
conjectures, is based on formal languages of the underlying geometrical tools. De-
spite some good features of point-and-click-based descriptions of constructions, we
believe that in this context, communication based on textual descriptions is a better
solution. For instance, this approach enables full access to the underlying systems,
different geometrical tools can be uniformly integrated, stresses the fact that ge-
ometrical constructions are formal procedures, etc. Notice that both DGSs tools
currently supported (GCLC and Eukleides) provide also graphical interfaces, so it
is possible for a user to use these tools’ rich graphical interfaces locally and then
transfer the results to GeoThms.

Concerning internal representation of data, within GeoThms, descriptions of
constructions and conjecture are stored as GCLC code, as Eukleides code, or in XML
form. There are tools for converting between these formats, while XML format has
the central position, as an interchange format. When adding new geometrical tools,
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it will be sufficient to develop converters from its format to XML and vice versa.
This enables converting from any format to any other, and consequently makes
usable the whole of the repository to any geometrical tool. Figures are stored in
JPEG format, but also in SVG format.

Within GeoThms, data are presented in:

textual form with the following choices: as GCLC code, as Eukleides code, as
XML rendered (by appropriate XSLT) as HTML, as XML rendered (by appro-
priate XSLT) in natural-language (English) form.

graphical form: with the following choices: as JPEG image, or as SVG image.

The bibliographic references are kept in BIBTEX format and it is possible to get
a BIBTEX file with a list of selected references.

5 GeoThms Tours

In this section we will describe GeoThms framework through a series of
GeoThms Tours, a series of paths that can be used by GeoThms users in theirs
interaction with GeoThms.

5.1 Login/Registration

At the entry level (apart from the “Help” section) is the “Login” section where
GeoThms users can login, or where new users can register to GeoThms. This is
a standard registration form with obligatory and optional data fields and with the
option to choose between a regular user, or a contributor. If a regular user wants
to be a contributor, his/her request is sent to the administrator, and it is the
administrator’s responsibility to change the status of the user. There is also an
anonymous account for a quick preliminary usage of GeoThms.

Only registered users have access to the second level. Regular users can browse
the data from the database and use the drawing/proof programs in an interactive
way. A contributor also has privileges to insert new data and/or update the existing
ones.

5.2 Browsing

Registered users have access to the “Reports” section (see Figure 5). In this section,
a user can browse through the data in the database, figures, theorems, and proofs.
For each of these groups a list of available items with related details is shown (see
Figure 6).

It is also possible to see the information related to the provers, the drawers, the
authors of those programs and the bibliographic references.

5.8 Adding New Data

Contributors have access to the “Add/Update” section where they can add new
data and/or update existing constructions, conjectures, and proofs. Constructions
and conjectures are entered by users. Only proofs generated by the built-in provers
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Fig. 5. GeoThms — Reports Page

can be added to the database. The relations between entities enforce that each
figure and/or proof must be linked to a geometric conjecture., i.e., a contributor
must first add a geometric conjecture and only after that, proceed adding a figure
and /or proof to that conjecture.

A contributor can add a geometrical conjecture, its statement, corresponding
figure and proof, in a single step or in separate steps. The statement must come
first, and for a given conjecture more than one figure and/or proof can be added.
Contributors can also update the data related to the conjectures, figures, and proofs.

It is also possible to insert/update the information about provers, drawers, au-
thors and bibliographic references.

5.4 Interactive Work

In the “Interactive Work” section, GeoThms offers its users the possibility to use
the DGSs and the ATP in a interactive way. The GeoThms user can submit the
code, call for its evaluation and, if there are no errors, see the resulting figure or
proof. If some syntactic, semantic or deductive error occurs an error message will

Geometry Figures Listing

23 Geometry Figures

Figure Id Theorem Id Theorem Name Drawer Name Drawer Version
1 GEO0001  |Ceva's Theorem GCLC 5.00 See details
49  |GEO0001 Ceva's Theorem Euldeides 1.02 detail
61  |GEO0001  |Ceva's Theorem GCLC 5.00 " See details
2 GEO0002  |Gauss-line Theorem GCLC 5.00 See details
3 GEO0003  Harmonic Set. GCLC 5.00 See details
4 GEO0004  Thales' Theorem GeLe 5.00 See details
8 GEO0005  Pappus’ Hexagon Theorem GCLC 5.00 See details

Fig. 6. GeoThms — Figures Listing
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(Circuncenter = intersection(pbisl,pbis2)
EulerLine = Lline(Orthocenter,Centroid)
Drawer's ldraw(segnent (A,B)) |
Code ldraw(segnent (A, C))

ldraw(segnent (B, C) )

color(res
draw(alﬂ dashed) =]

insert info

Fig. 8. Insertion Form

be displayed and the user is given the opportunity to correct and re-evaluate the
code. Syntactic errors are errors made in description steps that are not regular with
respect to syntax of the underlying geometrical language. Semantic errors occur in
situation when some construction is not possible for given points (for points given
by their Cartesian coordinates). Deductive errors occur in situation when some
construction is always impossible (these errors require invoking the prover).

Figures 9 and 10 illustrate the possibilities to add code (within a textarea
field), to submit it to evaluation, and to see the result graphically along with the
code submitted. If there are errors, they are displayed and the user can correct them.
We are planning to incorporate a syntax highlighting text editor (e.g., Helena” ) as
a substitute to the textarea field, providing in this way line numbering and syntax
highlight.

The “Interactive Work” section can be used to work on a new result before
adding it to the database. In the following text, we will illustrate an interaction of

7 http://helene.muze.nl/
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a user with GeoThms in adding, for example, the Midpoint Theorem to the database.

Theorem 1 (Midpoint Theorem) Let ABC be a triangle, and let A" and B’ be
the midpoints of AC' and BC respectively. Then the line A’ B’ is parallel to the line
AB.

Using the interactive part of GeoThms, a user can begin by describing the con-
struction, proceed attempting to prove the conjecture and, if all went as expected,
insert all this data, along with the new conjecture statement to the database.

Describing the Construction

Geometry Provers, Interaction with the Drawers

Figures Listing |9 -- GCLC -- 5.00 -- GEO0007 -- Midpoint Theorem | choose a figure description
Drawer 3-- GCLC -- 5.00 | (reJevaluate the code

jpoint A 20 10
point B 70 10
point C 35 40

drawsegrent A B
drawsegnent A C
drawsegnent 8 C

midpoint B_1 B C

midpoint AL A C X .
Code '

drawsegnent A_1 B_1

lcnark_b A
lcnark b B
cmark_t

lcnark_1t A1
cnark_rt BT

Go to the "Interaction with the Provers” section to submit a conjecture related to this Figure

Fig. 9. Midpoint Theorem — Interaction with the DGS

The constructive specification of the figure has to define: three (fixed) points
A, B, C (the vertices of the triangle); two (constructed) points A’ and B’, the
two midpoints of AC and BC respectively, and all the “drawing” commands. Note
that drawing commands are irrelevant for the theorem prover, but are relevant for
producing figures (see Figure 9). The construction was made using GCLC, but the
user can also use Eukleides for describing the construction, by instructions very
similar to the given ones.

Testing the Conjecture

Geometry Provers, Interaction with the Provers

Proofs Listing |GEoomm -~ New Conjecture = choose a Theorem
Prover 2-GCLc-1.0 < (reJevaluate the code
drawsegnent A B B
drawsegnent A C
drawsegnent B C
Theorem -
midpoint B 1 B C
dpoint A LA C
midpoint A —
drawsegment A 1 8.1 Proof (PDF file)
cmark b A
Code cmark b B Measures of efficiency
cmark_t ¢
lemark 1t A 1 Elimination Steps 5 Geometric Steps 15
cmark_rt B_1 Algebraic Steps 25 Total Steps 45
Time spent (seconds) 0.001000
,,,,,, conjecture------% Intel(R) Pentium(R) 4, 3GHz, 2GB
prove { equal { signed area3 A1 B 1A } {
signed area3 A 1B 1B } El

Go to the "New Result Form" section to submit a new result to the database

Fig. 10. Midpoint Theorem — Interaction with the ATP

After eliminating all errors from the code, the user can add a conjecture. The
property to be proved can be expressed (using the area method) in the following
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way Sapra = Sarpp, i.e., the signed area of AA’B’A is equal to the signed area of
AA'B'B.

By clicking in the appropriate button, the user goes from the “Geometric Drawer
Workbench” to the “Geometric Prover Workbench” with the DGS’s code already
in the textarea window. The GCLC’s code can be submitted to GCLCprover
without modifications, while the Eukleides’ code needs to be converted with the
euktogclcprover tool.

The user can now add the conjecture in the ATP’s code:

prove {equal {signed_area3 A_1l B_1 A} {signed_area3 A_1l B_1 B} }

After that, a new cycle of writing and evaluation starts (the drawers commands
are already correct, but the conjecture may be incorrectly written). After that,
the user gets the output of the prover in the form of a proof status, a PDF file
(generated by GCLCprover) containing the proof (if the conjecture is valid), and
some measures of efficiency.

As shown in figure 10, the proof status and the measures of efficiency are acces-
sible, and the proof is given as a PDF file. Figure 11 shows the last steps of the
proof made by GCLCprover.

1
(11) (5 . S/\cu) = (Spas, + Sscs,) . by algebraic simplifications
(12) (% . SA(’B) = ((SBAB + (% - (Spac +(-1- SBAB)))) + SBFB,) , by Lemma 29 (point B; eliminated)
1 1 P P
(13) (5 . SACR) = ((0 + (5 < (Sace +(-1- 0)))) + SH(;-R‘) , by geometric simplifications
(14) 0= Sgcn, , by algebraic simplifications
1
(15) 0= (SBCB + (5 - (Spcc + (—1- Ssus)))) , by Lemma 29 (point B; eliminated)
)
(16) 0= (0 + (% 0+ (-1- 0)))) , by geometric simplifications
17) 0=0 , by algebraic simplifications

Fig. 11. Last steps of the Proof of the Midpoint Theorem

Adding the Midpoint Theorem to the Database

With a new click, the contributor can select the “Forms” section in order to add
a statement for the new construction and the corresponding figure and proof (see
Figure 8).

5.5  Searching the Database

GeoThms’ users can search the database over figures, conjectures, or proofs for a
particular string.

6 Related work

There are several system related to GeoThms. The following ones in some degree
link DGSs with ATPs or with repositories of theorems (Table 1 shows comparison
between features of these tools):
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Geometry Explorer combines features of DGS with a theorem prover based on
the full-angle method which produces human-readable proofs (in XTEX form) [22].

MMP /Geometer combines features of DGS and ATP, and uses different proving
methods [10,11].

Geometry Expert (GEX) (new version, currently under development) is a DGS
with a client-side web interface [9]; the GEX prover is based on algebraic proof
methods, and the user can only select one from a limited number of conclusions
(e.g., “are three selected point collinear?”). The GEX tool does not have an
accessible database of problems, and does not provide a formatted output for
images and proofs.

GEOTHER is an environment for manipulating and proving geometric theorems
implemented in Maple, with drawing routines and the interface in Java. GEOTHER
can work with a menu-driven graphic user interface and contains a collection of
theorems in both elementary and differential geometry, with sample specifications
that have been proved. [21,20].

Cinderella uses randomised theorem checking of the geometrical properties; it
does not provide proofs in any form [5,14,19].

Discover is a DGS that can communicate with Mathematica ® , using the symbolic
capabilities of the latter to implement the Gréebner bases method [2]. It is
necessary to translate the geometric construction to an algebraic form and back,
from the conclusion in algebraic form to its geometric counterpart. No proofs in
any form are provided.

geometriagon has a vast repository of problems in the area of classical construc-
tive (ruler and compass only) Euclidean geometry?. A registered user can ac-
cess/edit all problems and solutions. It does not provide an ATP. The user can
perform only valid steps in the construction, using only a limited set of tools,
and in this way the system is capable to recognise whenever a user has reach a
solution of a problem. No formal proofs are provided.

GeoView combines the Coq ATP and the GeoplanJ DGS into a framework in
which it is possible to edit statements of geometrical theorems, and to visualise
the statement using the DGS [1]. The proofs are not accessible.

GeoGebra is a DGS with an internationalised graphical interface allowing graph-
ical and textual input. Figures can be exported to various formats, including
a dynamic version for Web. It does not have an ATP tool, neither it keeps a
repository of problems [8].

Theorema system integrates a number of different mathematical tools and rea-
soners, including several geometry theorem provers — provers based on Groebner
bases method, Wu’s methods, the area method. The system is built on top of
Mathematica ® system and uses its visualisation tools [3].

8 http://www.wolfram.com

9 geometriagon: http://www.polarprof.net/geometriagon/
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Tool DGS | ATP | Readable | Web Repository | Verification
Proofs Interface of Prob- | of Con-
lems structions
GeoThms Vv VA VA Vv Vv Vv
Geometry Explorer Vv V4 V4
MMP /Geometer 4 Vv Vv
GEX (old version) Vv V4 V4
GEX (new version) Vv V4 v
GEOTHER V4 Vv V4
Cinderella Vv
Discover Vv V4
geometriagon Vv V4 Vv
GeoView V4 Vv
GeoGebra V4
Theorema Va V4
Table 1

Comparison between tools that combine DGS, ATP and repository of geometry theorems

7 Future Work

We are planning to augment the framework by other dynamic geometry tools, and
other geometry theorem provers. We are considering theorem provers based on
the full-area method (which also produces synthetic proofs), Wu’s method and
Groebner bases method. We are planning to enable exchanging data with other tools
(internally, within GeoThms, and externally) via our XML format for geometrical
constructions and proofs.

We are planning to incorporate a syntax highlighting text editor as a substitute
to the textarea field, providing in this way line numbering and syntax highlight.
We are planning to use Math-ML for rendering theorems’ statements and proofs
stored in XML.

The search mechanism will be improved to provide options for advanced search.

We are planning to internationalise GeoThms, in order to make it wider usable
in education.

The “Help” system will be improved, by adding more detailed information to
the various help pages already provided.

8 Conclusions

GeoThms gives the user a complex web-based framework suitable for new ways of
communicating geometric knowledge, it provides an open system where one can
learn from the existing knowledge base and seek for new results. GeoThms also
provides a system for storing geometric knowledge (in a strict, declarative form)
— not only theorem statements, but also their (automatically generated) proofs
and corresponding figures, i.e., visualisations. We are planning to further develop
GeoThms by improving its functionalities and incorporating more geometrical tools.
We also hope that GeoThms’ growing body of geometrical constructions and for-
mally proven geometrical theorems will become a major Internet resource for geo-
metrical constructions and conjectures.
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Tinycals: step by step tacticals

Claudio Sacerdoti Coen! Enrico Tassi? Stefano Zacchiroli?

Department of Computer Science, University of Bologna
Mura Anteo Zamboni, 7 — 40127 Bologna, ITALY

Abstract

Most of the state-of-the-art proof assistants are based on procedural proof languages, scripts, and rely on
LCF tacticals as the primary tool for tactics composition. In this paper we discuss how these ingredients
do not interact well with user interfaces based on the same interaction paradigm of Proof General (the de
facto standard in this field), identifying in the coarse-grainedness of tactical evaluation the key problem.
‘We propose Tinycals as an alternative to a subset of LCF tacticals, showing that the user does not experience
the same problem if tacticals are evaluated in a more fine-grained manner. We present the formal operational
semantics of tinycals as well as their implementation in the Matita proof assistant.

Keywords: Interactive Theorem Proving, Small Step Semantics, Tacticals

1 Introduction

Several state-of-the-art interactive theorem provers are based on procedural proof
languages; the user interacts with the system mainly via a textual script that records
the executed commands. The commands that allow progress during a proof are
called tactics and are executed atomically. NuPRL [10], Isabelle [6], Coq [13], and
Matita? (the proof assistant under development by our team at the University of
Bologna) are a few examples of those systems.

The best known proof assistant that provides only a declarative proof language
is Mizar [8], while a few others superpose a declarative proof language on top of a
procedural core. The most notable system in this category is Isabelle, which in its
Isabelle/Isar variant offers to users the declarative Isar proof language [14].

With the exception of Mizar, both kind of systems share the same user interface
paradigm, inspired by the pioneering work on CtCoq [2] and now incarnated by
Proof General [1]. In this paradigm, the smallest amount of code that can be
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theorem 1t_0_defactorize_aux: theorem 1t_0_defactorize_aux:
\forall f:nat_fact. \forall f:nat_fact.

\forall i:nat. \forall i:nat.

0 < defactorize_aux f i. 0 < defactorize_aux f i.
intro. elim f. intro; elim f;

simplify. unfold 1t. [1,2:
rewrite > times_n_SO. simplify; unfold 1t;

apply le_times. rewrite > times_n_S0;
change with (0 < \pi _ 1i). apply le_times;

apply lt_O_nth_prime_n. [ change with (0 < \pi _ i);
change with (0 < (\pi _ i)°n). apply 1t_O_nth_prime_n
apply 1t_0_exp. 12,3:

apply 1t_O_nth_prime_n. change with (0 < (\pi _ i)°n);
simplify.unfold 1t. apply 1t_0_exp;
rewrite > times_n_SO0. apply 1t_O_nth_prime_n
apply le_times. | change with

change with (0 < (\pi _ i)°n). (0 < defact n1 (S i));
apply 1t_0_exp. apply H 1] 1].

apply 1t_O_nth_prime_n.

change with

(0 < defact n1 (S i)).
apply H.

Fig. 1. The same proof with (on the right) and without (on the left) tacticals.

executed atomically is the statement, which during a proof is either a tactic (in the
procedural world) or a single proof step (in the declarative world).

Scripts can be understood only by step by step execution, getting feedback on
the proof status from the system. Since feedback is given only between atomic
steps (at the so called execution points), it is important to have atomic steps as
small as possible for the sake of understanding but, also of debugging and proof
maintenance. This is in contrast with tacticals, higher order constructs which can
be used to combine tactics together.

In this paper we propose a replacement for tacticals in order to obtain smaller
atomic execution steps. Our work is not relevant in the context of declarative proof
languages. However, those few systems where it is possible to embed procedural
scripts inside declarative proof steps may already provide the functionality we sug-
gest.

Tacticals first appeared in the LCF theorem prover [5] in 1979. Paradigmatic
examples of tacticals are sequential composition and branching.® The former, usu-
ally written as “t; ; to”, takes two tactics t; and to and apply t2 to each of the
conjectures resulting from the application of ¢; to the current conjecture (of course
its application can be repeated to obtain pipelines of tactics “ty ; to ; t3 ;---").
The latter, “t ;[ t1 | --- | tn |”, takes n + 1 tactics, applies ¢ to the current conjec-
ture and, requiring ¢ to return exactly n conjectures, applies t1 to the first returned
conjecture, to to the second, and so forth.

Tacticals improve procedural proof languages providing concrete advantages,
that we illustrate with Figure 1. The concrete syntax used in the figure is that of
the Matita proof assistant.

Proof structuring. Using branching, the script representation of proofs can mimic
the structure of the proof tree (the tree having conjectures as nodes and tactic-
labeled arcs). Since proof tree branches usually reflect conceptual parts of the
pen and paper proof, the branching tactical helps in improving scripts readability
(on the average very poor, if compared with declarative proof languages). Even

5 In this paper the term “branching” is used to refer to LCF’s THENL tactical
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maintainability of proof scripts is improved by the use of branching, for example
when hypothesis are added, removed or permuted.

For instance, in the right hand side of Figure 1 it is now clear that elim f splits
the proof in two branches; both of them (selected by “[1,2:”) begin with the
same tactics until each branch is split again by the application of the le_times
lemma. Of the four branches, the second and third one (selected by “|2,3:”) are
proved by the same tactics, being proofs of the same fact. All the tactics that are
not followed by branching do not introduce ramifications in the proof.

In practice, the proof on the left hand side would be written by using inden-
tation and blank lines to understand where branches start and end. This way
readability is improved, but a lesser effect is achieved for proof maintenance.
Moreover, the system does not verify in any way the layout of the proof and does
not guarantee consistency when the script is changed. We expect that users will
abandon this behaviour as soon as an alternative without drawbacks — not the
case of LCF tacticals — will surface.

Notice that the selection of multiple branches at a time we propose in this
paper is an improvement over the standard branching tactical.

Conciseness. As code factorization is a good practice in programming, proof fac-
torization is in theorem proving. The use of tacticals like sequential composition
reduce the need of copy-and-paste in proof scripts helping in factorizing common
cases in proofs (so frequent in formal proofs pertaining to the computer science
field). Conciseness is evident in Figure 1.

In all the proof assistants we are aware of, tacticals are evaluated atomically
and placing the execution point in the middle of complex tacticals (for example at
occurrences of “;” in tactic pipelines) is not allowed. In Figure 1, this means that
having the execution point at the beginning of the proof and asking the system to
move it forward (i.e. to execute the next statement), the user will result in a “proof
completed” status, without having any feedback of the inner proof status the system
passed through. The only way for the user to inspect those status — a frequent
need, for instance for script maintenance or proof presentation — is to manually
de-structure the complex tacticals.

The big step evaluation of tacticals has also drawbacks on how proof authors
develop their proofs. Since it is not always possible to predict the outcome of
complex tactics, the following is common practice:

(i) evaluate the next tactic of the script;

(ii) inspect the set of returned conjectures;

«f»

)
(iii) decide whether the use of “;” or is appropriate;
)

(iv) if it is: retract the last statement, add the tactical, go to step (i).

Last, but not less important, is the imprecise error reporting of big step eval-
uation of tacticals. Consider the frequent case of a script breaking and the user
having to fix it. The error message returned by the system may concern an inner
status unknown to the user, since the whole tactical is evaluated at once. Moreover,
the error message will probably concern terms that do not appear verbatim in the
script. Finding the statement that need to be fixed is usually done replacing tactics

37



SACERDOTI COEN, TASSI, AND ZACCHIROLI

with identity tactic proceeding outside-in, until the single failing tactic is found.
This technique is not only error prone, but is even not reliable in presence of side-
effects (tactics closing conjectures other than that on which they are applied), since
the identity tactic has no side-effects and branches of the proof may be affected by
their absence.

We claim that the tension between tacticals and Proof General like interfaces
can be broken. In this paper we present a tiny language of tacticals — the so
called tinycals — which solves this issue. Tinycals can be evaluated in small steps,
enabling the execution point to be placed inside complex structures like pipelines or
branching constructs. This goal is achieved by de-structuring the syntax of tacticals
and stating the semantics as a transition system over evaluation status, that are
structures richer than the proof status tactics act on. Note that de-structuring does
not necessarily mean changing the concrete syntax of tacticals, but rather enabling
parsing and immediate evaluation of tactical fragments like “[” alone.

The paper is organized as follows. Section 2 describes the abstract syntax of
tinycals together with their small-step operational semantics. Other advantages of
tinycals with respect to LCF tacticals are discussed there as well. Section 3 presents
the tinycals implementation in Matita. Section 4 deals with tacticals not covered
by tinycals. Section 5 discusses related work and Section 6 concludes the paper.

2 Tinycals: syntax and semantics

The grammar of tinycals is reported in Table 1, where (L) is the top-level nonter-
minal generating the script language. (L) is a sequence of statements (S). Each
statement is either an atomic tactical (B) (marked with “tactic”) or a tinycal.

Note that the part of the grammar related to the tinycals themselves is com-
pletely de-structured. The need for embedding the structured syntax of LCF tac-
ticals (nonterminal (B)) in the syntax of tinycals will be discussed in Section 4.
For the time being, the reader can suppose the syntax to be restricted to the case
(B) == (T).

We will now describe the semantics of tinycals which is parametric in the proof
status tactics act on and also in their semantics (see Table 2).

A proof status is the logical status of the current proof. It can be seen as
the current proof tree, but there is no need for it to actually be a tree. Matita
for instance just keeps the set of conjectures to prove, together with a proof term
where meta-variables occur in place of missing components. From a semantic point
of view the proof status is an abstract data type. Intuitively, it must describe at
least the set of conjectures yet to be proved. A Goal is another abstract data type
used to index conjectures.

The function apply_tac implements tactic application. It consumes as input
a tactic, a proof status, and a goal (the conjecture the tactic should act on), and
returns as output a proof status and two lists of goals: the set of newly opened goals
and the set of goals which have been closed. This choice enables our semantics to
account for side-effects, that is: tactics can close goals other than that on which they
have been applied, a feature implemented in several proof assistants via existential
or meta-variables [4,9]. The proof status was not directly manipulated by tactics in
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Table 1
Abstract syntax of tinycals and core LCF tacticals.
(S) == (statements) (L) == (language)
“tactic” (B) (tactic) (S) (statement)
S) (S sequence
e (dot) | (5) (S) ( )
| 7 (semicolon) (B) == (tacticals)
T tactic
| “” (branch) ) ( )
“tr B recovery
- i | “try’ (B)  (recovery)
| “repeat” (B) (looping)
| i1,y in 7 (projection)
B (B composition
| “xy (wild card) | B)SHB) )
B)% branchin
| “accept (acknowledge) B ( 8)
- (B)I” ... *"(B)*]”
| (merge)
(T) ==... (tactics)
| “focus” [g1; - ;gn] (selection)
| “done” (de-selection)
Table 2

Semantics parameters.

proof status: &
proof goal: goal

tactic application: apply_tac : T — & — goal — & X goal list X goal 1list

LCF because of the lack of meta-variables and side effects.

In the rest of this section we will define the semantics of tinycals as a transition
(denoted by —— ) on evaluation status. Fvaluation status are defined in Table 3.

The first component of the status (code) is a list of statements of the tinycals
grammar. The list is consumed, one statement at a time, by each transition. This
choice has been guided by the un-structured form of our grammar and is the heart
of the fine-grained execution of tinycals.

The second component is the proof status, which we enrich with a context stack
(the third component). The context stack, a representation of the proof history so
far, is handled as a stack: levels get pushed on top of it either when the branching
tinycal “[” is evaluated, or when “focus” is; levels get popped out of it when the
corresponding closing tinycals are (“|” for “[” and “done” for “focus”). Since
the syntax is un-structured, we can not ensure statically proper nesting of tinycals,
therefore each stack level is equipped with a tag which annotates it with the creating
tinycal (B for “[” and F for “focus”). In addition to the tag, each stack level has
three components I', 7 and k respectively for active tasks, tasks postponed to the
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Exaluation status.
task = int x (Open goal | Closed goal) (task)
I' = task list (context)
T = task list (“todo” list)
Kk = task list (dot’s continuations)
ctrt_tag =B | F (stack level tag)
ctrt_stack = (I' X T X Kk X ctrt_tag) list (context stack)
code = (S) list (statements)
status = code X & X ctxt_stack (evaluation status)

W

end of branching and tasks posponed by “.”. The role of these componenets will
be explained in the description of the tinycals that acts on them. Each component
is a sequence of numbered tasks. A task is an handler to either a conjecture yet to
be proved, or one which has been closed by a side-effect. In the latter case the user
will have to confirm the instantiation with “accept”.

Each evaluation status is meaningful to the user and can be presented by slightly
modifying already existent user interfaces. Our presentation choice is described in
Section 3. The impatient reader can take a sneak preview of Figure 2, where the
interesting part of the proof status is presented as a notebook of conjectures to prove,
and the conjecture labels represent the relevant information from the context stack
by means of: 1) bold text (for conjectures in the currently selected branches, targets
of the next tactic application; they are kept in the I' component of the top of the
stack); 2) subscripts (for not yet selected conjectures in sibling branches; they are
kept in the I' component of the level below the top of the stack). The rest of the
information hold in the stack does not need to be shown to the user since it does
not affect immediate user actions.

We describe first the semantics of the tinycals that do not involve the creation
of new levels on the stack. The semantics is shown in Table 4, where some utility
functions (described in Appendix A) are used.

Tactic application

Consider the first case of the tinycals semantics of Table 4. It makes use of the
first component (denoted T') of a stack level, which represent the “current” goals,
that is the set of goals to which the next tactic evaluated will be applied.

When a tactic is evaluated, the set I' of current goals is inspected (expecting
to find at least one of them), and the tactic is applied in turn to each of them in
order to obtain the final proof status. At each step ¢ the two sets C? and G¢ of
goals opened and closed so far are updated. This process is atomic to the user
(i.e. no feedback is given while the tactic is being applied to each of the current
goals in turn), but she is free to cast off atomicity using branching. After the tactic
has been applied to all goals, the new set of current goals is created containing all
the goals which have been opened during the applications, but not already closed.
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Table 4
Basic tinycals semantics.

(“tactic” (T):c,&, (T, 1, Kk, t):S) — (¢, &, 5) n>1
where [g1;- - +; gn] = get_open_goals_in_tasks_list(T")

(€0, G5, G6) = (&[], 11)

(Gi+1, G, Giy) = (&6, GYL GY) gi+1 € Gf

(€ir1, GP1, Gi) = (€ (GINGHUG, GEUGY)  ginn € G

where (¢, G?, G%) = apply_tac(T, &, git1)
and S’ = (I, 7/, K/, t) :: close_tasks(GS,, S)

and

and I = mark_as_handled (G?)
and 7" = remove_tasks(G¢,, )

and k' = remove_tasks(GS,, k)

(77:6,6,8) — (¢,6,5)

(“accept” 1, &, (T, 7, K, 1) :S) — (¢, &,5")
where I = [(j1,Closed g1);- - ; (jn,Closed g,)] n>1
and G = [g1;- - ; gn]

and S’ = ([], remove_tasks(G¢, 1), remove_tasks(G°, k), t)

i close_tasks(G<, S)
<“'” ::Caga <F77_7 Kwt> ::S> - <67£a <[l1]77—7 [l2;' S ln] U K”t> ::S> n=1
where get_open_tasks(T") = [ly;- - ;1]
(“oe, & (U luk, t):S) — (¢, & ([l], 7, k,t):2S)

where get_open_tasks(T") =[]

They are marked (using the mark_as_handled utility) so that they do not satisfy the
unhandled predicate, indicating that some tactic has been applied to them. Goals
closed by side effects are removed from 7 and x and marked as Closed in S. The
reader can find a datailed description of this procedure in Appendix A.
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Sequential composition

Since sequencing is handled by I', the semantics of “;” is simply the identity
function. We kept it in the syntax of tinycal for preserving the parallelism with
LCF tacticals.

Side-effects handling

“accept” (third case in Table 4) is a tinycal used to deal with side-effects.
Consider for instance the case in which there are two current goals on which the
user branches. It can happen that applying a tactic to the first one closes the second,
removing the need of the second branch in the script. Using tinycals the user will
never see branches she was aware of disappear without notice. Cases like the above
one are thus handled marking the branch as Closed (using the close_tasks utility)
on the stack and requiring the user to manually acknowledge what happened on it
using the “accept” tinycal, preserving the correspondence among script structure
and proof tree.

Example 2.1 Consider the following script:

apply trans_eq; [ apply H | apply H1 | accept ]

where the application of the transitivity property of equality to the conjecture L = R
opens the three conjectures 71 : L =73, 75 :73 = R and 73 : nat. Applying the
hypothesis H instantiates 73, implicitly closing the third conjecture, that thus has
to be acknowledged.

Local de-structuring

Structuring proof scripts enhances their readability as long as the script structure
mimics the structure of the intuition behind the proof. For this reason, authors do
not always desire to structure proof scripts down to the most far leaf of the proof
tree.

Example 2.2 Consider for instance the following script snippet template:

tacl;
[ tac2. tac3.
| tacd; [ tacb | tac6 ] ]

Here the author is trying to mock-up the structure of the proof (two main
branches, with two more branches in the second one), without caring about the
structure of the first branch.

Tacticals do not allow un-structured scripts to be nested inside branches. In the
example, they would only allow to replace the first branch with the identity tactic,
continuing the un-structured snippet “tac2. tac3.” at the end of the snippet,
but this way the correspondence among script structure and proof tree would be
completely lost. The semantics of the tinycal “.” (last two cases of Table 4) accounts
for local use of un-structured script snippets.

When “.” is applied to a non-empty set of current goals, the first one is selected
and become the new singleton current goals set I'. The remaining goals are re-
membered in the third component of the current stack level (dot’s continuations,
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denoted k), so that when the “.” is applied again on an empty set of goals they
can be recalled in turn. The locality of “.” is inherited by the locality of dot’s
continuation s to stack levels.

Table 5
Branching tinycals semantics.

<“[” ::Cvé.a <[l1a : ';ln]77—7 "{7t>::S> — <67£aS,> n =2

where renumber_branches([l1; - +;1,]) = [I;- - ;1]
and §" = ([iy], [],[1,B) 1 ([lg; -+ 5 1) 7y sy ) S
(750, 6 (076, B) ([l -5 ], 77 K ) 28) — (6,6,9) n>1
where S" = ([l1], 7 U get_open_tasks(T) U k, [|,B) :: ([la;- - 5 1], 7, 6/, ) 1S
(11,0 oyin " e, &), 7, [],B) (T, 7/ KL E) 2S) — (e, €,5)
where unhandled(l)
andVj=1...n, 3= {j,s;), lel=I'
and §" = ([ly;- -+ 3 0], 7 [1B) s (L D)\ [l -+ 5 0], 7/ 67, 8) 22 S
(e, (7 [ B) s (I, 7, 6, 1) 12 S) — (e,6,5)
where unhandled(l)
and S = (1T, 7,[],B)::([], 7" U get_open_tasks(T') U K, k', ') :: S
(D e, &, (0,1, K, B) (T 7/ k) 1 S) — (¢,&,57)
where S" = (7 U get_open_tasks(T) UT' Uk, 7', k', ) :: S
(“focus” [g13---1gn):c, &, (U7, 5, 1) S) — (e, €,57)
where g; € get_open_goals_in_status(S)
and S" = (mark_as_handled([g1;- - ;5 90]),[],[], F)

:wclose_tasks((T, T, k, t) ::.S)

(“done” :¢, &, {[], [, [, F)::S) — (¢,&,95)

Table 5 describes the semantics of tinycals that require a stack discipline.
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Branching

Support for branching is implemented by “[”, which creates a new level on the
stack for the first of the current goals. Remaining goals (the current branching
contert) are stored in the level just below the freshly created one. There are three
different ways of selecting them. Repeated uses of “|” consume the branching con-
text in sequential order. iy,...,4,“:” enables multiple positional selection of goals
from the branching context. “x:” recall all goals of the current branching context
as the new set of current goals. The semantics of all these branching tacticals is

shown in the first five cases of Table 5.

o

*3

Each time the user finishes working on the current goals and selects a new goal
from the branching context, the result of her work (namely the current goals in
I') needs to be saved for restoring at the end of the branching construct. This is
needed to implement the LCF semantics that provides support for snippets like the
following:

Example 2.3

‘tacl; [ tac2 | tac3 ]; tacd ‘

where the goals resulting by the application of tac2 and tac3 are re-flowed
together to create the goals set for tac4.

The place where we store them is the second component of stack levels (todo
list, denoted 7). Each time a branching selection tinycal is used the current goals
set (possibly empty) is appended to the todo list for the current stack level.

When “]” is used to finish branching (fifth rule of Table 5), the todo list 7 is used
to create the new set of current goals I', together with the goals not handled during
the branching (note that this is a small improvement over LCF tactical semantics,
where leaving not handled branches is not allowed).

Focusing

The pair of tinycals “focus”... “done” is similar in spirit to the pair “["... “]”,
but is not required to work on the current branching context. With “focus”, goals
located everywhere on the stack can be recalled to form a new set of current goals.
On this the user is then free to work as she prefer, for instance branching, but is
required to close all of them before invoking “done”.

The intended use of “focus”... “done” is to deal with meta-variables and side
effects. The application of a tactic to a conjecture with meta-variables in the conclu-
sion or hypotheses can instantiate the meta-variables making other conjectures false.
In other words, in presence of meta-variables conjectures are no longer independent
and it becomes crucial to consider and close a bunch or dependent conjectures to-
gether, even if in far away branches of the proof. In these cases “focus”... “done”
is used to select all the related branches for immediate work on them. Alternatively,
“focus”... “done” can be used to jump on a remote branch of the tree in order to
instantiate a meta-variable by side effects before resuming proof search from the
current position.

Note that using “focus”... “done”, no harm is done to the proper structuring
of scripts, since all goals the user is aware of, if closed, will be marked as Closed
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requiring her to manually “accept” them later on in the proof.

3 Implementation issues

Tinycals have been implemented in the Matita proof assistant. This section de-
scribes the issues faced in their implementation.

Encoding of tacticals

Tacticals play two different roles in a proof assistant. They can be used both
in scripts and in tactic implementations. As a matter of fact at least one tactical
among sequential composition and branching is used in the implementation of each
derived tactic.

In this paper we propose the replacement of tacticals with tinycals. Tacticals
operate on proof status, while tinycals operate on evaluation status. This is wel-
come when tinycals are used in scripts, since the additional information kept in the
evaluation status is the rich intermediate state we want to present to the user. On
the contrary, this datatype change does not allow the replacement of tacticals with
tinycals in the implementation of derived tactics. Thus we are immediately led to
consider if it is possible to express tacticals in terms of tinycals, in order to avoid
an independent re-implementation of related operations.

The answer is positive under additional assumptions on the abstract data type
of proof status. Intuitively, we need to define two “inverse” functions to embed a
proof status, a goal, and a code in an evaluation status (let it be embed) and to
project an evaluation status to a proof status and two lists of opened and closed
goals (let it be proj). Once the two functions are implemented, we can express
sequential composition and branching as follows:

(t13t2)(€, 9) = proj (eval(embed([t1; *; 73 t2],€, 9))) (1)
(t; [t1] - .- [tn]) (€, 9) = proj(eval(embed ([t; “[";t1; “|"s .. s “[1tn; “]7],€,9)))  (2)
where ewval is the transitive closure of — . For each status S the code of the status
eval(S) is empty.
The embed function is easily defined as:

embed(c, &, 9) = (¢,€, [{g, [], [, F)])

To define the proj function, however, we need to be able to compute the set of
goals opened and closed by eval(embed(c,&, g)) for any given code ¢, proof status &
and selected goal g. The formers are easily computed by the get_open_goals_in_status
utility of Appendix A. However, to compute the latter the information stored in an
evaluation context is not enough.

We say that tactics do not reuse goals whenever closed goals cannot be re-opened
(remember that a goal is just an handle to a conjecture, not the conjecture itself).
Concretely, it is possible to respect this property in the implementation by keeping
a global counter that represents the highest goal index already used. When a tactic
opens a new goal it picks the successor of the counter, that is also incremented.
When tactics do not reuse goals it is possible to determine the goals closed by a
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sequence of evaluation steps by comparing the set of open goals at the two extremes
of the sequence. To make this comparison it is possible to add to the proof status
abstract data type a method that returns the set of opened goals.

Let diff be the function that given two proof status & and £ returns the set of
goals that were open in & and are closed in &'. For each proof status £ the proje
function is defined as:

proje([1,€, S) = (€', get-open_goals._in_status(S), diff (£,€"))

The function proj, must be used in Equation (1) and Equation (2) in place of
proj.

Tinycals user interface

Tinycals would be worthless without a way to present evaluation status to the
user. Our current solution for the Matita user interface is shown in Figure 2.

B mama [

| File Edit Script View Debug Help |

F ooyl 720 ‘P:?;if.‘ ?13]
int Fo; eliml f, 3 fﬂat fact ._f-
[ simplify; unfold 1t; i

rewrite > times n 80. )
apply le times; inat
[ change with (S 0 < \pi _ i};
apply 1t_SO_nth prime n;
| change with (0 < (\pi i) ~ n); S0<1
apply 1t_0_exp;
apply 1t 0 nth prime n; 1 4
| simplify; unfold 1t; o
rewrite > times . n S80;
rewrite > sym_times;
apply le_times;
[ change with (0 < (\pi _ 1) ~ nm);
apply 1t 0 exp;
apply 1t_0_nth_prime_n;
| change with (S 0 < defactorize au
ed appLy i 11 ’%-.—'-ﬁlLIati:'l_-'Ha}?-|2-|y H-:I]] =]
neu: Si

evsaliatinn: 1

Lal

evaluating:

Fig. 2. Evaluation status representation in the Matita user interface.

We already had a Proof General like user interface with script and execution
point (on the left of Figure 2) and a tabbed representation of the set of open con-
jectures (on the right) as sequents, using meta-variable indexes as labels. What the
user was missing to work with tinycals was a visual representation of the stack. Our
choice has been to represent the current branching context as tab label annotations:
all goals in the current goals set have their labels typeset in boldface, goals of the
current branching context have labels prepended by |, (where n is their positional
index), and goals already closed by side-effects have strike-through labels like: 2.

For instance in Figure 2, the only goal (in bold-face) the next tactic will be
applied to is 20 (i.e. T' = [(1,0pen 20)]), while goal 21 will be selected by the next
“I” tinycal.
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This choice makes the user aware of which goals will be affected by a tactic
evaluated at the execution point, and of all the indexing information she might
need there. She indeed can see all meta-variable indexes (in case she wants to
“focus”) and all the positional indexes of goals in the current branching context
(for i1,...,i,“"and “x:”). Yet, this user interface choice minimizes the drift from
the usual way of working with Proof General like interfaces.

4 A digression on the remaining tacticals

Of the basic LCF tacticals, we have considered so far only sequential composi-
tion and branching. It is worth discussing the remaining ones, in particular try,
|| (or-else) and repeat.

The try T tactical, that never fails, applies the tactic 7', behaving as the identity
if T fails. It is a particular case of the or-else tactical: Ti||T» behaves as T; if T}
does not fail, as T5 otherwise. Thus try T is equivalent to T'||id.

The try and or-else tacticals occur in a script with two different usages. The most
common one is after sequential composition: T7; try Ts or T1; T5||T5. Here the idea is
that the user knows that 75 can be applied to some of the goals generated by 77 (and
T3 to the others in the second case). So she is faced with two possibilities: either use
branching and repeat T5 (or T3) in every branch, or use sequential composition and
backtracking (encapsulated in the two tacticals). Tinycals offer a better solution
to either choice by means of the projection and wild card tinycals: T7;[i1,. .. 0, :
Ty|+ : T5]. The latter expression is not also more informative to the reader, but it
is also computationally more efficient since it avoids the (maybe costly) application
of T3 to several goals.

The second usage of try and or-else is inside a repeat tactical. The repeat T
tactical applies T once, failing if T fails; otherwise the tactical recursively applies
T again on every goal opened by T until T fails, in which case it behaves as the
identity tactic.

Is it possible to provide an un-structured version of try T, T||T", and repeat T
in the spirit of tinycals in order to allow the user to write and execute T step
by step inspecting the intermediate evaluation status? The answer is negative as
we can easily see in the simplest case, that of try T. Consider the statement
T;try (T1;T») where sequential composition is supposed to be provided by the
corresponding tinycal. Let 1" open two goals and suppose that “try” is executed
atomically so that the evaluation point is just before 7;. When the user executes
Ty, Ty can be applied as expected to both goals in sequence. Let £ be the proof
status after the application of 1" and let & and & be those after the application of
T7 to the first and second goal respectively. Let now the user execute the identity
tinycal “;” followed by T5 and let T5 fail over the first goal. To respect the intended
semantics of the tactical, the status & should be partially backtracked to undo the
changes from &£ to &1, preserving those from &; to &s.

If the system has side effects the latter operation is undefined, since T3 applied to
¢ could have instantiated meta-variables that controlled the behavior of 17 applied
to & . Thus undoing the application of 77 to the first goal also invalidates the
previous application of 77 to the second goal.

47



SACERDOTI COEN, TASSI, AND ZACCHIROLI

Even if the system has no side effects, the requirement that proof status can be
partially backtracked is quite restrictive on the possible implementations of a proof
status. For instance, a proof status cannot be a simple proof term with occurrences
of meta-variables in place of conjectures, since backtracking a tactic would require
the replacement of a precise subterm with a meta-variable, but there would be no
information to detect which subterm.

As a final remark, the simplest solution of implementing partial backtracking
by means of a full backtrack to £ followed by an application of 77 to the second
goal only does not conform to the spirit of tinycals. With this implementation, the
application of T to the second goal would be performed twice, sweeping the waste
of computational resources under the rug. The only honest solution consists of
keeping all tacticals, except branching and sequential composition, fully structured
as they are now. The user that wants to inspect the behavior of T'; try T} before that
of T try (Ty;T3) is obliged to do so by executing atomically try Tj, backtracking
by hand and executing try (77;7%) from scratch. A similar conclusion is reached
for the remaining tacticals. For this reason in the syntax given in Table 1 the
production (B) lists all the traditional tacticals that are not subsumed by tinycals.
Notice that atomic sequential composition and atomic branching (as implemented
in the previous section) are also listed since tinycals cannot occur as arguments of
a tactical.

5 Related work

Different presentations of the semantics of tacticals has been given in the past. The
first presentation has been given in [5] by Gordon et al. Although a larger set
of tacticals than that considered here was described in their work, the problem of
inspection of inner proof status was not considered. Proof General-like interfaces
were not available at the time, as well as meta-variables and tactics with side-effects.

In [7], Kirchner described a small step semantics of Coq tacticals. Despite the
minor expressive advantages offered by tinycals over the corresponding Coq tacticals
(like “focus”, “x:”, i1,...,1, ", the less constrained use of “[”, and the structuring
facilities implemented by “.” and “accept”), the formalization of tinycals is more
general and we believe that it can be applied to a large class of proof assistants. In
particular our semantics only assume an abstract proof status and a very general
type for tactic applications, while in [7] a very detailed API for proof trees was
assumed.

Delahaye in [3] described Ly,., a powerful meta-language which can be used both
by users and tactics implementors to write small automations at the proof language
level. L4 is way more powerful than tinycals, featuring constructs typical of high-
level programming and defining their reduction semantics. However, since its aim
was different, L. fails to address the interaction problem that tinycals do address.

Two alternative approaches for authoring structured HOL scripts have been pro-
posed in [11] and [12]. The first approach, implemented in Syme’s TkKHOL, is similar
to the one presented in this paper but lacks a formal description. Moreover, unlike
HOL, we consider a logic with meta-variables which can be closed by side effects.
Therefore the order in which branches are closed by tactics is relevant and must be
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made explicit in the script. For this reason we support tinycals like “focus” and
11, -+, 1p “s” which were not needed in TkHOL. The second approach, by Takahashi
et al., implements syntax directed editing by automatically claiming lemmata for
each goal opened by the last executed tactic. This technique breaks down with

meta-variables because they are not allowed in the statements of lemmata.

6 Conclusions

In this paper we presented the syntax and semantics of tinycals, a tactical language
able to mimic some of the LCF tacticals so widespread in state-of-the-art proof assis-
tants. Tinycals advantages over LCF tacticals is that their syntax is un-structured
and their evaluation proceeds step by step, enabling the user to start execution of a
structured script before its completion. Intermediate proof status can be inspected
and tactics with side effects are supported as well. The neat result is better inte-
gration with user interfaces based on the CtCoq/Proof General paradigm. Some
implementative issues have also been discussed, and the extension of the approach
to other tacticals has been considered with negative results.

Tinycals have been implemented and are used in the Matita proof assistant
for the ongoing development of its standard library. Users experienced with other
proof assistants, in particular Coq, consider them a serious improvement in the
proof authoring interface. This is not a big figure (our users are just the member of
our research team at the time of writing), but is enough to motivate our work on
them, hoping to see them adopted soon in other systems.
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A Utility functions

The goal automatically selected by “[” or “|” is called unhandled until a tactic is

applied to it. Unhandled goals are just postponed (not moved into the todo list
7) by i1,...,i,“”. Goals opened by a tactic are marked with mark_as_handled to
distinguishing them from unhandled goals. The function renumber_branches is used
by “[” to name branches.

true if I = (n,Open g) An >0
unhandled (1) = (n,0Open g)
false otherwise

mark_as_handled([g1;- -+ ;gn]) = [(0,0pen g1);- - ; (0,0pen g,)]

renumber _branches([(i1,51); - ; (in, Sn)]) = [(1,81); -+ 5 (n, sp)]

The next three functions returns open goals or tasks in the status or parts of it.
Open goals are those corresponding to conjectures still to be proved.

get_open_tasks(l) =
[] if 1 =]
(i,0pen g):: get_open_tasks(tl) if I = (i,Open g)::tl
get_open_tasks(tl) if | =hd::tl

get_open_goals_in_tasks_list(l) =
[] if =]
g :: get_open_goals_in_tasks_list(tl) if | = (_,0pen g)::tl
get_open_goals_in_tasks_list(tl) if | =(_,Closed g)::

get_open_goals_in_status(S) =
[] if § =]
get_open_goals_in_tasks_list(T' QTQk)
Qget_open_goals_in_status(tl) it S=(T,7,kK,_)::t
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To keep the correspondence between branches in the script and ramifications in the
proof, goals closed by side-effects are marked as Closed if they are in " (that keeps
track of open branches). Otherwise they are silently removed from postponed goals
(in todo list 7 or dot continuation k). Closed branches have to be accepted by the
user with “accept”.

close_tasks(G,S) =
( .
[] if §=1{]
(closegus (G, T), 7', K/ t) :: close_tasks(G, tl) if S =(T,7,k,t):tl

where 7/ = remove_tasks(G, 1)

| and #' = remove_tasks(G, k)

closeguz (G, 1) =
[] if 1 =]
(i,Closed g):: closeqy; (G, tl) if | = (i,0pen g)::tl ANg € G
hd:: close gy (G, tl) if l=hd:tl

remove_tasks(G,l) =

[] if [ =]
remove_tasks(G, tl) if |=(i,0peng):tiNngeG
hd::remove_tasks(G, tl) if | = hd::tl
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Abstract

This article describes an architecture for creating responsive web interfaces for proof assistants. The ar-
chitecture combines current web development technologies with the functionality of local prover interfaces,
to create an interface that is available completely within a web browser, but resembles and behaves like a
local one. Security, availability and efficiency issues of the proposed solution are described. A prototype
implementation of a web interface for the Coq proof assistant [8] created according to our architecture is
presented. Access to the prototype is available on http://hair-dryer.cs.ru.nl:1024/.

Keywords: Proof Assistant, Interface, Web, Coq, Asynchronous DOM modification

1 Introduction

1.1 Motivation

Nowadays people are more and more accustomed to having a connection to the
Internet all the time. Thus the network becomes a part of the computer one uses.
As a consequence a tendency has emerged to provide services available just by
accessing certain web pages. In this way people do not themselves need to install
software for such services on their computers any more. Examples include web
interfaces to e-mail, calendars, chat clients, word processors and maps.

Commercial services are often available through web-interfaces. On the other
hand, in the scientific domain, examples are not so abundant. In particular there
are no real implementations of web interfaces for proof assistants.

To use a proof assistant, one needs to install some software. Often the instal-
lation process is complicated. For example to install Isabelle [17], which is one of
the most popular proof assistants, on a Linux system, one needs a particular ver-
sion of PolyML, a HOL heap and Isabelle itself. To use an interface to access the
prover, one needs ProofGeneral [4] and one of the supported Emacs versions. With
Debian we had to downgrade the Linux kernel to support PolyML. The process
described above is already complicated, not to mention other operating systems

1 Email: cek@cs.ru.nl
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and architectures, additional desirable patches and libraries, or less commonly used
provers.

This is a problem. It happens that computer scientists prefer to stick with
installed old versions of provers, not to go through the same process to upgrade.
Mathematicians may even stay away from computer assisted proving, just because
of the complexity of installation.

We want a fast interface, that is available with just a web browser. We want
to access various proof assistants and their versions, in a uniform manner, without
installing anything, not even plugins. The interface should look and behave like
local interfaces to proof assistants.

We want the possibility to create web pages, that show tutorials and proofs,
but that are bound to the prover itself, where the user can interact with the real
system. The provider of the server may install patched versions of provers, allowing
an easy way for the users to try out their features. We want libraries for proof
assistants to be available centrally, so that users who want to see them do not need
to download or install anything. The interface should allow developing proofs and
libraries centrally, in a wiki-like [11] way.

1.2 Our Approach

The solution is a client-server architecture with a minimal lightweight client inter-
preted by the browser, a specialized HI'TP server and background HTTP based
communication between them. The key element of our architecture is the asyn-
chronous DOM modification technique (sometimes referred to as AJAX - Asyn-
chronous JavaScript and XML or Web application). The client part is on the
server, and when the user accesses the interface page, it is downloaded by the
browser, which is able to interpret it without any installation.

The user of the interface, accessing it with the browser, does not need to do
anything when a modification is done on the server. Every time the user accesses
a prover, the version of the prover that is currently installed on the server is used.
The user can access any of the provers installed on the server, even a prover which
does not work on the platform from which the connection is made.

Saving the files on the central server allows accessing them from any location,
by just accessing the interface’s page with a web browser. A central repository
simplifies cooperation in proof development, by replacing versioning systems like
CVS, which keeps a remote and a local copy, by a wiki-like mechanism, where the
only copy is the remote one.

Our approach is presented as an architecture to create web interfaces to proof
assistants, but it is not limited to them. The problems solved are relevant to creating
web interfaces programs that have a state, include an undo mechanism, and their
interfaces can be buffer oriented. Our architecture may be applied for example to
buffer oriented programming languages, like Epigram [15].

1.3 Related work

There have been some experiments with providing remote access to a prover. None
of them allowed efficient access without installing additional software.
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LogiCoq [18] is a web interface to Coq [8]. It offers a window where one can
insert the contents of whole Coq buffer and submit them for verification. It sends the
whole buffer with standard HTTP request and refreshes the whole page. Therefore
one can work efficiently only with tiny proofs.

The web interface to the Omega system [7], requires the Mozart interpreter to be
installed on the user’s machine. The use of the web browser is minimal, the whole
interface is written in Mozart. Installation of Mozart is possible only for certain
platforms which also makes the solution limited.

There are Java applets having built-in proof assistant functionality. Examples
may include G4IP [19] or Logic Gateway [12]. The installation of a browser plug-in
to support Java is not simple in a Unix environment and limiting provers to Java
applets is undesired.

Web interfaces related to proof assistants and displaying mathematics on the
web are worth mentioning. In particular:

e Helm [3] - (Hypertextual Electronic Library of Mathematics) A web interface that
allows visualisation of libraries available for proof assistants.

* Whelp [2] - A content based search engine for finding theorems in proof assistants
libraries, that supports queries requiring matching and/or typing.

* ActiveMath [16] - A web-based framework for learning mathematics that uses
Java applets to communicate with a central server using OMDoc [13].

There are some commercial web interfaces and frameworks that use asynchronous
DOM modification in non scientific domains.

The novelty of our architecture in comparison with existing web interfaces for
theorem provers is that it allows the creation of an interface to a prover, that can
look and behave very much like the ones offered by state-of-the-art local interfaces,
but is available just by accessing a page with a web browser without installing any
additional software, not even plugins. Because of the architecture, the network
used to transfer information does not slow down the interaction. The idea to use
asynchronous DOM modification to create an interface to a proof assistants has
never been applied before.

1.4 Contents

In the rest of the paper we present the techniques for creation of web interfaces,
that we will use (Section 2) and the internals of a local prover interfaces which
we try to imitate (Section 3), followed by the presentation of the new architecture
(Section 4) and a description of its security and efficiency (Section 5). We present
our implementation prototype (Section 6). Finally we conclude and present a vision
of future work (Section 7).

2 The Concept of Asynchronous DOM Modification

As the web is becoming more commonly used, web page designers and browser
implementers add new functionality to web pages. Text files have been replaced
by hyper-linked files, later including images, language-specific and mathematical
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characters, styles and dynamic elements. The W3C Consortium, which is the or-
ganization responsible for the standardization of the Web, defines these elements
as standards, and in consequence they are implemented in a similar ways in all
browsers.

Since the late nineties browsers have started supporting the following technolo-
gies relevant to our research: JavaScript, DOM [14] and XmlHttp [20]. Combined
use of these three technologies has became popular in recent years, since they allow
one to create responsive web interfaces. In this document we refer to the combined
usage of these three technologies as “Asynchronous DOM Modification.” One can
find other names describing this technique, like AJAX or Web Application.

JavaScript is a scripting programming language, created by Netscape in 1995,
for adding certain dynamic functionality to pages written in HTML. It has been
quickly adopted by most browsers and nowadays it is supported even by some text
mode browsers like w3m and Links, and mobile phone browsers. It is very often
used on Internet websites.

DOM (Document Object Model) [14] is an API (Application programming in-
terface) for managing HTML and XML documents that allows modifications of
their structure and content. Recent browsers support W3C DOM accessibility by
JavaScript. It is often used on web pages to add dynamic elements, for example
drop-down menus or images that change when the mouse moves over them.

XmlHttp [20] is an APT accessible by web browser scripting languages to transfer
data to and from a web server. It internally uses HT'TP requests. XmlHttp requests
are sent to the server without the knowledge of the user of the web browser. For
every XmlHttp request a callback has to be provided, to be executed when the
response from the server is received. The sending of the request can be optionally
asynchronous. XmlHttp has been available in most browsers for some time, and has
been recently described in a W3C specification draft.

Asynchronous DOM modification is a web development technique that uses the
three technologies described above to create responsive web interfaces. Such inter-
faces are web pages, where particular events (key presses and mouse movement)
are captured by JavaScript events. The minimal client part encoded in JavaScript
processes the local events, like menu opening or typing in a buffer. Events that
require additional information from the server are sent in asynchronous XmlHttp
requests. Since the request is done in the background, it does not interrupt the user
from working locally. When the response arrives, it is used to modify the DOM of
the page.

In comparison with classical web pages, the usage of asynchronous DOM mod-
ification makes it possible to send minimal information to the server, to receive
only the information required, and to refresh small parts of the web page. Network
overhead and page refreshing are minimized, thus creating interfaces which work
many times faster then classical web-based ones. This way, the interface can closely
resemble local interfaces, if network latency is reasonable. In case of high network
latency, asynchronous requests allow the user to work locally, while additional data
is requested.

Examples of usage of the asynchronous DOM modification are: webmails and
calendars which operate within a single page, maps which download required parts
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as they are dragged, and web chat clients. Such web interfaces are supported by all
standard web browsers, in particular all Gecko based browsers, Microsoft Internet
Explorer versions from 5, Opera from version 8, Konqueror from version 3.2, Safari
from version 1.2 and even Nokia S60 browser from version 3. It is not supported by
text mode browsers and browsers for visually impaired people.

3 Generic Interface for Proof Assistants

In this section we describe the internals of local interfaces for proof assistants. We
chose for this ProofGeneral [4] for two reasons. First, it is a prover-independent
interface to proof assistants. Second, it is popular, since it is universal and since it
is built on the highly configurable Emacs text editor.

ProofGeneral’s interface provides the user with two buffers: an editable buffer
containing the proof script and the prover state buffer. ProofGeneral relies on the
proof assistant to process the commands incrementally. It does not distinguish
tactic-mode proofs from declarative-mode proofs. State changing and non-state-
changing Coq commands are distinguished to make only the relevant ones part of
the proof script and to allow queries.

The interface colors keywords according to the above distinctions, and addi-
tionally marks parts of the buffer with a background color, to indicate the status
of verification. Possible states include: Expression that has been accepted by the
prover, expression that is now being verified, and editable non-verified expression.

ProofGeneral provides a proof replying mechanism. The prover itself has to
provide an undo mechanism. Users may choose a point in the buffer to go to, and
ProofGeneral issues a number of proof steps and undo steps to the prover in order
to reach that point.

ProofGeneral is responsible for providing the proof script from files on the disc
to the prover and saving the buffers state. Other disc operations that exist in
some provers, like proof compilation, program extraction or automated creation of
documentation are not handled by ProofGeneral.

The current version of ProofGeneral is implemented mostly in Emacs Lisp, and
is strongly tied with the editor itself. It is easy to adapt ProofGeneral to new proof
assistants, by setting a number of variables. If this is not sufficient ELisp code can
be used.

Other interfaces to provers offer mostly similar functionality. In some interfaces,
like PCoq [1] or IsaWin, additional visualisation mechanisms are available, for exam-
ple term annotations. Some of these mechanisms are not available in ProofGeneral;
this limitation comes from the Emacs editor.

4 General Architecture

The two core elements of our architecture are: a specialized Web server and a
communication mechanism (Fig. 1).

The Web server serves normal files and it is able to respond to special HTTP
requests (see 4.2). The main interface is available as a normal HTML file on the
server. When a user accesses the page with a browser, the page requires certain
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Fig. 1. General architecture.

JavaScript files, which are then downloaded and interpreted by the browser. This
serves as the client part.

The communication between the client part and the server is done with the
mechanism described in Section 2. HTTP requests are created in the background.
The results are used to update the page in place. Only a small amount of information
is transferred between the client and the server. The transfer is done asynchronously,
making the interface responsive.

4.1 The Client Part

The client part offers a web page that initially presents the user with an editable
buffer and an empty response buffer. (Also a menu or a toolbar is necessary for
interaction, but they are normal elements of web pages). Buffers are implemented
as HTML IFrames?. All keys that modify the IFrame are assigned to a special
function. Locking of parts of the buffer is implemented by disallowing changes to
locked parts of the buffer in this function.

When the user wants to verify a part of the buffer, this part is locked and sent to
the server. Since the request is a background one, even if it takes a moment the user
may continue working. When the response arrives, the contents of the two buffers
are modified. The response may be a success, and then the part of the editable
buffer is marked ‘verified’ and the response buffer shows the new prover state. If

2 An IFrame is an HTML tag that includes a floating frame within a page, that can be optionally editable.
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the command failed, the part of editable buffer is unlocked and the error shown.
Parts of the editable buffer are marked, as their state changes, by using background
colors, as it is done in ProofGeneral.

The interface includes a proof replaying mechanism, created in a similar way that
it is done in local interfaces. When the user wants to go to a particular place in the
buffer, this information is passed to the server. The server sends the commands to
the client’s prover session and informs the interface about the results. In a similar
way the interface includes a break mechanism that allows stopping the prover’s
computation.

The interface includes functionality for file interaction. Files can be loaded and
saved on the server. For interoperability downloading files and uploading files from
the local computer may be provided. For proof development efficiency, insertion of
templates and queries may be provided.

4.2 The Server Part

The server includes standard HTTP file serving functionality. With it the user’s
browser downloads the client part. The server can also handle special messages
available for users, that have logged in. Session mechanism is used to support
multiple clients. A session is created when a user logs in to the system and is
sustained with a cookie mechanism. Every user’s session is associated with a par-
ticular prover session. The server runs provers as subprocesses and communicates
with them through standard input and output. Prover sessions are terminated after
a long period of inactivity (if the user did not close the page, the client part can
replay the proof script from the beginning).

The special messages, mentioned above, include: passing a given complete ex-
pression to verify to the prover, issuing an undo command in the prover, saving a
file, loading a file, and break (stopping the prover computation). The commands
from the client for the prover are passed first to the server, which transmits them
to the prover. Prover replies are analysed by the server and only state changes are
sent to the client. The state changes consist of two parts: changing of the markings
of the edit buffer and the new contents of the prover state buffer.

Replies from the server are passed back to the client in an asynchronous way.
This means, that the server does not answer HI'TP requests from the client imme-
diately, but when an answer from the prover is received or a timeout is reached.
The server keeps a pool of provers that have been asked to process data, and waits
for an answer from any of them. The waiting process does not block the server,
that is, other clients’ requests can be processed in the meantime.

5 Security and Efficiency

5.1 User side

All code that the user runs is interpreted within the web browser. Thus a malicious
or virus infected prover can influence the client only by exploiting system or browser
€rrors.

The efficiency of code execution on the user’s side is dependent on the efficiency
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of the browser’s internal web page and scripts interpretation, and the speed of
HTML rendering.

Our experiments show that client-side DOM changes with Internet Explorer are
approximately twice as fast as with Mozilla Firefox (still usually invisible for the
user). It is hard to say whether this is due to less security checks or the worse
quality of the rendered page (no anti-aliasing) in Internet Explorer.

5.2  Server side

In any centralized environment security, availability and efficiency of the server are
important. Standard security measures include a backup server prepared to take
over network traffic in case of a primary server failure and regular backing up of
user files. In this subsection we will describe only the issues and solutions particular
to a server that runs a web interface to a prover.

Three kinds of issues arise: security, availability and equal sharing of resources.
First, exploiting bugs in our architecture could lead crackers to take control of the
server. Second, in a centralized environment the only copy of files is on the server.
Unavailability of the server makes users not only unable to work, but also unable to
access their files. Last, when users access the same server its resources are shared.
If a particular prover uses all the memory or CPU, other users are unable to work.

To provide security, the server is run in a chrooted? environment, as a non-
privileged user. The permissions include only reading server files and executing
the provers. Every prover type is run as a different user (using the file setuid
mechanism), that has read rights only to the prover’s library, and write rights only
to a directory where the prover’s proof scripts are stored. To disallow storing overly
large amounts of data, filesystem quota may be used.

For provers that allow system interaction, this functionality can be sometimes
disabled. In particular, for ML based provers, dropping to the toplevel can be
disabled. If the server administrator doesn’t trust the prover’s implementation,
a secure version of the kernel can be used to disable irrelevant system calls. In
this case even a language that is implemented inside ML can be available without
changes to the prover itself.

To ensure equal sharing of resources, prover processes can be run with Cpu
quota and memory quota mechanisms. The scheduling policy can be changed (for
example with the nice system call) to provide the server process with priority over
prover processes. Different provers have different CPU and memory requirements,
which should be taken into account while setting the limits.

When many users want to access the interface, the resources of a single server
may be insufficient. It is simple to run the server on a set of machines, by calling
provers as subprocesses through ssh on separate computers. A load balancing
mechanism can be implemented.

The communication between the server part and the client part can be secured
by providing the interface through HTTPS.

3 chroot is a system call preventing a process to access any files outside of a special root directory.
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6 Implementation of a Prototype

We have implemented a minimal prototype of a web interface that follows the pro-
posed architecture. The interface allows using the Coq proof assistant [8] with just
a web browser, but it looks and behaves (Fig. 2) like the ones offered by Coqlde
and ProofGeneral.

==

I orpiebiteracs protoly;
04 WEDINIETTHCE Prololype = FIrei 0.

| File Edit View Go Bookmarks Tools Help

<,|ZI - _ - @ € @ ‘ http: //hair-dryer.cs.ru.nl: 1024/ j @ co “Q],coq—club archive
<] IZ> File Templates MNavigation Help/Readme Cog documentation|
Detinition trans (— forall X y Z :

Terms,
RxyARyz->Rxz

=1 subgoal

HA : forallxy: Terms, Rxy =Ryx

Definition refl if := forall x : Terms, HB: Sibrallinyia cdating, Rx y ARy

(exists y : Terms, Rxy) -> Rx x. i:’I"CR }F}ezrms
Lemma W7_2 : sym -> trans -> 3;11 TEIEHCS .

refl if.
unfold sym.
unfold trans.
unfold refl if.
intros HA HB HC HD. 7 i 3
inversion_clear HD.
apply HB with x.
split.
assumption.
rewrite HA. -

assumption. =]
il | 2]

Daone Adblock |

RHC xA\ARx HC

Fig. 2. Screenshot of the prototype, that shows working with a Coq proof. The verified part of the edit
buffer is colored and locked. The state buffer shows the state of the proof, there are no Coq warnings.

Our server is a 400 line OCaml program, that serves two HTML files and a
number of JavaScript files. It additionally supports special POST requests for
verifying and for undoing commands as well as for loading and saving of files. It
uses the OCamlHttpd library, for web-server functionality.

Our client consists of 10kB of JavaScript and 2kB of HTML. Most of the client-
side code is responsible for the locking of the buffer and recognition of Coq expres-
sions.

To secure our prototype the server is run as nobody in a minimal chrooted
environment. The prover sub-processes are reniced not to interfere with the main
server process. Dropping from Coq to OCaml toplevel is disabled. The access to the
interface is password protected, to avoid creating prover sessions for web-spiders.
Web spiders are able only to see the saved proof scripts.

Our prototype includes a 1kB file, that is supposed to create a uniform layer
that works with different browsers. We have not yet made it as general, as the
asynchronous DOM modification is. In particular our prototype works well with
Gecko-based browsers (Mozilla, Firefox, Galeon, ...). It works with Internet Ex-
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plorer 6 and Opera 9, with some key-bindings missing (these browsers have them
assigned to internal functions). It does not yet work with KHTML based browsers
(Konqueror, Safari) and older versions of the above. We have tested our implemen-
tation’s efficiency, by trying to use the server from other locations. Although it is
hard to measure responsiveness to user’s actions objectively, our experiments show,
that with reasonable network latency, its responsiveness is very good.

The prototype is a Coq web interface, but there is not much code specific to
Coq. The client part includes recognition of Coq comments and whole expressions
to send. The server part includes recognition of successes and failures as well as
the undo mechanism. For all ELisp code from ProofGeneral equivalent JavaScript
regular expression handling can be provided. Thus adapting these three things
to other provers should be simple, which is why we believe that implementing an
interface according to our architecture that would support different provers can be
easily done.

The client part has to overcome the minor differences between browsers. In
particular it includes functions that create a uniform layer for XmlHttpRequest
creation, event binding, and DOM that work the same way on all currently sup-
ported browsers.

6.1 Possible Uses

Our interface can be used to create interactive tutorials presenting proof assistants.
We have created a special proof script, that includes a slightly modified version
of the official Coq tutorial. The descriptive parts have been put inside comments
(including the HTML formatting), and commands to the proof assistant have been
left outside comments. A user that enters such a page may just read the tutorial
and execute the commands in Coq environment, but may also do own experiments
with it.

Non-trivial proof scripts that use tactics are unreadable without intermediate
proof states. Thus proofs presented on the web are usually accompanied with some
of the proof states usually automatically generated by Coqdoc or TeXmacs [6].
A web interface can be used (even in a read-only mode) to present such proofs
interactively. In this way, the user reading the proof chooses which proof states to
see.

External proof assistant libraries can be included on the server. With our server
we included C-CoRN (Constructive Coq Repository at Nijmegen) [10]. Such li-
braries can be developed on the server. In such an approach visitors can always see
and test the current version, without downloading and compiling the library.

Modified and experimental versions of provers usually require patching a partic-
ular version of the source of the proof assistant. Presenting such a modified version
to others is easily possible with the given infrastructure. The server offered includes
the Declarative Proof Language extension for Coq [9)].
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7 Conclusion

We presented an architecture to create simple, lightweight and fast web interfaces
to proof assistants. Such interfaces are a novelty in the domain. Our solution
works with modern web browsers without installing any additional software. The
installation and updating process is done only on the server, the users do not need
to do anything. It is therefore completely platform independent.

The communication mechanism makes the usage of the network minimal, there-
fore making the interface comparably responsive to local ones. In comparison with
other client-server solutions, the only limitation is the dependency on the web
browser. Fortunately web browsers include full scripting languages, allowing im-
plementation of nearly all possible functionality of the interface on the client side.
In particular the browser’s internal editors are weak in comparison with local edi-
tors. One can implement in JavaScript the handling of more key bindings to make
the editor similar to a local one. Most features of state-of-the-art local interfaces for
proof assistants can be imitated this way. The efficiency of an editor implemented
in JavaScript would depend on the browser interpreting it. We have not been able
to find any such editor.

We believe that a centralized environment, with provers accessible through a web
interface, is not limited in comparison with local interfaces, and that the architecture
we have proposed is in the spirit of the current trends of development in computer
science.

7.1  Future Work

Our primary focus is to extend the proposed architecture to a complete wiki-like
architecture. This requires a versioning mechanism and merging of users’ changes on
the server. Additionally proof displaying and searching mechanisms are mandatory.
Editing conflicts can be resolved in similar way as it is done in wiki software. For
example if the file was changed and a user wants to save over it, differences are
presented.

We would like to see how well our solution fits with the general prover interaction
protocol PGIP [5]. The protocol is XML-based, so parts of it may even be passed
by the server directly to browsers, since they are already able to parse XML. On the
other hand the protocol may include too much information, since it was designed
as a local one.

Finally we would like to create an implementation that includes all the features
of our proposed architecture. Ideas include: providing other provers, making it
compatible with all browsers that support asynchronous DOM modifications, im-
plementing the break mechanism, compiling Coq files automatically, adding syntax
highlighting, and providing better security.
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Abstract

We present a generic mediator, calledaPQ, between text-editors and proof assistantsam®2 aims at integrated support
for the development, publication, formalization, and fieaition of mathematical documents in a natural way as plassib
The user authors his mathematical documents with a sceWfiSIWYG text-editor in the informal language he is used to,
that is a mixture of natural language and formulas. Thesardeats are then semantically annotated preserving thesiext
structure by using the flexible, parameterized proof lagguahich we present. From this informal semantic repreienta
PLATQ automatically generates the corresponding formal reptasen for a proof assistant, in our ca@®EGA. The pri-
rr}arr]y tgsk of RATQ is the maintenance of consistent formal and informal repriedions during the interactive development
of the document.

1 Introduction

Unlike computer algebra systems, mathematical proof as&ie systems have not yet
achieved considerable recognition and relevance in matheah practice. Clearly, the
functionalities and strengths of these systems are génerat sufficiently developed to
attract mathematicians on the edge of research. For applisain e-learning and engi-
neering contexts their capabilities are often sufficienbugh. However, even for these
applications significant progress is still required, intigatar with respect to the usability
of these systems. One significant shortcoming of the cusgstems is that they are not
fully integrated into or accessible from within standardtineanatical text-editors.

For purposes such as tutoring mathematics, communicatipghdishing mathematical
documents, the content is in practice usually encoded wgingnon mathematical repre-
sentation languages by employing standard mathematixaketktors. Proof assistance

This paper is electronically published in
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systems, in contrast, require fully formal representatiand are not yet sufficiently linked

with these standard mathematical text-editors. Therefatber than developing a new user
interface for the mathematical assistance syS<BmEGA [24], we propose a generic way

of extendingQMEGA to serve as a mathematical service provider for scientificdditors.

‘If the mountain won't come to Mohammed, Mohammed must drtetobuntain.

Our approach allows the user to write his mathematical decusnin the language he
is used to, that is a mixture of natural language and formuldese documents can then
be semantically annotated preserving the textual strediyrusing the flexible parameter-
ized proof language we present. From this semantic repiassn RLATQ automatically
builds up the corresponding formal representatio@iEGA and takes further care of the
maintenance of consistent versions.

The formal representation allows the underlying proof sdasice system to support
the user in various ways, including the management of madlieah definitions, theorems
and proofs, as well as the access to automatic theorem praamputer algebra systems,
and other mathematical tools in order to automaticallyfyeonclusions and computations
made by the user and to suggest possible corrections. Tirest@halities can be provided
through RATQ by context-sensitive service menus in order to supportritexactive de-
velopment of mathematical documents at a high level of abstm.

On the one hand, these services could include the posgituildautomatically generate
parts of the proof as well as computations in order to disluttie user of taking care about
cumbersome details and to let him concentrate on the suladtparts of the proof. Thus,
menu interaction may lead to changes of the formal repragentwhich are reflected by
PLATQ in changes of the semantic representation in the documentth® other hand,
further proof development in the text-editor leads to clesnimp the document which are
propagated by ErTQ to changes in the formal representatiorQRMEGA.

Altogether, this approach allows for the incremental, reatéive development of math-
ematical documents which in addition can be formally vaédaby QMEGA, hence ob-
taining verified mathematical document3his approach is generally independent of the
proof assistance system as well as the text-editor. Nealegh the scientific WYSIWYG
text-editor BXmacs [27] provides professional type-setting and supports autigowith
powerful macro definition facilities like irI[pX. It moreover allows for the definition of
plug-ins that automatically process the document and is éspecially well-suited for an
integration of RATQ.

This paper is organized as follows: SectiBrpresents an overview on tHeMEGA
system in order to more concretely motivate our settingti®@e®8 introduces the mediator
PLATQ with a focus on the interfaces to the text-editor and the fpassistance system. A
working example is presented in Sectibthat illustrates the integration ofLtRTQ into a
scientific text editor like for examplegKyacs. The paper concludes with an overview on
related work (SectioB) and a summary of the major results in Sectfon

2 Preliminaries: QMEGA, MAYA, and the TASK LAYER

The development of the proof assistance syst8weGA is one of the major attempts to
build an all encompassing assistance tool for the workinthemaatician or for the formal
work of a software engineer. It is a representative of systemthe paradigm oproof
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planningand combines interactive and automated proof

construction for domains with rich and well-structured

mathematical knowledge (see Figure on the right). The P
QMEGA-system is currently under re-development where, spnwe . Learing
among others, itis augmented by the development graph -
manager MyA and the underlying natural deduction
calculus is replaced with thedRe-calculus f]. eion

The MAYA system 8] supports an evolutionary for-
mal development by allowing users to specify and verify
developments in a structured manner, it incorporates a
uniform mechanism for verification in-the-large to ex-
ploit the structure of the specification, and it maintains
the verification work already done when changing the spetifin. Proof assistance sys-
tems like QMEGA rely on mathematical knowledge formalized in structuregoties of
definitions, axioms and theorems. ThexkA system is the central component in the new
QMEGA system that takes care about the management of change efttiegies via its
OMDoc-interface [L9].

The CoREe-calculus supports proof development directly at #ssertion leve[17],
where proof steps are justified in terms of applications déhdens, axioms, theorems or
hypotheses (collectively calleassertionk It provides the logical basis for the so-called
TASK LAYER [14], that is an instance of the new proof datastructureq)H5]. The Task
LAYER is the central component for computer-based proof corstrum QMEGA. It of-
fers a uniform proof construction interface to both the homser and the automated proof
search procedures BATI [21] andQANTS [9,26]. The nodes of the P’s are annotated with
tasks which are Gentzen-style multi-conclusion sequents amggdeby means to define
multiple foci of attention on subformulas that are maingairduring the proof. Each task
is reduced to a possibly empty set of subtasks by one of thenfiolg proof construction
steps: (1) the introduction of a proof sket@0[*, (2) deep structural rules for weakening
and decomposition of subformulas, (3) the application afrarha that can be postulated
on the fly, (4) the substitution of meta-variables, and (%) dpplication of an inference.
Inferences are the basic reasoning steps of #8XTLAYER, and comprise assertion appli-
cations, proof planning methods or calls to external theopeovers or computer algebra
systems (se€lfd,6] for more details about theABK LAYER).

A formal proof requires to break down abstract proof stepbeoCoRE calculus level
by replacing each abstract step by a sequence of calcuhs Sthis has usually the effect
that a formal proof consists of many more steps than a camebpg informal proof of
the same conjecture. Consequently, if we manually cortsérdiermal proof many inter-
action steps are typically necessary. Formal proof sket{3@® in contrast allow the user
to perform high level reasoning steps without having toifushem immediately. The un-
derlying idea is that the user writes down only the intengsparts of the proof and that
the gaps between these steps are filled in later, ideally &ultomatically (see als@4]).
Proof sketches are thus a highly relevant for a mediatoRiker Q whose task it is to sup-
port the transition to fully formal representations fromiaformal proof in a mathematical
document via intermediate representations of underspdgifioof sketches.

Knowledge
Management

Lo

Maya Task Layer

Suggestion Constraint
Mechanism Solving

1 In the oldQMEGA system this was realized by using so-callsiénd-methods.
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™ Proof
- #3 | Planning
Text Editor
—_— Semantic Web

Services

Learning
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Text Editor e upload a document e |

Praof
Verbalisation

Knowledge
Management

Theorem : s & patCh a document

Task Layer

® request a menu

Suggestion Constraint

e execute a menu action Mechanism Soling

e ® close a session

Figure 1. RATQ mediates between natural mathematical texts and the pssstantQMEGA

3 The PLAT Q System

The mediator PATQ is designed to run either locally as a plugin for a particuét-
editor or as a mathematical service provider which textogeslitould access through the
web. In order to manage different text-editor clients ad agldifferent documents in the
same client, we integrated session management into ®. The text-editor may request
a unigue session key which it has to provide as an argumemtfpfurther interaction in
this particular session.

PLATQ is connected with the text-editor by an informal represimdanguage which
flexibly supports the usual textual structure of mathemahtiocuments. Furthermore, this
semantic annotation language, calpedof languaggPL), allows for underspecification as
well as alternative (sub)proof attempts. In order to geteettze formal counterpart of a PL
representation, IRAT Q separates theory knowledge like definitions, axioms andrémas
from proofs. The theories are formalized in tievelopment graphahguage(DL), which
is close to the OMDc theory language supported by thexkh system, whereas the proofs
are transformed into theasklayer hnguage(TL) which describes the B% instance of the
TASK LAYER. Hence, RATQ is connected with the proof assistance sysemEGA by a
formal representation close to its internal datastructure

Besides the transformation of complete documents, it isress to be able to propa-
gate small changes from an informal PL representation tdaimeal DL/TL one and the
way back. If we always perform a global transformation, weildan the one hand rewrite
the whole document in the text-editor which means to losgelgnarts of the natural lan-
guage text written by the user. On the other hand we would teeedatastructure of the
proof assistance system to the abstract level of proof k&stcFor example, any already
developed expansion towards calculus level or any conmipata¢sult from external sys-
tems would be lost. Therefore, one of the most importantaspd R.ATQ’s architecture
is the propagation of changes.

The formal representation finally allows the underlyinggirassistance system to sup-
port the user in various ways.LRT Q provides the possibility to interact through context-
sensitive service menus. If the user selects an object inldoement, PATQ requests
service actions from the proof assistance system regatdafprmal counterparts of the
selected object. Hence, the mediator needs to maintain dippimg between objects in the
informal language PL and the formal languages DL and TL.
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In particular, the proof assistance system could suppentisier by suggesting possible
inference applications for a particular proof situationncg the computation of all infer-
ence argument instantiations may take a long time, a mayétimenu with the possibility
of lazy evaluation is required. LRTQ supports the execution of nested actions inside a
service menu which may result in a change description farrtiénu.

Through service menus the user may get access to autonedreth provers and com-
puter algebra systems which could automatically verifyahasions and computations and
suggest possible corrections. These and many more funatitiea are supported bytRTQ
through its mechanism to propagate changes as well as thiijtibs of custom answers
to the user of the text-editor. Altogether, the mediatoaX is designed to support the
interactive development of mathematical documents atlalkigel of abstraction.

3.1 PLATQ’s Interfaces

PLATQ provides abstract interfaces to the text-editor and theffassistance system (see
also Fig.1). Before we discuss their design and realization, we firssgnt the functional-
ities of PLATQ from the perspective of the text-editorL & Q's methods are:

* Initialize a session plato:init starts a new session inLRrQ

¢ Upload a document plato:upload uploads a whole document in the informal lan-
guage PL, from which EaTQ builds up the formal representations DL and TL. If a
document has already been uploadedat®) performs an internal difference analysis
using a semantic based differencing mechani2ghdgnd then proceeds as with patching
the document.

¢ Patch a document plato:patch patches an already uploaded document in the in-
formal language PL with patch information given in the XKbATE standard (see Sec-
tion 3.2). PLATQ transforms this patch information into patches for the falrnepre-
sentations DL and TL, which are used to patch the datasteidithe proof assistance
system.

¢ Request a menu plato:service requests a menu for an object in the informal lan-
guage PL inside the document. The response is either a mehe Bervice language
SL (or an error message).LRr Q uses its maptable relating objects in PL with objects
in DL and TL to requests service support from the proof assist system for the latter.

e Execute a menu action plato:execute triggers the execution of an action with its
actual arguments. The result can be a patch for the curremti,n@epatch for the doc-
ument or a custom answer (or an error message). The purptsevaluate an action
inside a menu. This style of responses offers quite manyactien possibilities: If the
selected action was nested somewhere in the menu, the psisfaace system will usu-
ally modify the menu. This will be propagated byAr Q to a corresponding response
which only modifies the menu and leaves the patch for the deatimnd the custom
answer empty. If the selected action was situated on top dé¥lee menu, the execution
in the proof assistance system will more likely change thienéd representation. Any-
how, RLATQ propagates these changes to changes in the informal présandf the
text-editor, such that the response will usually removentieau and patch the document
appropriately. The custom answer leaves room for arbifragraction possibilities like
knowledge retrieval or natural language feedback.
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» Close a sessianplato:close terminates a session.

A detailed descriptions of AT Q’s interface functions is given in Appendi.

3.2 Interface to the Text-Editor and Proof Assistance Syste

The goal of RATQ is to lay a compatible foundation for a text-editor intedfacross dif-
ferent environments. It should be a clean, extensiblefanterthat is very simple and easy
to implement such that it could quickly be adapted to run \aitly scientific text editor on
any operating system. Therefore we decided to represemhditieematical document as
well as the service menus in XMLL]], the patches for documents and menus in theeXU
DATE update language2{] and to use XML-RPC 31] as interface protocol. XBDATE
[20] is an XML update language which uses XML to encode its ulatel the expression
language XRTH [10] to select elements for processing. An update may contarfdh
lowing types of elements relevant foL ®rQ: insert-before, insert-after, append,
update, remove. All operations in an update have to be applied in parallehtotarget
document. XML-RPC is a remote procedure call protocol whises XML to encode its
calls and HTTP as a transport mechanism. It is a very simm&pol, defining only a
handful of data types and commands, and its entire two paggrigeon can be found at
[31].

The QMEGA system is implemented inikp. Therefore, we decided to implement the
interface toQMEGA, which provides Lsp functions for each BPATQ method, in Lsp too.
These functions operate only on the formal representatidgheomathematical document
and they will be illustrated in more detail in the next Seati®LATQ allows to start, stop
and manage multiple servers in parallel for the same pra$tasice instance. Generally,
we aim at an approach that is independent of the particutzof @ssistance system to be
integrated. Therefore the proof language as well as thécgemenu language are param-
eterized over the sublanguages for definitions, formulefgrences and menu argument
content. Extending these sublanguages allows to scaleeupailver of the whole system
regarding representation capabilities as well as servicetionalities. As soon as there will
be significant progress in the area of natural language sisalgne could even allow full
natural language in these sublanguages. Thus 8 is designed to support the evolution
of the underlying proof assistance system towards an idatiiematical assistance system.
We will present some more aspects of this more general viewvpothe next Section. The
focus, however, is on the integration of t&EGA system into the scientific WYSIWYG

text-editor BXmacs-

4 A Working Example

In this section we will evaluate the mediatot AT Q in combination withQMEGA and
TEXmacs: We will illustrate all available methods ofLRTQ by discussing a working
example in the theory of Simple Sets.

In this paper, we describe the mediation between the infompaesentation in the text-
editor and the formal representation in the proof assistagstem on an abstract level. All
details on the communicated documents, patch descripindsmenus for this example
can be found inZ§].

Since the EXpacs interface for proof assistance systems is under contindeuslop-
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File Edit Insert Text Format Document View Go Tools Help
lCamEsax | i1oRRRRDE DAFDHAEY 1
EEE=EE=EEE|iCE|Esvsam
ﬁ
—————  Theory [Simple Sets|
This theory defines the basic concepts and properties of the Theory of Simple Sets.
Definition [Type of Individuals] :
First of all we define the type i of individuals.
Definition [Type of Sets] :
Then we define the type set of sets of individuals.
Definition [Function in] :
The function in: ((# x set) —o) takes an individual and a set
and tells whether that individual belongs to this set.
Definition [Function subset] :
The function subset: ((set x set) — o) takes two sets
and tells whether the first set is a subset of the second set.
Axiom [Definition of subset] :
The function subset is defined by YU,V. (UCV)evVz.zclU=szeV .
Definition [Function set=] :
The function set =: ((set x set} — o) takes two sets
and tells whether both sets are equal.
Axiom [Definition of set=] :
The function set= is defined by YU, V. U=V (UcCV)A (VCU). |
Definition [Function union] :
The function union: ((set x set) — set) takes two sets
and returns the union of both sets.
Axiom [Definition of union] :
The function union is defined by YU, V.,z. z€ (UUV)& zelUVzeV .
Definition [Function intersection] :
The function intersection: ((set x set) — set) takes two sets
and returns the intersection of both sets.
Axiom [Definition of intersection] :
The function intersection is defined by YU, V,z. z€ (UNV)& zel pzeV .
i
article plato menus text roman 10 start

Figure 2. Theonsimple Set TEXpyacs

ment, a RATQ plugin for TeXpmacs has been developed by tiBvEGA group that maps
the interface functions of IRT Q to the current ones ofgKyacs and which defines a style
file for PL macros in fXmacs. In the following example, we use this plugin to establish a
connection betweengKyacs and RATQ’'s XML-RPC server.

First of all, the text-editor gXpacs initializes a new session by calling the method
plato:init together with a client name, for exampleskmacs#1”. The resulting session
name has to be saved by the text-editor in order to use it éofdtiowing communication
with PLAT Q.

In the text-editor, we have written an example document tighsemantic annotation
language PL (defined irRf]). The theorySimple Set# this document contains for exam-
ple definitions and axioms faubsetset=, unionandintersection Fig. 2 shows the theory
as seen in@Xyacs and Fig.3 shows the encoding of this theory igyacs With PLATQ
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L Nexample.tm

|File Edit Mmsert Source Format Document View Go Tools Help
OaHdSeax |t nRRERYE HasrOHrmu n
l==2'E|3T70=|ZE2|rBTSScE

{pkdocument|DOC1 | E’

(pktheory| (tuple| _key|TH1|name|Simple Sets)|
This theory defines the basic concepts and properties of the Theory of Simple Sets.

(pkdefinition | (tuple | _key | DEF1 |name|Type of Individuals) | First of all we define the
type (T|i} of individuals.)
(pkdefinition| {tuple| _key|DEF2|name|Type of Sets)|Then we define the type (T|set) of
sets of individuals.)
(pkdefinition|{tuple| _key| DEF 3|name|Function in}|
The function {S|in|(TF|{TX|(T|i}|{T|set})|(T|o}}) takes an individual and a set
and tells whether that individual belongs to this set.)

(pkdefinition|{tuple| key|DEF4|name|Function subset)|
The function (S|subset|{TF|({TX|({T|set)|(T|set}}|(T|o})}(nbsp)takes two sets
and tells whether the first set is a subset of the second set.)

(plaxiom|{tuple| key|AX1|name|Definition of subset}| |

The function subset is defined by (pl-conclusion|CON1|{pl-formula [FORM1| {Fforall| |
(BI{V|U|(T|set}| (V| V] (T|set}}) | (Feav| (Fsubset| (v [U} | (V[V})| (Fforall| (BI{V[x| (T [i))}] \'
(Fimpl| (Fin|(V]xch | (V[U)} [ (Fin| (VI (VIV}

(pl-definition| (tuple| _key|DEF5|name|Funetion set=)| Fl
The function (S|set=|{TF|{TX|{T|set}|(T|set}}|{T|o}}) takes two sets
and tells whether both sets are equal.)

(pkaxiom|{tuple| _key|AX2|name|Definition of set=})|

The function set= is defined by {pl-conclusion | CON2|{pl-formula| FORM2| {Fforall|
(BI(V|U|(Tlset))|(V|V|(T|set)))| (Feav| (Fset=| {(V|U}| (V|V} }| (Fand|(Fsubset| (W [U)| (V[V}}|
(Fsubset| (VIV} (VIUND) -)

(pkdefinition|{tuple| _key| DEF6|name|Function union}|
The function (S|union|{TF|{TX|{T|set}|(T |set})|({T|set})) takes two sets
and returns the union of both sets.)

(plaxiom|(tuple| _key|AX3|name|Definition of union)|

The funetion union is defined by (pl-conclusion|CON3|{pl-formula| FORM3| (Fforall |
(BI{VIU[(T|set))| (V| VI|(Tlsety) | (VIx|(T i) )} | (Feav| (Fin| (Vx| (Funion | (VU) | (V[V})} | {For|
(Fin[{V]x} | (VIUY)| (Fin| (VIx) (VIV} -) ¥

article plato menus src roman 10

Figure 3. Encoding of Theor@imple Set& TeXpacs

macros.
Furthermore, we have written a thedpystributivity in Simple Setsvhich imports all
knowledge from the first theoi§imple SetsThis second theory consists of a theorem about
the Distributivity of intersection The user has already started a proof for this theorem by
introducing two subgoals. Figi shows the theory as seen ipXiyacs and Fig.5 shows
the encoding of this theory ireKyacs-
By pressing a keyboard shortcut, the user can always eagilgtsbetween both views
in the text-editor. The PL macros contained in the documemsgtrbe provided by the
user’ and are used to automatically extract the correspondingd@urdent, the informal
representation of the document farA Q.
Uploading this PL document withlato:upload, PLATQ separates theory knowl-

2 Currently this still requires some expertise about PL aedTiXyacs macro language. Future work includes to provide
better support for this task.
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:FﬂeEditInsm-'Ihﬁ Format Document View Go Tools Help
COHZeaX A DEREBRYR A/ DELEY|
|= IZEE|BESVSNAFE

+—2—
P fmmit -

—_— Theory [Distributivity in Simple Sets] —_—

Context :
We refer to the definitions and axioms of the theory — [Simple Sets] .

Theorem [Distributivity of intersection] :
It holds that VA, B,C. (AN(BUC))=((AnB)U(AnC)) .

Proof :
‘We prove the equality of these sets by proving the following two subset relations :
(1) (An(BuC))c((AnB)U(ANCY))
(2) ((AnB)U(ANC))c(An(BUCY)))

|
article plato menus fext roman 10 before pldocument:

Figure 4. Theonpistributivity in Simple Set® TeXpmacs

T o T
|File Edit Tnsert Source Format Document View Go Tools Help
DOHEeaX i BERAERY Y a0 Amy n
|=2'El3T0=|Z¥E|IBTSScH
{pktheory|(tuple| _key|TH2|name|Distributivity in Simple Sets)|
(pk-context|CONT1 |We refer to the definitions and axioms of the theory (pl-reference|
REF1|(R|Simple Sets)) .)
(pktheorem|(tuple| key|THEQI|name|Distributivity of intersection)|
It holds that (pl-conclusion|CONS5|{pl-formula|FORMS |{Fforall| (B|{V |A}]| (V|B} (V]
C))|(Fset=|(Fintersection | (V| A} |{Funion|(V|B}|{V|C)})|{Funion | {Fintersection | (V| A} (V|
B))|(Fintersection|(V|A)| (V|C)))))}) )
(pkproof|(tuple| _key|[PROOF1|_for| THEOL)|
(pl-subgoals| SUBGOALSL |
We prove the equality of these sets by proving the following two subset rela-
tions :

(1) {pl-subgoal | SUBGOALI | {pl-formula| FORMSE | {Fsubset | {Fintersection | (V|
A)[(Funion| (V|B)|(V|C}}) | (Funion|{Fintersection| (V|A}|(V|B)}| (Fintersection| {V|A}|
VIE))

(2) (pksubgoal |SUBGOAL2| (pl-formula|FORMT|(Fsubset|{Funion|{Fintersec-
tion|(V|A)|(V|B))|(Fintersection|{V|A}|(V|C}}} | (Fintersection|{V|A}|{Funion| (V|B}|{V|
S
{pkdone[DONEL1|})

»

article plato menus src roman 10

Figure 5. Encoding of Theomistributivity in Simple Set& TEXuacs

edge like definitions, axioms and theorems from proofs aadssgenerating the formal
representation.

On the one hand, IRTQ creates a DL document containing definitions, axioms and
theorems in a representation close to OMD On the other hand, the proof is transformed
into a TL document, an abstract representation for the iRstance of the ASK LAYER
in the proof assistance system.

From the DL document, thelRT Q instance folQMEGA generates a theory represen-
tation in OMDoc that MAYA takes as input for the creation of a development graph.g-ig.
shows the theories uploaded@MEGA. For this evaluation we use the old user interface
LQui [25] to visualize the status dDMEGA. The user interacts of course only with the
text-editor. The old KQui interface, including the display of MA’s development graphs,
shall be entirely replaced by=Xyacs and RATQ. They are only presented in this paper
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Figure 7. Partial Proof of TheoreBistributivity of intersectiorin QMEGA

to show the internal representation obtained frgyJacs Via PLATQ. From the TL doc-
ument, the PATQ instance forQMEGA builds up the concrete datastructure of thes&
LAYER (see Fig.7).

The upload procedure has terminated successfully withdhetete generation of the
formal representation in the proof assistance system ghBmer Q returns '0K”.

Further developing the document, the user has started e phe first subgoal by de-
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Y example.tm
|File Edit Insert Text Format Document View Go Tools Help
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HETEe

————  Theory [Distributivity in Simple Sets]| _—

Context :
We refer to the definitions and axioms of the theory — [Simple Sets] .

Theorem [Distributivity of intersection] :
It holds that VA, B,C. (AN(BUC))=((ANB)U(ANC)) .

Proof :

‘We prove the equality of these sets by proving the following two subset relations :
(1) (An(BUO))c ((AnByU(ANC))
(2) ((AnB)U(ANC))c(AN(BUC)))

‘We start by proving the first subgoal.

By the — [Definition of subset] we need to prove
Yz, ze(AN(BUC)) =z e((ANB)U(ANC)) .

Assume z € (AN (BUCQO)) .

| article plato menus text roman 10

Figure 8. Madification of the Proof ingKyacs by the User

[CovcemxieBRnR®6 | HAsOHIBY 2

=)'E[3T()=|2ET|IBTSScH
We start by proving the first subgoal. [ﬁ[
(pkproof|(tuple| key|PROOF2| for|SUBGOALL)|
(pHfact|FACT1|
(pkby|BY1|By the (pl-reference| REF2| (L |Definition of subset})) we need

t

° 1:'m“le(pl-t.»htai|1| OBTAIN1| (pl-formula| FORMS| (Fforall| (B (V|x)}| (Fimpl| I
(Fin|(V|x)|(Fintersection|(V|A}| (Funion|(V|B}| (V|C)}}} | (Fin| {V|x}|(Funion| {Fin-

tersection| (V| A)|(V|B)) |(Fintersection| (V| A) | (V[C))}))})) )
(plassumption| ASSUMPTION1]| u
Assume (plassume |ASSUME! |{pl-formula |[FORM9| (Fin |(V|x} |{Fintersec- =
tion| (V| A}|(Funion| (V[B}|(VIC}))}) )}
(pkdone|DONEL|}) i
_ i ]
| article plato menus sre roman 10 start

Figure 9. Madification of the Encoding of the Proof igXiyacs by the User

riving a new subgoal and introducing an assumption (seedFiglhis modification of the
encoding of the document (see F8).has to be propagated by #rQ to the formal repre-
sentation iIMMEGA. In general, the difference with respect to the last synubkem version
of the document should be computed and sendLiwr 2 by usingplato:patch. At the

moment, EXmacs IS not able to compute this difference, therefore the wholeudhent is
send again bplato:upload and RATQ computes the difference.

The difference of the informal PL document is then transfnby RATQ to a dif-
ference of the formal representations in DL and TL. Sincentioglifications do not affect
theory knowledge, this transformation only results in nfiodtions for the intermediate
representation and finally the representation of theKTL AYER proof data structure.

The R.ATQ instance forQMEGA uses this patch information to modify theadk
LAYER rather than to completely rebuild it from scratch (see HiQ). The patch pro-
cedure has terminated successfully, henceT®) returns 0K”. Altogether, the user is
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Figure 10. Modification of the Proof iRMEGA by PLATQ

L 2 exampl 2] xi

Theory [Distributivity in Simple Sets]

Context :
‘We refer to the definitions and axioms of the theory — [Simple Sets] .

Theorem [Distributivity of intersection] :
Tt holds that VA, B,C. (AN(BUC))=((ANB)U(ANC)) .

Proof :
‘We prove the equality of these sets by proving the following two subset relations :

(1) (An(BuC)) c((AnBYU(ANC)))

(@) (ANB)U(ANC)) C(AN(BUC))

‘We start by proving the first subgoal.

By the — [Definition of subset] we need to prove
V. z€(AN(BUC)) =z ((ANB)U(ANC)) .
ze(An(BUC))E

Assume

Figure 11. Service Menu inERuacs requested by the User

able to synchronize his informal representation in the-éghtor document with the formal
representation in the proof assistance system.

The next interesting feature of RT Q is the possibility of getting system support from
the underlying proof assistance system. Selecting thentigcatroduced formula in the
assumption, the user requests a service menu fromm ®@.
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O cxamplerm ) =5 T

Theory [Distributivity in Simple Sets]

Context :
We refer to the definitions and axioms of the theory — [Simple Sets] .

Theorem [Distributivity of intersection] :
It holds that YA, B,C. (AN(BUC))=((ANB)U(ANC)) .

Proof :

‘We prove the equality of these sets by proving the following two subset relations :
(1) (AN (BUC))C ((ANB)U(ANC))
@) (ANBYU(ANC))C (AN (BUC))

‘We start by proving the first subgoal.

By the — [Definition of subset| we need to prove
Yz, z€(AN(BUC)) =z ((ANB)U(ANQC)) .

ze(AN(BUO) . ok )

Assume

Figure 12. Modification of the Service Menu igXyacs by PLATQ
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Figure 13. Modification of the Proof iQMEGA by the System

Requesting services for the corresponding task in he<TLAYER, a list of available
inferences is returned toLRTQ. In order to answer quickly to the text-editor, we gen-
erate nested actions that allow to incrementally compuefdimulas resulting from the
application of an inference rather than to precompute asitde resulting formulas for all
available inferences. For this example, the inferences wemually generated in the proof
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We start by proving the first subgoal. &
(pkproof|(tuple| _key|PROOF2| _for|SUBGOALL)|
(pHfact|FACT1|
(pkby|BY1|By the (plreference [ REF2| (L |Definition of subset})) we need
to prove
(pl-obtain| OBTAIN1 | (pl-formula| FORMS | (Fforall| (B| (V|x)) | (Fimpl|
(Fin|(V|x)|{Fintersection|(V|A}| {Funion|(V|B}|{V|C}}}} | (Fin|{V |x}|{Funion| {Fin-
tersection| (V| A)| (V|B)) |(Fintersection| (V| A} | (VIC})}))})) )
(plassumption|ASSUMPTION1]|
Assume (plassume |ASSUME1 |(pl-formula [FORM9| (Fin |(V|x} |{Fintersec-
tion| (V| A} |(Funion|(V[B)[(V|CH)))) )
(pkfact|PL#3|1t follows that (pl-derive| PL# 1| ({pformula|PL#2|(Fand|{Fin|
(V) [(VIA) |(Fin| {(V]x}) | (Funion| (V[B}|(VIC}))))) )
{pkdone|DONEL|}) L

article plato menus sre roman 10 start

Figure 14. Modification of the Encoding of the Proof ipXfyacs by PLATQ

assistance system, since the automatic inference gearefatim the theory knowledge in
the development graph is still under development.

The menu is displayed to the user ipXfyacs as shown in Figll, where we already
expanded the actioApply Definition of intersection - to its nested actio@ompute Re-
sults. ExecutingCompute Resultscalls the methoglato:execute in PLATQ, which
leads in the Ask LAYER to the computation of all resulting formulas for the infezen
Definition of intersection -, defined by the corresponding axiomLA? Q tells the text-
editor how to change the menu by sending a patch descripticiné menu.

The user selects the desired formula (see E&ywhich triggers the application of the
top level inference and launchespaato:execute. PLATQ calls the RSk LAYER for
the application of the selected inference in order to oltaénchosen formula. TheaBK
LAYER performs the requested operation which typically moditiesgroof data structure
(see Fig.13). This maodification is transformed by the &r Q instance folQMEGA into a
patch description for the formal representation in TL.

After that, RATQ transforms this TL patch into an IL patch and finally a PL patch
for the informal document in gXyacs, Which is then send to the text-editor. Further-
more, the menu is closed by sending a patch description whitloves it. Currently, the
new proof fragments are inserted together with additionadefined natural language frag-
ments. However, we plan to integrate the natural languageaf presentation systemrEx
[15] into PLATQ, in order to generate true natural language output for theffateps added
by the proof assistance system.

The text-editor finally patches the encoding of the docuniee® Fig.14) according to
this patch description. Fid.5 shows the patched document displayedgKpacs.

Note that the user can change any part of the document, ingltke parts generated
by the proof assistance system. Due to the maintenance sistent versions, the further
development of the document can be a mix of manual authogirigéouser and interactive
authoring with the proof assistance system.

Last but not least, closing the document or the text-ediithiclose the active session in
PLATQ and in the proof assistance syst€ImEGA by calling the methoghlato:close.
For this evaluation we chose a simple mathematical domainder to focus on the system
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—— Theory [Distributivity in Simple Sets| e

Context :
‘We refer to the definitions and axioms of the theory — [Simple Sets] .

Theorem [Distributivity of intersection] :
It holds that VA, B,C. (AN(BUC))=((ANB)U(ANC)) .

Proof :

‘We prove the equality of these sets by proving the following two subset relations :
() ((An(BuC) c((AnB)U(ANC)))
(2) ((AnB)U(ANC)) C(AN(BUC)))

‘We start by proving the first subgoal.

By the — [Definition of subset] we need to prove
Ve, ze(AN(BUC)) =z e((ANB)U(ANC)) .

Assume z € (AN(BUC)) .

Tt follows that z € Az e (BUC) .

article plato menus text roman 10 starf

Figure 15. Modification of the Proof inERyacs by PLATQ

behavior of the mediator. In general, the problem solvingatdities only depend on
the underlying proof assistance system. Cutting edge @ssistance can be provided by
extending the representational sublanguages for congdicdmains.

5 Related Work

The AUTOMATH project [L3] of Nicolas de Bruijn and his idea of a mathematical ver-
nacular has to be mentioned as pioneering work in the fielthil&i to AUTOMATH, the
MizAR 2 and ISAR [29] projects aim at a well balanced compromise between riggou-
mal representation languages suitable for machine prioceaad human readable, natural
representations. The “grammatical framework” approachk) (23] goes one step further
and employs a-calculus based formalism to define grammars consistinghadbestract
and a concrete syntax. In the abstract syntax one can fornegliesent mathematical def-
initions, theorems and proofs and check their correctnedgtee concrete syntax defines
a mapping from the abstract syntax into linguistic objedscommon problem of these
approaches are the diverging requirements of represemtttiithe machine and the user
side. AUTOMATH as well as MzaR and ISAR sacrifice readability to obtain machine pro-
cessability. GF in contrast shows high readability as wehhachine processability but the
supported fragment of natural language is far too small aftexible to allow mathemati-
cians to use their familiar language.

Many mathematical assistance systems favor machine [@améty over human au-
thoring, while trying to enhance readability. This is donedeparating input and output
language: the input language remains machine orientedeabdhe output language gets
close to natural language. The systema® [2] for example uses a schematic approach
to represent its output in quasi-natural language. ThesysNJPRL [16], CLAM [1] and
QMEGA/PREX [15] go further and use natural language processing technigugsnerate

3 www.mizar. org
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true natural language output.HEOREMA [12] is a system which strictly separates infor-
mal and formal parts in mathematical documents: The useingan informal parts of text
without any restriction but these parts are not used for inacprocessing. The formal
parts, however, have to be written in the input language efcttmputer algebra system
MATHEMATICA.

In contrast to that, we suggest in our approachd formal representation language
for mathematical content detached from any particularclayicalculus. This allows us
to represent arbitrary content regardless of the undeyliggic. Moreover, the language
allows us to represent both different levels of concept amdetspecification and is thus
particularly well-suited to represent proofs that are ergd in a natural way by human
beings. Closely related to our approach is tieraLanG project [L8]. It also proposes a
top-down approach starting from natural mathematicakteowards machine processing.
However, theMaTHLANG project so far concentrates mainly on supporting the aisabfs
the abstract representations based on type checking acdnirast to our approach, the
gap between real theorem provers and mathematical agssizols remains open.

To our knowledge there has not been any attempt to integiatecd assistance system
with text-editors in the flexible way as done viaA&? Q. All approaches described above do
not consider the input document as an independent, firss-cidéizen with an internal state
that has to be kept consistent with the formal represemigiiothe proof assistance system
while allowing arbitrary changes on each side. The only waorthat direction has been
carried in the context of ROOFGENERAL [3]. In PROOFGENERAL the user edits a central
document in a suitable editing environment, from which ih ¢g evaluated by various
tools, such as a proof assistant, which checks whether thamkent contains valid proofs,
or a renderer which typesets or renders the document int@hurented documentation
readable outwith the system. However, the system is onlytanface to proof assistance
systems that process their input incrementally. Hencedtdwments edited in FOOF
GENERAL are processed incrementally in a top-down manner and edlyquarts that have
been processed by the proof assistance systems are lockedrarot be edited by the user.
Furthermore, the documents are in the input format of theffassistant rather than in the
format of some type-setting program. Though we have triedeign the functionalities
and representation languages ImiPQ’s interface as general as possible, future work will
have to show that AT Q can be as easily adapted to different proof assistants &saslg
possible for ROOF GENERAL.

6 Conclusion

The main contribution is the design and development of amgeneediator, called PATQ,
between text-editors and the proof assistance sy&smGA. The presented mediator al-
lows the user to write his mathematical documents in thedagg he is used to, that is
a mixture of natural language and formulas. These docunaatsemantically annotated
preserving the textual structure by using a flexible paranmgtd proof language. LRTQ
automatically builds up the corresponding formal represen in QMEGA and takes fur-
ther care of the maintenance of consistent versions whaeiging a mechanism to prop-
agate changes between both representations. All kindsa€se of the underlying proof
assistance system regarding the formal representatiobecarovided through AT Q by
context-sensitive service menus in order to support theractive development of math-
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ematical documents at a high level of abstraction. AltogetRLATQ contributes to the
evolution of proof assistance systems towards ideal madtieah assistance systems.

In this paper we have illustrated how informal, natural fisodeveloped in the text-
editor are mapped to formal representation2MEGA. Does this mapping already im-
ply that the informal proofs are validated? Clearly notcei@MEGA proof sketches at
the TaAsk LAYER may be unsound and only full expansion of these proof skettinéhe
CoRE-calculus layer will assure soundness. In our approack giipansion can ideally be
automated bYQMEGA's reasoning tools. However, this clearly depends on thecttral
quality and the granularity of the informal proof. And, ofuwree, if the informal proof is
wrong, the expansion will fail and an interaction with thewt® patch the proof is required.
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Appendix

A PLAT Q’s Interfaces

In this section we provide detailed descriptions aAPQ’s abstract interface functions:
« Initialize a session
plato:init (client.name) -> session.name

initializes a new session. It takes the client name (stragypnly argument and returns
the session name (string) or an error message. The purposgtast a session iNnLATQ
and in the proof assistance system in order to get a sesstifidr which can be used to
indicate the working session in all following interactiomgh PLAT Q. This is important,
for example, if the text editor user wants to get support o br more documents, or
if PLATQ is launched as mathematical service provider to allow ¢eltiors the access
over the web.

¢ Upload a document

plato:upload (session.name, document) -> OK
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uploads a whole document in the informal language PL. Theraegts are the session
name (string), received previously p¥ato:init, and the document (string). It returns
a simple0k (boolean) or an error messageLARQ first verifies the syntax of the doc-
ument and then automatically builds up the correspondimmdb representations DL
and TL, which are uploaded into the proof assistance sydfemdocument has already
been uploaded, IRTQ performs an internal difference analysis using a semaatied
differencing mechanisnp] and then proceeds as with patching the document.

Patch a document
plato:patch (session.name, diff) -> OK

patches an already uploaded document in the informal layjggB& with patch informa-
tion. The arguments are the session name (string) and tble ipdrmation (XUPDATE,
see SectiorB.2). PLATQ returns a simpl@K (boolean) or an error messageLARPQ
transforms this patch information into patches for the falrmepresentations DL and
TL, which are used to patch the datastructure of the proddtasee system.

Request a menu
plato:service (session.name, object.id) -> menu

requests a menu for an object in the informal language Pldéngie document. The
arguments are the session name (string) and the uniquéfiieat the selected object
(string). The response is either a menu in the service layjeg&d (string) or an error
message. The purpose is to ySeato:service in order to get a service menu from
the proof assistance system with actions for the selectdtah the document. IATQ
looks into his maptable for the corresponding objects inftinmal representation and
requests service support from the proof assistance systdhrese objects.

Execute a menu action

plato:execute (session.name, action.id, arguments)
-> (menu.diff, document.diff, custom)

triggers the execution of an action with its evaluated amguisi The arguments are
the session name (string), the unique identifier of the smdleaction (string) and the
arguments as a list of pairs with name (string) and valuén(gtr It returns a list with
a patch for the current menu (string), a patch for the docurfsring) and a custom
answer (string), or an error message.

Close a sessian
plato:close (session.name) -> OK

closes a session. The argument is the session name (stiinggturns a simpledk
(boolean) or an error message. The purpose is to terminassia appropriately, such
that RLATQ as well as the proof assistance system are able to deletenfmmgnation
regarding this session.
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Abstract

Modern integrated development environments (IDEs) provide programmers with a variety of sophisticated
tools for program visualization and manipulation. These tools assist the programmer in understanding
legacy code and making coordinated changes across large parts of a program. Similar tools incorporated
into an integrated proof environment (IPE) would assist proof developers in understanding and manipulating
the increasingly larger proofs that are being developed. In this paper we propose some tools and techniques
developed for software engineering that we believe would be equally applicable in proof engineering.

Keywords: IDE, IPE, proof visualization, program visualization, refactoring, program extraction, Coq,
proof dependencies, proof transformations, proof strategies, proof framework, proof reuse, proof
explanation

1 Introduction

Modern integrated development environments (IDEs) provide programmers with
a variety of sophisticated tools for program understanding and manipulation. In
addition to such basics as syntax highlighting and project building, these tools
commonly offer refactorings and program visualization components. Many of the
techniques developed for IDEs can be transferred directly to the world of UITPs.
Others can be modified to exploit the special nature of theorem provers.

The idea of transferring IDE techniques to theorem provers is not new [2,7,21,36].
However, there have been significant advances in IDEs in the last decade. Many of
these advances have been motivated by the needs of developers who must maintain
and extend large bodies of existing code. The increasing complexity of real world
programs means that even an experienced programmer will struggle to understand
the relationships between different software components. When extending or fixing
existing code the programmer may spend hours or days merely figuring out what
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other parts of the program these changes may affect. Moreover, the changes the
programmer must make may be scattered across several program components. For
this reason, numerous software management tools have been developed to assist in
visualizing program properties. Others allow a programmer to navigate a project
easily and to make automatic changes across multiple files.

As automated theorem proving matures, the proportion of old proofs to new
as well as their size will continue to grow. Tools to visualize, understand, and
automatically change these proofs will become vital. Integrated proof environments
(IPEs) ® should incorporate these tools in the same manner as IDEs.

In the following sections we discuss several techniques useful in software devel-
opment that can be extended to theorem proving. These techniques are navigation
by derivation, multiple views, automatic refactorings, and proof visualization in the
large.

2 Navigation by Derivation

Formal proofs, even relatively simple ones, are necessarily very large. For exam-
ple, a formalization of the Sudoku puzzle and an accompanying solution procedure
in Coq [35] required approximately 5000 lines. A formal proof of the four color
theorem [12,41] took about 60,000 lines and a few years to develop. Sophisticated
automated proof assistants have been developed to assist in the construction of
such proofs using tactics. These tactics may be manually selected by the user or
automatically chosen by the proof assistant. The structure of a proof object gener-
ated by these tactics may be difficult for a user to predict even when the user has
selected the tactic. When a tactic is selected automatically the structure may be
further obscured. The proof objects themselves may be far too large to be easily
read. For example, the Sudoku development mentioned above contains a proof that
the permutation relation on two lists is invertible. That is, where a pair of lists
are permutations of each other, and the head elements of the lists are equal, the
tails of the two lists must also be permutations of each other. About ten lines of
tactics are required to complete the proof of the theorem, but at roughly 750 lines
the generated proof is two orders of magnitude larger. Nonetheless, there are many
occasions on which it becomes necessary to study such proofs. A tactic implemented
in a proof assistant may not be working as expected; it may be necessary to inspect
proof objects themselves in order to debug the tactic. A user may be developing
a proof specifically to exploit a proof assistant’s extraction mechanism and may
need to inspect the proofs to understand why the extracted code is inefficient or, in
some cases, non-existent [8]. It may be necessary to rediscover what auxiliary theo-
rems were used to prove a given theorem; such auxiliary theorems may be selected
without the user’s intervention by a proof assistant with support for automation.
Most programmers are familiar with the Unix diff utility which identifies the
textual differences between two files. A number of visual tools exploit an underlying
diff tool. For example, the Eclipse Compare view allows the user to compare up
to three files. The tool automatically aligns the differences between the files and

5 The authors would like to thank one of the anonymous reviewers for acquainting them with this term.
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A | Require Import Le. : forall P : list -> Type, open Specif A
P nil -> —
Section Lists. (forall (a : A) (1 : list), P type 'a list =
1->P (a::1)) -> forall 1 : list, | Coq nil
Variable A : Set. P1l | Coq cons of 'a * 'a list
Set Implicit Arguments. list_ind = (** val list rect : 'a2 -> ('al ->
fun P : list -> Prop => list _rect P ‘al list -> 'a2 -> 'a2) -> 'al list -
Inductive list : Set := : forall P : list -> Prop, > 'a2 *x)
| nil : list P nil ->
| cons : A -> list -> list. (forall (a : A) (1 : list), P let rec list_rect £ £0 = function
1->P (a::1)) -> forall 1 : list, | Cog nil => £
Infix "::" := cons (at level 60, P 1l | Coq_cons (a, 10) -> £0 a 10
right associativity) : list scope. '—‘ (list_rect £ £0 10)
list_rec : Lt
Open Scope list_scope. fun P : list -> Set => list rect P (** val list rec : 'a2 -> ('al -> 'al
: forall P : list -> Set, list -> 'a2 -> 'a2) -> 'al list ->
(FAAAREERRRRES AR RRR AR K ) SnRes a2 *%)
(** Discrimination =) (forall (a : A) (1 : list), P
efladad bl it zebod S AI AR feldeA b A 1->P (a::1)) -> forall 1 : list, let rec list rec £ £0 = function
P1 | Cog nil => £
Lemma nil_cons : forall (a:A) — | Coq_cons (a, 10) -> £0 a 10
(m:list) , nil <> a :: m. nil_cons = (list_rec £ £0 10)
Proof. fun (a : A) (m : list) (H : nil = p=—
intros; discriminate. a::m) = (** val app : 'al list -> 'al list ->
Qed. let HO := ‘al list *%)
eq_ind nil
(AASERAEEEERIELARRAARLLASK) (fun ee : list => match ee with let rec app 1 m =
(** Concatenation *) | nil => True match 1 with
(RAAE AR RRRRAER KRR RRRAEEER) s aas | Coqnil ->m
False - | Cog_cons (a, 11) -> Coq_cons
Fixpoint app (1 m:list) {struct 1} : end) I (a :: m) (a, (app 11 m))
list := H in
match 1 with False ind False HO (** val head : 'al list -> 'al option
| nil =>m T forall (a : A) (m : list), nil *E)
la::11=>a::appllm <a:im
end. | let head = function
| Coq nil -> None
Infix "++" := app (right app = | Cog cons (x, 10) -> value x
| @ | 33scciativity, at level 60) : fix app (1 m : list) {struct 1} : ™
V] 158t s list := || val tai1 : ‘a1 1ist > 'a1 135t |V
Proof Script Proof Derived Program

Fig. 1. Overall structure of a three panel proof navigation tool. The proof is taken from the Coq List
library, one of the standard libraries in the Coq distribution. The scroll bars on the left and right allow the
user to navigate the proof script and the derived program respectively.

matches corresponding parts using visual cues. This technique, using visual cues
to identify associated entities, can be extended to other domains. For example,
a proof developer will often have two perspectives on a given proof. The first
perspective consists of the definitions and theorems along with their corresponding
tactics. The second perspective consists of the same definitions and theorems, this
time associated with their proofs. There is a correspondence between the tactics
and the terms of the proof. This correspondence differs from that arising in file
comparison. In one way it is more straightforward since the proof has a formal
relationship to the tactics whereas in a file comparison the relationship between
the files must be discovered by an heuristic. However, the correspondence is also
more complex. One tactic may correspond to multiple terms in a proof. Hence,
an interactive tool which allows the user to select a tactic or group of tactics and
responds by highlighting the associated terms in a proof would be a valuable aid to
proof understanding.

A number of theorem provers, e.g., PX [13], Minlog [22], Isabelle/HOL [23],
NuPRL [24] and Coq [34], exploit the Curry-Howard isomorphism [10,40] to offer a
program extraction facility [19,20,27]. A program extraction facility automatically
generates programs from proofs. In the extraction process the logical parts of a proof
are deleted and the computational parts are translated into the source code of the
target language. Programs extracted from the proofs of their desired properties are
known as certified programs. As long as the extraction facility and proof checker are
themselves correct, a certified program is guaranteed to be a correct implementation
of its specification, i.e., the proof from which it is extracted. Generally, the extracted
programs are several orders of magnitude smaller than their associated proofs and
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Lemma list eq dec = A

(funy : list =>

match y as | return ({nil = 1} + {nil <> I}) with
ILIEE left (nil < nil) (refl_equal nil)
VIS (ight (nil = a0 :: 10) (nil_cons (a:=a0) (m:=10))

end)
(fun (a: A) (L:list) (IHL : forall y : list, {l = y} + {l <> y})
(y:list) =>
match y as 10 return ({2 ::1=10} + {a :: | <> 10}) with
IS right (a :: | = nil) (Sym_not_eq (nil_cons (a:=a) (m:=1)))
a0 =2 10 =
lets:=Haalin
match s with
| lefte =>
let sO :=IHI 10 in
match s0 with
llefte' => Program
left (a :: 1< a0 ::10) -
(eq_ind_r (funal:A=>al:1=a0:10) (** val list_eq_dec: (‘a1 ->'a1 ->bool) >
(eq_ind_r (fun 1 :list=>a0 :: 11 = a0 :: 10) ‘al list ->"a1 list -> bool **)
(refl_equal (a0 :: 10)) €') e)
I right &' => let rec list_ eq_dechxy =
zight (91— 20 - 10\ match x with
: LNil -> (match y with
Tactics LNl >
Lemma list_eq_dec : L Cons (a0, 10) -> FF)
(forall x y:A, {x = y} + {x < y}) -> forall x y:list, {x = y} + {x < y}. LCons (a,1) ->
Proof. (match y with
induction x as [I a | IHI]; destruct y as [1 a0 101; TR Nil ->
destruct (H a a0) as [el €]. LCons (a0, 10) ->
destruct (IHI 10) as [e'l e']. (match h a a0 with
left; rewrite e; rewrite e'; trivial. | true -> list_ eq_dec h 110
right; red in I- *; intro. | false -> false
apply e'; injection HO; trivial. #
right; red in I- *; intro.
apply e; injection HO; trivial.
Qed.

v

Fig. 2. Proof of the decidability of equality on lists. The Tactics pane on the left displays the proof tactics
while the Program pane on the right displays the extracted program. The Proof pane displays the proof
proper.

much easier to understand. In the case of theorem provers with an extraction
mechanism a three way association would be appropriate and useful. Figure 1
shows the overall structure of such a navigation tool.

Each component is associated with its corresponding component in the adja-
cent panel. Examples of proof script components are definitions or theorems with
tactics, examples of proof components are definitions or proofs, examples of compo-
nents in an extracted program are definitions of types or functions. Corresponding
components are automatically aligned as the user focuses on different areas in the
proof script or extracted program. Light gray is used for portions of the proof script
that are not incorporated into the proof such as directives to the proof engine or
comments. Narrow gray bars are also used to separate proof and program compo-
nents. Pale blue indicates that a component has been generated indirectly from a
component in the proof script. In this example, some induction principles for the
list type have been automatically generated. Some components of the proof do not
have corresponding components in the extracted program. In this case the adjacent
separators are merged in the program pane.

The tool in Figure 1 is useful for high-level inspection. The user may also want
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Proof

e Lemma list eq dec =
IO (H : forall xy : A, {x =y} + {x < y}) [ESISIE A
list_rec (fun x0 : list => forall y : list, {x0 = y} + {X0 <> y})
(funy :list=>
match y as | return ({nil = I} + {nil < I}) with
| nil => left (nil <> nil) (refl_equal nil)
I'a0 ::10 => right (nil = a0 :: 10) (nil_cons (a:=a0) (m:=l0))
e cnd)
(fun (a : A) (I : list) (IHI : forall y : list, {l = y} + {| <> y})
(y : list) =>
match y as 10 return ({a :: 1 = 10} + {a :: | < 10}) with
I nil => right (a :: | = nil) (sym_not_eq (nil_cons (a:=a) (m:=l)))
la0 :: 10 =>
lets = [[fflaa0in
match s with
Ilefte =>
letsO :=IHII0in
match sO with
| lefte' =>
left (a::1<>a0 ::10)
(eqiindir (fur 4 A 4 .. Fa NPT Ta\
(eq_ind_r (f|| Program
(refl_equa
| righte' =>
right (a :: 1= a0
(funHO :a 21
e

(** val list_eq_dec : (‘a1 ->'al1 -> bool) ->
‘a1 list -> 'a1 list -> bool **)

let rec list_eq_dec|[fx y =
let H = match x with
( I Nil -> (match y with
I Nil -> true
| Cons (a0, I0) -> false)

f_equal
(fune0:

match el
I nil => 4 | Cons (a, ) >

la: = (match y with
N HO I Nil > false
end) HO
(let H2)'= I Cons (a0, 10) ->
f equél (match [[J] a a0 with
7(fun €0 : | true -> list_eq_dec h 110
! | false -> false

match
I nil => 1

| _ul=>1
end) HO in v

Fig. 3. Proof of the decidability of equality on lists. The user has highlighted the h parameter in the
list_eq-dec function. Uses of the h parameter in the function and the corresponding H parameter of the
proof are highlighted.

to examine individual proof entities in more detail. Figure 2 shows a proof and its
associated tactics and program. In the Tactics pane on the left the auto tactic has
been selected. Preceding tactics are green and subsequent tactics are left in black.
The proof terms generated by the highlighted tactic are themselves highlighted and
proof terms generated by the preceding tactics are in green. The bar on the left
of the Proof pane summarizes the entire proof. Note that there is a green line at
the bottom of the bar indicating that the last few lines of the proof are generated
by the tactics preceding auto. The Program pane on the right shows the extracted
program. The corresponding terms in the generated program are highlighted.

In the preceding example, elements in the proof were selected via the proof
script. It is also possible to select these elements via the extracted program or to
select elements in the program via the proof. Figure 3 shows the same proof as
before. In this example, however, the user has selected an element in the Program
pane, specifically h, the formal argument of the 1ist_eq_dec function. Uses of h in
list_eq_dec and corresponding elements in the proof are highlighted. The summary
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Require Import Le.
Section Lists.

Variable A : Set.

Set Implicit Arguments.

Inductive list : Set :=
| nil : list
| cons : A -> list -> list.

Infix "::" := cons (at level 60, right associativity) : list scope.
Open Scope list scope.

(*************************)
(** Discrimination *)
(*************************)

Lemma nil cons: forall (a:A) (m:list), nil <> a :: m.
Proof.

intros; discriminate.
Qed.

Fig. 4. View of a proof script showing syntax highlighting. The highlighting scheme is adapted from that
in the CoqIDE.

bar in the Proof pane indicates that there are no matches other than those visible in
the text. This confirms our intuition about the proof. h is a function which decides
whether two list elements are equal. Its corresponding proof, H, is a proof of the
decidability of equality on list elements. h is applied to the head element of each
list to determine whether the two are equal and in the case where the elements are
equal is passed as an argument in the recursive call (otherwise 1ist_eq_dec returns
false). In the corresponding inductive proof we would expect that H is also used just
once, as an hypothesis in the proof that lists are equal if their heads and their tails
are equal, and we see that this is the case.

When a program is compiled with debugging enabled the compiler encodes extra
information for the debugger’s use in the generated object files. In particular,
it stores debugger “symbol tables” [33] which are mappings between the source
code and the generated object code. Using this information a symbolic debugger
can execute a machine instruction and yet display to the user the corresponding
source code. We envision a similar approach for a theorem prover. As the prover
executes tactics to generate a proof it can store a mapping between the tactics and
the generated proof object, making it available to a program navigation tool such
as that described above. We have observed that the correspondence between the
tactics and the proof object may be complex; but compilers and debuggers are able
to generate and navigate the equally intricate mappings between source code and
highly optimized machine code.

3 Common Conveniences

3.1  Multiple Views

Syntax highlighting, which is ubiquitous in IDEs, is available in some form in a
number of proof assistants [29,34]. Figure 4 shows a Coq proof script. The various
sorts of keywords are distinguished by the use of different colors, and this helps us to
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> <~// Require commands

P & Lists
4 « Resolve
» « Resolve
4 « Immediate
4 « Resolve
> « Resolve
> ﬂ Resolve
4 ﬂ Resolve
> <~// Require commands V & Functions on lists
P & Lists > 4 Map
» ‘ Resolve B in map
B flat ma
4 ‘ Resolve —mep
B 1list prod
» « Immediate
B in_prod aux
» « Resolve i
Bl in prod
> « Resolve B list power
> « Resolve P & Fold Left Recursor
> ﬂ Resolve P & Fold Right Recursor
P & Functions on lists B fold symmetric

(a) Collapsed Outline View (b) Outline  View  with  Section
Functions_on_lists expanded

Fig. 5. View of a proof script outline.

understand the basic structure of the small portion of the program we are looking
at. When we zoom out, the syntax coloring becomes virtually useless. But this
problem can be addressed by techniques already in use in a number of IDEs. For
example, the Eclipse [9] Java Perspective provides an Outline view which allows the
user to see the basic structure of an individual file at a glance. The Outline view is
used for navigation as well. Figure 5 shows a suggested outline for the proof script
of Figure 4. Another idea that could be extended directly to proof assistants is the
technique of collapsing and expanding parts of a source file. Often a programmer
wishes to elide certain parts of a source file that are irrelevant, so that the rest of the
file becomes easier to understand. In a similar fashion a proof developer may wish
to elide portions of a proof script, of a proof, or of its associated program. Figure
6 shows the proof of the decidability of equality on lists with two of the functions
in the proof collapsed. The first collapsed function is a proof that equality of the
heads of the lists is irrelevant under the hypothesis that the tails are unequal (in
which case it is clear that the lists are unequal). The second function is a similar
proof, with heads and tails reversed. Such subproofs, although required to complete
a formal proof, and in some cases constituting a significant proportion of the whole
proof, are generally uninteresting to the human reader.
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list_eq_dec =
fun (A:Set) (H:forallxy: A, {x=y}+{x<y}) (x:listA) =>
list_rec (fun x0 : list A => forall y : list A, {x0 =y} + {x0 < y})
v| (funy:listA=>
match y as | return ({nil = I} + {nil < 1}) with
I nil => left (nil <> nil) (refl_equal nil)
1 a0 :: 10 => right (nil = a0 :: 10) (nil_cons (a:=a0) (m:=10))
end)
v (fun(a: A) (I : list A) (IHI : forally : list A, {I =y} + {I <> y})
(y:listA) =>
match y as 10 return ({a :: 1 =10} + {a :: | < 10}) with
I nil => right (a :: | = nil) (sym_not_eq (nil_cons (a:=a) (m:=l)))
la0 :: 10 =>
lets:=Haa0lin
match s with (funHO:a:1=a0:10=>
| lefte => e'
let sO :=IHI 10 in (let H1 :=
match s0 with f_equal
| left e' => (fune0:listA=>
left (a :: 1< a0 :: 10) ma.tch e0 with
(eq_ind_r (funal:A=>al ::l=af Inil=>a
(eq_ind_r (fun 1 : list A=>a0 :: la::_=>a
(refl_equal (a0 :: 10)) ') e) end) HOin
I right ' => (let H2 :=
right (a :: 1 = a0 :: 10) f_equal .
(funHO:a:1=a0::10 => D (fune0 :listA=>
‘ end match e0 with
| right e => Inil=>1
right (a :: 1 = a0 :: 10) 1_:l=>1
'S (funHO:a::1=a0::10 => |:| end) HO in
end fun _:a=a0=>H2)H1))
end) x
: forall A : Set,
(forallxy : A, {x=y} +{x<>y}) >
forallxy :listA, {x=y} +{x <y}

Fig. 6. A proof of the decidability of equality on lists with two functions collapsed. The collapsed function
is inspected by allowing the cursor to hover over the arrow; pressing the arrow causes the function to be
expanded.

3.2 Automatic Refactoring

A refactoring is a way of restructuring a program so that the overall organization
of the program is improved but the behavior is unchanged [25]. Where large parts
of a proof have been developed separately, refactoring may be necessary to make
common the underlying assumptions of the different components [12]. Refactorings
may also facilitate proof reuse [16]. While modern IDEs offer extensive support
for automatic refactorings [30, 37,38] UITPs offer very little. IDEs offer support
for renaming of functions and variables; UI'TPs should offer a similar facility for
renaming lemmas. IDEs offer facilities for restructuring programs; for example, a
local variable may be converted to a field in a Java class definition. In the same
way, UI'TPs should offer facilities for restructuring existing proof scripts; in Coq,
for example, a user might wish to encapsulate a group of proof entities within a
module. In the Eclipse Java IDE, a developer can generalize the type of a field,
lifting the field to its supertype [38] and changing all uses of the field appropriately.
Similarly, UI'TPs should offer refactoring support for abstracting over definitions
and hypotheses [28]. Many other refactorings are likely to be dependent on the
logic and organization of the individual proof assistant.

Additionally we propose a requirement for transformations similar to the “best
effort” standard used by IDE developers. When a developer changes the signature
of a method an IDE may “do its best” by changing the signature of all overriding
and overridden methods appropriately. However, if the signature is changed by
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the addition of a formal parameter, it will generally be impossible to automatically
determine the actual parameter to be passed at the invocation site. After the trans-
formation the resulting type mismatch will induce compiler errors in the program.
However, the IDE has eased the programmer’s task by automatically performing
a task that the programmer would otherwise need to perform manually. The pro-
grammer can complete the transformation by identifying the call sites that must be
changed, determining the actual parameter to be passed at each call site, and up-
dating the code correctly. Generally, the compiler itself will assist the programmer
in identifying the call sites which must be updated through specific error messages.

UITP developers may feel that an automatic transformation that makes a correct
proof incorrect is simply unacceptable. We argue that if the transformation gets
the proof developer “closer” to the correct proof that he actually desires such a
“best effort” transformation is still of value and worth incorporating in a UITP. A
developer may realize only after substantial work has been done on a proof that
some component must be changed. For example, it may turn out to be the case
that a list must have not only the familiar properties of lists but also the extra
property that its elements are sorted for a proof to be completed. One method of
expressing this additional property in Coq is through the use of dependent types [3].
If the developer changes the type of the list to include a proof that it is sorted then
any previously developed theorems that include this list must also have their type
changed. It is relatively easy to implements such a straightforward transformation.
It may even be possible for a refactoring tool to modify the tactic scripts for certain
proofs that do not rely on the sorted property so that the proof can be reconstructed
entirely. But perhaps the developer must now construct additional lemmas to prove
that the sorted property is preserved by some transformations defined in the proof.
The proof cannot be completed without this additional manual work on the part
of the developer. Still, a refactoring tool that automated the straightforward steps
and left the developer to perform the more difficult steps that cannot easily be
automated would be desirable.

4 Proof Visualization in the Large

Program visualization is a well established field. Techniques to represent programs
visually are used in teaching [5, 15] and in the professional world [39] and new
techniques are continually developed [18,26,31,32]. These techniques incorporate
both static visualization [18,5,39, 26, 32] and animations [15]. Often they use a
complicated visual vocabulary to communicate relationships among many entities
in a program.

An important insight of Ball and Eick [1] is that a less complicated visual vo-
cabulary can also convey useful information. They show how a coloring scheme can
be used to convey to the programmer the overall “shape” of an application. They
use color to encode unary properties of individual lines such as the number of times
a line has been changed. Such coloring can allow a programmer to see at a glance
some overall property of the program. For example, parts of the system that are
predominantly red are edited frequently and most likely contain bugs. Parts that
are blue are edited less frequently and are likely to be relatively bug free. This
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approach can be extended to textual units of larger granularity such as procedures
or files and has been used in applications such as fault localization [17].

Techniques for proof visualization are less common. Proof animations [14] exist
for restricted domains such as graph properties [11]. Static visualization techniques
are used to describe the relationships among proof entities [4,6]. We argue that the
insights of Ball and Eick can be applied to proof visualization as well as program
visualization. They can be applied in a straightforward way to encode such proper-
ties as revision information which are really identical between proofs and programs.
Other properties are more specific to UI'TPs. In a proof assistant with an automatic
component theorems may be applied without a user specifically requesting them. A
coloring scheme that encoded the relative frequency with which different theorems
were used could be used to visualize “hot spots” in much the same way a coloring
scheme that encodes software profiling information is used.

5 Conclusion

We have described a number of ways in which techniques developed to assist pro-
grammers in maintaining and extending large programs can be of use to proof
developers who must maintain and extend large proofs. Many software projects
involve a considerable number of people working over several years. As the disci-
pline of automated theorem proving matures proofs of similar size and complexity,
which are now considered extraordinary [41], will grow more common. Program
extraction is gaining acceptance as a technique for developing programs which must
be correct. As these trends continue, the tools we have described will become more
and more valuable to proof developers.

Moreover, we feel that the theoretical difficulties of developing the tools that we
have described are negligible. For example, the navigation tool described in Section
2 requires an underlying encoding which records the correspondence between the
proof script, its associated proof, and the derived program. It is clear that this
data is available. The relationship between the entities in a proof script and its
corresponding proof must be calculated by the proof engine that develops the proof.
Similarly, the relationship of the terms in a proof to the corresponding terms in the
extracted program must be calculated by the program extraction mechanism. The
difficulty does not lie in establishing these relationships but rather in recording them
and displaying them in a useful manner.

On the other hand, work in this area may yield significant theoretical insights.
The refactorings described in Section 3.2 are all quite straightforward; just a bit
more sophisticated than textual replacement. Some program refactorings are much
more ambitious. For instance, Tip et al. [37] describe a refactoring from Java
programs that do not exploit a polymorphic type system to ones that do. More
ambitious refactorings for theorem provers could very well yield unexpected insights.
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Abstract

The Mizar proof language has both many human-friendly presentation features, and also firm semantical
level allowing rigorous proof checking. Both the presentation features and the semantics are important
for users, and an ideal Mizar presentation should be both human-friendly (i.e. very close to textbook
presentations), and also allowing fast access to the detailed semantics and detailed proof explanations. This
poses several questions, problems and choices when presenting original Mizar texts, presenting results of
semantic queries over the Mizar library, and also when presenting texts produced directly on the semantical
level, e.g. by automated theorem provers. This paper discusses solutions to these problems, and particularly
implements an initial system for presenting detailed explanations of atomic Mizar inferences. This is done
by the cooperation of the Mizar XML presentation tools, the MML Query system, and automated theorem
provers working on the MPTP semantic translation of Mizar.

1 Introduction

One of the main objectives in the development of the Mizar [Rud92,RT99] proof
language has always been its intuitive presentation and closeness to mathematical
vernacular. The following features are worth mentioning in this context:

e It uses Jaskowski’s natural deduction [Pel99,Jas34| for the high-level proof struc-
ture, complemented with “simple justification” (“by”) steps, which are the atomic
inferences checked by the fast Mizar refutational checker [Wie00,NB04]. These
atomic steps are fine-tuned to be of the “right” human-like granularity, i.e., they
should be easy to understand to humans, but should not bother the reader with
too much obvious details.
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e The language is essentially first-order predicate theory, but it supports a number
of linguistic features that make in more human-like. This includes, e.g., usage
of adjectives and types and implicit usage of their hierarchies and dependen-
cies (called “registrations” or “clusters” for adjectives), implicit usage of various
properties (symmetry, reflexivity, projectivity, etc.), Mizar structures, implicit
definitional expansions, etc.

e The language supports wide variety of notations and several kinds of symbol
overloading, to allow faithful notation for different mathematical fields encoded
in the large Mizar Mathematical Library (MML).

On the other hand, the main purpose of having formal proof languages is their
mechanized proof checking. This means that all the above mentioned presentation
features ultimately have to be transformed to a proof-checkable level with clear
semantics. In Mizar, this is done in several compiler-like passes, which gradually
transform the syntactic features to their semantic counterparts (possibly inform-
ing users about syntactic errors, etc.), and finally check on the semantic level the
correctness of the proofs.

1.1 The semantic level of Mizar

The Mizar semantic level is characterized mainly by two transformations

e Formulas are transformed to the Mizar normal form (MNF), which uses only
certain logical connectives (A, =, T, and V).3

e The disambiguation of all the notation (symbols and their patterns) into the
“constructors”. While the former are usually quite complicated and overloaded,
constructors are the unique semantical elements (functors, predicates, etc.).

Both these transformations are many-to-one, and in some sense also many-to-many.
Multiple user-level formulas can have the same MNF, and multiple user-level no-
tations can end up being expressed in the same way on the constructor level. As
for the many-to-many property, it is theoretically possible to have multiple MNF
for one user-level formula, but in practice this does not happen, since the Mizar
transformation algorithm is deterministic.* It is much more possible to have one
user notation (symbols and their patterns) transformed to different constructors,
since this heavily depends on the Mizar environment (e.g. type rules contributing
to different ways of the overloading disambiguation).® The important consequence
of this is that given a piece of a semantic-level Mizar text, there are usually multiple
ways how it can be presented.

This semantic level directly serves for a number of purposes: It is used by Mizar
itself for the proof checking and for storing the Mizar internal database. It is also
used in the MML Query [BRO3| searching and presentation system. It also serves
as the basis for the formats used in the MoMM [Urb06a] system, the Mizar Proof
Advisor and MPTP [Urb04,Urb06b] systems, and for the format used for semantic

3 The term “semantic correlate” introduced by Roman Suszko is usually used in the Mizar world for MNF.

4 So if we defined MNF as the product of the Mizar transformation algorithm, it would indeed be just
many-to-one.

5 And again, this is just many-to-one, if we fix the particular environment.
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browsing in the MizarMode [Urb05,BU04].

It should be noted that this semantic level still expresses the Mizar logic, not
the standard untyped first-order predicate logic used in current automated theorem
provers (ATPs) like E [Sch02], Vampire [RV02], SPASS [Wei01,WBH™02], Otter
[McC94] or Prover9. Further processing is needed when that logic is transformed to
standard predicate logic: e.g., the Mizar types need to be encoded, all knowledge
used implicitly by Mizar (e.g. type hierarchies) has to be expressed explicitly,
etc. This is now done in a certain way (characterized mainly by encoding types
as predicates) by the MPTP system, however there are also many possible choices
in this transformation. Conversely, this transformation is again generally many-to-
many, there will usually be multiple ways of encoding pure predicate logic in the
Mizar logic.

1.2 Using the semantic level for linked presentation

Recently, the Mizar semantic level has been completely XML-ized [Urb06c]|, and
XSLT tools® are being developed for creating linked HTML presentation of Mizar ”
from it. The XML-ized semantic format has been designed so that it is relatively
easy to do the HT'ML linking of symbols and other Mizar resources, and it has
been modified several times (usually by adding additional information as XML
attributes) using the HTML presentation bottlenecks as a feedback. It currently
allows quite faithful re-creation of the original Mizar presentation (see Section 3
for more details), while it also reveals a lot of information computed by the Mizar
system (e.g. various formulas computed implicitly - for stating Mizar properties,
correctness conditions, etc.), which are normally not accessible to Mizar authors.
The main point of using pure XSLT for creating the HTML presentation is that all
major browsers today support the XSLT language. This means that Mizar authors
can now load the XML file (a by-product of the Mizar verification) directly into
their browser whenever they need it during the authoring, and thus immediately
get all the additional information contained there.

The XML-ized form of a Mizar article (and hence also the HTML presentation)
however does not contain any explanation of the atomic “simple justification” (“by”)
steps. This kind of explanation was never needed for any purpose for the Mizar
processing itself, and its addition (i.e., providing documentation mode for the proof
checking of the “simple justification” steps) would involve a very large change of
Mizar itself. This means that the users so far could not find out why a particular
atomic step was accepted by Mizar. As mentioned above, these steps are designed
to be “easy to understand but not unnecessarily verbose” for humans, which is
however a very subjective matter depending on many factors. As with the normal
natural-language proofs, sometimes the number of “obvious” facts used in an atomic
Mizar step can be simply too high for a reader, making the “understanding search
space” too large. Humans are also good at occasionally forgetting what should be
obvious. One of Mizar’s probably greatest contributions to the field of formalization
of mathematics is its stress on the readability of proofs (i.e., unlike in the tactical

6 http://kti.ms.mff.cuni.cz/cgi-bin/viewcvs.cgi/xslmizar/miz.xsltxt?view=markup
7 http://merak.pb.bialystok.pl/mml/
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provers, the language is not supposed to be “write-only”). While the readability is
a very worthy goal per se (well, why shouldn’t all of mathematics be presented in a
readable, yet formally correct and mechanically checked way?), this feature of the
language actually seems to be quite important in the maintenance of such a large
repository of formal mathematics as is MML today, and for its refactoring (e.g.,
generalizing, reformulating of entire theories, etc.). For all these reasons, providing
an optional finer explanation level, which helps to understand the more difficult
steps when necessary, should be useful.

1.3  The rest of this paper

We describe our initial solution to the problem of providing and presenting the ex-
planations of the Mizar atomic “simple justification” inference steps. This solution
(cf. Diagram 1) uses the ATP technology (now the E-PROVER) for providing the
actual explanations as ATP proof objects. The MPTP system is used to transform
the Mizar “simple justification” inference steps to ATP problems, and the MML
Query system is used to transform the ATP proof objects back into the Mizar
notation. The proof objects transformed by MML Query are then linked to the
appropriate places in the HI'ML presentation of Mizar articles, so that users can
easily access them, when a particular atomic inference steps is not clear to them.

This kind of processing requires several of the above mentioned many-to-many
transformations (mainly in the opposite order than mentioned above). We explain
the general algorithm used by MML Query for presenting arbitrary semantic-level
formulas in the user-friendly notation. This algorithm has been generally used
for presenting the MML Query search results, and we are now using it also for
the presentation of the text created by ATPs directly on the semantic level. The
MML Query solution to this presentational problem is compared to the solution
implemented in the HTML presentation of Mizar articles, and their suitability for
different purposes is discussed.

2 Explaining and Presenting Mizar Simple Justifica-
tions

Readers can check the functionality for explaining the Mizar atomic inferences (im-
plemented now for 35 initial Mizar articles) at the authors’ web site®. This is a
development version of the Mizar HTML presentation, very similar to the official
one at the Mizar site” . The main difference at the moment is the linking of the by
keyword, which leads to the MML Query rendered ATP proof objects, also available
at our site 1. We provide a simple example below.

2.1 Simple example from user’s perspective

Consider e.g. the first Theorem ! in the Mizar article ZFMISC_1 [Byl89]:

8 http://lipa.ms.mff.cuni.cz/ urban/xmlmml/html_bytst/

9 http://mmlquery.mizar.org/mml/4.48.930/

Ohttp://1lipa.ms.mff.cuni.cz/ urban/xmlmml/html_bytst/_by/
Unttp://lipa.ms.mff.cuni.cz/ urban/xmlmml/html_bytst/zfmisc_1.html#T1
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Fig. 1. Diagram of systems used for presentation of Mizar atomic steps

Mizar simple justification problem
(Mizar user notation)

Mizar parser

Mizar simple justification problem
(Mizar normal form (XML))

Mizar checker

Mizar assurance (no proof)

Mizar XSLT tools
ATP system

Mizar HTML presentation
ATP proof object (TPTP)

TPTP2XML, TSTP2DLI

MPTP translation

ATP problem (TPTP)

ATP proof object in
Mizar normal form

HTML linking

MML Query

Linked ATP proof object in
Mizar user notation

theorem Thl: :: ZFMISC_1:1
bool {} = {{} }

proof
now

let cl1 be set ;
( cl c= {} iff c1 = {} ) by XBOOLE_1:3;
hence ( cl in bool {} iff c1 in {{} } ) by Defl, TARSKI:def 1;
end;
hence bool {} = {{} } by TARSKI:2;
end;

Its (probably redundant) natural-language explanation is that the powerset of the
empty set is a singleton containing just the empty set. The symbol in used inside
the proof denotes the set-theoretical membership, and the symbol c= used below
denotes the set-theoretical inclusion. Note that the theorem XBOOLE_1:3 12

theorem E3: :: XBOOLE_1:3
for bl being set holds ( bl c= {} implies bl = {} )

2http://lipa.ms.mff.cuni.cz/ urban/xmlmml/html_bytst/xboole_1.html#T3
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is just an implication, not equivalence. So the user might want to know, why the
first inference '3

( cl c={} iff c1 = {} ) by XBOOLE_1:3;

is logically valid. Clicking on its by keyword will reveal the following E-PROVER’s
proof * rendered by MML Query !> (we rather recommend to check this (above
given link) directly in a browser, since the linking cannot be seen here in text form).
The very first axiom there is reflexivity rl tarski, stating the reflexivity of the
inclusion predicate. This is a Mizar property, which the system uses automatically,
assuming that it is obvious to the readers. With this axiom, the inference easily
follows:

MML Query rendering of ATP proof steps

axiom: reflexivity_ril_tarski
A:step 1

for x1, x2 being set holds
x1 c= x1

conjecture: el_10_1
A:step 7

(c11001 c= {}
iff

c11001 = {})

axiom: t3_xboole_1
A:step 8
for x1 being set
st x1 c= {}
holds x1 = {}

inference: assume_negation(7)
A:step 9
(c11001 c= {} & c11001 <> {} or c11001 = {} & not c11001 c= {})

inference: variable_rename(1)
A:step 11

for x3, x4 being set holds
x3 c= x3

inference: split_conjunct(11)
A:step 12
x1 c= x1

inference: fof_nnf(9)

A:step 22

(c11001 c= {} implies c11001 <> {}) &
(c11001 c= {} or c11001 = {})

inference: split_conjunct(22)
A:step 23
(c11001 = {} or c11001 c= {})

inference: split_conjunct(22)
A:step 24
(c11001 = {} implies not c11001 c= {})

inference: fof_nnf(8)

A:step 25
for x1 being set
st x1 c= {}

holds x1 = {}

inference: variable_rename(25)

A:step 26
for x2 being set
st x2 c= {}

holds x2 = {}

inference: split_conjunct(26)
A:step 27

Bhttp://lipa.ms.mff.cuni.cz/ urban/xmlmml/html_bytst/zfmisc_1.html#E1:10_1
Mhttp://1lipa.ms.mff.cuni.cz/ urban/xmlmml/html_bytst/_by/zfmisc_1/164_29.html

15 Note that the constant cl has been renamed by our system to ¢11001. This is actually cligo1 in the
HTML rendering, the subscript encodes the current Mizar proof level. This is a result of the MPTP system
naming conventions, which need to provide unique name to every MPTP object.
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(x1 <> {} implies not x1 c= {})

inference: csr(24,27)
A:step 29
not c11001 c= {}

inference: sr(23,29)
A:step 30
c11001 = {}

inference: rw(rw(29,30),12)
A:step 31
contradiction

2.2 Simple example further explained

Now we will explain the particular stages of creating and rendering of the ATP
explanation.

2.2.1 Creation of the ATP problem

The problems are generated by the development version of the MPTP system.
This is a system for translating Mizar into untyped first-order predicate logic, and
encoding Mizar problems in a way suitable for solving by ATP systems. The recent
(second) version of the system has been quite heavily tested (see [Urb06b]), and
for problems which do not contain possible arithmetical evaluations (which will
need further treatment) it now seems to provide all the information necessary for
reproving Mizar inferences by ATPs. As mentioned above, MPTP encodes the Mizar
types as predicates, and explicitly adds to problem specifications various kinds of
information which is obvious to Mizar (like type hierarchy, or the reflexivity property
mentioned above). The ATP problem specification (file named zfmisc_1__164_29,
using the TPTP [SS98] format) is as follows:

% Mizar problem: el_10_1,zfmisc_1,164,29
fof (reflexivity_rl_tarski, axiom, (! [A, B] : ril_tarski(A, A)) ,
file(tarski, ri_tarski), [1).
fof (dt_k1_xboole_0, axiom, $true, file(xboole_0, ki_xboole_0), []1).
fof(dt_c1_10_1, axiom, $true, file(zfmisc_1, c1_10_1), [I).
fof (fcl_xboole_0, axiom, vi_xboole_0(kl_xboole_0),
file(xboole_0, fcl_xboole_0), [1).
fof (rcl_xboole_0, axiom, (? [A] : vi_xboole_0(A)) ,
file(xboole_0, rcl_xboole_0), []).
fof (rc2_xboole_0, axiom, (? [A] : ~ (vi_xboole_0(A)) ) ,
file(xboole_0, rc2_xboole_0), []).
fof(e1_10_1, conjecture,
(ri_tarski(c1_10_1, k1_xboole_0) <=> c1_10_1=k1_xboole_0) ,
inference(mizar_bg_added, [],
[reflexivity_rl_tarski, dt_k1_xboole_0, dt_c1_10_1, fcl_xboole_0,
rcl_xboole_0, rc2_xboole_0, t3_xboole_1]), [file(zfmisc_1, e1_10_1)]).
fof (t3_xboole_1, axiom,
(' [Al : (ri_tarski(A, k1_xboole_0) => A=kl_xboole_0) ) ,
file(xboole_1, t3_xboole_1), [1).

This encoding is in more detail described in [Urb06b]. Note that there are more
axioms than are actually needed for the proof above. This is because the MPTP al-
gorithm for adding the “background knowledge” can be only approximative, and the

main goal is to approximate it from the safe side, i.e. maintaining the completeness
of the specification.

2.2.2  Creation of the ATP proof

The MPTP problems generated from the Mizar simple justifications are usually very
easy for current ATP systems. We are using the latest version (0.91) of Stephan
Schulz’s E-PROVER, both because of its strength, and also because of its support
of the TPTP standards, which allow us to use the TPTP tools for preprocessing
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and postprocessing. Running the E-PROVER. through SystemOnTPTP !¢ yields
the following TSTP proof object:

fof (1, axiom,![X1]:![X2]:r1_tarski(X1,X1),
file(’/tmp/SystemOnTPTP15237/zfmisc_1__e1_10_1.p’, reflexivity_rl_tarski)).
fof (7, conjecture, (ri_tarski(c1_10_1,k1_xboole_0)<=>equal(cl_10_1, ki1_xboole_0)),
file(’/tmp/SystemOnTPTP15237/zfmisc_1__el1_10_1.p’, el_10_1)).
fof (8, axiom,![X1]:(r1_tarski(X1,kl1_xboole_0)=>equal (X1, ki1_xboole_0)),
file(’/tmp/SystemOnTPTP15237/zfmisc_1__e1_10_1.p’, t3_xboole_1)).
fof (9, negated_conjecture,
“((ri_tarski(cl_10_1,k1_xboole_0)<=>equal(c1_10_1, k1_xboole_0))),
inference (assume_negation, [status(cth)],[7])).
fof (11, plain,![X3]:![X4]:r1_tarski(X3,X3),
inference(variable_rename, [status(thm)],[1])).
cnf (12,plain, (r1_tarski(X1,X1)),inference(split_conjunct, [status(thm)], [11])).
fof (22, negated_conjecture,
(("(ri_tarski(c1_10_1,k1_xboole_0)) |~ (equal(c1_10_1, kl1_xboole_0)))
&(r1i_tarski(c1_10_1,k1_xboole_0) lequal(c1_10_1, ki_xboole_0))),
inference (fof_nnf, [status(thm)], [9])).
cnf (23 ,negated_conjecture, (c1_10_1=k1_xboole_0|ri_tarski(c1_10_1,k1_xboole_0)),
inference(split_conjunct, [status(thm)], [22])).
cnf (24 ,negated_conjecture, (c1_10_1!=k1_xboole_0|~rl_tarski(c1_10_1,k1_xboole_0)),
inference(split_conjunct, [status(thm)], [22])).
fof (25, plain,![X1]:("(ri_tarski(X1,k1_xboole_0))|lequal(X1l, ki1_xboole_0)),
inference (fof_nnf, [status(thm)], [8])).
fof (26, plain,![X2]:("(ri_tarski(X2,k1_xboole_0))|equal(X2, kl_xboole_0)),
inference(variable_rename, [status(thm)], [25])).
cnf (27,plain, (X1=k1_xboole_0| “ri1_tarski(X1,kl_xboole_0)),
inference(split_conjunct, [status(thm)], [26])).
cnf (29,negated_conjecture, ("ri_tarski(c1_10_1,k1_xboole_0)),
inference(csr, [status (thm)], [24,27])).
cnf (30,negated_conjecture, (c1_10_1=k1_xboole_0),
inference(sr, [status(thm)], [23,29,theory(equality)])).
cnf (31,negated_conjecture, ($false),
inference(rw, [status(thm)],
[inference(rw, [status(thm)], [29,30,theory(equality)]),
12,theory(equality)])).
cnf (32,negated_conjecture, ($false),inference(cn, [status(thm)],
[31,theory(equality)])).
cnf (33,negated_conjecture, ($false),32, [’proof’]).

Obviously, different ATP systems (or even the same ATP run with different set-
tings) can produce different refutational proofs, and these proofs will generally also
differ from the hypothetical “Mizar proof” (i.e., the steps done by the Mizar checker
to justify the conjecture). Certainly, we might try to optimize the search in order
to find e.g., the shortest (and thus hopefully the “best understandable”) proofs.
On the other hand, as noted above, these inferences are supposed to be quite easy
for humans, and they turn out to be quite easy also for ATPs, so such (potentially
quite resource-intensive) optimization is probably not worth its cost. A much bet-
ter way to make the proofs more understandable is to spend some effort on their
presentation, which is what we do in the following steps.

2.2.3 Preparing the ATP proof for MML Query rendering

The TSTP proof object is first transformed to the XML encoding of TSTP, by Petr
Pudlak’s and Geoff Sutcliffe’s tool TPTP2XML. The XML listing would be too
long to be included here, and it is available on our web site '”. Then we apply our
XSLT stylesheet tstp2dli.xsl'® which translates the TPTP notation to the MML
Query DLI (Decoded Library Item) format. MML Query is only used to process
the DLI-encoded formulas, so another task of tstp2dli.xsl is to take care of the
linking of formula names to the Mizar HTML pages, and linking of the ATP step

O http://www.cs.miami.edu/~tptp/cgi-bin/SystemOnTPTPFormMaker
http://1lipa.ms.mff.cuni.cz/ urban/xmlmml/html.930/_by_xml/zfmisc_1/164_29.xml
8http://kti.ms.mff.cuni.cz/cgi-bin/viewcvs.cgi/xsl4mizar/tstp2dli.xsltxt?view=markup
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references. The result is again on our web site 19 .

2.2.4 Presentation with MML Query
As mentioned above, the MML Query DLI format is a notation for the Mizar
semantic level. Therefore two tasks have to be done by MML Query:

e translate the formulas in MNF back into a human-friendly notation (i.e., usually
compress it by using more logical connectives)

e translate Mizar constructors back into a human-friendly notation (i.e., find suit-
able Mizar symbols and their patterns, which correspond to the given constructor
form)

First we explain the MNF transformation. A conjunction in MNF used in MML
Query may have more than two conjuncts (the result of the associativity of con-
junction in Mizar). Such situation is denoted here by &(...). The reconstruction of
richer set of connectives (3, V, =, and <) tries to reverse the Mizar transformation
algorithm and could be described by following rules:

_'&((1017- .. aSOn—ly_‘SDn) —>&((,01,. .. ,(pn_l) = ©n
_‘&(_‘(1017"'7_'@71)_)%01 V...V,

The reconstruction of < is a bit more complicated. If formula has the form

_'&(Qola sy Pk Pl—15 - - 7_'Q07L) A _'&(1/}17 cee 71/}771)

and
&(_‘&()79017 AR 7%016) E &(¢17 AR 71/}777,)

then it is transformed to

&((;017 .. 7¢k) - _'&(on—l—la .. 7Q0n)

The equivalence = is the smallest equivalence satisfying the conditions of double
negation and single conjunction:

—p=¢ and &)=

The compression of quantifiers is also applied and formulas of the form V,(¢ =
1) are presented as for x st ¢ holds t. The indenting and breaking of long
formulas is applied for better readability. The above rules assume that transformed
formulas do not include double negations nor nested or single conjunctions (this is
the case of formulas generated from Mizar). So, the transformation of an arbitrary
formula expressed with A, =, T, and V requires additional pruning at beginning.
This has been implemented to handle our ATP-generated data.

The translation of Mizar constructors into the human-friendly notation uses
the “rule of first available notation”. Generally, multiple synonyms (or antonyms)
can exist as user symbols corresponding to one Mizar constructor (in other words,

nttp://lipa.ms.mff.cuni.cz/ urban/xmlmml/html_bytst/_by_dli/zfmisc_1/zfmisc_1__164_29.d1li
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when a Mizar author introduces a synonym, it exists only on the presentation
level). Since in the general case (like the one when data come from ATPs) we have
no other information than the constructor format, it is reasonable to present the
constructor using just the first human symbol found in the MML, which corresponds
to that constructor. More special rules can be (and are) used by MML Query, when
additional information is available, e.g., about the Mizar articles from which the
constructor encoding comes.

The result of the final MML Query rendering step on our example is already
shown above, it is the final explanation of the “simple justification” inference that
is presented to the reader.

3 MDML Query presentation versus the XML-based HTML
presentation of full articles

The above described by-explanation system, which we have implemented for the
35 initial Mizar articles, uses two different techniques for presentation of the Mizar
semantic level. The presentation of the by-explanations is done by the MML Query
“artificial intelligence” reconstruction of a possible user notation (described in 2.2.4).
With no other information added to the constructor encoding, there is really no
other choice. On the other hand, for the XML-based HTML presentation of full ar-
ticles, to which the MML Query explanations are linked, a lot of further information
is available, namely from the Mizar parser, which was used to process the original
Mizar text. Even though the purpose of the Mizar XML format is to primarily
contain the semantic information, the XML format allows for easy addition of the
original presentation information. This feature has been added to Mizar some time
ago, and the XML produced by recently distributed Mizar versions already contains
this additional presentational information.

It is therefore quite likely, that in many cases the presentations of the same Mizar
formula by these two systems will differ. We don’t think that in the particular case of
the system presented above this is necessarily harmful. While the goal of the XML-
based HTML presentation is to achieve high resemblance to the original article, with
as much additional semantic information as possible, the goal of the MML Query
presentation is to present pieces of Mizar text in a uniform and predictable way.
In this sense the MML Query presentation can be thought of as a tool for strong
uniform formatting of Mizar. While this difference may be initially surprising for a
reader, when he first uses the by-explanation functionality, this might also lead to
his deeper understanding of the presentation process, and of Mizar itself. Should
this become a serious problem, we can always offer to the user to apply the MML
Query formatting to the whole XML-based article presentation.

4 Conclusions and Future Work

We have provided an initial implementation of a system explaining the Mizar atomic
“simple justification” inferences, and demonstrated it on 35 initial Mizar articles.
For this, we have used or newly developed a chain of tools working on the Mizar
semantic level. The systems could be already now extended to a much larger por-
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tion of MML, since the ATP success rate on solving nonnumerical Mizar “simple
justification” problems is very high (above 90% with 4s timelimit and one ATP
used in a push-button manner, and above 99% with more sophisticated, but still
fully automated methods described in Section 4.3. of [Urb06b]). However we still do
not have a satisfactory algorithm for serious transformation of the ATP solutions on
heavily typed Mizar articles to the Mizar typed semantic level. It is possible already
now to render such solutions with MML Query as mentioned above, and it probably
would be useful purely for the explanation purpose. However such rendering will be
incorrect from the Mizar parser’s point of view, which requires that variables are
qualified with proper types when typed functors or predicates are applied to them.
A transformation of the ATP untyped solutions to Mizar-acceptable typed solutions
is probably feasible, and it is an interesting line of further research. Obviously all
the tools participating in our chain can be improved too. One interesting idea is to
have all of the systems participating in the chain working in real time, passing the
solutions to each other. Such functionality will probably be developed quite soon,
and generally used for providing ATP support to Mizar authors. From this point
of view, providing the current by-explanation functionality can be thought of as a
test-bed, making the way for more ambitious ATP-for-Mizar applications.
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Abstract

This work describes the Interactive Derivation Viewer (IDV) tool for graphical rendering of derivations that
are written in the TPTP language. IDV provides an interactive interface that allows the user to quickly view
various features of the derivation. A particularly novel feature of IDV is its ability to provide a synopsis of
a derivation by identifying interesting lemmas within a derivation, and hiding less interesting intermediate
formulae. IDV is deployed online as part of the SystemOnTPTP interface, thus providing ready access via
any web browser.
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1 Introduction

The proofs output by automated reasoning systems provide useful information to
system users, e.g., the proof structure, lemmas that may be useful in future proofs,
which axioms are most used, etc. Even derivations that do not form completed
proofs are of interest, as they may provide insights leading to changes in the problem
formulation or the system application, that result in a proof being found - automated
reasoning systems are often debugged in this way. However, the proofs output by
automated reasoning systems are often unsuitable for human consumption. For
first-order automated theorem proving (ATP) systems, the reasons include:

e The conversion of problems stated in “natural” first-order form (FOF) to clause
normal form (CNF).

e The use of proof by contradiction, which introduces formulae that are not logical
consequences of the axioms.

e The use of fine grained inference steps, such as binary resolution, that exaggerate
the size of a proof.

Several types of tools have been developed to make the output from ATP systems
easier for humans to understand. These include graphical renderings of derivations
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[10], structuring of proofs by identification of lemmas [1], translation of resolution
refutation proofs to natural deduction proofs [4], and full translation of proofs to
natural language form [2]. This work describes the Interactive Derivation Viewer
(IDV) tool for graphical rendering of derivations that are written in the TPTP [13]
language [12]. IDV provides an interactive interface that allows the user to quickly
view various features of the derivation. A particularly novel feature of IDV is its
ability to provide a synopsis of a derivation by identifying interesting lemmas within
a derivation, and hiding less interesting intermediate formulae. IDV is deployed
online as part of the SystemOnTPTP interface [11], thus providing ready access via
any web browser.

Section 2 describes the basic IDV tool and it’s rendering process. Section 3 de-
scribes the production of proof synopses. Section 4 explains how IDV is deployed on
the web, and provides an illustrative application. Section 5 concludes and discusses
future developments planned for IDV.

2 Basic IDV

A derivation is a directed acyclic graph (DAG) whose leaf nodes are formulae (pos-
sibly derived) from the input problem, whose interior nodes are formulae inferred
from parent formulae, and whose root nodes are the final derived formulae. For
example, a CNF refutation proof is a derivation whose leaf nodes are the clauses
formed from the axioms and the negated conjecture, and whose root node is the
false clause. The information required to record a derivation is, minimally, the leaf
formulae, and each inferred formula with references to its parent formulae. More
detailed information that may be recorded and useful includes: the role of each
formula, e.g., axiom, conjecture, plain derived, etc; the name of the inference rule
used in each inference step; sufficient details about each inference step to determin-
istically reproduce the step; and the semantic relationship of each inferred formula
with respect to its parents, e.g., logical consequence, counter theorem, etc. The
TPTP language is sufficient for recording all this, and more.

A derivation written in the TPTP language is a list of annotated formulae. Each
annotated formula contains a name, a role, the logical formula, a source record, and
a field for recording arbitrary useful information, as required for user applications.
The source of each inferred formula is an inference record containing the inference
rule name, a status record containing the semantic relationship of the formula to its
parents as an SZS ontology value [14], and a list of references to its parent formulae.

IDV takes a derivation in the TPTP language and renders the DAG using Java’s
Swing components. IDV can run as a standalone application, or as a web browser
applet; this description focuses on the web option, because it provides ready (re-
mote) access to IDV without any installation required.
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2.1 Interface

Figure 1 shows the rendering of the derivation output by the ATP system EP 0.91 [9]
for the TPTP problem PUZ001+1.2 The IDV window is divided into three panes: the
top control strip pane provides control buttons and sliders, the main middle pane
shows the rendered DAG, and the bottom pane gives the text of the annotated
formula for the node pointed to by the mouse.

L’! _0 = agi
nference(sr,

atha ), ) .
[status(thm)],[110,51, theory(equality)])).

Fig. 1. EP’s Proof by Refutation of PUZ001+1

The buttons and sliders in the control strip pane are, from left to right:
e Zoom in - zooms in 50%
e Fit vertical - scales the rendering to fit the height of the middle pane
e Fit horizontal - scales the rendering to fit the width of the middle pane

2 PUZOO1+1 is the “Aunt Agatha” problem, which describes a scenario in which three people live in a
mansion, and Aunt Agatha is killed. The goal is to prove that Aunt Agatha killed herself. All TPTP
problems, their solutions, and IDV renderings of the solutions, are available online via http://www.tptp.org/
- follow the Problems link to reach the problems, the TSTP link to reach the solutions, and the View IDV Tree
link at the top of any solution page (that has the solution in TPTP format) to generate the IDV rendering.
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e Zoom out - zooms out 50%

¢ Display height - sets the number of text lines in the bottom pane

e Synopsis level - sets the minimal interestingness level for display - see Section 3.

e Redraw - redraws the derivation. This is typically used after extracting a synopsis
- see Section 3.

e Synopsis undo - sets the minimal interestingness level to its previous value.

e Synopsis redo - sets the minimal interestingness level to its next value, after any
undo steps.

e About button

The rendering of the derivation DAG uses shape and color to visually provide
information about the derivation. Each node corresponds to a formula in the deriva-
tion, with FOF nodes outlined in black and CNF nodes outlined in orange. The
role of the formulae is indicated by the shape of the node: triangle for axioms,
hexagons for lemmas, inverted trapezium for hypotheses, house for conjectures, in-
verted house for negated conjectures (as done when converting a FOF problem to
CNF), circle for plain derived formulae, and square for false formulae. A node may
be annotated above with a = sign in a circle to indicate that equality reasoning was
used in its inference, e.g., a paramodulation inference. A node may be annotated
inside at the top with a red circle to indicate that the formula is not a logical con-
sequence of its parents, e.g., in Skolemization and splitting inferences, as indicated
by the SZS status. A node may be annotated below with a red triangle to indicate
that it is the parent of a splitting inference, e.g., an explicit split as implemented
by SPASS [15] or a pseudo-split as implemented by Vampire [7,8] or E [9].

The user can interact with the derivation rendering in two ways. First, moving
the mouse over any node causes the annotated formula corresponding to the node
to be shown in the bottom pane. At the same time, the moused-over node is
highlighted in blue, all nodes leading down from leaf nodes into the moused-over
node are highlighted in green, and all nodes leading down from the moused-over
node to root nodes are highlighted in red. The effect is evident in Figure 1. The
green highlighting shows from which formulae the moused-over node is derived, and
the red highlighting shows which formulae are derived from the moused-over node.
The intensity of the highlighting decreases according to the minimal path length
from the moused-over node to the highlighted node. This allows easy differentiation
between closer and more distant ancestors and descendants. A particularly useful
effect is to identify which axioms (leaf nodes) are the closest ancestors. The second
form of interaction is to click on any node. This creates a pop-up window containing
the annotated formulae of the clicked node and its parents, as shown in Figure 2.
The annotated formula of the clicked node is shown twice once above the parents
and again below, allowing for bidirection reading of the inference step.

2.2 Implementation

IDV reads in a derivation in TPTP format. It is sensitive to the form of the for-
mulae, either FOF or CNF. The rendering is performed in two phases: the first
phase determines the layout of the DAG nodes and edges, and the second phase
implements the graphical display of the derivation DAG.
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Fig. 2. Pop-up in EP’s Proof by Refutation of PUZ001+1

The layout of the DAG is determined in a five-pass algorithm, similar to that in
[3]. The first pass assigns a rank to each node. The rank is the level of the node in
the rendered tree, with the top row containing the nodes at level 1, and increasing
downwards. The rank is used in the third pass to determine the Y coordinate of
each node. The first row of FOF nodes (leaf nodes) are placed in the first rank.
A depth first search (DFS) is then used to assign increasing rank to the rest of
the FOF nodes. Next the first row of CNF nodes are placed in the rank above
the maximum FOF node rank. Finally, the DFS algorithm is run again to assign
increasing rank to the rest of the CNF nodes. After ranks are assigned to all nodes,
the edges are partitioned as follows: If an edge connects two nodes that are more
than one rank apart, the edge is replaced by a chain of virtual nodes and edges.
The virtual nodes are given incremental ranks between the two end nodes’ ranks.
If a non-virtual node has more than one chain of virtual nodes leading down from
it, the chains are combined as far as possible, dividing immediately above the end
nodes of the chains.

The second pass directly follows the algorithm from [3], setting the left-to-right
vertex order within ranks by an iterative heuristic incorporating a weight function
and local transpositions to reduce edge crossings. The introduction of the virtual
nodes at each rank guarantees that edge crossings can only occur between adjacent
ranks.

The third pass sets an initial X coordinate and final Y coordinate for each
node. The rank with the largest number of nodes determines the maximum width
of the graph. With the left-to-right vertex ordering within ranks from the second
pass, equidistant X coordinates are given to the nodes in each rank, between 0 and

113



TrAC, PUziS, SUTCLIFFE

maximum width of the graph. The final Y coordinate is based linearly on the nodes’
ranks.

The fourth pass finds the optimal X coordinate for each node. For this pass
spring embedding is used.? Spring embedding is a graph drawing technique that
models a graph as a system of springs and then uses energy minimization to space
the nodes. The following forces are balanced: edge spring force for keeping edges at
a certain length, node-to-node repulsive forces to keep nodes from being too close,
gravity force that keeps all edges pointing downwards, and repulsive boundary forces
to keep the nodes from spreading too far apart horizontally. After the fourth pass
the X and Y coordinates are fixed - the nodes cannot be moved by user interaction.

The fifth pass generates Bezier curves to draw edges between nodes. If two non-
virtual nodes are connected by a chain of virtual nodes, then the chain of virtual
nodes is used to plot the points of the Bezier curve.

The layout determined by the first phase does not guarantee that nodes will
not overlap (or hence, given the use of virtual nodes to guide edge generation, that
edges will not pass through nodes). The extent to which node overlaps are avoided
is determined by the number of iterations in the spring embedding. The number
of iterations in the current implementation has been found to be sufficient to avoid
most overlaps. After the layout has been determined, the interface and DAG are
rendered.

IDV is implemented in Java, mainly using basic Swing components. The TPTP
formulae are read in using StreamTokenizer. The IDV window is a JFrame, and
the rendering is a JPanel. A MouseMotionListener is used in the JPanel to detect
when the mouse moves over a node, to implement the node coloring feature. A
MouseListener is used in the JPanel to detect when a node is clicked, to implement
the pop-up window feature. The JFrame is implemented with ActionListener and
Changelistener to detect the user’s manipulations in the control strip.

3 Derivation Synopses

As mentioned in Section 1, one of the features of derivations output by ATP systems
is the use of fine grained inference steps such as binary resolution, which exaggerate
the size of a proof. Derivations output by humans typically use coarser grained in-
ference steps, leaving intermediate steps “to the reader”. The inferred formulae of
such coarser grained inference steps are logical consequences of their leaf ancestors,
at various levels of saliency - humans often single out certain of the logical conse-
quences to be specifically designated as lemmas. By considering only those logical
consequences above a certain level of saliency (hiding those below that level), a
synopsis of the detailed derivation is formed. In a synopsis the lowest visible an-
cestors of a hidden formula become the parents of the highest visible descendents.
A synopsis hides the fined grained inference steps and the intermediate formulae,
thus making is easier for a user to grasp an overview of the proof. The user may
later choose to examine the details. Synposes may similarly be used to summarize
extremely large derivations.

3 Thanks to Christian Duncan for providing the original spring embedding code.

114



TrAC, PUziS, SUTCLIFFE

IDV is able to form a synopsis of a proof by CNF refutation. This is achieved
by rating the interestingness of inferred CNF formula, and hiding the nodes whose
formula rating is below a user specified threshold. The interestingness rating of
inferred CNF formulae is computed by the AGInT system [6] - see Section 3.3, and
the user sets a threshold using the slider in the control strip pane.

3.1 Interface

The interestingness of each formula is a value in the range 0.0 to 1.0. Some formulae
have a preset interestingness rating: leaf formulae are set at 1.0, the topmost CNF
formula are set at 1.0, the intermediate formulae between leaf FOF formulae and
topmost CNF formulae are set at 0.0, all formulae derived from the negation of a
conjecture are set at 1.0, and root formulae are set at 1.0. The interestingness of
values for the other formulae, i.e., the internal CNF formulae of the derivation, are
computed by the AGInT system, as described in Section 3.3. Initially the threshold
slider in the top pane is set to an interestingness value of 0.0, and all nodes are
displayed in the rendering. As the slider is moved up the interestingness thresh-
old increases, and nodes whose formula rating is below the threshold are hidden.
Figure 3 shows the derivation in Figure 1, with a interestingness threshold of 0.5.

After extracting a synopsis it is possible to zoom in, rendering only the visible
nodes. This is done in IDV with the redraw button in the control strip. Figure 4
shows the synopsis derivation rendering of Figure 3. After a redraw the threshold
slider may be moved and the derivation redrawn again, to produce a different level
of synopsis. Note that after a redraw, if the threshold is moved to below the
interestingness level used for the redraw, the hidden nodes do not immediately
become visible - another redraw is required. The user is warned of this state by
the threshold value being shown in red. Sequences of redraws can be undone and
redone using the synopsis undo and redo buttons.

While using the slider to adjust the interestingness level, the layout of the nodes
does not change - simply more or less of the nodes are hidden. This provides a
identity mental map of the derivation (a mental map is the user’s memory of the
rendering [5]). When redrawing a synopsis it important to maintain the mental
map as far as possible. To this end, all nodes that are not hidden in a synopsis are
kept in the same order as in the original. The Bezier curves that connect the visible
nodes are recomputed, but maintain the same form as in the original.

As mentioned in Section 2.1, when a node is clicked a pop-up window appears
containing the annotated formula of the node and its parents. After a reddraw, the
parents shown in a pop-up window are the parents of the formula in this rendering,
i.e., they might not be the formulae’s original parents. If some parent information
is different than the original, then the pop-up window informs the user of this.

3.2 Implementation

Interestingness ratings are stored in a record in the useful_info fields of annotated
formulae. There are two ways for formulae to have interestingness ratings. First, the
annotated formulae input to IDV may already have interestingness values. Second,
the input formulae do not have interestingness ratings, and the AGInT system has to
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Fig. 3. Interesting nodes of EP’s Proof by Refutation of PUZ001+1

be called by IDV. In this case AGInT is called as soon as the user uses the threshold
slider in the control pane.

When the redraw button is clicked by the user, the derivation synopses is ren-
dered as follows: First, non-virtual nodes in the DAG are set to be interesting if
their interestingness rating is greater than the threshold value, and all virtual nodes
are set to be uninteresting. Each rank is then checked to see if it contains any inter-
esting nodes. If a rank contains at least one interesting node the rank is retained,
otherwise the rank is empty and all nodes in ranks below are moved up a rank (i.e.,
their rank is decremented). The original rank of each node is stored for redrawing
purposes. After the ranks are updated the Y coordinates of the nodes in the re-
tained ranks are updated, as in Section 2.2. Finally, the Bezier curves are updated
to uniquely connect each interesting node to its closest interesting ancestors, which
are found using a DFS search up the DAG. All uninteresting nodes remain hidden
after a redraw.
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Fig. 4. Synopsis of EP’s Proof by Refutation of PUZ001+1

When the synopsis undo/redo button is clicked, the current interesting threshold
value changes to the last value pushed onto the undo/redo stack and above redraw
procedure is called.

3.3 Interestingness Ratings

The interestingness ratings of derived CNF formulae in a derivation are computed
by the runtime filter and static ranker components of the AGInT system. AGInT
is a system that discovers interesting theorems of a given set of axioms. AGInT
uses a deductive approach to discovery - it uses an ATP system to generate CNF
logical consequences of the given set of axioms, filters the logical consequences to
extract interesting theorems, and then computes an interestingness rating for each
theorem. This basic process takes place in the context of an outer level control loop
that regularly refocuses the generation of logical consequences, thus enabling AGInT
to proceed deeply into the search space of logical consequences. Details are given
in [6].

In the context of IDV, the derived CNF formulae of a derivation are given to
AGInT as the logical consequences of the topmost CNF formulae (i.e., the topmost
CNF formulae are considered to be the axioms from which the formulae are derived).
AGInT’s runtime filter and static ranker are used to compute interestingness values
for the formulae. Figure 5 shows the combined architecture of these two components.

The task of the runtime filter is to aggressively filter out and discard boring
formulae. Each formula must first pass the pre-processor, and must then pass the
majority (i.e., at least four) of the seven filters: obviousness, weight, complexity,
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Fig. 5. Architecture of AGInT’s Runtime Filter and Static Ranker

surprisingness, intensity, adaptivity, and focus. Each filter maintains a sliding win-
dow defined by the best distinct scores from the filter’s evaluation of the formulae
seen so far. The upper and lower bounds of each window are initialized to the
worst possible score for that filter. If an incoming formula is scored equal to or
better than the lower bound, it passes the filter, and the score is used to update the
window. Initializing the upper and lower bounds to the worst possible score allows
all formulae through until the window starts sliding up. As a result some boring
formulae early in the stream may pass the runtime filter. Therefore the formulae
that pass the runtime filter in the first pass are stored, and after all formulae have
been processed the stored formulae are filtered again, with the windows fixed from
the first pass. This removes any that do not meet the final lower bounds.

The individual filters are as follows:

Pre-processor:  The preprocessor detects and discards obvious tautologies, e.g.,
clauses that contain an atom and it’s negation, and clauses containing a true atom.

Obviousness: Obviousness estimates the difficulty of proving a formula. The
obviousness score of a formula is the number of inferences in its derivation. A
higher score is better.

Weight: Weight estimates the effort required to read a formula. Formulae that
contain very many symbols (variables, function and predicate symbols) are less
interesting. The weight score of a formula is the number of symbols it contains. A
lower score is better.

Complezity: Complexity estimates the effort required to understand a formula.
Formulae that contain very many different function and predicate symbols, repre-
senting many different concepts and properties, are less interesting. The complexity
score of a formula is the number of distinct function and predicate symbols it con-
tains. A lower score is better.

Surprisingness: Surprisingness measures new relationships between concepts and
properties. Formulae that contain function and predicate symbols that are seldom
seen together in a formula are more interesting. The symbol-pair surprisingness
score of a pair of symbols is the number of axioms that contain both symbols
divided by the number of axioms that contain either symbol. The surprisingness
score of a formula is the sum of the symbol-pair surprisingness scores, over all pairs
of distinct symbols in the formula. A lower score is better.

Intensity: Intensity measures how much a formula summarizes information from
the leaf ancestors in its derivation tree. The plurality score of a formula (or set of
formulae) is number of function and predicate symbols in the formula divided by
the number of distinct function and predicate symbols in the formula. The intensity
score of a formula is the plurality of its leaf ancestors divided by the plurality of
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the formula itself. A higher score is better.

Adaptivity: Adaptivity measures how tightly the universally quantified variables
of a formula are constrained. The adaptivity score of a clause is the number of
distinct variables in the clause divided by the number of variable occurrences in the
clause. A lower score is better.

Focus: Focus measures the extent to which a formula is making a positive or
negative statement. Let FFPL and F'NL be the fractions of positive and negative
literals in a clause. The focus score of a clause is 1 + F'PL xlogo(FPL) + FNL %
loga(FNL). Clauses with up to three literals are considered to have perfect focus
because their polarity distribution is limited. A higher score is better.

The formulae that pass the runtime filter are considered to be interesting. The
task of the static ranker is to compute a final interestingness rating for the formulae.
This is done in two phases: first a usefulness score is computed for each formula,
and second, all the scores are individually normalized and then averaged.

Usefulness: Usefulness measures how much an interesting formula has con-
tributed to proofs of further interesting formulae, i.e, its usefulness as a lemma.
The usefulness score of a formula is the ratio of its number of interesting descen-
dents (i.e., descendents that have passed the runtime filter) over its total number
of descendents. A higher score is better.

Normalization and Averaging: The scores of the formulae, from each of the
runtime filter and static evaluations, are normalized into the range 0.0 to 1.0. The
formulae with the worst score are given a final score of 0.0, the formulae with the best
score are given a final score of 1.0, and all other scores are linearly interpolated in
between. If the worst and best score of a particular filter are equal, then that filter
does not differentiate between the formulae, and those scores are removed. The
remaining scores of each formula are averaged to produce a final interestingness
rating.

4 Deployment and an Application

IDV is deployed online as part of the SystemOnTPTP interface at
http://www.tptp.org/cgi-bin/SystemOnTPTPFormMaker
The IDV code is wrapped as a web browser applet, and all computation for the
rendering is done on the client side. The annotated formulae that constitute the
derivation to be rendered may be passed to the applet as a parameter within the
<APPLET> tags in the encompassing web page, or retrieved from a URL specified as
a parameter within the <APPLET> tags. The AGInT code is deployed as a server side
cgi-bin script, and is invoked by the IDV code via a POST call when interestingness
ratings are required. Figure 6 shows the deployment architecture.

IDV has been used to analyze proofs of theorems, to identify key steps in the
proofs. As an example EP’s proof of the TPTP problem SET615+3 is considered.
This problem proves that for any three sets X, Y, and Z, (X UY)\Z = (X\Z) U
(Y\Z). Figure 7 shows EP’s derivation DAG - clearly a hairy beast which is hard
to comprehend as a whole. Figure 8 shows a synopsis of the derivation. It is very
easy to see which nodes are key points in the synopsis, e.g., the one with the blue
(darkest) coloring has the formula X = (X UY)\(Y'\X). Another key node has the
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Fig. 6. Deployment of IDV

5 Conclusion

This paper has presented the design, implementation, deployment, and application
of an interactive derivation viewer, implemented as the IDV tool. IDV provides
strong visual information showing the structure of a derivation, with original details
available as text. IDV provides interactive features that enable a user to visually
highlight and examine salient parts of a derivation. In particular, the ability to
extract proof synopses sets IDV apart from other existing derivation viewers. The
use of “interestingness ratings”, which are artificially intelligently determined, to
provide a sliding scale of proof synopsis, is particularly powerful and certainly highly
novel. The online deployment makes IDV easily available to users (who use the
TPTP language for their derivations), without any need for software installation.
Future work planned for IDV includes finer grained synopsis of the FOF to
CNF parts of derivations, which are currently considered to be not interesting at
all. Future work on the implementation includes tighter integration with the Syste-
mONnTPTP interface, so that interestingness ratings are computed in advance of their
need, improving the performance on extremely large derivations, and improving the
Bezier curve drawing in synopses of very large derivations. When the features have
been optimized and implementation is stable, user evaluation will also be desirable.
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Abstract

ACL2 is the latest inception of the Boyer-Moore theorem prover, the 2005 recipient of the ACM Software
System Award. In the hands of experts it feels like a finely tuned race car, and it has been used to prove
some of the most complex theorems ever proved about commercially designed systems. Unfortunately,
ACL2 has a steep learning curve. Thus, novices tend have a very different experience: they crash and burn.
As part of a project to make ACL2 and formal reasoning safe for the masses, we have developed ACL2s,
the ACL2 sedan. ACL2s includes many features for streamlining the learning process that are not found
in ACL2. In general, the goal is to develop a tool that is “self-teaching,” i.e., it should be possible for an
undergraduate to sit down and play with it and learn how to program in ACL2 and how to reason about
the programs she writes.

Keywords: ACL2, Eclipse, theorem proving, script management

1 Introduction

“ACL2” stands for “A Computational Logic for Applicative Common Lisp.” It is
the name of a programming language, a first-order mathematical logic based on
recursive functions, and a mechanical theorem prover for that logic [9,5,4]. ACL2 is
an industrial-strength version of the Boyer-Moore theorem prover [2] and was devel-
oped by Kaufmann and Moore, with early contributions by Robert Boyer; all three
developers were awarded the 2005 ACM Software System Award for their work. Of
special note is its “industrial-strength”: as a programming language, it executes so
efficiently that formal models written in it have been used as simulation platforms
for pre-fabrication requirements testing; as a theorem prover, it has been used to
prove the largest and most complicated theorems ever proved about commercially
designed digital artifacts.

This paper is electronically published in
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ACL2’s power comes with a steep learning curve. This is not an issue of docu-
mentation. ACL2 has extensive documentation, including tutorials, a user’s manual,
workshop proceedings, and related papers, all of which are available from the ACL2
homepage [9]. ACL2 is also described in a textbook by Kaufmann, Manolios, and
Moore [5], and there is also a book of case studies [4]. The sources for ACL2 are
freely available on the Web, under the GNU General Public License.

ACL2’s steep learning curve is due to two major factors. The first factor is usabil-
ity. Beginners have to use ACL2’s command line user interface and are encouraged
to learn GNU Emacs. Once they start proving theorems, they are confronted with
the problem of developing a mental model of what ACL2 is doing, something that
is inherently difficult: reasoning about a system that reasons about other systems.
Driving a user interface that is unfamiliar, non-intuitive, and happily permits lots
of illogical actions distracts new users from what is important.

The second factor is the ACL2 logic. ACL2 has this tremendous advantage
over many other theorem provers: it is grounded in a programming language. This
makes it very easy to introduce ACL2 to users with a computer science background.
However, once the logic is introduced, termination becomes an issue. In order to
guarantee soundness, ACL2 only accepts functions that are shown to terminate.
While ACL2 can do this automatically in many cases, there are also simple cases that
require user guidance. Termination reasoning in ACL2 is very powerful because it is
based on the ordinal numbers. While students and beginners eventually understand
(and are even sometimes fascinated by) the ordinal numbers, their introduction
significantly increases the knowledge required for interesting interaction with ACL2.
Note that termination is not only used to admit recursive functions, it induces sound
induction schemes, which play a central role in ACL2.

To address the above two factors and thereby make ACL2 more accessible to
beginners, we have developed and released ACL2s, the ACL2 sedan [3]. ACL2s is
available at http://www.cc.gatech.edu/home/manolios/acl2s and is being de-
veloped with the goal of making formal reasoning accessible to the masses, with an
emphasis on building a tool that any undergraduate can profitably use in a short
amount of time.

To address the usability factor, ACL2s features a modern graphical integrated
development environment in Eclipse that provides an intuitive, robust “script man-
agement” interface with an improved front-end to the familiar “command line”
interface. The prior is good for augmenting or curtailing the current theory while
the latter is good for querying, testing, or debugging the current theory. ACL2s
permits the user to switch between the two without fear of either one misrepre-
senting the relevant logical history. Other features help to eliminate other simple
misunderstandings that distract from the specification and proof process: full syn-
tax highlighting, syntax error underlining, auto-indenting, character pair matching,
and input command demarcation. In addition, “session modes” serve to hide com-
plicated functionality from novice users.

To address the logic factor, we have developed and incorporated into ACL2s
CCG termination analysis [8]. This is a powerful, state-of-the-art termination anal-
ysis method which significantly automates termination arguments. This eliminates
the need for students to justify the kind of user-defined recursive functions and in-
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Fig. 1. Snapshot of Eclipse workbench running ACL2s. The top-left frame is Eclipse’s file Navigator
view. The top-right frame is an ACL2s source code editor. The bottom-right is an ACL2s session editor
associated with that source code editor. The bottom-left is a “proof tree” view of proof happening in the
session editor.
duction schemes that would be covered in an undergraduate class. We can therefore
avoid discussing termination analysis completely or until well after students have
become proficient ACL2 users. In addition, ACL2s includes several levels appropri-
ate for beginners through experts. This allows us to introduce the major concepts
in ACL2 in easy-to-understand modules that do not overwhelm beginners.
Together, the features of ACL2s lower barriers to learning specification and
verification in ACL2—which was the sense after two graduate courses switched to
requiring use of the tool.

2 GUI Overview

In the Eclipse workbench, development with ACL2s is centered around two types
of editors: the source editor (also called “Lisp editor” or “lisp editor”), and the
session editor (or “.a2s editor”). In most cases, the user will use linked pairs of
these editors, such as editing somefile.lisp and somefile.lisp.a2s. Based on
their naming, the plugin links these so that each provides a consistent view of their
shared logical history.

2.1 Line(s) in the Source Code

The source editor is where the user enters top-level definitions and commands as if
programming offline, but the editor also provides script management[1] capabilities,
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providing what ACL2 literature calls “the line” [5]. The editor actually maintains
two lines, which we call the “completed line” and the “todo line.” Because the
“completed line” is never beyond the “todo line”, the lines induce three (potentially
empty) regions in this order: the “completed region” (gray highlight and read-only),
the “todo region” (green highlight and read-only), and the “working region” (no
highlight, read/write). These regions can be seen in Figure 1. The lines and other
metainformation are stored in special comments on disk, preserving source code
compatibility.

User interface actions grant essentially free manipulation of the “todo line”,
regardless of the state of the associated ACL2 session, or whether it’s even running.
The “todo line” will only advance past syntactically well-formed ACL2/Lisp input
and only at the granularity of whole commands (see Section 4.1). Moving the
“todo line” can have consequences including initiating processing of “todo” forms,
interrupting the processing of a form no longer in the “todo” region and “UNDQO”ing
of completed commands (see Section 4.3). As ACL2 is processing forms from the
“todo” region, it advances the “completed” line on success and resets the “todo line”
to the point of the “completed line” on failure. If ACL2 is restarted, the “completed
line” is moved to the top. In each case, we are maintaining the simple invariant that
the “completed” forms have been accepted by ACL2 (and have not been undone),
the “todo” forms are being processed (if the ACL2 session is running), and the
“working” area is freely editable.

“Script management”-style interaction usually involves the session editor as well,
which gives ACL2’s output in response to forms processed as a result of line motion.
The session editor shows almost exactly what the user would see if she had been
manually copying processed forms into a terminal running ACL2—though the ses-
sion editor has some significant enhancements for browsing output (see Section 5.3).

2.2 Command Line

Even with a script-style interface, lots of ACL2 interaction does not make sense
from such an interface. We therefore made the session editor much more than a
provider of detailed output. The session editor implements a command line interface
to the same session used by the script-style interface of the source code editor. Most
importantly, the user cannot “trick” ACL2s into an inconsistent state by switching
between the two interfaces. The basic mechanism for this is copying any successful,
relevant commands (see Section 4.2) submitted at the prompt in the session editor
to the “completed region” in the associated source code editor.

The session editor looks like a dump of the input and output to a sequence of
ACL2 sessions, but input coming from the “todo” region and input typed at the
prompt look the same in the history.

2.8 Other Ul Pieces

ACL2s also incorporates a clickable proof tree view, much like the proof trees pro-
vided by the Emacs interface to ACL2. Our tool takes the view a step further,
though, by remembering the final proof tree of all completed commands and bring-
ing them up as the cursor is moved to corresponding sections of the session editor.
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So far, the only wizard provided by ACL2s is a “New ACL2s/Lisp file” wizard,
which allows the user to pick a session mode (see Section 3.1) and has some options
for generating some skeleton code that commonly appears at the top of ACL2 files.

2.4 User Experiences

Our above description of some intricate interaction between the session editor and
the source code editor do not translate to difficult understanding by users. ACL2s
has been a required tool for two graduate courses with an introduction to theorem
proving, and students have understood our merger of the script management and
command line interfaces almost immediately.

3 Language Extensions

As part of ACL2s, we have made some extensions to the underlying ACL2 tool,
but we have always made sure not to disable or obscure any ACL2 functionality
available outside of ACL2s.

3.1 Session Modes

Analogous to “language levels” in DrScheme [10], ACL2s offers (at present) three
modes of behavior for the underlying ACL2. In teaching ACL2, the modes can be
introduced in this order:

* Programming Mode. This mode is intended to introduce new users to ACL2
as a programming language of untyped, total functions. None of the ordinary
restrictions relating to logical soundness apply. With the exception memory ex-
haustion (heap or stack), no runtime errors are possible with functions defined in
Programming Mode. Macro definition and usage is also available in this mode.

Implementation Note: Readers with knowledge of ACL2 will note that this is
similar to the built-in “program mode” for definitions, but there is at least one
important difference: runtime checking of guards. Guards facilitate fast, raw lisp
execution but are irrelevant to the logical language of ACL2. To novices, guard
checking is a distraction, which is why our Programming Mode disables it. ACL2
version 3.0 has fixed the shortcoming in “program mode” by adding an option to
turn off all guard checking. This will eliminate the need for the hack we currently
use to implement our “Programming Mode.”

e Recursion & Induction Mode. Defining functions and macros in this mode is just
like in pure ACL2, except that the theorem prover is able to prove termination
of most terminating functions with no help (using CCG termination analysis,
described in Section 3.2). Theorem proving in this mode is accomplished with a
macro that inhibits automatic, guessed induction and adding the rules generated
by the theorem to the enabled theory. To perform induction, therefore, the user
must provide an explicit hint with the scheme to use, forcing the user to think
carefully about when and how induction should be applied. Utilizing user-defined
lemmas (theorems) as proof rules also requires explicit hints. This helps users to
focus on individual proofs rather than building a coherent theory, which is harder
still.
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(defun sum-lists (x y)
(if (or (consp x) (consp y))
(cons (+ (car x) (car y))
(sum-lists (cdr x) (cdr y)))
nil))

Fig. 2. The function, sum-lists, takes two lists and returns the list whose elements are the sums of the
elements of the inputs. If one input list is longer than the other, the returned list is as long as the longer
and the smaller is considered to be padded with Os.

e Pure ACL2 This mode is just like regular ACL2, except that we offer CCG
termination analysis as a convenience.

3.2 CCG Termination Analysis

Termination in ACL2. A significant stumbling block for new users and a source
of frustration for experienced users of ACL2 is termination. Every function admit-
ted to ACL2 must be proven to terminate for all inputs before ACL2 will accept it.
First, this guarantees the logical consistency of function definitions—that every syn-
tactically legal function application corresponds to exactly one value. Second, ACL2
derives induction schemes from recursive functions, and those induction schemes are
sound as a consequence of termination of the corresponding function. Induction is
an integral part of the theorem proving capability of ACL2, especially in proving
properties over infinite classes of input.

To prove termination of a function, ACL2 uses a specified or guessed measure to
map the function’s inputs into values in the domain of a well-founded relation, such
as the < relation on the natural numbers. If the measure always returns a value in
the relation’s domain and recursive calls always use inputs that, according to the
measure and well-founded relation, are “smaller than” the previous, it cannot go
on forever. (No sequence decreasing according to a well-founded relation can be
infinite.)

ACL2 uses only simple heuristics to guess measures when proving termination, so
it is easy to define functions for which ACL2 is not able to guess the correct measure.
Therefore, new users soon find the need to learn about engineering and justifying
measures to ACL2, which tends to overwhelm those who are still struggling to prove
simple theorems.

For example, ACL2 cannot guess the measure for the sum-lists in Figure 2. Us-
ing < (the normal less-than relation) over the natural numbers as our well-founded
relation, our measure can be (+ (len x) (len y)), where len returns the length
of a list (0 for atoms, and 1+ (len (cdr x)) for conses, x).

Mechanics of CCG analysis. In [8], we introduce a new, more automatic termi-
nation analysis based on CCGs, or context calling graphs. Within a function (or
set of mutually recursive functions) we augment each recursive call site with predi-
cates that are needed to get there (“rulers”) within the function. These augmented
call sites are calling conterts, and a calling context graph (CCG) is a graph whose
vertices are calling contexts and has an edge from e to ¢’ if e calls the function con-
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taining €’ and e can lead directly to ¢’ during execution. Intuitively, a CCG is like a
call graph but in terms of call sites instead of functions, giving it finer granularity.

Now we apply the notions of measure and well-founded relation CCGs. Suppose
we can assign a set of measures—called calling context measures, or CCMs—to
each context such that every infinite path through the CCG has a corresponding
sequence of CCMs that never increase and decrease infinitely often. It follows that
every computation must then terminate. Theorem proving plays a key role in this
analysis as it is used to prune edges from CCGs and to determine when CCMs are
non-increasing or decreasing as we traverse edges in CCGs.

Our algorithm uses heuristics to pick CCMs, together with a sufficient condition
for the above path-related criterion that is based on [7]. More details and other
improvements are described in our extended abstract [8].

Results of using CCG analysis. We ran our CCG implementation on ACL2’s re-
gression suite. This is a collection of ACL2 libraries on a variety of topics including
arithmetic, set theory, processor verification, and model checking. These libraries
were submitted by various members of the ACL2 community over a decade, and
are therefore representative of typical ACL2 usage. The regression suite contains
over 10,000 function definitions, a significant number of which required explicit user
intervention to prove termination. When running our termination analysis on the
regression suite, we discarded explicit user hints, and provided no manual assis-
tance. Our analysis successfully proved 98.7% of the 10,000 functions terminating,
including 68.2% of those that previously required explicit user hints.

We have implemented our algorithm into the current version of ACL2s [6]. The
result is that ACL2s now proves termination automatically for a much higher pro-
portion of functions, particularly among simpler functions that new users tend to
define. The sum-1ists function, for example, is easily proven to terminate by our
analysis. With our analysis, a discussion of the complex concepts of termination
analysis can be postponed for new users, allowing them to become more familiar
and comfortable with the basic concepts of ACL2 first. In addition, advanced users
can spend less time carefully engineering and justifying measures.

4 Script Management

Implementing a powerful, robust “script management”-style interface for ACL2 was
non-trivial. First, we would need to be able to detect entire input forms for ACL2.
Next, some input forms require explicit “undo” while others have no effect other
than printing some result. Others still are not undoable with the regular “undo”
command, but we do not want to restrict the commands available from the interface.

Another complication has to do with our command line interface. Recall that
successful, “relevant” commands entered at the session editor’s command prompt
are inserted at the completed line in the source editor. We needed to come up with
a notion of “relevance” that made sense.
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4.1 Input Demarcation

To know where to move the todo line when the user asks to advance it one ACL2
form, we implemented a Common Lisp parser in Java. This parser (call it the
“batch parser”) was implemented before and independent of the parser that does
syntax highlighting and checking for the editors (call that one the “online parser”;
see Section 5.1). The batch parser also pulls entire ACL2 forms typed at the session
editor’s command prompt.

Another view of the job of the batch parser is to make sure that each time the
ACL2 reader asks for an expression, it is given exactly one syntactically well-formed
expression. “Well-formed” in this case means that it will not generate a read error
by ACL2’s reader. In the case of ill-formed input, the batch parser generates an
appropriate error message with a relevant location in the input. With the batch
parser in place, neither the plugin nor the user need worry about odd behavior from
ACL2 in recovering from read errors or getting stuck with ACL2 expecting more
input but not know exactly what is needed to complete an expression. These cases
are particularly frustrating to novices.

ACL2’s keyword commands are convenient, but are more prone to that “what
else am I supposed to type” experience when used at a terminal because they poten-
tially require several expressions to compose a single input form. Our tool imposes
a stricter interpretation of keyword commands that, in a sense, fixes the confusion:
keyword commands are terminated only by a newline outside of a Lisp expression,
which corresponds to existing conventional usage. The mechanism enabling us to
adopt this interpretation is our plugin’s translation of keyword commands to their
non-keyword equivalents before giving them to ACL2. This means that if the wrong
number of parameters is given, instead of ACL2 blocking or misinterpreting input,
it simply reports, “wrong number of arguments.”

4.2  Input Classification

The next step in our solution was to classify each input form before letting the
underlying session execute it. This would tell us (ACL2s) about the form’s relevance
and also provide some useful feedback to the user. In fact, the only real textual
difference between a terminal dump and our session editor contents is that we
prepend each input with a classification that categorizes the potential effects it
could have. Figure 3 shows some examples.

Classifications can depend on the history of the particular session, so the easiest
way to classify an input is inside of ACL2. Part of our extensions to the ACL2
core is some code for classifying inputs, that builds on some existing code in ACL2
for deconstructing and analyzing inputs. Also, we designed our Eclipse plugin code
that interfaces with the ACL2 core to be able to handle requests that are hidden
from the user. The output seen in the session editor is not all the output that
the ACL2 session has generated; it’s only the output that is relevant to the forms
entered by the user!

Here are most of the possible classifications:

e FVENT is usually a definition of a function or theorem and is always considered
relevant because it could modify or extend the logical world. Events also play an
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Fig. 3. Close-up of the Session Editor.

important role in book development, discussed in Section 5.2.

VALUE is some computation that, by the top-level function’s signature, is
unable to change any state, including the logical world. The best example is
testing a function on some input to see its result. Values are irrelevant.

QUERY  is one of many built-in commands that relate to the logical world,
but are known not to change anything. Examples include printing the rules
associated with a symbol or trying to prove an unnamed (thus, immediately
forgotten) conjecture. Queries are irrelevant.

BAD is given to an input if the categorization code is able to detect an error
the plugin’s batch parser is not. Such semantic errors include trying to invoke a
function with the wrong number of parameters. Because BAD inputs always fail,
they are, in a sense, inherently irrelevant.

COMMAND  changes something in ACL2 that the built-in undo mechanism
does not handle but ACL2s can undo cleanly and reliably. To be safe, commands
are considered relevant.

IN-PACKAGE is a special COMMAND that changes the current package. It is,
thus, relevant, but is singled out for its role in book development (see Section 5.2).

ACTION is a catch-all for inputs that could have effects we don’t know how
to undo. It would be rare for a novice to invoke such an input and rarer still for
a non-undoable effect to affect soundness. Actions are considered relevant and
cause a warning to be printed when they are undone (to the extent we are able).

UNDO and REDO  are generated by motion of the “completed” line, as
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discussed below.

These classifications give us a sane way of implementing script management and
maintaining consistency between the two editors.

4.8 Undo

To have clean, powerful support for retreat of the “completed” line, the modified
ACL2 core used by ACL2s includes an undo mechanism that is, in a sense, more
primitive than the built-in undo mechanism. In other words, an ACL2 undo can be
used as just another command on top of ACL2s’s undo mechanism. Basically, our
mechanism keeps a list of old pseudo-states, each of which contains a logical world
and many other settings that affect the treatment of input. To perform an UNDO,
the Eclipse plugin simply invokes the mechanism for restoring a previous pseudo-
state. It is non-trivial for the ACL2s user to invoke this mechanism with a command
(rather than causing the plugin to invoke it in response to line motion) because using
the mechanism requires knowledge of a secret number chosen at random for each
session. The secret is hidden in the ACL2 session such that only an expert who
really wanted to usurp our undo structure would be able to do so.

4.4 Redo

Whenever ACL2s performs an UNDO, the pseudo-state it was in before the UNDO
is not forgotten—mor is any pseudo-state that got us here by some sequence of
UNDOs, REDOs, and irrelevant forms. Thus, we have a mechanism to return to
such states. A REDO is actually invoked if, following the UNDO of a form z plus any
sequence of matching UNDO/REDOs and irrelevant forms, a form y is submitted
with the same abstract syntax as x. Two forms have the same abstract syntax
if they parse to the same Lisp objects. Comments, for example, are irrelevant to
abstract syntax, but an extreme example would be

(1+ 42) = (Ac|Ll2::1\+ #c(840/20 -0.) . ()

A nice consequence of the REDO mechanism is the ability to modify comments
and such above the line in a way that ensures ACL2 would process it the same way,
but without having to wait for ACL2 to reprocess it. Simply retreat the line high
enough, make the modifications, and move the line back to where it was. If the
abstract syntax is unchanged, the completed line will move back to where it was
almost immediately using REDOs. In fact, ACL2s even allows this with no session
running! (It pretends to perform the UNDOs and REDOs that would be legal.)

5 Editor Features

5.1 Source Code

The source code editor can be used to edit .lisp files even when no corresponding
Jisp.a2s file is present, meaning the editor is not paired with a session editor. The
editor complains about some Common Lisp syntax that is illegal in ACL2, but an
option to disable those cases might be included in future releases.
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Fig. 4. Close-up of the Source Editor.

An important part of the source editor is the “online parser” it utilizes, which is
a hand-coded incremental Lisp lexer with some parser-like capabilities as well. This
part of the plugin is responsible for dividing up and classifying tokens for syntax-
based coloring, depicted in Figure 4. It also computes matching character pairs and
annotates the code in the case of any illegal syntax. The token representation also
plays a role in intelligent auto-indenting.

The editor matches open and close parentheses, as one would expect, but it also
matches double-quotes around strings, pipes within symbols, potentially nested #]-
style comments, and parentheses within comments. Particularly impressive to a
crowd of ACL2 experts was the editor’s matching of “,” and “,@” tokens to their
respective backquote characters.

Only one type of potential ACL2 read error is not annotated in the source editor:
the undefined package error. The set of defined packages can grow dynamically, so
such errors are not identified until checked by the batch parser. All other errors
show up as usual in Eclipse, with red or yellow underlining, a mark in the overview
ruler, and a message that appears when hovered over. Examples are depicted in
Figure 4.

The auto-indenting is much like Emacs or DrScheme. A notable, much-praised
exception is indenting inside of string literals according to rules followed by ACL2’s
built-in functions for formatted output.

The editor scales nicely, for it performs acceptably fast on (ASCII text) Lisp
files from the ACL2 source code that exceed a megabyte. The only exception is
when a change causes the reformatting of almost the entire megabyte file—such as
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commenting out the whole file. This can take a few seconds to complete, but the
bulk of that cost is Eclipse applying off-screen style information we give it.

5.2  Book Development

In many cases, ACL2 development is the development of a book, which is basically a
reusable collection of definitions. Defining a book, though, can be tricky for several
reasons, most of them relating to the requirement that books be processable by
Common Lisp outside of ACL2. First, the preamble must be processed by ACL2
before the contents of the book, but it cannot simply appear above the book in the
book’s source file. Some users put the preamble into a special comment, some put
it in a separate file, and many do both. This is a pain. In ACL2s, the preamble
can be written directly at the top of the source file, though on disk it is stored in a
comment (and possibly another generated file).

ACL2s has its own special construct for marking the end of the preamble:
(begin-book), which actually takes some optional parameters that are given to
(certify-book ...) when the user asks to certify the book. When submitted to
a running session, (begin-book) does not do anything special—nor does it need
to.

What does happen when (begin-book) is submitted, is the source editor begins
highlighting that part of the completed region with light purple instead of gray. As
more forms are completed, the light purple highlight extends as long as the forms
are legal for a book. After the (begin-book) this must be an (in-package ...).
After that, only EVENTS (see Section 4.2) are legal.

During book development, it is not unusual for the user to move the line past
some forms that are not legal within books. This is fine, and we call this a “tangent”.
When the user is ready to undo his tangent, the light purple highlighting indicates
the point where legal book constructs were last abandoned.

We have not yet implemented “one click” certification of books within ACL2s,
but the infrastructure is mostly there.

Finally, if (begin-book) is never used, no preamble is stored and no special
highlighting of the completed region is done. The book development features do
not complicate things if not utilized.

5.8 Session Editor

The session editor is the locus of our improved command line interface to ACL2
and captures much more than just a “dump” of the input and output. The saveable
and restorable session history is a sequence of ( Environment, Input, Output, Status)
tuples. The Environment contains information such as the current Lisp package, the
length of the logical history, the prompt printed to the user, and other settings that
can influence the meaning of input. The Input captures the concrete and abstract
syntax of an input form and a categorization describing its potential effects. The
Output stores the text of the output, the location of checkpoints within the output,
and the final proof tree associated with the command. The Status indicates whether
the command was successful and, if not, whether it was interrupted.

The editor uses color to distinguish sources or types of text. For example, the
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prompt is blue, the input categorization is gray, the actual input is black, and the
output is red on failure or green on success, as depicted in Figure 4.

The output can be navigated like any other read-only editor in Eclipse, but
there are special shortcuts for traversing from input to input and among checkpoints
within a single command’s output.

The only editable region is beyond the final prompt, and it is only editable
if ACL2 is waiting for input. This region, which we call the “immediate” region
(for typing “immediate” commands), uses the same online parser and presentation
scheme as the source editor. The command line interface, therefore, has charac-
ter matching, syntax error highlighting, and even auto-indenting. The history of
immediate commands is also navigable, much like in a UNIX shell.

The typed immediate command is submitted when FEnter is pressed, though it’s
not quite that simple. When Enter is pressed, the batch parser checks to see if some
prefix of the typed input is a syntactically well-formed input form. If not, the Enter
simply causes a newline to be inserted. If a prefix is a full command, that prefix is
removed and submitted as the next input. This could leave some text left over if an
eager user decides to type more than one command at a time. The immediate text
disappears while ACL2 is busy but reappears once another command is expected.

The session editor also supports typing input to ACL2 that is not command
input. For example, ACL2 sometimes prompts the user for an answer to a yes/no
type question. Another example is interacting with the proof checker, which has
its own set of commands. All of these cases expect a single Lisp object as input,
and our plugin is able to detect when ACL2 is expecting non-command input.
Non-command input is never taken from the source editor, but must be typed in
the session editor, which, in fact, tracks an independent command line history for
non-command input.

One never interacts with raw Lisp from ACL2s. There are cases in ACL2 in
which errors take the user to a raw Lisp prompt and the user must manually break
out of it to return to ACL2. ACL2s takes care of this for the user, partly for
convenience but partly because it’s hard to determine when raw Lisp is expecting
input.

6 Related Work

6.1 ACL2 in DrScheme

Researchers at Northeastern University have hooked ACL2 into DrScheme [12].
Their preliminary system has some features we would like to have in ACL2s, but it
also has some inherent limitations.

One part of the system is a DrScheme language for “ACL2 Beginner,” which
is an attempt to duplicate the ACL2 language using Scheme macros and Scheme
functions. This simulated ACL2 benefits from the features of the DrScheme de-
velopment environment, including its simple GUI, its debugging features, and its
static checking features. The feature that would be most difficult to mimic is the
“Check Syntax” feature, which performs macro expansion in a way that allows
uses of lambda variables to be linked to their point of definition/declaration in the
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original source code.

The complication, however, is that Scheme is only partially compatible with
Common Lisp, the basis of ACL2 proper. A clean embedding of full ACL2 in
Scheme probably is not possible, due to incompatibilities such as packages and
other namespace issues. The current “ACL2 beginner” language has other incom-
patibilities, including use of functions as first-class values and a restricted macro
language.

Not necessarily an incompatibility but, in our opinion, a poor design decision for
the current “ACL2 beginner” language was incorporation of contracts for functions,
analogous to ACL2 guards. Guards are not part of the logical ACL2 language, so
we feel such dynamic type errors complicate a beginner’s ACL2.

ACL2 in DrScheme also provides a basic script management interface for in-
teracting with the theorem prover. The implementation is still rough and easy to
break, but of theoretical concern is the relative independence of the two interfaces.
One can track two separate logical environments that pertain to the same input
buffer. For example, defining a function in the read-eval-print interface does not
cause it to be defined in the theorem prover.

6.2 PG/Eclipse

The Eclipse version of Proof General has some nice features [13,11]. The project
is ahead of ACL2s in terms of utilizing the graphical interface for browsing help,
documentation, and the logical world. As we have overcome the technical chal-
lenges of hooking a robust script-management interface to ACL2, someone hooking
ACL2 to PG/Eclipse using the Proof General Interaction Protocol could utilize our
extensions to the ACL2 core.

7 Conclusion

In this paper, we have described ACL2s, the ACL2 sedan. ACL2s is a publicly
available system that we have developed in order to make formal reasoning more
accessible to the masses. One of our goals is to create a “self-teaching” system
that enables undergraduates to learn how to prove theorems about the computing
systems they design by “playing” with ACL2s. As an initial step in this direction,
ACL2s includes many novel features for streamlining the learning process. This
includes a modern graphical integrated development environment in Eclipse that
provides an intuitive, robust “script management” interface with an improved front-
end to the familiar “command line” interface. It also includes CCG termination
analysis, a powerful, state-of-the-art termination analysis method which essentially
eliminates the need for students to justify the kind of user-defined recursive functions
and induction schemes that would be covered in an undergraduate class. Together,
the features of ACL2s lower barriers to learning specification and verification in
ACL2—which was the sense after two graduate courses switched to requiring use of
the tool.

For future work, we are planning to use ACL2s to teach an undergraduate course
on processor design. The goal is that students should learn more about processor
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design than they would have learned without the use of ACL2s. We plan to ac-
complish this by having student use ACL2s as a specification language and as an
oracle that will be configured with the use of various libraries we are developing
to either prove the correctness of the student designs or to provide useful informa-
tion for finding errors. We also want to extend ACL2s so that it can provide more
visualization and query support for proving theorems.
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Abstract

This paper proposes an extension to theorem proving interfaces for use with proof-directed debugging and
other disproof-based applications. The extension is based around tracking a user-identified set of rules to
create an informative program slice. Information is collected based on the involvement of these rules in both
successful and unsuccessful proof branches. This provides a heuristic score for making judgements about
the correctness of any rule.

A simple mechanism for syntax highlighting based on such information is proposed and a small case study
presented illustrating its operation. No implementation of these ideas yet exists.

Keywords: Proof-Directed Debugging, Program Slicing, Verification

1 Introduction

The use of verification for locating errors in theorems, and more specifically pro-
grams, is a relatively neglected area as is the provision of interfaces to assist in this
task. This paper considers the proof-directed debugging of functional programs and
proposes an extension to current theorem proving interfaces to support this.

The extension is based on the assumption that the debugging process involves
locating a program statement or, in the case of functional programs, function case
which is incorrect. This incorrect statement will appear in a program slice which
can be identified during verification. Other program slices leading to correct de-
ductions may also be identified during proof. This information can then be used
to create appropriate syntax highlighting of function cases in an interface. A po-
tential highlighting scheme is put forward and a simple case study based around
Isabelle/HOL [12] and ProofGeneral [1] is performed to show how this would work.

No implementation has yet been performed however potential issues are dis-
cussed in the context of Isabelle Proof General.

1 This research was funded by EPSRC grant GR/S01771/01 and Nottingham NLF grant 3051.
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Although the discussion in this paper is based around an application to proof-
directed debugging it is likely that similar mechanisms may also be useful in other
situations where the cause of a proof failure needs to be identified.

The paper is organised as follows: §2 discusses the concepts of proof-directed
debugging and program slicing; §3 present a mechanism for tracking program slices
through a proof and §4 presents examples of this mechanism at work via a simple
case study; §5 discusses some results using a similar mechanism within an automated
system; §6 looks at some related work and §7 discusses implementation issues and
other further work.

2 Proof Directed Debugging and Program Slicing

Proof-directed debugging was first suggested by Harper [10] and work is underway
to extend this into a framework for locating program errors through the proof pro-
cess [6]. The idea of using a framework rather than relying on a user’s skill at general
proof, is based on the example of Algorithmic debugging [15,9,11]. Algorithmic de-
bugging constructs an execution tree of a run of the program on some input and
then queries the user each time this tree branches. This identifies branches which
are returning false results and so locates sections of code responsible for errors.

Program Slicing was first suggested by Weiser [17]. The key idea was to identify
a variable of interest at some point in a program (called the slicing criterion) and
then extract a fragment of the program (a program slice) either containing all those
statements upon which the value of the variable at that point depended or that
fragment whose values were effected by the value of that variable at that point.
Program Slicing techniques for imperative languages have generally followed this
work [16] using control flow graphs, data flow graphs or other graph-based repre-
sentations of programs with statements represented as nodes in the graph and a
program slice as a set of nodes from the graph. In functional programs function
application takes the place of program statements. The notion of a slicing criterion
can also be generalised (e.g. to a projection as in [14]).

The intention behind proof-directed debugging is to use the branching structure
of a proof to create program slices and use these to assist in the location of errors.
There is clearly a need to provide appropriate tools (i.e. tactics/Isar methods)
tailored to this task. This paper does not concentrate on this aspect but consid-
ers instead the way a theorem prover’s interface could assist a user through the
presentation of relevant program slices.

3 Proof Tree Branches as a Slicing Criterion

The verification of functional programs naturally involves splitting a program into a
set of equational rules each corresponding to a case in its functional definition. The
usage of these rules in the proof can thus be tracked, effectively creating a program
slice (ie. those parts of the program used in the proof of any program), and a
“score” maintained indicating how many true and false branches of the proof have
used that rule (typically as part of a simplification process). These scores can then
be used by the interface to return additional information to the user. For simplicity,
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we shall continue to refer to these rule traces as program slices even though, in the
context of theorem proving, there is no reason why they should not be a general
collection of definitions, lemmas and theorems unrelated to a any program.

Let us consider a simple insertion sort program written in ML.

fun insert x [] = [X]
| insert x(h::t) =
if x<hthenx :: h::t
else h :: insert x t;
fun sort [] =]
| sort (x :: xs) =insert x (sort xs);

Each case of the definition becomes one of four equational rules:

(i) insert x [] = [x]
(ii) insert x (h::t) =if x <h then x :: h :: t
else h :: insert xt
(iii) sort []1 =[]
(iV) sort (x :: xs) = insert x (sort xs)

We suggest that a proof-directed debugging interface should allow a user to
nominate a selection of such definitions as “suspect” during a verification attempt.
Obviously a user could choose to nominate all definitions involved in their devel-
opment as suspect including ones related to the specification and even pre-existing
definitions from the theorem prover’s theory database however our suspicion is that
this would lead to an overloading of information rendering program slicing of little
use. This is an obvious subject for some experimental investigation once such an
interface has been implemented.

We assume that a theorem proving system generates a sequence of proof states
which, at the very least, contain lists of current open goals in the proof attempt.
The central idea is to associate program slices with the goals in these proof states.
Each goal, g, in a proof state is associated with a set of suspect rules (a slice), S(g),
which have been used in the derivation of that goal. In addition to this the system
also stores a set of triples in each proof state, s, associating each suspect rule, r, with
two integers the first of which, the good integer, good(r, s) is incremented whenever
a proof branch is closed (because it has been successfully proved) and the second
of which, the bad integer, bad(r, s), is incremented whenever a goal is derived with
a False conclusion (this can be revised if a contradiction is subsequently found in
the hypotheses). Where it is obvious, the state argument will be dropped from
these functions. These two scores can be used to form a probabilistic estimate of
the chance that a rule is correct.

Initially good(r) and bad(r) are set to zero for all rules, r, and the initial goal,
gi, is associated with the empty program slice, S(g;) = []. As the proof progresses
the system updates the information as follows:

Consider two proof states, s, followed by s,41. Spy1 is derived from s, by a
tactic ¢ which replaces some parent goals with a set of child subgoals. For each new
subgoal, g, in such a proof state with parent, g,.

e Let R be the set of suspect rules used by ¢ to derive g from g,, S(g) = S(gp) UR.

e If g has a False conclusion and g, did not then for all rules r in S(g), bad(r, sp4+1) =
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bad(r, sp) + 1.

e If g has a True conclusion then for all rules  in S(g), good(r, sp4+1) = good(r, sp)+
1. Furthermore if the conclusion of g, was False then bad(r, sp+1) = bad(r, s,,) — 1.
This last modification allows a False goal to become closed (by discovering a
contradiction in the hypotheses) and then corrects the bad integer to cancel out
the effect produced by the previous deduction of False.

e For all remaining rules, r, good(r, $,11) = good(r, sy,) and bad(r, s,+1) = bad(r, s;).

On the whole it would appear to be preferable if interfaces take on the task
of tracking rule usage information rather than the underlying theorem prover since
this information is extra-logical. However in automated, or semi-automated systems
such as proof planners (e.g. IsaPlanner [8] and AClam [13]) there would appear to
be benefits in tracking such information in the proof system itself so that it can
inform an automated debugging process [5].

The obvious mechanism for presenting this tracking information to a user is
as a syntax highlighted list of rules associated with each goal. For instance this
paper will use the monochrome conventions shown in Table 1. The categories have

Highlighting convention

r € S(g) bol d

bad(T‘) > gOOd(T) underline

bad(r) < good(r) | italics

Table 1
Highlighting Conventions used in this Paper

been selected because they proved to be the most informative in the examples
discussed below. The are interpreted as used to derive this goal, probably incorrect
and probably correct. There is no reason, in principle, why such highlighting should
be restricted to just three categories. Indeed, following results in an automated
system, we argue in §5 for a further category of “worst” rule based on an ordering
of tuples of bad and good integers.

4 Case Study

We now show some examples of proof attempts of incorrect theorems undertaken in
the Isabelle/Isar system [12,18]. These examples are drawn from a corpus of buggy
student ML programs [7].

We will consider the verification of the ML program shown in figure 1. This
is a real example submitted by a student as the solution to an exercise to provide
a function, onceonly, that when applied to a list, I, returned a new list containing
only one copy of each element in | . There are three errors in this program. Firstly
the basis case of the insert function is incorrect. Secondly a case is missing in the
definition of the once function (the case for lists of length one) and lastly in the el se
branch of the recursive case the expression should be x1 :: Once (x2 :: xs).

An Isabelle formalisation of the student’s program taken from [7] is shown in
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fun insert x [] =]
| insert x(h::t) =
if x<hthenx :: h::t
else h :: insert x t;
fun sort [] =1]
| sort (x :: xs) = insert x (sort xs);

fun Once []1 =[]
| Once (x1 :: x2 :: xs) =
if x1 = x2 then Once (x2 :: XxS)

else x1 :: x2 :: Once xs;
fun onceOnly [] =[]
| onceOnly (x :: xs) = Once (sort (x :: XS));

Fig. 1. A Buggy ML Program

prinrec
insert_nil: "insert x [] =1[1]"
insert_cons: "insert x (h#t) = (if x < h then
x#h#t el se h#insert x t)"
prinrec
sort_nil: "sort [] =1]"
sort_cons: "sort (x#xs) = insert x (sort xs)"

recdef Once "neasure | ength"
once_nil: "Once [] =[]"
once_cons: "Once (x1#x2#xs) = (if x1=x2 then
Once (x2#xs) el se x1#x2#Once xs)"
prinrec
onceOnly_nil: "onceOnIr [1 = [;"
onceOnly_cons: "onceOnly (x#xs) = Once (sort (x#xs))"

Fig. 2. Isabelle Formalisation of the Buggy program

figure 2. It should be noted that this represents a naive shallow embedding of ML
into Isabelle but one sufficient for proof-directed debugging at this scale. In order
to verify this program a further function, count_list which counts the number of
occurrences of its first argument in its second was used. The first theorem to be
proved is:

—x € | = count_list x (onceOnlyl) =0
For the purposes of this case study we assume that the definitions of insert,
sort, Once and onceonl y are all considered suspect which gives us eight suspect rules:

insert_nil, insert_cons, sort_nil, sort_cons, once_nil, once_cons, onceOnly_nil and
onceOnl y_cons. We also assume that the following theorem has been proved:

(1) onceOnly | = Once(sort 1)

The remainder of this section is organised as follows. §4.1 illustrates slice cre-
ation in the initial stages of the proof in order to give an idea of how the information
updating works, §4.2 illustrates the effect of reaching a false goal, and §4.3 illustrates
what happens when cases are missing.

4.1  Basic Usage

The following table shows the information held in the initial proof state

145



DENNIS

Rule good | bad | Rule good | bad
insert _nil 0 0 Once_ni | 0 0
insert_cons | 0 0 Once_cons 0 0
sort_nil 0 0 onceOnly_ni l 0 0
sort_cons 0 0 onceOnly cons | 0 0

From now on we will omit the full table but concentrate instead on the summary
of the information that can be provided with syntax highlighting.
At the start of the proof there is one Isabelle goal

1. - x €| =-count_list x (onceOnly I) =0
to which is attached the empty slice. Presentationally it seems advisable to omit
any rules defining constants not appearing in the current goal So the initial goal
would display the additional information (NB. at present these rules do not fit into
any of the categories described in Table 1 therefore neither is highlighted in any
way):
® "onceOnly [] =[]"

® "onceOnly (x#xs) = Once (sort (x#xs))"

The proof attempt proceeds by simplifying, replacing onceonly | with once (sort 1),
according to (1), and then applying length induction on the list3. Since (1) isn’t
in our suspect list its use in simplification isn’t recorded. We don’t chain rule
tracking back through additional lemmas so there is no record that, even implicitly,
onceOnly_ni| and oncenly_cons were involved in the goal. Once again it will need
experimentation with an implementation to determine whether this is a sensible
choice. This gives us the following Isabelle goal:

1. !!xs. [| Vys. length ys < length xs — = x
— count _list x (Once (sort ys)) = 0;

- x € xs |]
— count _list x (Once (sort xs)) =0

This introduces two new suspect constants but has so far used none of our rules.
Furthermore the constant onceonly is no longer mentioned and so its definitional
rules are dropped from the display list. Hence the following suggested output.

® "sort [] =1[]"
® "sort (x#xs) = insert x (sort xs)"
e "once [] = []"

® "Once (x1#x2#xs) = (if x1=x2 then Once (Xx2#xs)
el se x1#x2#0nce xs)"

The next step is a case split on xs using the Isar cases method followed imme-
diately by simplification of all goals. This automatically discharges the first goal
associated with the case split (for zs = []) leaving us with one goal:

3 It takes some experience with these styles of proof to select length induction as the appropriate scheme.
At present this work presumes a user with relatively sophisticated theorem proving ability yet paradoxically
rather naive program debugging skills — providing further support in the choice of Isar methods is left to
further work.
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1. Italist. xs = a # list =
count _list x (Once (insert a (sort list))) =0

Discharging the first goal creates a slice consisting of sort _ni| and once_ni| and up-
dates the good integers so that good(sort_nil) = good(once_nil) = 1. The remaining
goal was generated using the rule sort _cons and so its slice is [sort _cons] .
Following the syntax highlighting conventions, therefore, we get the following
rule annotations:
® "insert x [] =[]"
® "insert x (h#t) = (if x < h then x#h#t else h#insert x t)"
® "sort [] =1[]"
® "sort (x#xs) = insert x (sort xs)"
® "Once [] =[]"
® "Once (x1#x2#xs) = (if x1=x2 then Once (x2#xs)
el se x1#x2#0nce xs)"

already we are seeing information about program slices in which we can have some
confidence and we get some information on the slice which is relevant to the current
goal.

4.2 Inferring Fulse

It becomes clear, while attempting the above proof, that some independent lemmas
need to be established about the sort function. This provides a good example of
how the system behaves when a goal evaluates to False. Let us consider a simple
lemma to show that all members of a list, I, are also members of sort 1.
We start with the goal:
theorem"x € | = x € (sort |)"

Following our previous rules and guidelines the displayed rules are:
® "sort [] =1[]"
® "sort (x#xs) = insert x (sort xs)"
The proof continues by length induction on | (which does not change the an-

notation) followed by a case split on xs and simplification of all goals. The first
subgoal is discharged automatically, leaving:

1. !lta list.
[| if a=xthen True else x € list; xs = a # |list;
vV ys. length ys < Suc (length list) —
X €ysS — X € sort ys;
if a=x then True else x € list |]
=X € insert a (sort list)

and the highlighted rules:

® "insert x [] =1[]"

® "insert x (h#t) = (if x <h then x#h#t else h#insert x t)"
e "sort [] = []"

® "sort (x#xs) = insert x (sort xs)"
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It then proceeds by cases on (sort list) followed by simplification which gives
two subgoals with their associated program slices:

1. [| -~ x elist; if a =x then True else x € list;
sort list =1];

if a =x then True else x € list |]
— Fal se

® "insert x [] =1[]"

® "insert x (h#t) = (if x <h then x#h#t el se h#insert x t)"

® "sort [] =1[]"
® "sort (x#xs) = insert x (sort xs)"
2. [| if a=xthen True else x € list; sort list #[];
x € list — x € sort list;
i

then True else x € list |]
rt a (sort list)

@ X -

!
= X €1ns

® "insert x [] =1[1"

® "insert x (h#t) = (if x <h then x#h#t el se h#insert x t)"
e "sort [] =[]"

® "sort (x#xs) = insert x (sort xs)"

This identifies a program slice that has been involved in producing the False
goal ([insert_nil, sort_cons]) and therefore assists in the hunt for errors.

In some similar proofs the step case is automatically discharged in which case
good(sort_cons) = bad(sort_cons) = 1 and the rule’s annotation becomes
"sort (x#xs) = insert x (sort xs)" for the first goal leaving only insert_nil high-
lighted as “probably incorrect” giving further clues as to the culprit.

In this particular proof, attempts to prove the second goal lead to further proof
branches that result in False conclusions attributable to i nsert _nil but also several
branches that are discharged — overall good(insert_nil) = 0 in all states while in
general bad(sort_cons) = good(sort_cons) + 1. This suggests that the user may
need access to further information about a rule’s good and bad integers. Although
it is unclear how such information can be conveyed by syntax highlighting alone,
it would certainly be possible to introduce a further highlight for the “worst” rules
(see §5) and/or to allow optional display of the good and bad values alongside the
rules in which case i nsert_ni1 would be singled out in this example.

4.8  Getting Stuck

Assuming that insert_nil has been fixed, the last example we will consider picks
up the main verification at a later stage. We will now assume that i nsert and sort
have been removed from the suspect list. Two new functions and a new lemma have
been introduced. ninl returns the minimum element of a list of naturals and - ni ni
returns a list with one occurrence of its minimum element removed. Among other
things the following lemma has been established:

Il #[] = (sortl) = (minl l)#sort(—minl 1)

which when used in the proof leads to the goal
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1. count_list x (Once (mnl (a#list) #
sort (-mnl (a#list)))) =0

and the highlighted rules:
e "once [] = []"
® "Once (x1#x2#xs) = (if x1=x2 then Once (x2#xs)
el se x1#x2#0nce xs)"

A proof by cases follows on whether —minl(a#tlist)) = [] simplification of the
first goal leaves two subgoals of which the first:

1.
s

Il R

x € list; )
nl (a # list) then list )
else a# -mnl list) =1[];

m
xs = a # list |]

= count_list x (Once [mnl (a # list)]) =0

is associated with the following highlighted slices:

® "Once [] =[]"
® "Once (x1#x2#xs) = (if x1=x2 then Once (x2#xs)
el se x1#x2#0nce xs)"

While this doesn’t directly highlight an error, the juxtaposition of the goal and
the relevant rules, particularly with neither highlighted as used directly in the goal
should prompt a user to recognise the omission of the relevant information.

5 Supportive Results

The ideas behind the interface design proposed here arise from work on the auto-
mated detection and repair of such errors within the proof planning framework [4].
Program slice tracking has been implemented in the A Clam [13] proof planning sys-
tem. In the absence of an implementation in a theorem prover interface we report
some results on the success of the heuristics within this system. We used a variation
on the system reported in [4] 4. That system attempts to repair erroneous rewrite
rules. The system reported here simply terminated false branches and concluded
the proof attempt by, for each rule, r, reporting good(r) and bad(r). Unfortunately
some errors, especially those appearing in the recursive cases of definitions caused
the system to be non-terminating, therefore an additional heuristic was used to close
branches if the step case of an inductive proof could not be solved by appeal to the
induction hypothesis ®. We ran two experiments. In Experiment 1 closed step case
branches did not contribute to the good/bad scores (ie. strictly adopting the con-
ventions proposed in this paper). In Experiment 2 such closed branches increased
the bad scores (arguably in a human proof attempt these branches would eventually
have led to a False goal rather than the non-termination caused in AClam).

The table 2 shows the results for both sets of runs. The experiments involved 24
non-theorems based around errors in the definitions of list append, list membership
and the insert and sort programs already covered in this paper. The theorems were

4 Relevant code is available from the author on request.

5 with the exception of a few special cases, for instance where the step case proof had branched following
a case split
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selected from the AClam benchmark set rather than being actual specifications
for these functions. As such these results should be considered indicative only.
The tables report, for each experiment, whether the “incorrect” rewrite rule was
underlined (ie. whether its good score was greater than its bad score) and the
average number of rules underlined. This is the average number when at least
one rule is underlined — in several cases no rule had a larger bad integer than a
good integer. The intention in presenting this average is to provide evidence of the
extent to which the heuristics help focus attention on an erroneous rule — after all
it is not much help if all the rules are underlined. Including cases where no rule is
underlined reduces this average and tends to suggest better discrimination than is
actually the case. To follow this up we provide a percentage of the rules excluded.
This is the percentage of the rules involved with definitions actually used in the
proof which were not underlined. Again this only refers to situations where at least
one rule was highlighted to give an impression of the extent to which the choices
were narrowed down. False positives reports the number of situations where some
rule was highlighted but the incorrect rule was not. We also computed an overall
score for each rewrite rule as a tuple of the bad score and the good score. These
tuples were then ordered according to > where

(b1,91) = (b2,92) <= (b1 <b2) V ((b1 =b2) A (g1 > 92))

and < and > are the standard order on natural numbers. We report on the per-
centage of cases where the intended error was picked out by this heuristic and when
it was the only rule with the highest score.

Exp 1. | Exp 2.
Incorrect Rewrite Underlined 50% 66%
Average No. Rules underlined 1.62 2.11
Rules Excluded 52% 38%
False Positives 0 1
Incorrect Rewrite has Highest Score 62.5% | 79.17%
Incorrect Rewrite has Unique Highest Score | 29.17% | 54.17%

Table 2
Summary of Experimental Results in AClam

The results show that it would be useful if the interface could also flag those
rules which are scoring most highly under > even where all rules are being used in
more good branches than bad since this is clearly giving the best information about
the location of errors.

The use of bad scoring for “stuck” goals (Experiment 2) is problematic — it
improves the rate at which incorrect rules are identified, and the rate at which
bad rules are highlighted as “worst” at the cost of losing discrimination (see Rules
Excluded). Since the stuck heuristic is a crude attempt to mimic human “getting
stuck” behaviour it is perhaps not surprising the effects are equivocal. At any rate
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it is clear that, to a certain extent, this heuristic is too eager and prevents (in the
first case) the proof from progressing to false branches that would (hopefully) later
get scored if pursued by a human prover and, in the second case, generates too
many false positives. Improving the heuristic is well outside the scope of this paper
but interpretation of the above results need to bear its limitations in mind. The
heuristic does suggest that there may be some benefit in allowing a human prover
intervene in the scoring process and mark some branches as “bad” even where a
False conclusion has not been reached.

Obviously these results are only indicative of how the heuristics might serve
human users as opposed to an automated system but they do suggest that profitable
use can be made of the information contained in program slices attached to proof
branches. In particular the “worst” score looks particularly promising in terms of
directing a user’s attention to errors.

6 Related Work

The HAT tool [2] uses a mixture of algorithmic debugging and program slicing to
direct a user’s attention to relevant parts of a program’s source. HAT creates an
Evaluation Dependency Tree (EDT) tracing the execution sequence of function calls
on a sample input. The nodes in this tree can be associated with their “call site”
in the program. This allows the system to use a syntax highlighting mechanism to
relate debugging traces back to specific parts of code. The tool works by identifying
slices in the EDT and relating these back to the relevant portions of the code. This
has recently been extended [3] to use a very similar polling system to that described
above based on superimposing “correct” EDTs and “incorrect” EDTSs to generate
heuristic scores by which a “worst” slice can be identified.

In general the HAT tool only displays the most immediate redex rather than all
those involved in a slice in order to reduce information overload — while it may be
desirable to do something similar in proof-directed debugging it isn’t at all obvious
that the last rule to be used will generally prove to be the one at fault.

This is the first work I'm aware of that considers the use of proof tree branches
as a slicing criterion or considers integrating the syntax highlighting interface of a
debugging tool such as HAT into a Theorem Prover.

7 Further Work

7.1  Implementation

Clearly the most pressing and important piece of further work is providing an im-
plementation of verification based program slicing to allow experimental evaluations
of the extent to which it genuinely helps locate errors.

Out intention is to provide an implementation in Isabelle/Isar using the Proof
General interface. This allows there to be a clean separation between the informa-
tion used by the interface and that used by the underlying theorem prover. Such
an approach also creates some challenges however, since the necessary properties of
goals and proof states will have to be inferred. On the whole it should be relatively
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straightforward to identify goals and key constants within goals although it there
will be some challenges involved in keeping track of proof states, in particular the
relationships between parent and child goals needed to make updates correctly. In
Isabelle successfully discharged goals are dropped from the proof state presented
to the interface which again is likely to raise some challenges in the tracking of
information.

Although no examples have been shown here where a rule is used directly with
a tactic (e.g. the rule method in Isar) this also needs to trigger updates of tracking
information. In general this should be relatively straightforward based on simple
analysis of tactic calls.

Simplification is the major step where the exact rules used by the system are
effectively concealed from the user. It is also the most important tactic which
can be used across multiple goals discharging some but not others (so leading to
ambiguities about successful proof branches) and can generate and discharge new
branches within its own application invisible to the user. Fortunately Isabelle’s
simplifier provides a tracing mechanism from which is it possible to infer rule usage
and determine when a proof branch has been discharged, from which it should be
possible to infer the necessary information. It may also be possible to use the proof
object (of the top theorem) to track program slice information 6.

We have not considered how backtracking should interact with program slicing.
At present the design assumes that proof states are generated in sequence and
implicitly assumes that they can only be backtracked in that sequence. However
many theorem provers allow backtracking on any open goal not just the those most
recently derived. In this case it may be necessary for the interface to store additional
information about the relationships between goals and their parents from proof state
to proof state. This problem may also mean that ultimately it is cleaner to store
program slice information in the prover’s proof state rather than in the interface.

7.2 More Detailed Program Slices

So far we have considered program slices whose nodes are identifiable with the simple
case structure of function definitions however there are further advantages to be
gained if more sophisticated slicing is used in which function calls/sub-expressions
are considered as nodes (as is common when applying program slicing to functional
programs).

In the following example, again genuine, a student has been asked to provide
a function, renoveAl I, which removes all occurrences of its first argument from its
second. They appear to have programmed by analogy from a previous function,
removeOne, where only one occurrence was to be removed and have forgotten to
replace one call to this program. The code is expressed in Isabelle as:

prinrec
removeAll _nil: "removeAll x [] = |
removeAl | _cons: "renoveAll x (h#t)
then renmoveAl | x

]
=(if x =h
t else h#renoveOne x t)"

6 My thanks to an anonymous referee for this suggestion.

152



DENNIS

Consider an attempt to establish that
—x € removeAll x|

The proof proceeds by induction on I followed by simplification of all goals auto-
matically discharging the base case and leaving the step case goal:

1. Ital. = x € renoveA |l x |
= (x =a — —acremveAl al) &

(x #a — a # X & - x € renoveOne x |)

and highlighted rules.
® "renpveAll x [] =1[1"
® "renpveAll x (h#t) = (if x = h then renmoveAll x t
el se h#renpveOne x t)"

Use of some introduction rules (i npi and conj1) and more simplification gives
three subgoals which are based around a case split on whether x = h and then (fol-
lowing from a lemma about ) on the values in the head and tail of h#removene x t.
The first of these (where x = h) is automatically discharged leaving two subgoals,
the first of which is

1. [| x #a, - x €renoveAll x| |] = a # X

Ideally we would like to highlight the rules associated with this goal as follows:
® "renpveAll x [] =11"
® "renoveAll x (h#t) = (if x = h then renoveAll x t
el se h #renmoveOne x t)"

showing that removeAll x t is probably correct and that this goal is based on the
value of h in h#renovene x t.

This goal is easily discharged leaving only the goal:

2. [| x#a —x e€renmoveAll x| |] = = x € renpbveOne x |
Again ideally we would like to highlight parts of the second program slice dif-
ferently:

® "renpveAll x [] =1[1"
® "renpveAll x (h#t) = (if x = hthen renpveAll x t
el se h# renobveOne x t)"

Focusing attention on the problematic part of the rule which will eventually lead to
False goals.

It should be easy enough to represent these slices within a system, for instance
a simple list of integers can be used to indicate the position of a sub-expression
within a rule and all sub-expressions of suspect rules stored in for use program slices.
However it is much harder to see how information about which slice is relevant to
a goal can be inferred without help by an interface such as Proof General. Indeed
in order to supply the necessary information a theorem prover’s internals may need
modification in order to track the unifications performed when rules are applied in
a meaningful way.
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7.8 Imperative Programs

Obviously a long term objective is to extend this work to imperative programs.
In these cases we lose the correspondence between program locations and rewrite
rules. We would therefore need to adapt the concept of “used in a proof branch”
to, for instance, identify individual program statements that had been involved in
an instantiation of the assignment axiom in this branch of the proof.

8 Conclusion

This paper has discussed the use of verification as a program slicing tool. It has
discussed how proof branches can be used to build up program slices based around
equational rewrite rules and described a simple mechanism for deriving a heuristic
score for how likely a given rule is to be correct. It has then discussed how such
information might be presented to a user.

The mechanism proposed relies on a user identifying “suspect” rules. In the
case study these all related to program function cases however there is no reason,
in principle, why any definition or theorem in a theory could not be treated in the
same way, allowing suspect specifications and definitions in general (non-verification
based) proofs to be handled in the same way. The general mechanism can almost
certainly be used in any situation where a reason is being sought for a proof failure.

Considerable further work, including an implementation, is required.
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