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UITP 2006

Preface

This volume contains the papers of the 7th Workshop on User
Interfaces for Theorem Provers (UITP 2006), which was held
on 21st of August, 2006, in Seattle, Washington, USA. UITP
2006 was affiliated with the International Joint Conference on
Automated Reasoning (IJCAR 2006) and organized as a part of
The 2006 Federated Logic Conference (FLoC 2006) which took
place in Seattle from 10th to 22nd of August, 2006.

The User Interfaces for Theorem Provers workshop series brings
together researchers interested in designing, developing and eval-
uating interfaces for interactive proof systems, such as theorem
provers, formal methods tools, and other tools manipulating and
presenting mathematical formulas. UITP provides a forum for
all those interested in improving human interaction with and us-
ability of proof systems.

The first workshop in the UITP series was held in 1995 in Glas-
gow (organized by Phil Gray, Tom Melham, Muffy Thomas and
Stuart Aitken). Further meetings took place in 1996 in York (or-
ganized by Nicholas Merriam, Michael Harrison and Andy Dear-
den), 1997 in Antibes (organized by Yves Bertot) and 1998 in
Eindhoven (organized by Roland Backhouse). There followed a
break until 2003 when the workshop was revived by David As-
pinall and Christoph Lüth and organized as part of the Theo-
rem Proving in Higher Order Logics (TPHOLs 2003) conference
in Rome. UITP 2005 (again organized by David Aspinall and
Christoph Lüth) was held as a satellite workshop of the European
Joint Conferences on Theory and Practice of Software (ETAPS
2005) in Edinburgh. The present organizers were asked to orga-
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nize another UITP workshop in 2006 and we decided to do this
in affiliation with IJCAR at this years FLoC.

The high quality papers published in this volume (and the
previous ENTCS UITP volumes) document the liveliness and
innovative strength of the UITP community. Despite the recently
increasing interest in better interfaces for theorem provers and
mathematical support tools, however, we are convinced that the
UITP initiative requires and deserves a regular and sustainable
fostering and also better visibility in and communication with
the wider Artificial Intelligence community.

We would like to thank several people who helped us in the
organization of this workshop. First of all, many thanks to all
program committee members

David Aspinall

Yves Bertot

Paul Cairns

Ewen Denney

Christoph Lüth

Michael Norrish

Florina Piroi

Aarne Ranta

Makarius Wenzel

and all additional reviewers

Löıc Pottier Laurence Rideau Hua Yang

for their support and productive collaboration. Many thanks
to the organizers of FLoC’06 and IJCAR’06, in particular Tom
Ball, for setting up the FLoC workshop environment, and Andrei
Voronkov, for his EasyChair conference tool that simplified our
organizational work a lot. Last but not least, many thanks to all
authors who submitted papers and to all active participants at
the workshop.

Serge Autexier and Christoph Benzmüller
Edinburgh and Saarbrücken, July 2006
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A Graphial User Interfae forFormal Proofs in GeometryJulien Narboux1LIX, Éole Polytehnique91128 Palaiseau, FraneAbstratWe present in this paper the design of a graphial user interfae to deal with proofs in geometry. The softwaredeveloped ombines three tools: a dynami geometry software to explore, measure and invent onjetures,an automati theorem prover to hek fats and an interative proof system (Coq) to mehanially hekproofs built interatively by the user.Keywords: geometry, theorem prover, proof assistant, interfae, Coq, dynami geometry, automatedtheorem proving1 IntrodutionDynami Geometry Software (DGS) and Computer Algebra Software (CAS) are themost widely used software for mathematis in the eduation. DGS allow the user toreate omplex geometri onstrutions step by step using free objets suh as freepoints and prede�ned atomi onstrutions depending on other objets (for instanethe line passing through two points, the midpoint of a segment, et.). The freeobjets an be dragged using the mouse and the �gure is updated in real time. CASallow symboli manipulations of mathematial expressions.The most widely used systems are the historial ones whih appeared in the 90s,namely Geometer's skethpad [22℄ and Cabri Geometer [26℄. But there exists a largenumber of free and ommerial software as well 2 .The eduation ommunity has studied the impat of the use of these software onthe proving ativity [41,16℄. DGS are used for mainly two ativities:
• to make the student reate geometri onstrutions;
1 Email: Julien.Narboux�inria.fr
2 We an ite (the list is not intended to be exhaustive): CaR, Chypre Cinderella, Déli, De�, Dr. Geo,Eulid, Euklid DynaGeo, Eukleides, Gava, GeoExp, GeoFlash, GeoLabo, GeoLog, Geometria, Geometrix,Geometry Explorer, Geometry Tutor, GeoPlanW, GeoSpaeW, GEUP, GeoView, GEX, GRACE, KGeo,KIG, Mentoniezh, MM-Geometer, Non-Eulid, XCas, et.
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Narboux

• to make the student explore the �gure and onjeture and hek fats.We believe that these software should also be used to help the student in the provingativity itself. Work has been performed in this diretion and several DGS with proofrelated features have been produed. Theses systems an be sorted in in roughlytwo ategories:(i) the systems whih permit to build proofs;(ii) the systems whih permit to hek fats using an automated theorem prover.The Geometry Tutor [3℄, Mentoniezh [33℄, De� [1℄, Chypre [8℄, Cabri-Eulide[27℄, Geometrix [19℄ and Baghera [6℄ systems belongs to the �rst ategory. Usingthese systems the student an produe proofs interatively using a set of knowntheorems. In most of these systems the student an not invent a proof very dif-ferent from what the program had pre-omputed using automated theorem provingmethods. As far as we know, the exeption is Cabri-Eulide whih ontains a smallformal system and therefore gives more liberty to the student. Baghera inludes alsoe-learning features, suh as task management and network ommuniation betweenteahers and their students.MMP-Geometer [18℄,Geometry Expert [17℄, Geometry Explorer [36℄ and Cinderella[24,25,34,35℄ belongs to the seond ategory. Geometry Expert and MMP-Geometerare DGS whih are used as a graphial interfae for an implementation of the maindeision proedures in geometry. Geometry Explorer provides a diagrammati visu-alization of proofs generated automatially by a prolog implementation of Chou'sfull angle method [14℄. Cinderella inludes a �probabilisti theorem prover� to allowthe user to hek fats and allows to export the desription of the �gure to omputeralgebra software to perform algebrai proofs.The work losest to ours is [9℄. The GeoView software provides a visualizationtool for some formal geometri statements using an o�-the-shelf DGS and the PCoquser interfae for Coq [10,2℄. It is intended to be used with the formalization ofgeometry for the Frenh urriulum by Frédérique Guilhot [20℄ in the Coq proofassistant [15℄.We present in this paper the design of a system whose aim is to ombine au-tomati theorem proving, interative theorem proving using a formal proof system(the Coq proof assistant) and diagrammati visualization. The di�erene betweenour approah and the other systems we have ited (exept GeoView) is that we useof a general purpose proof assistant and ombine interative and automated theoremproving. The di�erene between our system and GeoView is that ommuniationwith Coq goes in the other diretion.Our approah is guided by the following motivations:
• It is very natural in geometry to illustrate a proof by a diagrammati represen-tation and even sometimes a diagram an be seen as a high level desription ofa proof [7,23,29,36,37,38℄. But sometimes a diagram an be misleading. That iswhy the veri�ation of the proof by a formal proof system is ruial as it providesa very high level of on�dene.
• Compared to an adho proof system speialized in geometry, the use of a generalpurpose proof assistant suh as the Coq proof assistant provides a way to ombine4



Narbouxgeometrial proofs with larger proofs. For example, it is possible to use the Coqsystem to prove fats about polygons by indution on the number of edges, orfats about transformations using omplex numbers.
• There are fats than an not be visualized graphially and there are fats thatare di�ult to understand without a graphial representation. Hene, we need toombine both approahes.
• We should have both the ability to make arbitrarily omplex proofs or to use abase of known lemmas, depending on the level of the user/student.We will �rst give a short introdution of our prototype named GeoProof. Thenwe will fous on the proof related features of GeoProof: automati theorem provingand interative generation of Coq statements.2 An overview of GeoProofGeoProof is a free and open soure Dynami Geometry Software. It is distributedunder the term of the GPL Version 2 liense. It has been implemented by startingfrom a projet alled DrGeoCaml initially developed by Niolas François. GeoProofis written in the Oaml programming language using only portable libraries in suh away that it an be ompiled for Linux, Windows and MaOSX. GeoProof permits themain geometri onstrutions and transformations involving points, irles and lines.The douments are saved using an open format based on the XML tehnology. Itan export the �gures using a bitmap (PNG, BMP, JPEG) or vetor graphi format(SVG). The �gure desription an also be exported to the input language of theEukleides software to ease the insertion of �gures in a LATEX doument 3 . Figure 1gives a quik overview of the graphial user interfae of GeoProof. But its mainfeatures onsist in the proof oriented funtionality, whih will be desribed in thenext setions.3 Automati proofWe present in this setion how GeoProof an ommuniate with automati theoremproving tools. We have implemented automati theorem proving in GeoProof usingtwo di�erent systems: the �rst one takes advantage of an implementation of theGröbner basis and Wu methods [40,11℄ written by John Harrison [21℄ 4 , the seondone onsist in exporting to our own implementation of Chou's deision proedurefor a�ne geometry [13℄ in the Coq proof assistant [30℄.3.1 Using embedded automati theorem proverThe formalization used by John Harrison is based on a theory with only points asbasi objets whereas GeoProof uses points, lines and irles as the basi mathemat-ial objets. We need to translate from one language to the other one. The input ofthe ATP is a �rst order formula with the following prediates: collinear, parallel,
3 http://www.eukleides.org/
4 Warning this implementation was designed to aompany a textbook on automated theorem proving andis not intended to be e�ient. 5
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Narboux

Fig. 1. A sreen-shot of GeoProof, the example displayed represent the points of interest of a triangle.
perpendicular, eq_distance (written as AB = CD) and eq_angles. These predi-ates are de�ned using an algebrai formula using the oordinates of the points.Let xP and yP be the x and y oordinates of P .
col(A,B,C) ≡ (xA − xB)(yB − yC) − (xB − xC)(yA − yB) = 0

par(A,B,C,D) ≡ (xA − xB)(yC − yD) − (xC − xD)(yA − yB) = 0

per(A,B,C,D) ≡ (xA − xB)(xC − xD) + (yA − yB)(yC − yD) = 0

eq_distance(A,B,C,D) ≡

(xA − xB)2 + (yA − yB)2 − (xC − xD)2 − (yC − yD)2 = 0

eq_angle(A,B,C,D,E, F ) ≡

((yB − yA) ∗ (xB − xC) − (yB − yC) ∗ (xB − xA))∗

((xE − xD) ∗ (xE − xF ) + (yE − yD) ∗ (yE − yF ))

=

((yE − yD) ∗ (xE − xF ) − (yE − yF ) ∗ (xE − xD))∗

((xB − xA) ∗ (xB − xC) + (yB − yA) ∗ (yB − yC))6



Narboux3.1.1 Translating a onstrution into a statement for ATP.We need to translate from one language to the other one. The idea of the trans-lation onsist in maintaining the invariant that lines and irles are always de�nedby two points. Of ourse this is not true in GeoProof. For instane one an build aline as the parallel of another line passing through a point. In suh a ase we needto de�ne a seond de�ning point for the line. For that purpose we generate newpoints during the translation. We de�ne the translation by ase distintion on theonstrution. Table 1 gives the de�ning points for eah line and irle depending onhow these objets have been onstruted. P1l,P2l and Oc are fresh variables. Foreah line and irle we assoiate some fresh variables. These new variables whih donot appear in the original �gure are used to de�ne lines and irles when we do nothave two points on the objet on the �gure we translate from.Lines are de�ned by two points P1(l) and P2(l). When we already know at least oneof the de�ning points we use it instead of reating a new point beause it simpli�esthe generated formulas.Cirles are de�ned by their enter O(c) and a point P(c) on the irle.Table 2 provides the translation of GeoProof onstrutions 5 into the language a-epted by the embedded theorem prover. Inidentally, it gives a subset of the on-strutions of the language of GeoProof. The non degeneray onditions are inspiredby those in [12℄. The prediate isotropi is de�ned by:
isotropic(A,B) ≡ perpendicular(A,B,A,B)In Eulidean geometry it is equivalent to A = B but not in metri geometry. Weprodue a statement whih is interpreted in the metri geometry beause Wu andGröbner bases methods are omplete only for metri geometry. For more informationabout this see [12,11℄. Moreover if I1 and I2 are the two intersetions of a irle andof a line or a irle then we add the fat that I1 6= I2 in the hypotheses. Note thatdi�erent onstrutions of the same �gure an lead to di�erent degeneray onditionsand hene di�erent formulas.3.1.2 An exampleLet's take the midpoint theorem as an example, it states that:

bbA B
CD ETheorem 3.1 (midpoint) Let ABC be a triangle, andlet D and E be the midpoints of AC and BC respe-tively. Then the line DE is parallel to the base AB.The onstrution is translated into the following state-ment:(((((is_midpoint(D,C,A) /\ is_midpoint(E,C,B))/\~C=A) /\ ~A=B) /\ ~B=C) /\ ~D=E) /\ ~A=BThe fat that AB ‖ DE is then heked using the Gröbner basis method.

5 To simplify the presentation we only provide the translation for the main GeoProof onstrutions.7



NarbouxGeoProof Constrution De�ning points
l passing through A and B P1(l) = A P2(l) = B

l parallel line to m passing through A P1(l) = A P2(l) = P2l

l perpendiular line to m passing through A P1(l) = A P2(l) = P2l

l perpendiular bisetor of A and B P1(l) = P1l P2(l) = P2l

l bisetor of the angle formed by A, B and C P1(l) = B P2(l) = P2l

c irle of enter O passing through A O(c) = O P(c) = A

c irle passing through A,B and C O(c) = Oc P(c) = A

c irle whose diameter is A B O(c) = Oc P(c) = ATable 1De�nition of the de�ning points of irles and lines

Fig. 2. Cheking the midpoint theorem using the embedded theorem prover.3.1.3 Dealing with non-degeneray onditionsNon degeneray onditions play a ruial role in formal geometry, this has beenemphasized by most papers about formalization of geometry [20,28,30℄. This trans-lation is not an exeption, we must be areful about the semantis of the generatedstatements. For this translation we have deided to onsider GeoProof as a tool8



NarbouxGeoProof Constrution Prediate formFree point truePoint P on line l collinear(P,P1(l),P2(l))Point P on irle c O(c)P(c) = PO(c)

I midpoint of A and B IA = IB ∧ collinear(I,A,B)

I intersetion of l1 and l2

collinear(I,P1(l1),P2(l1))∧

collinear(I,P1(l2),P2(l2))∧

¬parallel(P1(l1),P2(l1),P1(l2),P2(l2)

I an intersetion of c1 and c2

IO(c1) = O(c1)P(c1)∧

IO(c2) = O(c2)P(c2)∧

¬isotropic(O(c1),O(c2))

I an intersetion of c and l

IO(c) = O(c)P(c)∧

collinear(I,P1(l),P2(l))∧

¬isotropic(P1(l),P2(l))

l passing through A and B A 6= B

l parallel to m passing through
A

parallel(A,P2(l),P1(m),P2(m))∧

A 6= P2(l)

l perpendiular to m passingthrough A

perpendicular(A,P2(l),P1(m),P2(m))∧

A 6= P2(l)

l perpendiular bisetor of Aand B

P1(l)A = P1(l)B ∧ P2(l)A = P2(l)B∧

P1(l) 6= P2(l) ∧ A 6= B

l bisetor of the angle A,B,C eq_angle(A,B,P2(l),P2(l), B,C)∧

B 6= P2(l) ∧ A 6= B ∧ B 6= C

c irle of enter O passingthrough A

true

c irle whose diameter is A B
collinear(O(c), A,B)∧

O(c)A = O(c)BTable 2Prediate form for eah type of onstrution9
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Fig. 3. Trying to prove a property with ontraditory hypotheses.whih permits to de�ne a geometri formula and it does not build a model of thisformula. The user an de�ne �impossible� �gures. For instane if we perform thefollowing onstrution:First, reate two points A and B and then reate the midpoint C of the segment [AB]and the midpoint D of the segment [BA]. Finally, reate the line passing through Cand D. Then if we try to prove that C 6= D, GeoProof should answer �yes�, as thehypotheses of the theorem are inonsistent (ex falso quod libet). This is onsistentwith logi but not with the user's intuition beause the �impossible� objets are notdisplayed by GeoProof. This is why in fat we need to hek �rst if we an provefalse, if this is the ase we an warn the user that its onstrution is impossible asshown on Figure 3. Note that on the example shown we have not reated exatlythe line passing through A and A, beause GeoProof does not allow this partiulardegenerated onstrution. We have reated two points whih are equal (C and D)using the midpoint onstrution applied twie to the same segment.3.2 Using CoqIn [30℄ we have desribed the implementation of Chou, Gao and Zhang's deisionproedure for a�ne geometry in the Coq proof assistant. Here we want to exporta onstrution built using GeoProof into a statement in the language of the Coqdevelopment. Our implementation of Chou, Gao and Zhang's deision proedureis restrited to a�ne plane geometry. Hene in GeoProof the tools whih do nothave any orresponding onept in the Coq implementation are greyed out. TheCoq development is based on the axiom system shown on Table 3. To ease the Coq10



NarbouxPoints Point : SetField F is a �eld
2 6= 0Signed distane · : Point → Point → F

AB = 0 ⇐⇒ A = B

Signed area S : Point → Point → Point → F

SABC = SCAB

SABC = − SBACChasles'axiom SABC = 0 → AB + BC = ACDimension ∃A,B,C : Point, SABC 6= 0

SABC = SDBC + SADC + SABDConstrution ∀r : F ∃P : Point, SABP = 0 ∧ AP = rAB

A 6= B
∧ SABP = 0 ∧ AP = rAB

∧ SABP ′ = 0 ∧ AP ′ = rAB
→ P = P ′Proportions A 6= C → SPAC 6= 0 → SABC = 0 → AB

AC
= SPAB

SPACTable 3The Chou axiom system (slightly modi�ed for the formalization in Coq).formalization, this axiom system has been slightly modi�ed ompared to the axiomsystem found in [13℄. In the original axiom system the ratio of two oriented distanes
AB

CD
is de�ned only when AB is parallel to CD. Here we do not put this restrition atthe axiom system level but only when we state theorems involving ratios. It is learthat this axiom system is based on points. Hene we have to perform a translationsimilar to those desribed in the last setion. Table 4 gives the translation of someommon geometri notions in the language of the axiom system. Figure 4 shows thetranslation of the statement orresponding to the midpoint theorem in the syntaxof Coq. 11
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Geometri notions Formalization
A,B and C are ollinear SABC = 0

AB ‖ CD SABC = SABD

I is the midpoint of AB AB

AI
= 2 ∧ SABI = 0Table 4Expressing some ommon geometri notions using S and ratios

Fig. 4. The midpoint theorem, expressed in the Coq language for Chou deision proedure.
12



Narboux4 Interative inputIn this setion we desribe the interative proof mode of GeoProof. Thanks to theon�guration menu, the user an hoose between two interative modes, the �rstone uses the language desribed in setion 3.2 and the seond one uses the languageof the Coq development for high shool geometry by Frédérique Guilhot [20℄. Inthe �rst mode the user an deal with a�ne plane geometry and in the seond modewith Eulidean plane geometry. The interation with Coq is performed throughthe CoqIDE user interfae. GeoProof ommuniates with CoqIDE 6 thanks to aprivate lipboard. We have started by implementing the translation from a GeoProofonstrution to a Coq statement. We perform the same translation as in [9℄ exeptthat it is in the reverse diretion (here we translate to Coq) 7 .The interative mode of GeoProof is deomposed in four steps:
Initialization // Construction // GoalDe�nition // ProofIn the initialization phase, the ommuniation between CoqIDE and GeoProofis started. Depending on the language used some onstrution tools whih an notbe exported to Coq are greyed out in GeoProof. The Coq de�nitions orrespondingto the language used are loaded using the Coq ommand Require. A new setionis opened. If the user had already onstruted some objets before starting theinterative proof mode, these objets are now exported to Coq. Objets whih donot have any meaning in the language seleted are ignored.In the onstrution phase the objets reated by the user are added in the Coqontext with their orresponding assumptions. On the example shown 8 on Figure8 this orresponds to the Variable and Hypothesis ommands.In the goal phase the user needs to de�ne what he wants to prove.In the ontext of eduation this phase an be presented as an exerise onsistingin �nding an interesting onjeture about the �gure. For that purpose GeoProofprovides several features:(i) The user an move the free points of the �gure to guess the invariants.(ii) When the user has guessed a onjeture, he an make a �rst experiment tohek the onjeture by building a dynami label to perform mesures on the�gure.A dynami label is a text element enrihed with the possibility to display theresult of a omputation de�ned using a small language ([32℄). Thanks to aon�guration �le the user an hoose at whih preision (whih may be arbi-trary large) the omputations are performed. If the mathematial expressionsontained in the text elements depend on other points of the �gure, the textis updated in real time when the user hange the position of the free points.

6 This feature requires CoqIDE version 8.1 or later.
7 In the future we should merge our developments to allow ommuniation in both diretions, this requiresa more omplex ommuniation system as explained in the future work setion.
8 The prediates names are in Frenh beause this development is foused on the Frenh high-shool ur-riulum 13
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Fig. 5. The de�nition of a dynami label.

Fig. 6. The ontextual menu assoiated to a dynami label.The dynami part of the labels an ontain measures and prediate tests usingvariables depending on other objets. Figure 5 shows an example of a dynamilabel to test if three points are ollinear. Using prede�ned dynami labels theuser an hek easily for example if two lines are parallel (on the spei� in-stane of the �gure displayed). Then if he wants to prove the fat representedby the label, he an right lik on the label and hoose the orresponding menuentry. Figure 6 shows the ontextual menu of a dynami label.In the proof phase the user proves his statement within CoqIDE. Hene, theurrent implemantation of GeoProof requires to know how to use Coq. This will14



NarbouxLta DeompEx H P := elim H;intro P;intro;lear H.Lta let_intersetion I A B C D :=let id1 := fresh in ((assert (id1:exists I,I = pt_intersetion (line A B) (line C D));[apply (existene_pt_intersetion)|DeompEx id1 I℄)).Fig. 7. The tati to prove the existene of the point of intersetion.

Fig. 8. The midpoint theorem in the language used by Frédérique Guilhot's Coq development.be improved in future versions by adding some features to allow the appliation oftheorems within GeoProof. If during the proof a new objet needs to be reated,he an do it using GeoProof. Indeed when a new objet is added in GeoProof aCoq tati is pasted into CoqIDE. This tati applies the theorem whih proves theexistene of the objet whih has just been reated and introdue in the ontextthe knowledge about this new objet. In some ases this generates non-degenerayonditions whih need to be proved by the user. Figure 7 shows the ommand(de�ned in Lta - the tati language of Coq) whih is used when the user reates apoint at the intersetion of two lines.If the user deletes an objet in GeoProof it is removed from the Coq ontext thanksto the lear ommand of Coq. If the user wants to delete some objet withoutdeleting it in Coq, he an hide the objet in GeoProof.15
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. . . CoqIDEFig. 9. Integrating GeoProof in the proof general infrastruture5 Future WorkThe urrent prototype of GeoProof uses a private lipboard 9 as a ommuniationpipe between GeoProof and the Coq Interative Development Environment. Thisapproah has the advantage to be both easy to implement and easy to use. The useran start the interation without any on�guration step, he just needs to launhGeoProof and CoqIDE on the same omputer. But this infrastruture has somelimitations. First, the ommuniation with Coq is done using the Coq syntax,whih is easy to produe but hard to parse. Seond, the synhronization betweenwhat is typed in CoqIDE and the input generated by GeoProof is not ensured.A better infrastruture for the ommuniation between Coq and GeoProof wouldbe to use the Proof General Interation Protool (PGIP) framework [39,4℄. Thisframework is based on XML and allow to have several interfaes interating atthe same time with one proof assistant. This is exatly what we need beause asmentioned before, some proofs are easier to grasp diagrammatially and some arebetter presented the lassi way (proofs using omplex numbers for instane). In ourexample, GeoProof and CoqIDE would interat with the Coq proof assistant. Butthis ould be generalized to other proof assistants and graphial user interfaes suhas Isabelle, Elipse/Proof General and PCoq as shown on Figure 9. This approahwould require implementation of PGIP within Coq, CoqIDE and GeoProof.The proving features of GeoProof in itself should also be extended. We needto add the possibility to apply a theorem diagrammatially by drag and drop andto mark fats on the diagram to produe new assertions in Coq. We ould alsotransform maro onstrutions into proof of existene of geometri objets verifyingsome properties.Another planned extension of GeoProof is to adapt it to deal with diagrammatiproofs in abstrat term rewriting (see the �rst hapter of [5℄). We have formalizedin [31℄ the kind of diagrams whih are usually found in the rewriting literature. Thenext step is to implement this formalization in GeoProof to provide a high levelinput language for proofs in abstrat rewriting. The design presented in this paperan be adapted to abstrat term rewriting.
9 Tehnially, we use a feature provided by GTK: we reate a lipboard identi�ed by a name (here�GeoProof�) whih is di�erent from the standard lipboard.16



Narboux6 ConlusionProof is a ruial aspet of mathematis and hene must have a prominent role inthe eduation. The most widely used software in the teahing of mathematis aremainly used to explore, visualize, alulate, �nd ounter examples, onjetures, orhek fats, but most of them an not be used to build a proof in itself. We believethat proof assistants should be adapted to ful�ll this need.We have presented in the paper a prototype whih aims at integrating dynamigeometry, automati theorem proving and formal proof. This should be onsideredas a �rst step toward the use of a proof assistant in the lassroom.AvailabilityGeoProof is available at: http://home.gna.org/geoproof/AknowledgementsI want to thank Hugo Herbelin for his help during the elaboration of this work andFrédérique Guilhot for her omments and the formal proofs she has added to herdevelopment for GeoProof.
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Abstract

GeoThms is a web-based framework for exploring geometrical knowledge that integrates Dynamic Geometry
Software (DGS), Automatic Theorem Provers (ATP), and a repository of geometrical constructions, figures
and proofs. The GeoThms users can easily use/browse through existing geometrical content and build new
contents. In this paper we describe GeoThms functionalities, focusing on the interface solutions required for
a system aimed at supporting studying and teaching geometry via Internet. GeoThms is a publicly accessible
system with a growing body of geometrical constructions and formally proven geometrical theorems. We
believe that, with the help of all its users it will become an important Internet resource for geometry.
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software.

1 Introduction

Our motivation is to build and maintain a publicly accessible and widely used Inter-

net based framework for constructive geometry. It should be used for teaching and

studying geometry, but also as a major Internet repository for geometrical construc-

tions. We have built a system, GeoThms, that links Dynamic Geometry Software

(DGS), Automatic Theorem Provers (ATP), and GeoDB, a database of geometri-

cal constructions, figures and proofs. The DGSs currently used within GeoThms
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are GCLC [7,12] and Eukleides [16,18], two widely used dynamic geometry pack-

ages. The ATP used, GCLCprover [13,17], is based on the area method [4,6,15,17],

and it produces human readable, synthetic geometrical proofs. GeoThms provides

a web workbench that tightly integrates mentioned tools into a single framework

for constructive geometry. The web interface is a server-side solution written in

PHP, designed to enable GeoThms users to easily browse through the list of ge-

ometric problems, their statements, illustrations and proofs, and also to inter-

actively use the drawing and automatic proof tools. GeoThms is accessible at

http://hilbert.mat.uc.pt/˜geothms.

There are several systems related to GeoThms. Some of them combine features of

DGS and automated theorem provers, some of them have web interfaces, and some of

them provide repositories of geometrical theorems. We are not aware of any system

that, like GeoThms, gives full, web-based access to DGS, use theorem proving

with human-readable proofs generated and provides open repository of geometrical

constructions and conjectures. Section 6 gives more details about related work.

Paper overview.

Section 2 describe GeoThms components; Section 3 presents the structure of the

web interface; Section 4 is about communication and representation issues; Section 5

presents GeoThms through some illustrated examples. Section 6 discuss related

work. Section 7 discusses further work, and Section 8 draws final conclusions.

2 Framework Components

GeoThms, is a framework that links dynamic geometry software, geometry auto-

matic theorem provers, and a repository of geometry problems providing a common

web interface for all these tools (see Figure 1). In this section, we give a brief

description of the tools that are currently integrated in GeoThms:

GCLC and Eukleides

GCLC 5 [7,12] and Eukleides 6 [16,18] are two DGSs. They both use declar-

ative languages to specify geometrical constructions. Hence, in using these tools,

producing mathematical illustrations is based on “describing figures” rather than

on “drawing figures”. These descriptions directly reflect meaning of mathematical

objects to be presented, and are easily understandable to mathematicians. Both

tools have graphical user interfaces and produce, in LATEX form, illustrations that

correspond to geometric constructions.

GCLCprover

GCLCprover is an ATP based on the area method [4,6,15]. It allows formal

deductive reasoning about objects constructed within DGSs. It produces proofs that

5 GCLC package is freely available from www.matf.bg.ac.yu/~janicic/gclc/. The mirrored version is

available from emis (The European Mathematical Information Service) www.emis.de/misc/index.html.
There are versions of GCLC for Windows and for Linux.
6 Eukleides is available from http://www.eukleides.org, There are versions for a number of languages.
The first author of this paper is responsible for the Portuguese version of Eukleides: EukleidesPT is available
from http://gentzen.mat.uc.pt/~EukleidesPT/
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Fig. 1. The GeoThms Framework

are human-readable (in LATEX and XML formats), and with an explicit justification

for every proof step. GCLCprover is tightly integrated with GCLC, so one can use

the prover to reason about a GCLC construction, without changing and adapting

it for the deductive process, the users only need to add a conclusion they want to

prove. The geometrical constructions made within GCLC are internally transformed

into primitive constructions of the area method, and in some cases, some auxiliary

points are introduced. We have developed a tool euktogclcprover, that converts

Eukleides files to GCLCprover files, allowing the prover to be used with geometric

constructions described within Eukleides.

The geoDB database

geoDB keeps geometric constructions, illustrations, conjectures, and proofs. Fig-

ure 2 shows the structure of the database. The main entities of the database are:

figures, descriptions of geometrical constructions; theorems, statements of theorems,

written in LATEX form; proofs, geometrical constructions with conjectures.

Geometrical constructions are described and stored in the database in declar-

ative languages of dynamic geometry tools such as GCLC and Eukleides, and in

a common XML format. Figures are generated directly on the basis of geometric

specifications, by GCLC and Eukleides and stored as JPEG files and SVG files.

Conjectures are described and stored in a form that extends descriptions of geo-

metrical constructions. The specifications of conjectures are used (directly or via

a converter) by GCLCprover. Proofs are generated by GCLCprover and stored as

XML files (rendered by XSLT, using a layout specified by GeoCons proof.xsl) and

as PDF files (produced by LATEX, using a layout specified by gclc proof.sty).

A geometric theorem can have more than one figure and/or more than one proof,

made by different tools and made by different users.
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The database also has the following auxiliary entities: bibrefs, bibliographic ref-

erences, in BibTEX format; drawers & provers, information about the available pro-

grams; authors, information about the authors; users, information about registered

users; computer, information about computers used as the test benches. The tables

codeTmp and codeTmpProver are used to store temporary information, deleted after

each session, for the interactive section of GeoThms.

3 The Web Interface General Structure

The structure of the web interface has two main levels (see Figure 3).

FormsWorkbenchReports

Registration/Login Help

GeoThms

all the info together

Statements
Figures
Proofs

Provers
Drawers
Authors
BibRefs

Drawing tools
Provers Statements

Figures
Proofs

Provers
Drawers
Authors
BibRefs

Listings of: Interaction with Insert/Update info

Geometric Theorems Geometric Theorems

Entry Level

2nd Level

Regular User Contributers

Fig. 3. GeoThms — Web Interface

The entry level (see Figure 4), accessible to all web-users, has some basic infor-

mation about GeoThms, including documents about the GCLCprover and the area

method. There is also an entry point to the GeoThms forums. This level offers

registering options, and it gives access to other levels of the system. Regular users

have access to the second level, where they can browse the data from the database

24



Quaresma, Janičić

(in a formatted, or in a plain textual form) and use the drawing/proving programs

for interactive work. Regular users can apply for the contributor status with which

they can also insert new data and can update the data inserted previously in the

database. There is also an administration level, invisible to the user. It is used to

change the status of the users, and other administrative tasks.

Fig. 4. GeoThms — Home Page

4 Communication and Representation Issues

GeoThms is a server side web system with integrated DGSs and ATPs tools. It is

not oriented to some particular browser and/or operating system. As a web service

GeoThms emphasise:

• a simple interface, based on using geometrical specification languages of the un-

derlying geometrical tools;

• a low communication burden.

To achieve these goals we decided to use a server side Apache/PHP/MySQL solu-

tions, and standard features of HTML language to deal with input/output.

A basic communication, concerning describing geometrical constructions and

conjectures, is based on formal languages of the underlying geometrical tools. De-

spite some good features of point-and-click-based descriptions of constructions, we

believe that in this context, communication based on textual descriptions is a better

solution. For instance, this approach enables full access to the underlying systems,

different geometrical tools can be uniformly integrated, stresses the fact that ge-

ometrical constructions are formal procedures, etc. Notice that both DGSs tools

currently supported (GCLC and Eukleides) provide also graphical interfaces, so it

is possible for a user to use these tools’ rich graphical interfaces locally and then

transfer the results to GeoThms.

Concerning internal representation of data, within GeoThms, descriptions of

constructions and conjecture are stored as GCLC code, as Eukleides code, or in XML

form. There are tools for converting between these formats, while XML format has

the central position, as an interchange format. When adding new geometrical tools,
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it will be sufficient to develop converters from its format to XML and vice versa.

This enables converting from any format to any other, and consequently makes

usable the whole of the repository to any geometrical tool. Figures are stored in

JPEG format, but also in SVG format.

Within GeoThms, data are presented in:

textual form with the following choices: as GCLC code, as Eukleides code, as

XML rendered (by appropriate XSLT) as HTML, as XML rendered (by appro-

priate XSLT) in natural-language (English) form.

graphical form: with the following choices: as JPEG image, or as SVG image.

The bibliographic references are kept in BibTEX format and it is possible to get

a BibTEX file with a list of selected references.

5 GeoThms Tours

In this section we will describe GeoThms framework through a series of

GeoThms Tours, a series of paths that can be used by GeoThms users in theirs

interaction with GeoThms.

5.1 Login/Registration

At the entry level (apart from the “Help” section) is the “Login” section where

GeoThms users can login, or where new users can register to GeoThms. This is

a standard registration form with obligatory and optional data fields and with the

option to choose between a regular user, or a contributor. If a regular user wants

to be a contributor, his/her request is sent to the administrator, and it is the

administrator’s responsibility to change the status of the user. There is also an

anonymous account for a quick preliminary usage of GeoThms.

Only registered users have access to the second level. Regular users can browse

the data from the database and use the drawing/proof programs in an interactive

way. A contributor also has privileges to insert new data and/or update the existing

ones.

5.2 Browsing

Registered users have access to the “Reports” section (see Figure 5). In this section,

a user can browse through the data in the database, figures, theorems, and proofs.

For each of these groups a list of available items with related details is shown (see

Figure 6).

It is also possible to see the information related to the provers, the drawers, the

authors of those programs and the bibliographic references.

5.3 Adding New Data

Contributors have access to the “Add/Update” section where they can add new

data and/or update existing constructions, conjectures, and proofs. Constructions

and conjectures are entered by users. Only proofs generated by the built-in provers
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Fig. 5. GeoThms – Reports Page

can be added to the database. The relations between entities enforce that each

figure and/or proof must be linked to a geometric conjecture., i.e., a contributor

must first add a geometric conjecture and only after that, proceed adding a figure

and/or proof to that conjecture.

A contributor can add a geometrical conjecture, its statement, corresponding

figure and proof, in a single step or in separate steps. The statement must come

first, and for a given conjecture more than one figure and/or proof can be added.

Contributors can also update the data related to the conjectures, figures, and proofs.

It is also possible to insert/update the information about provers, drawers, au-

thors and bibliographic references.

5.4 Interactive Work

In the “Interactive Work” section, GeoThms offers its users the possibility to use

the DGSs and the ATP in a interactive way. The GeoThms user can submit the

code, call for its evaluation and, if there are no errors, see the resulting figure or

proof. If some syntactic, semantic or deductive error occurs an error message will

Fig. 6. GeoThms – Figures Listing
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Fig. 7. GeoThms – Theorem Report

Fig. 8. Insertion Form

be displayed and the user is given the opportunity to correct and re-evaluate the

code. Syntactic errors are errors made in description steps that are not regular with

respect to syntax of the underlying geometrical language. Semantic errors occur in

situation when some construction is not possible for given points (for points given

by their Cartesian coordinates). Deductive errors occur in situation when some

construction is always impossible (these errors require invoking the prover).

Figures 9 and 10 illustrate the possibilities to add code (within a textarea

field), to submit it to evaluation, and to see the result graphically along with the

code submitted. If there are errors, they are displayed and the user can correct them.

We are planning to incorporate a syntax highlighting text editor (e.g., Helena 7 ) as

a substitute to the textarea field, providing in this way line numbering and syntax

highlight.

The “Interactive Work” section can be used to work on a new result before

adding it to the database. In the following text, we will illustrate an interaction of

7 http://helene.muze.nl/
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a user with GeoThms in adding, for example, the Midpoint Theorem to the database.

Theorem 1 (Midpoint Theorem) Let ABC be a triangle, and let A′ and B′ be

the midpoints of AC and BC respectively. Then the line A′B′ is parallel to the line

AB.

Using the interactive part of GeoThms, a user can begin by describing the con-

struction, proceed attempting to prove the conjecture and, if all went as expected,

insert all this data, along with the new conjecture statement to the database.

Describing the Construction

Fig. 9. Midpoint Theorem — Interaction with the DGS

The constructive specification of the figure has to define: three (fixed) points

A, B, C (the vertices of the triangle); two (constructed) points A′ and B′, the

two midpoints of AC and BC respectively, and all the “drawing” commands. Note

that drawing commands are irrelevant for the theorem prover, but are relevant for

producing figures (see Figure 9). The construction was made using GCLC, but the

user can also use Eukleides for describing the construction, by instructions very

similar to the given ones.

Testing the Conjecture

Fig. 10. Midpoint Theorem — Interaction with the ATP

After eliminating all errors from the code, the user can add a conjecture. The

property to be proved can be expressed (using the area method) in the following
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way SA′B′A = SA′B′B , i.e., the signed area of ∆A′B′A is equal to the signed area of

∆A′B′B.

By clicking in the appropriate button, the user goes from the “Geometric Drawer

Workbench” to the “Geometric Prover Workbench” with the DGS’s code already

in the textarea window. The GCLC’s code can be submitted to GCLCprover

without modifications, while the Eukleides’ code needs to be converted with the

euktogclcprover tool.

The user can now add the conjecture in the ATP’s code:

prove {equal {signed_area3 A_l B_l A} {signed_area3 A_l B_l B} }

After that, a new cycle of writing and evaluation starts (the drawers commands

are already correct, but the conjecture may be incorrectly written). After that,

the user gets the output of the prover in the form of a proof status, a PDF file

(generated by GCLCprover) containing the proof (if the conjecture is valid), and

some measures of efficiency.

As shown in figure 10, the proof status and the measures of efficiency are acces-

sible, and the proof is given as a PDF file. Figure 11 shows the last steps of the

proof made by GCLCprover.
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, by Lemma 29 (point Bl eliminated)
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„

0 +

„

1

2
· (0 + (−1 · 0))

««

, by geometric simplifications

(17) 0 = 0 , by algebraic simplifications
2

Fig. 11. Last steps of the Proof of the Midpoint Theorem

Adding the Midpoint Theorem to the Database

With a new click, the contributor can select the “Forms” section in order to add

a statement for the new construction and the corresponding figure and proof (see

Figure 8).

5.5 Searching the Database

GeoThms’ users can search the database over figures, conjectures, or proofs for a

particular string.

6 Related work

There are several system related to GeoThms. The following ones in some degree

link DGSs with ATPs or with repositories of theorems (Table 1 shows comparison

between features of these tools):
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Geometry Explorer combines features of DGS with a theorem prover based on

the full-angle method which produces human-readable proofs (in LATEX form) [22].

MMP/Geometer combines features of DGS and ATP, and uses different proving

methods [10,11].

Geometry Expert (GEX) (new version, currently under development) is a DGS

with a client-side web interface [9]; the GEX prover is based on algebraic proof

methods, and the user can only select one from a limited number of conclusions

(e.g., “are three selected point collinear?”). The GEX tool does not have an

accessible database of problems, and does not provide a formatted output for

images and proofs.

GEOTHER is an environment for manipulating and proving geometric theorems

implemented in Maple, with drawing routines and the interface in Java. GEOTHER

can work with a menu-driven graphic user interface and contains a collection of

theorems in both elementary and differential geometry, with sample specifications

that have been proved. [21,20].

Cinderella uses randomised theorem checking of the geometrical properties; it

does not provide proofs in any form [5,14,19].

Discover is a DGS that can communicate with Mathematica 8 , using the symbolic

capabilities of the latter to implement the Gröebner bases method [2]. It is

necessary to translate the geometric construction to an algebraic form and back,

from the conclusion in algebraic form to its geometric counterpart. No proofs in

any form are provided.

geometriagon has a vast repository of problems in the area of classical construc-

tive (ruler and compass only) Euclidean geometry 9 . A registered user can ac-

cess/edit all problems and solutions. It does not provide an ATP. The user can

perform only valid steps in the construction, using only a limited set of tools,

and in this way the system is capable to recognise whenever a user has reach a

solution of a problem. No formal proofs are provided.

GeoView combines the Coq ATP and the GeoplanJ DGS into a framework in

which it is possible to edit statements of geometrical theorems, and to visualise

the statement using the DGS [1]. The proofs are not accessible.

GeoGebra is a DGS with an internationalised graphical interface allowing graph-

ical and textual input. Figures can be exported to various formats, including

a dynamic version for Web. It does not have an ATP tool, neither it keeps a

repository of problems [8].

Theorema system integrates a number of different mathematical tools and rea-

soners, including several geometry theorem provers — provers based on Gröebner

bases method, Wu’s methods, the area method. The system is built on top of

Mathematica 8 system and uses its visualisation tools [3].

8 http://www.wolfram.com
9 geometriagon: http://www.polarprof.net/geometriagon/
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Tool DGS ATP Readable
Proofs

Web
Interface

Repository
of Prob-
lems

Verification
of Con-
structions

GeoThms
√ √ √ √ √ √

Geometry Explorer
√ √ √

MMP/Geometer
√ √ √

GEX (old version)
√ √ √

GEX (new version)
√ √ √

GEOTHER
√ √ √

Cinderella
√

Discover
√ √

geometriagon
√ √ √

GeoView
√ √

GeoGebra
√

Theorema
√ √

Table 1
Comparison between tools that combine DGS, ATP and repository of geometry theorems

7 Future Work

We are planning to augment the framework by other dynamic geometry tools, and

other geometry theorem provers. We are considering theorem provers based on

the full-area method (which also produces synthetic proofs), Wu’s method and

Gröebner bases method. We are planning to enable exchanging data with other tools

(internally, within GeoThms, and externally) via our XML format for geometrical

constructions and proofs.

We are planning to incorporate a syntax highlighting text editor as a substitute

to the textarea field, providing in this way line numbering and syntax highlight.

We are planning to use Math-ML for rendering theorems’ statements and proofs

stored in XML.

The search mechanism will be improved to provide options for advanced search.

We are planning to internationalise GeoThms, in order to make it wider usable

in education.

The “Help” system will be improved, by adding more detailed information to

the various help pages already provided.

8 Conclusions

GeoThms gives the user a complex web-based framework suitable for new ways of

communicating geometric knowledge, it provides an open system where one can

learn from the existing knowledge base and seek for new results. GeoThms also

provides a system for storing geometric knowledge (in a strict, declarative form)

— not only theorem statements, but also their (automatically generated) proofs

and corresponding figures, i.e., visualisations. We are planning to further develop

GeoThms by improving its functionalities and incorporating more geometrical tools.

We also hope that GeoThms’ growing body of geometrical constructions and for-

mally proven geometrical theorems will become a major Internet resource for geo-

metrical constructions and conjectures.
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Abstract

Most of the state-of-the-art proof assistants are based on procedural proof languages, scripts, and rely on
LCF tacticals as the primary tool for tactics composition. In this paper we discuss how these ingredients
do not interact well with user interfaces based on the same interaction paradigm of Proof General (the de
facto standard in this field), identifying in the coarse-grainedness of tactical evaluation the key problem.
We propose Tinycals as an alternative to a subset of LCF tacticals, showing that the user does not experience
the same problem if tacticals are evaluated in a more fine-grained manner. We present the formal operational
semantics of tinycals as well as their implementation in the Matita proof assistant.

Keywords: Interactive Theorem Proving, Small Step Semantics, Tacticals

1 Introduction

Several state-of-the-art interactive theorem provers are based on procedural proof

languages; the user interacts with the system mainly via a textual script that records

the executed commands. The commands that allow progress during a proof are

called tactics and are executed atomically. NuPRL [10], Isabelle [6], Coq [13], and

Matita 4 (the proof assistant under development by our team at the University of

Bologna) are a few examples of those systems.

The best known proof assistant that provides only a declarative proof language

is Mizar [8], while a few others superpose a declarative proof language on top of a

procedural core. The most notable system in this category is Isabelle, which in its

Isabelle/Isar variant offers to users the declarative Isar proof language [14].

With the exception of Mizar, both kind of systems share the same user interface

paradigm, inspired by the pioneering work on CtCoq [2] and now incarnated by

Proof General [1]. In this paradigm, the smallest amount of code that can be
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theorem lt_O_defactorize_aux:
\forall f:nat_fact.
\forall i:nat.
O < defactorize_aux f i.
intro. elim f.
simplify. unfold lt.
rewrite > times_n_SO.
apply le_times.
change with (O < \pi _ i).
apply lt_O_nth_prime_n.
change with (O < (\pi _ i)^n).
apply lt_O_exp.
apply lt_O_nth_prime_n.
simplify.unfold lt.
rewrite > times_n_SO.
apply le_times.
change with (O < (\pi _ i)^n).
apply lt_O_exp.
apply lt_O_nth_prime_n.
change with
(O < defact n1 (S i)).

apply H.

theorem lt_O_defactorize_aux:
\forall f:nat_fact.
\forall i:nat.
O < defactorize_aux f i.
intro; elim f;
[1,2:
simplify; unfold lt;
rewrite > times_n_SO;
apply le_times;
[ change with (O < \pi _ i);

apply lt_O_nth_prime_n
|2,3:

change with (O < (\pi _ i)^n);
apply lt_O_exp;
apply lt_O_nth_prime_n

| change with
(O < defact n1 (S i));

apply H ] ].

Fig. 1. The same proof with (on the right) and without (on the left) tacticals.

executed atomically is the statement, which during a proof is either a tactic (in the

procedural world) or a single proof step (in the declarative world).

Scripts can be understood only by step by step execution, getting feedback on

the proof status from the system. Since feedback is given only between atomic

steps (at the so called execution points), it is important to have atomic steps as

small as possible for the sake of understanding but, also of debugging and proof

maintenance. This is in contrast with tacticals, higher order constructs which can

be used to combine tactics together.

In this paper we propose a replacement for tacticals in order to obtain smaller

atomic execution steps. Our work is not relevant in the context of declarative proof

languages. However, those few systems where it is possible to embed procedural

scripts inside declarative proof steps may already provide the functionality we sug-

gest.

Tacticals first appeared in the LCF theorem prover [5] in 1979. Paradigmatic

examples of tacticals are sequential composition and branching. 5 The former, usu-

ally written as “t1 ; t2”, takes two tactics t1 and t2 and apply t2 to each of the

conjectures resulting from the application of t1 to the current conjecture (of course

its application can be repeated to obtain pipelines of tactics “t1 ; t2 ; t3 ; · · · ”).

The latter, “t ; [ t1 | · · · | tn ]”, takes n + 1 tactics, applies t to the current conjec-

ture and, requiring t to return exactly n conjectures, applies t1 to the first returned

conjecture, t2 to the second, and so forth.

Tacticals improve procedural proof languages providing concrete advantages,

that we illustrate with Figure 1. The concrete syntax used in the figure is that of

the Matita proof assistant.

Proof structuring. Using branching, the script representation of proofs can mimic

the structure of the proof tree (the tree having conjectures as nodes and tactic-

labeled arcs). Since proof tree branches usually reflect conceptual parts of the

pen and paper proof, the branching tactical helps in improving scripts readability

(on the average very poor, if compared with declarative proof languages). Even

5 In this paper the term “branching” is used to refer to LCF’s THENL tactical

36



Sacerdoti Coen, Tassi, and Zacchiroli

maintainability of proof scripts is improved by the use of branching, for example

when hypothesis are added, removed or permuted.

For instance, in the right hand side of Figure 1 it is now clear that elim f splits

the proof in two branches; both of them (selected by “[1,2:”) begin with the

same tactics until each branch is split again by the application of the le times

lemma. Of the four branches, the second and third one (selected by “|2,3:”) are

proved by the same tactics, being proofs of the same fact. All the tactics that are

not followed by branching do not introduce ramifications in the proof.

In practice, the proof on the left hand side would be written by using inden-

tation and blank lines to understand where branches start and end. This way

readability is improved, but a lesser effect is achieved for proof maintenance.

Moreover, the system does not verify in any way the layout of the proof and does

not guarantee consistency when the script is changed. We expect that users will

abandon this behaviour as soon as an alternative without drawbacks — not the

case of LCF tacticals — will surface.

Notice that the selection of multiple branches at a time we propose in this

paper is an improvement over the standard branching tactical.

Conciseness. As code factorization is a good practice in programming, proof fac-

torization is in theorem proving. The use of tacticals like sequential composition

reduce the need of copy-and-paste in proof scripts helping in factorizing common

cases in proofs (so frequent in formal proofs pertaining to the computer science

field). Conciseness is evident in Figure 1.

In all the proof assistants we are aware of, tacticals are evaluated atomically

and placing the execution point in the middle of complex tacticals (for example at

occurrences of “;” in tactic pipelines) is not allowed. In Figure 1, this means that

having the execution point at the beginning of the proof and asking the system to

move it forward (i.e. to execute the next statement), the user will result in a “proof

completed” status, without having any feedback of the inner proof status the system

passed through. The only way for the user to inspect those status — a frequent

need, for instance for script maintenance or proof presentation — is to manually

de-structure the complex tacticals.

The big step evaluation of tacticals has also drawbacks on how proof authors

develop their proofs. Since it is not always possible to predict the outcome of

complex tactics, the following is common practice:

(i) evaluate the next tactic of the script;

(ii) inspect the set of returned conjectures;

(iii) decide whether the use of “;” or “[” is appropriate;

(iv) if it is: retract the last statement, add the tactical, go to step (i).

Last, but not less important, is the imprecise error reporting of big step eval-

uation of tacticals. Consider the frequent case of a script breaking and the user

having to fix it. The error message returned by the system may concern an inner

status unknown to the user, since the whole tactical is evaluated at once. Moreover,

the error message will probably concern terms that do not appear verbatim in the

script. Finding the statement that need to be fixed is usually done replacing tactics
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with identity tactic proceeding outside-in, until the single failing tactic is found.

This technique is not only error prone, but is even not reliable in presence of side-

effects (tactics closing conjectures other than that on which they are applied), since

the identity tactic has no side-effects and branches of the proof may be affected by

their absence.

We claim that the tension between tacticals and Proof General like interfaces

can be broken. In this paper we present a tiny language of tacticals — the so

called tinycals — which solves this issue. Tinycals can be evaluated in small steps,

enabling the execution point to be placed inside complex structures like pipelines or

branching constructs. This goal is achieved by de-structuring the syntax of tacticals

and stating the semantics as a transition system over evaluation status, that are

structures richer than the proof status tactics act on. Note that de-structuring does

not necessarily mean changing the concrete syntax of tacticals, but rather enabling

parsing and immediate evaluation of tactical fragments like “[” alone.

The paper is organized as follows. Section 2 describes the abstract syntax of

tinycals together with their small-step operational semantics. Other advantages of

tinycals with respect to LCF tacticals are discussed there as well. Section 3 presents

the tinycals implementation in Matita. Section 4 deals with tacticals not covered

by tinycals. Section 5 discusses related work and Section 6 concludes the paper.

2 Tinycals: syntax and semantics

The grammar of tinycals is reported in Table 1, where 〈L〉 is the top-level nonter-

minal generating the script language. 〈L〉 is a sequence of statements 〈S〉. Each

statement is either an atomic tactical 〈B〉 (marked with “tactic”) or a tinycal.

Note that the part of the grammar related to the tinycals themselves is com-

pletely de-structured. The need for embedding the structured syntax of LCF tac-

ticals (nonterminal 〈B〉) in the syntax of tinycals will be discussed in Section 4.

For the time being, the reader can suppose the syntax to be restricted to the case

〈B〉 ::= 〈T 〉.

We will now describe the semantics of tinycals which is parametric in the proof

status tactics act on and also in their semantics (see Table 2).

A proof status is the logical status of the current proof. It can be seen as

the current proof tree, but there is no need for it to actually be a tree. Matita

for instance just keeps the set of conjectures to prove, together with a proof term

where meta-variables occur in place of missing components. From a semantic point

of view the proof status is an abstract data type. Intuitively, it must describe at

least the set of conjectures yet to be proved. A Goal is another abstract data type

used to index conjectures.

The function apply tac implements tactic application. It consumes as input

a tactic, a proof status, and a goal (the conjecture the tactic should act on), and

returns as output a proof status and two lists of goals: the set of newly opened goals

and the set of goals which have been closed. This choice enables our semantics to

account for side-effects, that is: tactics can close goals other than that on which they

have been applied, a feature implemented in several proof assistants via existential

or meta-variables [4,9]. The proof status was not directly manipulated by tactics in
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Table 1
Abstract syntax of tinycals and core LCF tacticals.

〈S〉 ::= (statements)

“tactic” 〈B〉 (tactic)

| “.” (dot)

| “;” (semicolon)

| “[” (branch)

| “|” (shift)

| i1,. . ., in“:” (projection)

| “ ∗ :” (wild card)

| “accept” (acknowledge)

| “]” (merge)

| “focus” [g1;· · ·; gn] (selection)

| “done” (de-selection)

〈L〉 ::= (language)

〈S〉 (statement)

| 〈S〉 〈S〉 (sequence)

〈B〉 ::= (tacticals)

〈T 〉 (tactic)

| “try” 〈B〉 (recovery)

| “repeat” 〈B〉 (looping)

| 〈B〉“;”〈B〉 (composition)

| 〈B〉“;[” (branching)

〈B〉“|” . . . “|”〈B〉“]”

〈T 〉 ::= . . . (tactics)

Table 2
Semantics parameters.

proof status: ξ

proof goal: goal

tactic application: apply tac : T → ξ → goal → ξ × goal list× goal list

LCF because of the lack of meta-variables and side effects.

In the rest of this section we will define the semantics of tinycals as a transition

(denoted by −→ ) on evaluation status. Evaluation status are defined in Table 3.

The first component of the status (code) is a list of statements of the tinycals

grammar. The list is consumed, one statement at a time, by each transition. This

choice has been guided by the un-structured form of our grammar and is the heart

of the fine-grained execution of tinycals.

The second component is the proof status, which we enrich with a context stack

(the third component). The context stack, a representation of the proof history so

far, is handled as a stack: levels get pushed on top of it either when the branching

tinycal “[” is evaluated, or when “focus” is; levels get popped out of it when the

corresponding closing tinycals are (“]” for “[” and “done” for “focus”). Since

the syntax is un-structured, we can not ensure statically proper nesting of tinycals,

therefore each stack level is equipped with a tag which annotates it with the creating

tinycal (B for “[” and F for “focus”). In addition to the tag, each stack level has

three components Γ, τ and κ respectively for active tasks, tasks postponed to the
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Table 3
Evaluation status.

task = int× (Open goal | Closed goal ) (task)

Γ = task list (context)

τ = task list (“todo” list)

κ = task list (dot’s continuations)

ctxt tag = B | F (stack level tag)

ctxt stack = (Γ × τ × κ × ctxt tag) list (context stack)

code = 〈S〉 list (statements)

status = code × ξ × ctxt stack (evaluation status)

end of branching and tasks posponed by “.”. The role of these componenets will

be explained in the description of the tinycals that acts on them. Each component

is a sequence of numbered tasks. A task is an handler to either a conjecture yet to

be proved, or one which has been closed by a side-effect. In the latter case the user

will have to confirm the instantiation with “accept”.

Each evaluation status is meaningful to the user and can be presented by slightly

modifying already existent user interfaces. Our presentation choice is described in

Section 3. The impatient reader can take a sneak preview of Figure 2, where the

interesting part of the proof status is presented as a notebook of conjectures to prove,

and the conjecture labels represent the relevant information from the context stack

by means of: 1) bold text (for conjectures in the currently selected branches, targets

of the next tactic application; they are kept in the Γ component of the top of the

stack); 2) subscripts (for not yet selected conjectures in sibling branches; they are

kept in the Γ component of the level below the top of the stack). The rest of the

information hold in the stack does not need to be shown to the user since it does

not affect immediate user actions.

We describe first the semantics of the tinycals that do not involve the creation

of new levels on the stack. The semantics is shown in Table 4, where some utility

functions (described in Appendix A) are used.

Tactic application

Consider the first case of the tinycals semantics of Table 4. It makes use of the

first component (denoted Γ) of a stack level, which represent the “current” goals,

that is the set of goals to which the next tactic evaluated will be applied.

When a tactic is evaluated, the set Γ of current goals is inspected (expecting

to find at least one of them), and the tactic is applied in turn to each of them in

order to obtain the final proof status. At each step i the two sets Co
i and Gc

i of

goals opened and closed so far are updated. This process is atomic to the user

(i.e. no feedback is given while the tactic is being applied to each of the current

goals in turn), but she is free to cast off atomicity using branching. After the tactic

has been applied to all goals, the new set of current goals is created containing all

the goals which have been opened during the applications, but not already closed.
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Table 4
Basic tinycals semantics.

〈“tactic” 〈T 〉 ::c, ξ, 〈Γ, τ, κ, t〉 ::S〉 −→ 〈c, ξn, S′〉 n ≥ 1

where [g1;· · ·; gn] = get open goals in tasks list(Γ)

and







































〈ξ0, G
o
0, G

c
0〉 = 〈ξ, [ ], [ ]〉

〈ξi+1, G
o
i+1, G

c
i+1〉 = 〈ξi, G

o
i , G

c
i 〉 gi+1 ∈ Gc

i

〈ξi+1, G
o
i+1, G

c
i+1〉 = 〈ξ′, (Go

i \ Gc) ∪ Go, Gc
i ∪ Gc〉 gi+1 6∈ Gc

i

where 〈ξ′, Go, Gc〉 = apply tac(T, ξi, gi+1)

and S′ = 〈Γ′, τ ′, κ′, t〉 ::close tasks(Gc
n, S)

and Γ′ = mark as handled (Go
n)

and τ ′ = remove tasks(Gc
n, τ)

and κ′ = remove tasks(Gc
n, κ)

〈“;”::c, ξ, S〉 −→ 〈c, ξ, S〉

〈“accept”::c, ξ, 〈Γ, τ, κ, t〉 ::S〉 −→ 〈c, ξ, S′〉

where Γ = [〈j1, Closed g1〉; · · · ; 〈jn, Closed gn〉] n ≥ 1

and Gc = [g1;· · ·; gn]

and S′ = 〈[ ], remove tasks(Gc, τ), remove tasks(Gc, κ), t〉

:: close tasks(Gc, S)

〈“.”::c, ξ, 〈Γ, τ, κ, t〉 ::S〉 −→ 〈c, ξ, 〈[l1], τ, [l2;· · ·; ln] ∪ κ, t〉 ::S〉 n ≥ 1

where get open tasks(Γ) = [l1;· · ·; ln]

〈“.”::c, ξ, 〈Γ, τ, l ::κ, t〉 ::S〉 −→ 〈c, ξ, 〈[l], τ, κ, t〉 ::S〉

where get open tasks(Γ) = [ ]

They are marked (using the mark as handled utility) so that they do not satisfy the

unhandled predicate, indicating that some tactic has been applied to them. Goals

closed by side effects are removed from τ and κ and marked as Closed in S. The

reader can find a datailed description of this procedure in Appendix A.
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Sequential composition

Since sequencing is handled by Γ, the semantics of “;” is simply the identity

function. We kept it in the syntax of tinycal for preserving the parallelism with

LCF tacticals.

Side-effects handling

“accept” (third case in Table 4) is a tinycal used to deal with side-effects.

Consider for instance the case in which there are two current goals on which the

user branches. It can happen that applying a tactic to the first one closes the second,

removing the need of the second branch in the script. Using tinycals the user will

never see branches she was aware of disappear without notice. Cases like the above

one are thus handled marking the branch as Closed (using the close tasks utility)

on the stack and requiring the user to manually acknowledge what happened on it

using the “accept” tinycal, preserving the correspondence among script structure

and proof tree.

Example 2.1 Consider the following script:

apply trans_eq; [ apply H | apply H1 | accept ]

where the application of the transitivity property of equality to the conjecture L = R

opens the three conjectures ?1 : L =?3, ?2 : ?3 = R and ?3 : nat. Applying the

hypothesis H instantiates ?3, implicitly closing the third conjecture, that thus has

to be acknowledged.

Local de-structuring

Structuring proof scripts enhances their readability as long as the script structure

mimics the structure of the intuition behind the proof. For this reason, authors do

not always desire to structure proof scripts down to the most far leaf of the proof

tree.

Example 2.2 Consider for instance the following script snippet template:

tac1;

[ tac2. tac3.

| tac4; [ tac5 | tac6 ] ]

Here the author is trying to mock-up the structure of the proof (two main

branches, with two more branches in the second one), without caring about the

structure of the first branch.

Tacticals do not allow un-structured scripts to be nested inside branches. In the

example, they would only allow to replace the first branch with the identity tactic,

continuing the un-structured snippet “tac2. tac3.” at the end of the snippet,

but this way the correspondence among script structure and proof tree would be

completely lost. The semantics of the tinycal “.” (last two cases of Table 4) accounts

for local use of un-structured script snippets.

When “.” is applied to a non-empty set of current goals, the first one is selected

and become the new singleton current goals set Γ. The remaining goals are re-

membered in the third component of the current stack level (dot’s continuations,
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denoted κ), so that when the “.” is applied again on an empty set of goals they

can be recalled in turn. The locality of “.” is inherited by the locality of dot’s

continuation κ to stack levels.

Table 5
Branching tinycals semantics.

〈“[”::c, ξ, 〈[l1;· · ·; ln], τ, κ, t〉 ::S〉 −→ 〈c, ξ, S′〉 n ≥ 2

where renumber branches([l1;· · ·; ln]) = [l′1; · · · ; l′n]

and S′ = 〈[l′1], [ ], [ ], B〉 ::〈[l
′

2 ; · · · ; l′n], τ, κ, t〉 ::S

〈“|”::c, ξ, 〈Γ, τ, κ, B〉 ::〈[l1 ;· · ·; ln], τ ′, κ′, t′〉 ::S〉 −→ 〈c, ξ, S′〉 n ≥ 1

where S′ = 〈[l1], τ ∪ get open tasks(Γ) ∪ κ, [ ], B〉 ::〈[l2 ;· · ·; ln], τ ′, κ′, t′〉 ::S

〈i1,. . ., in“:”::c, ξ, 〈[l], τ, [ ], B〉 ::〈Γ′ , τ ′, κ′, t′〉 ::S〉 −→ 〈c, ξ, S′〉

where unhandled(l)

and ∀j = 1 . . . n, ∃lj = 〈j, sj〉, lj ∈ l ::Γ′

and S′ = 〈[l1; · · · ; ln], τ, [ ], B〉 ::〈(l ::Γ′) \ [l1; · · · ; ln], τ ′, κ′, t′〉 ::S

〈“ ∗ :”::c, ξ, 〈[l], τ, [ ], B〉 ::〈Γ′ , τ ′, κ′, t′〉 ::S〉 −→ 〈c, ξ, S′〉

where unhandled(l)

and S′ = 〈l ::Γ′, τ, [ ], B〉 ::〈[ ], τ ′ ∪ get open tasks(Γ) ∪ κ, κ′, t′〉 ::S

〈“]”::c, ξ, 〈Γ, τ, κ, B〉 ::〈Γ′ , τ ′, κ′, t′〉 ::S〉 −→ 〈c, ξ, S′〉

where S′ = 〈τ ∪ get open tasks(Γ) ∪ Γ′ ∪ κ, τ ′, κ′, t′〉 ::S

〈“focus” [g1;· · ·; gn] ::c, ξ, 〈Γ, τ, κ, t〉 ::S〉 −→ 〈c, ξ, S′〉

where gi ∈ get open goals in status(S)

and S′ = 〈mark as handled([g1; · · · ; gn]), [ ], [ ], F〉

::close tasks(〈Γ, τ, κ, t〉 ::S)

〈“done”::c, ξ, 〈[ ], [ ], [ ], F〉 ::S 〉 −→ 〈c, ξ, S〉

Table 5 describes the semantics of tinycals that require a stack discipline.
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Branching

Support for branching is implemented by “[”, which creates a new level on the

stack for the first of the current goals. Remaining goals (the current branching

context) are stored in the level just below the freshly created one. There are three

different ways of selecting them. Repeated uses of “|” consume the branching con-

text in sequential order. i1,. . ., in“:” enables multiple positional selection of goals

from the branching context. “∗:” recall all goals of the current branching context

as the new set of current goals. The semantics of all these branching tacticals is

shown in the first five cases of Table 5.

Each time the user finishes working on the current goals and selects a new goal

from the branching context, the result of her work (namely the current goals in

Γ) needs to be saved for restoring at the end of the branching construct. This is

needed to implement the LCF semantics that provides support for snippets like the

following:

Example 2.3

tac1; [ tac2 | tac3 ]; tac4

where the goals resulting by the application of tac2 and tac3 are re-flowed

together to create the goals set for tac4.

The place where we store them is the second component of stack levels (todo

list, denoted τ). Each time a branching selection tinycal is used the current goals

set (possibly empty) is appended to the todo list for the current stack level.

When “]” is used to finish branching (fifth rule of Table 5), the todo list τ is used

to create the new set of current goals Γ, together with the goals not handled during

the branching (note that this is a small improvement over LCF tactical semantics,

where leaving not handled branches is not allowed).

Focusing

The pair of tinycals “focus”. . . “done” is similar in spirit to the pair “[”. . . “]”,

but is not required to work on the current branching context. With “focus”, goals

located everywhere on the stack can be recalled to form a new set of current goals.

On this the user is then free to work as she prefer, for instance branching, but is

required to close all of them before invoking “done”.

The intended use of “focus”. . . “done” is to deal with meta-variables and side

effects. The application of a tactic to a conjecture with meta-variables in the conclu-

sion or hypotheses can instantiate the meta-variables making other conjectures false.

In other words, in presence of meta-variables conjectures are no longer independent

and it becomes crucial to consider and close a bunch or dependent conjectures to-

gether, even if in far away branches of the proof. In these cases “focus”. . . “done”

is used to select all the related branches for immediate work on them. Alternatively,

“focus”. . . “done” can be used to jump on a remote branch of the tree in order to

instantiate a meta-variable by side effects before resuming proof search from the

current position.

Note that using “focus”. . . “done”, no harm is done to the proper structuring

of scripts, since all goals the user is aware of, if closed, will be marked as Closed
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requiring her to manually “accept” them later on in the proof.

3 Implementation issues

Tinycals have been implemented in the Matita proof assistant. This section de-

scribes the issues faced in their implementation.

Encoding of tacticals

Tacticals play two different roles in a proof assistant. They can be used both

in scripts and in tactic implementations. As a matter of fact at least one tactical

among sequential composition and branching is used in the implementation of each

derived tactic.

In this paper we propose the replacement of tacticals with tinycals. Tacticals

operate on proof status, while tinycals operate on evaluation status. This is wel-

come when tinycals are used in scripts, since the additional information kept in the

evaluation status is the rich intermediate state we want to present to the user. On

the contrary, this datatype change does not allow the replacement of tacticals with

tinycals in the implementation of derived tactics. Thus we are immediately led to

consider if it is possible to express tacticals in terms of tinycals, in order to avoid

an independent re-implementation of related operations.

The answer is positive under additional assumptions on the abstract data type

of proof status. Intuitively, we need to define two “inverse” functions to embed a

proof status, a goal, and a code in an evaluation status (let it be embed) and to

project an evaluation status to a proof status and two lists of opened and closed

goals (let it be proj ). Once the two functions are implemented, we can express

sequential composition and branching as follows:

(t1; t2)(ξ, g) = proj (eval(embed([t1; “; ”; t2], ξ, g))) (1)

(t; [t1| . . . |tn])(ξ, g) = proj (eval(embed([t; “[”; t1; “|”; . . . ; “|”; tn; “]”], ξ, g))) (2)

where eval is the transitive closure of −→ . For each status S the code of the status

eval(S) is empty.

The embed function is easily defined as:

embed(c, ξ, g) = 〈c, ξ, [〈g, [ ], [ ], F〉]〉

To define the proj function, however, we need to be able to compute the set of

goals opened and closed by eval(embed(c, ξ, g)) for any given code c, proof status ξ

and selected goal g. The formers are easily computed by the get open goals in status

utility of Appendix A. However, to compute the latter the information stored in an

evaluation context is not enough.

We say that tactics do not reuse goals whenever closed goals cannot be re-opened

(remember that a goal is just an handle to a conjecture, not the conjecture itself).

Concretely, it is possible to respect this property in the implementation by keeping

a global counter that represents the highest goal index already used. When a tactic

opens a new goal it picks the successor of the counter, that is also incremented.

When tactics do not reuse goals it is possible to determine the goals closed by a
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sequence of evaluation steps by comparing the set of open goals at the two extremes

of the sequence. To make this comparison it is possible to add to the proof status

abstract data type a method that returns the set of opened goals.

Let diff be the function that given two proof status ξ and ξ′ returns the set of

goals that were open in ξ and are closed in ξ′. For each proof status ξ the projξ

function is defined as:

projξ([ ], ξ
′, S) = (ξ′, get open goals in status(S), diff (ξ, ξ′))

The function proj ξ must be used in Equation (1) and Equation (2) in place of

proj .

Tinycals user interface

Tinycals would be worthless without a way to present evaluation status to the

user. Our current solution for the Matita user interface is shown in Figure 2.

Fig. 2. Evaluation status representation in the Matita user interface.

We already had a Proof General like user interface with script and execution

point (on the left of Figure 2) and a tabbed representation of the set of open con-

jectures (on the right) as sequents, using meta-variable indexes as labels. What the

user was missing to work with tinycals was a visual representation of the stack. Our

choice has been to represent the current branching context as tab label annotations:

all goals in the current goals set have their labels typeset in boldface, goals of the

current branching context have labels prepended by |n (where n is their positional

index), and goals already closed by side-effects have strike-through labels like: ?n.

For instance in Figure 2, the only goal (in bold-face) the next tactic will be

applied to is 20 (i.e. Γ = [〈1, Open 20〉]), while goal 21 will be selected by the next

“|” tinycal.
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This choice makes the user aware of which goals will be affected by a tactic

evaluated at the execution point, and of all the indexing information she might

need there. She indeed can see all meta-variable indexes (in case she wants to

“focus”) and all the positional indexes of goals in the current branching context

(for i1,. . ., in“:”and “∗:”). Yet, this user interface choice minimizes the drift from

the usual way of working with Proof General like interfaces.

4 A digression on the remaining tacticals

Of the basic LCF tacticals, we have considered so far only sequential composi-

tion and branching. It is worth discussing the remaining ones, in particular try,

|| (or-else) and repeat.

The try T tactical, that never fails, applies the tactic T , behaving as the identity

if T fails. It is a particular case of the or-else tactical: T1||T2 behaves as T1 if T1

does not fail, as T2 otherwise. Thus try T is equivalent to T ||id.

The try and or-else tacticals occur in a script with two different usages. The most

common one is after sequential composition: T1; try T2 or T1;T2||T3. Here the idea is

that the user knows that T2 can be applied to some of the goals generated by T1 (and

T3 to the others in the second case). So she is faced with two possibilities: either use

branching and repeat T2 (or T3) in every branch, or use sequential composition and

backtracking (encapsulated in the two tacticals). Tinycals offer a better solution

to either choice by means of the projection and wild card tinycals: T1; [i1, . . . , in :

T2|∗ : T3]. The latter expression is not also more informative to the reader, but it

is also computationally more efficient since it avoids the (maybe costly) application

of T2 to several goals.

The second usage of try and or-else is inside a repeat tactical. The repeat T

tactical applies T once, failing if T fails; otherwise the tactical recursively applies

T again on every goal opened by T until T fails, in which case it behaves as the

identity tactic.

Is it possible to provide an un-structured version of try T , T ||T ′, and repeat T

in the spirit of tinycals in order to allow the user to write and execute T step

by step inspecting the intermediate evaluation status? The answer is negative as

we can easily see in the simplest case, that of try T . Consider the statement

T ; try (T1;T2) where sequential composition is supposed to be provided by the

corresponding tinycal. Let T open two goals and suppose that “try” is executed

atomically so that the evaluation point is just before T1. When the user executes

T1, T1 can be applied as expected to both goals in sequence. Let ξ be the proof

status after the application of T and let ξ1 and ξ2 be those after the application of

T1 to the first and second goal respectively. Let now the user execute the identity

tinycal “;” followed by T2 and let T2 fail over the first goal. To respect the intended

semantics of the tactical, the status ξ2 should be partially backtracked to undo the

changes from ξ to ξ1, preserving those from ξ1 to ξ2.

If the system has side effects the latter operation is undefined, since T1 applied to

ξ could have instantiated meta-variables that controlled the behavior of T1 applied

to ξ1. Thus undoing the application of T1 to the first goal also invalidates the

previous application of T1 to the second goal.
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Even if the system has no side effects, the requirement that proof status can be

partially backtracked is quite restrictive on the possible implementations of a proof

status. For instance, a proof status cannot be a simple proof term with occurrences

of meta-variables in place of conjectures, since backtracking a tactic would require

the replacement of a precise subterm with a meta-variable, but there would be no

information to detect which subterm.

As a final remark, the simplest solution of implementing partial backtracking

by means of a full backtrack to ξ followed by an application of T1 to the second

goal only does not conform to the spirit of tinycals. With this implementation, the

application of T1 to the second goal would be performed twice, sweeping the waste

of computational resources under the rug. The only honest solution consists of

keeping all tacticals, except branching and sequential composition, fully structured

as they are now. The user that wants to inspect the behavior of T ; try T1 before that

of T ; try (T1;T2) is obliged to do so by executing atomically try T1, backtracking

by hand and executing try (T1;T2) from scratch. A similar conclusion is reached

for the remaining tacticals. For this reason in the syntax given in Table 1 the

production 〈B〉 lists all the traditional tacticals that are not subsumed by tinycals.

Notice that atomic sequential composition and atomic branching (as implemented

in the previous section) are also listed since tinycals cannot occur as arguments of

a tactical.

5 Related work

Different presentations of the semantics of tacticals has been given in the past. The

first presentation has been given in [5] by Gordon et al. Although a larger set

of tacticals than that considered here was described in their work, the problem of

inspection of inner proof status was not considered. Proof General-like interfaces

were not available at the time, as well as meta-variables and tactics with side-effects.

In [7], Kirchner described a small step semantics of Coq tacticals. Despite the

minor expressive advantages offered by tinycals over the corresponding Coq tacticals

(like “focus”, “∗:”, i1,. . ., in“:”, the less constrained use of “[”, and the structuring

facilities implemented by “.” and “accept”), the formalization of tinycals is more

general and we believe that it can be applied to a large class of proof assistants. In

particular our semantics only assume an abstract proof status and a very general

type for tactic applications, while in [7] a very detailed API for proof trees was

assumed.

Delahaye in [3] described Ltac , a powerful meta-language which can be used both

by users and tactics implementors to write small automations at the proof language

level. Ltac is way more powerful than tinycals, featuring constructs typical of high-

level programming and defining their reduction semantics. However, since its aim

was different, Ltac fails to address the interaction problem that tinycals do address.

Two alternative approaches for authoring structured HOL scripts have been pro-

posed in [11] and [12]. The first approach, implemented in Syme’s TkHOL, is similar

to the one presented in this paper but lacks a formal description. Moreover, unlike

HOL, we consider a logic with meta-variables which can be closed by side effects.

Therefore the order in which branches are closed by tactics is relevant and must be

48



Sacerdoti Coen, Tassi, and Zacchiroli

made explicit in the script. For this reason we support tinycals like “focus” and

i1,. . ., in“:” which were not needed in TkHOL. The second approach, by Takahashi

et al., implements syntax directed editing by automatically claiming lemmata for

each goal opened by the last executed tactic. This technique breaks down with

meta-variables because they are not allowed in the statements of lemmata.

6 Conclusions

In this paper we presented the syntax and semantics of tinycals, a tactical language

able to mimic some of the LCF tacticals so widespread in state-of-the-art proof assis-

tants. Tinycals advantages over LCF tacticals is that their syntax is un-structured

and their evaluation proceeds step by step, enabling the user to start execution of a

structured script before its completion. Intermediate proof status can be inspected

and tactics with side effects are supported as well. The neat result is better inte-

gration with user interfaces based on the CtCoq/Proof General paradigm. Some

implementative issues have also been discussed, and the extension of the approach

to other tacticals has been considered with negative results.

Tinycals have been implemented and are used in the Matita proof assistant

for the ongoing development of its standard library. Users experienced with other

proof assistants, in particular Coq, consider them a serious improvement in the

proof authoring interface. This is not a big figure (our users are just the member of

our research team at the time of writing), but is enough to motivate our work on

them, hoping to see them adopted soon in other systems.
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A Utility functions

The goal automatically selected by “[” or “|” is called unhandled until a tactic is

applied to it. Unhandled goals are just postponed (not moved into the todo list

τ) by i1,. . ., in“:”. Goals opened by a tactic are marked with mark as handled to

distinguishing them from unhandled goals. The function renumber branches is used

by “[” to name branches.

unhandled(l) =







true if l = 〈n, Open g〉 ∧ n > 0

false otherwise

mark as handled([g1; · · · ; gn]) = [〈0, Open g1〉; · · · ; 〈0, Open gn〉]

renumber branches([〈i1, s1〉; · · · ; 〈in, sn〉]) = [〈1, s1〉; · · · ; 〈n, sn〉]

The next three functions returns open goals or tasks in the status or parts of it.

Open goals are those corresponding to conjectures still to be proved.

get open tasks(l) =


















[ ] if l = [ ]

〈i, Open g〉 ::get open tasks(tl) if l = 〈i, Open g〉 :: tl

get open tasks(tl) if l = hd :: tl

get open goals in tasks list(l) =


















[ ] if l = [ ]

g :: get open goals in tasks list(tl) if l = 〈 , Open g〉 :: tl

get open goals in tasks list(tl) if l = 〈 , Closed g〉 :: tl

get open goals in status(S) =


















[ ] if S = [ ]

get open goals in tasks list(Γ@τ@κ)

@get open goals in status(tl) if S = 〈Γ, τ, κ, 〉 :: tl
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To keep the correspondence between branches in the script and ramifications in the

proof, goals closed by side-effects are marked as Closed if they are in Γ (that keeps

track of open branches). Otherwise they are silently removed from postponed goals

(in todo list τ or dot continuation κ). Closed branches have to be accepted by the

user with “accept”.

close tasks(G,S) =






























[ ] if S = [ ]

〈closeaux (G,Γ), τ ′, κ′, t〉 ::close tasks(G, tl ) if S = 〈Γ, τ, κ, t〉 :: tl

where τ ′ = remove tasks(G, τ)

and κ′ = remove tasks(G,κ)

closeaux (G, l) =


















[ ] if l = [ ]

〈i, Closed g〉 ::closeaux (G, tl ) if l = 〈i, Open g〉 :: tl ∧ g ∈ G

hd ::closeaux (G, tl ) if l = hd :: tl

remove tasks(G, l) =


















[ ] if l = [ ]

remove tasks(G, tl ) if l = 〈i, Open g〉 :: tl ∧ g ∈ G

hd ::remove tasks(G, tl ) if l = hd :: tl
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Abstract

This article describes an architecture for creating responsive web interfaces for proof assistants. The ar-
chitecture combines current web development technologies with the functionality of local prover interfaces,
to create an interface that is available completely within a web browser, but resembles and behaves like a
local one. Security, availability and efficiency issues of the proposed solution are described. A prototype
implementation of a web interface for the Coq proof assistant [8] created according to our architecture is
presented. Access to the prototype is available on http://hair-dryer.cs.ru.nl:1024/.
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1 Introduction

1.1 Motivation

Nowadays people are more and more accustomed to having a connection to the

Internet all the time. Thus the network becomes a part of the computer one uses.

As a consequence a tendency has emerged to provide services available just by

accessing certain web pages. In this way people do not themselves need to install

software for such services on their computers any more. Examples include web

interfaces to e-mail, calendars, chat clients, word processors and maps.

Commercial services are often available through web-interfaces. On the other

hand, in the scientific domain, examples are not so abundant. In particular there

are no real implementations of web interfaces for proof assistants.

To use a proof assistant, one needs to install some software. Often the instal-

lation process is complicated. For example to install Isabelle [17], which is one of

the most popular proof assistants, on a Linux system, one needs a particular ver-

sion of PolyML, a HOL heap and Isabelle itself. To use an interface to access the

prover, one needs ProofGeneral [4] and one of the supported Emacs versions. With

Debian we had to downgrade the Linux kernel to support PolyML. The process

described above is already complicated, not to mention other operating systems
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and architectures, additional desirable patches and libraries, or less commonly used

provers.

This is a problem. It happens that computer scientists prefer to stick with

installed old versions of provers, not to go through the same process to upgrade.

Mathematicians may even stay away from computer assisted proving, just because

of the complexity of installation.

We want a fast interface, that is available with just a web browser. We want

to access various proof assistants and their versions, in a uniform manner, without

installing anything, not even plugins. The interface should look and behave like

local interfaces to proof assistants.

We want the possibility to create web pages, that show tutorials and proofs,

but that are bound to the prover itself, where the user can interact with the real

system. The provider of the server may install patched versions of provers, allowing

an easy way for the users to try out their features. We want libraries for proof

assistants to be available centrally, so that users who want to see them do not need

to download or install anything. The interface should allow developing proofs and

libraries centrally, in a wiki -like [11] way.

1.2 Our Approach

The solution is a client-server architecture with a minimal lightweight client inter-

preted by the browser, a specialized HTTP server and background HTTP based

communication between them. The key element of our architecture is the asyn-

chronous DOM modification technique (sometimes referred to as AJAX - Asyn-

chronous JavaScript and XML or Web application). The client part is on the

server, and when the user accesses the interface page, it is downloaded by the

browser, which is able to interpret it without any installation.

The user of the interface, accessing it with the browser, does not need to do

anything when a modification is done on the server. Every time the user accesses

a prover, the version of the prover that is currently installed on the server is used.

The user can access any of the provers installed on the server, even a prover which

does not work on the platform from which the connection is made.

Saving the files on the central server allows accessing them from any location,

by just accessing the interface’s page with a web browser. A central repository

simplifies cooperation in proof development, by replacing versioning systems like

CVS, which keeps a remote and a local copy, by a wiki-like mechanism, where the

only copy is the remote one.

Our approach is presented as an architecture to create web interfaces to proof

assistants, but it is not limited to them. The problems solved are relevant to creating

web interfaces programs that have a state, include an undo mechanism, and their

interfaces can be buffer oriented. Our architecture may be applied for example to

buffer oriented programming languages, like Epigram [15].

1.3 Related work

There have been some experiments with providing remote access to a prover. None

of them allowed efficient access without installing additional software.
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LogiCoq [18] is a web interface to Coq [8]. It offers a window where one can

insert the contents of whole Coq buffer and submit them for verification. It sends the

whole buffer with standard HTTP request and refreshes the whole page. Therefore

one can work efficiently only with tiny proofs.

The web interface to the Omega system [7], requires the Mozart interpreter to be

installed on the user’s machine. The use of the web browser is minimal, the whole

interface is written in Mozart. Installation of Mozart is possible only for certain

platforms which also makes the solution limited.

There are Java applets having built-in proof assistant functionality. Examples

may include G4IP [19] or Logic Gateway [12]. The installation of a browser plug-in

to support Java is not simple in a Unix environment and limiting provers to Java

applets is undesired.

Web interfaces related to proof assistants and displaying mathematics on the

web are worth mentioning. In particular:

• Helm [3] - (Hypertextual Electronic Library of Mathematics) A web interface that

allows visualisation of libraries available for proof assistants.

• Whelp [2] - A content based search engine for finding theorems in proof assistants

libraries, that supports queries requiring matching and/or typing.

• ActiveMath [16] - A web-based framework for learning mathematics that uses

Java applets to communicate with a central server using OMDoc [13].

There are some commercial web interfaces and frameworks that use asynchronous

DOM modification in non scientific domains.

The novelty of our architecture in comparison with existing web interfaces for

theorem provers is that it allows the creation of an interface to a prover, that can

look and behave very much like the ones offered by state-of-the-art local interfaces,

but is available just by accessing a page with a web browser without installing any

additional software, not even plugins. Because of the architecture, the network

used to transfer information does not slow down the interaction. The idea to use

asynchronous DOM modification to create an interface to a proof assistants has

never been applied before.

1.4 Contents

In the rest of the paper we present the techniques for creation of web interfaces,

that we will use (Section 2) and the internals of a local prover interfaces which

we try to imitate (Section 3), followed by the presentation of the new architecture

(Section 4) and a description of its security and efficiency (Section 5). We present

our implementation prototype (Section 6). Finally we conclude and present a vision

of future work (Section 7).

2 The Concept of Asynchronous DOM Modification

As the web is becoming more commonly used, web page designers and browser

implementers add new functionality to web pages. Text files have been replaced

by hyper-linked files, later including images, language-specific and mathematical
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characters, styles and dynamic elements. The W3C Consortium, which is the or-

ganization responsible for the standardization of the Web, defines these elements

as standards, and in consequence they are implemented in a similar ways in all

browsers.

Since the late nineties browsers have started supporting the following technolo-

gies relevant to our research: JavaScript, DOM [14] and XmlHttp [20]. Combined

use of these three technologies has became popular in recent years, since they allow

one to create responsive web interfaces. In this document we refer to the combined

usage of these three technologies as “Asynchronous DOM Modification.” One can

find other names describing this technique, like AJAX or Web Application.

JavaScript is a scripting programming language, created by Netscape in 1995,

for adding certain dynamic functionality to pages written in HTML. It has been

quickly adopted by most browsers and nowadays it is supported even by some text

mode browsers like w3m and Links, and mobile phone browsers. It is very often

used on Internet websites.

DOM (Document Object Model) [14] is an API (Application programming in-

terface) for managing HTML and XML documents that allows modifications of

their structure and content. Recent browsers support W3C DOM accessibility by

JavaScript. It is often used on web pages to add dynamic elements, for example

drop-down menus or images that change when the mouse moves over them.

XmlHttp [20] is an API accessible by web browser scripting languages to transfer

data to and from a web server. It internally uses HTTP requests. XmlHttp requests

are sent to the server without the knowledge of the user of the web browser. For

every XmlHttp request a callback has to be provided, to be executed when the

response from the server is received. The sending of the request can be optionally

asynchronous. XmlHttp has been available in most browsers for some time, and has

been recently described in a W3C specification draft.

Asynchronous DOM modification is a web development technique that uses the

three technologies described above to create responsive web interfaces. Such inter-

faces are web pages, where particular events (key presses and mouse movement)

are captured by JavaScript events. The minimal client part encoded in JavaScript

processes the local events, like menu opening or typing in a buffer. Events that

require additional information from the server are sent in asynchronous XmlHttp

requests. Since the request is done in the background, it does not interrupt the user

from working locally. When the response arrives, it is used to modify the DOM of

the page.

In comparison with classical web pages, the usage of asynchronous DOM mod-

ification makes it possible to send minimal information to the server, to receive

only the information required, and to refresh small parts of the web page. Network

overhead and page refreshing are minimized, thus creating interfaces which work

many times faster then classical web-based ones. This way, the interface can closely

resemble local interfaces, if network latency is reasonable. In case of high network

latency, asynchronous requests allow the user to work locally, while additional data

is requested.

Examples of usage of the asynchronous DOM modification are: webmails and

calendars which operate within a single page, maps which download required parts
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as they are dragged, and web chat clients. Such web interfaces are supported by all

standard web browsers, in particular all Gecko based browsers, Microsoft Internet

Explorer versions from 5, Opera from version 8, Konqueror from version 3.2, Safari

from version 1.2 and even Nokia S60 browser from version 3. It is not supported by

text mode browsers and browsers for visually impaired people.

3 Generic Interface for Proof Assistants

In this section we describe the internals of local interfaces for proof assistants. We

chose for this ProofGeneral [4] for two reasons. First, it is a prover-independent

interface to proof assistants. Second, it is popular, since it is universal and since it

is built on the highly configurable Emacs text editor.

ProofGeneral’s interface provides the user with two buffers: an editable buffer

containing the proof script and the prover state buffer. ProofGeneral relies on the

proof assistant to process the commands incrementally. It does not distinguish

tactic-mode proofs from declarative-mode proofs. State changing and non-state-

changing Coq commands are distinguished to make only the relevant ones part of

the proof script and to allow queries.

The interface colors keywords according to the above distinctions, and addi-

tionally marks parts of the buffer with a background color, to indicate the status

of verification. Possible states include: Expression that has been accepted by the

prover, expression that is now being verified, and editable non-verified expression.

ProofGeneral provides a proof replying mechanism. The prover itself has to

provide an undo mechanism. Users may choose a point in the buffer to go to, and

ProofGeneral issues a number of proof steps and undo steps to the prover in order

to reach that point.

ProofGeneral is responsible for providing the proof script from files on the disc

to the prover and saving the buffers state. Other disc operations that exist in

some provers, like proof compilation, program extraction or automated creation of

documentation are not handled by ProofGeneral.

The current version of ProofGeneral is implemented mostly in Emacs Lisp, and

is strongly tied with the editor itself. It is easy to adapt ProofGeneral to new proof

assistants, by setting a number of variables. If this is not sufficient ELisp code can

be used.

Other interfaces to provers offer mostly similar functionality. In some interfaces,

like PCoq [1] or IsaWin, additional visualisation mechanisms are available, for exam-

ple term annotations. Some of these mechanisms are not available in ProofGeneral;

this limitation comes from the Emacs editor.

4 General Architecture

The two core elements of our architecture are: a specialized Web server and a

communication mechanism (Fig. 1).

The Web server serves normal files and it is able to respond to special HTTP

requests (see 4.2). The main interface is available as a normal HTML file on the

server. When a user accesses the page with a browser, the page requires certain
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Fig. 1. General architecture.

JavaScript files, which are then downloaded and interpreted by the browser. This

serves as the client part.

The communication between the client part and the server is done with the

mechanism described in Section 2. HTTP requests are created in the background.

The results are used to update the page in place. Only a small amount of information

is transferred between the client and the server. The transfer is done asynchronously,

making the interface responsive.

4.1 The Client Part

The client part offers a web page that initially presents the user with an editable

buffer and an empty response buffer. (Also a menu or a toolbar is necessary for

interaction, but they are normal elements of web pages). Buffers are implemented

as HTML IFrames 2 . All keys that modify the IFrame are assigned to a special

function. Locking of parts of the buffer is implemented by disallowing changes to

locked parts of the buffer in this function.

When the user wants to verify a part of the buffer, this part is locked and sent to

the server. Since the request is a background one, even if it takes a moment the user

may continue working. When the response arrives, the contents of the two buffers

are modified. The response may be a success, and then the part of the editable

buffer is marked ‘verified’ and the response buffer shows the new prover state. If

2 An IFrame is an HTML tag that includes a floating frame within a page, that can be optionally editable.
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the command failed, the part of editable buffer is unlocked and the error shown.

Parts of the editable buffer are marked, as their state changes, by using background

colors, as it is done in ProofGeneral.

The interface includes a proof replaying mechanism, created in a similar way that

it is done in local interfaces. When the user wants to go to a particular place in the

buffer, this information is passed to the server. The server sends the commands to

the client’s prover session and informs the interface about the results. In a similar

way the interface includes a break mechanism that allows stopping the prover’s

computation.

The interface includes functionality for file interaction. Files can be loaded and

saved on the server. For interoperability downloading files and uploading files from

the local computer may be provided. For proof development efficiency, insertion of

templates and queries may be provided.

4.2 The Server Part

The server includes standard HTTP file serving functionality. With it the user’s

browser downloads the client part. The server can also handle special messages

available for users, that have logged in. Session mechanism is used to support

multiple clients. A session is created when a user logs in to the system and is

sustained with a cookie mechanism. Every user’s session is associated with a par-

ticular prover session. The server runs provers as subprocesses and communicates

with them through standard input and output. Prover sessions are terminated after

a long period of inactivity (if the user did not close the page, the client part can

replay the proof script from the beginning).

The special messages, mentioned above, include: passing a given complete ex-

pression to verify to the prover, issuing an undo command in the prover, saving a

file, loading a file, and break (stopping the prover computation). The commands

from the client for the prover are passed first to the server, which transmits them

to the prover. Prover replies are analysed by the server and only state changes are

sent to the client. The state changes consist of two parts: changing of the markings

of the edit buffer and the new contents of the prover state buffer.

Replies from the server are passed back to the client in an asynchronous way.

This means, that the server does not answer HTTP requests from the client imme-

diately, but when an answer from the prover is received or a timeout is reached.

The server keeps a pool of provers that have been asked to process data, and waits

for an answer from any of them. The waiting process does not block the server,

that is, other clients’ requests can be processed in the meantime.

5 Security and Efficiency

5.1 User side

All code that the user runs is interpreted within the web browser. Thus a malicious

or virus infected prover can influence the client only by exploiting system or browser

errors.

The efficiency of code execution on the user’s side is dependent on the efficiency
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of the browser’s internal web page and scripts interpretation, and the speed of

HTML rendering.

Our experiments show that client-side DOM changes with Internet Explorer are

approximately twice as fast as with Mozilla Firefox (still usually invisible for the

user). It is hard to say whether this is due to less security checks or the worse

quality of the rendered page (no anti-aliasing) in Internet Explorer.

5.2 Server side

In any centralized environment security, availability and efficiency of the server are

important. Standard security measures include a backup server prepared to take

over network traffic in case of a primary server failure and regular backing up of

user files. In this subsection we will describe only the issues and solutions particular

to a server that runs a web interface to a prover.

Three kinds of issues arise: security, availability and equal sharing of resources.

First, exploiting bugs in our architecture could lead crackers to take control of the

server. Second, in a centralized environment the only copy of files is on the server.

Unavailability of the server makes users not only unable to work, but also unable to

access their files. Last, when users access the same server its resources are shared.

If a particular prover uses all the memory or CPU, other users are unable to work.

To provide security, the server is run in a chrooted 3 environment, as a non-

privileged user. The permissions include only reading server files and executing

the provers. Every prover type is run as a different user (using the file setuid

mechanism), that has read rights only to the prover’s library, and write rights only

to a directory where the prover’s proof scripts are stored. To disallow storing overly

large amounts of data, filesystem quota may be used.

For provers that allow system interaction, this functionality can be sometimes

disabled. In particular, for ML based provers, dropping to the toplevel can be

disabled. If the server administrator doesn’t trust the prover’s implementation,

a secure version of the kernel can be used to disable irrelevant system calls. In

this case even a language that is implemented inside ML can be available without

changes to the prover itself.

To ensure equal sharing of resources, prover processes can be run with Cpu

quota and memory quota mechanisms. The scheduling policy can be changed (for

example with the nice system call) to provide the server process with priority over

prover processes. Different provers have different CPU and memory requirements,

which should be taken into account while setting the limits.

When many users want to access the interface, the resources of a single server

may be insufficient. It is simple to run the server on a set of machines, by calling

provers as subprocesses through ssh on separate computers. A load balancing

mechanism can be implemented.

The communication between the server part and the client part can be secured

by providing the interface through HTTPS.

3 chroot is a system call preventing a process to access any files outside of a special root directory.

60



Kaliszyk

6 Implementation of a Prototype

We have implemented a minimal prototype of a web interface that follows the pro-

posed architecture. The interface allows using the Coq proof assistant [8] with just

a web browser, but it looks and behaves (Fig. 2) like the ones offered by CoqIde

and ProofGeneral.

Fig. 2. Screenshot of the prototype, that shows working with a Coq proof. The verified part of the edit
buffer is colored and locked. The state buffer shows the state of the proof, there are no Coq warnings.

Our server is a 400 line OCaml program, that serves two HTML files and a

number of JavaScript files. It additionally supports special POST requests for

verifying and for undoing commands as well as for loading and saving of files. It

uses the OCamlHttpd library, for web-server functionality.

Our client consists of 10kB of JavaScript and 2kB of HTML. Most of the client-

side code is responsible for the locking of the buffer and recognition of Coq expres-

sions.

To secure our prototype the server is run as nobody in a minimal chrooted

environment. The prover sub-processes are reniced not to interfere with the main

server process. Dropping from Coq to OCaml toplevel is disabled. The access to the

interface is password protected, to avoid creating prover sessions for web-spiders.

Web spiders are able only to see the saved proof scripts.

Our prototype includes a 1kB file, that is supposed to create a uniform layer

that works with different browsers. We have not yet made it as general, as the

asynchronous DOM modification is. In particular our prototype works well with

Gecko-based browsers (Mozilla, Firefox, Galeon, . . . ). It works with Internet Ex-
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plorer 6 and Opera 9, with some key-bindings missing (these browsers have them

assigned to internal functions). It does not yet work with KHTML based browsers

(Konqueror, Safari) and older versions of the above. We have tested our implemen-

tation’s efficiency, by trying to use the server from other locations. Although it is

hard to measure responsiveness to user’s actions objectively, our experiments show,

that with reasonable network latency, its responsiveness is very good.

The prototype is a Coq web interface, but there is not much code specific to

Coq. The client part includes recognition of Coq comments and whole expressions

to send. The server part includes recognition of successes and failures as well as

the undo mechanism. For all ELisp code from ProofGeneral equivalent JavaScript

regular expression handling can be provided. Thus adapting these three things

to other provers should be simple, which is why we believe that implementing an

interface according to our architecture that would support different provers can be

easily done.

The client part has to overcome the minor differences between browsers. In

particular it includes functions that create a uniform layer for XmlHttpRequest

creation, event binding, and DOM that work the same way on all currently sup-

ported browsers.

6.1 Possible Uses

Our interface can be used to create interactive tutorials presenting proof assistants.

We have created a special proof script, that includes a slightly modified version

of the official Coq tutorial. The descriptive parts have been put inside comments

(including the HTML formatting), and commands to the proof assistant have been

left outside comments. A user that enters such a page may just read the tutorial

and execute the commands in Coq environment, but may also do own experiments

with it.

Non-trivial proof scripts that use tactics are unreadable without intermediate

proof states. Thus proofs presented on the web are usually accompanied with some

of the proof states usually automatically generated by Coqdoc or TeXmacs [6].

A web interface can be used (even in a read-only mode) to present such proofs

interactively. In this way, the user reading the proof chooses which proof states to

see.

External proof assistant libraries can be included on the server. With our server

we included C-CoRN (Constructive Coq Repository at Nijmegen) [10]. Such li-

braries can be developed on the server. In such an approach visitors can always see

and test the current version, without downloading and compiling the library.

Modified and experimental versions of provers usually require patching a partic-

ular version of the source of the proof assistant. Presenting such a modified version

to others is easily possible with the given infrastructure. The server offered includes

the Declarative Proof Language extension for Coq [9].
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7 Conclusion

We presented an architecture to create simple, lightweight and fast web interfaces

to proof assistants. Such interfaces are a novelty in the domain. Our solution

works with modern web browsers without installing any additional software. The

installation and updating process is done only on the server, the users do not need

to do anything. It is therefore completely platform independent.

The communication mechanism makes the usage of the network minimal, there-

fore making the interface comparably responsive to local ones. In comparison with

other client-server solutions, the only limitation is the dependency on the web

browser. Fortunately web browsers include full scripting languages, allowing im-

plementation of nearly all possible functionality of the interface on the client side.

In particular the browser’s internal editors are weak in comparison with local edi-

tors. One can implement in JavaScript the handling of more key bindings to make

the editor similar to a local one. Most features of state-of-the-art local interfaces for

proof assistants can be imitated this way. The efficiency of an editor implemented

in JavaScript would depend on the browser interpreting it. We have not been able

to find any such editor.

We believe that a centralized environment, with provers accessible through a web

interface, is not limited in comparison with local interfaces, and that the architecture

we have proposed is in the spirit of the current trends of development in computer

science.

7.1 Future Work

Our primary focus is to extend the proposed architecture to a complete wiki-like

architecture. This requires a versioning mechanism and merging of users’ changes on

the server. Additionally proof displaying and searching mechanisms are mandatory.

Editing conflicts can be resolved in similar way as it is done in wiki software. For

example if the file was changed and a user wants to save over it, differences are

presented.

We would like to see how well our solution fits with the general prover interaction

protocol PGIP [5]. The protocol is XML-based, so parts of it may even be passed

by the server directly to browsers, since they are already able to parse XML. On the

other hand the protocol may include too much information, since it was designed

as a local one.

Finally we would like to create an implementation that includes all the features

of our proposed architecture. Ideas include: providing other provers, making it

compatible with all browsers that support asynchronous DOM modifications, im-

plementing the break mechanism, compiling Coq files automatically, adding syntax

highlighting, and providing better security.
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Abstract

We present a generic mediator, called PLATΩ, between text-editors and proof assistants. PLATΩ aims at integrated support
for the development, publication, formalization, and verification of mathematical documents in a natural way as possible:
The user authors his mathematical documents with a scientific WYSIWYG text-editor in the informal language he is used to,
that is a mixture of natural language and formulas. These documents are then semantically annotated preserving the textual
structure by using the flexible, parameterized proof language which we present. From this informal semantic representation
PLATΩ automatically generates the corresponding formal representation for a proof assistant, in our caseΩMEGA. The pri-
mary task of PLATΩ is the maintenance of consistent formal and informal representations during the interactive development
of the document.

1 Introduction

Unlike computer algebra systems, mathematical proof assistance systems have not yet
achieved considerable recognition and relevance in mathematical practice. Clearly, the
functionalities and strengths of these systems are generally not sufficiently developed to
attract mathematicians on the edge of research. For applications in e-learning and engi-
neering contexts their capabilities are often sufficient, though. However, even for these
applications significant progress is still required, in particular with respect to the usability
of these systems. One significant shortcoming of the currentsystems is that they are not
fully integrated into or accessible from within standard mathematical text-editors.

For purposes such as tutoring mathematics, communicating or publishing mathematical
documents, the content is in practice usually encoded usingcommon mathematical repre-
sentation languages by employing standard mathematical text editors. Proof assistance
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systems, in contrast, require fully formal representations and are not yet sufficiently linked
with these standard mathematical text-editors. Therefore, rather than developing a new user
interface for the mathematical assistance systemΩMEGA [24], we propose a generic way
of extendingΩMEGA to serve as a mathematical service provider for scientific text-editors.

‘If the mountain won’t come to Mohammed, Mohammed must go to the mountain.’

Our approach allows the user to write his mathematical documents in the language he
is used to, that is a mixture of natural language and formulas. These documents can then
be semantically annotated preserving the textual structure by using the flexible parameter-
ized proof language we present. From this semantic representation PLATΩ automatically
builds up the corresponding formal representation inΩMEGA and takes further care of the
maintenance of consistent versions.

The formal representation allows the underlying proof assistance system to support
the user in various ways, including the management of mathematical definitions, theorems
and proofs, as well as the access to automatic theorem provers, computer algebra systems,
and other mathematical tools in order to automatically verify conclusions and computations
made by the user and to suggest possible corrections. These functionalities can be provided
through PLATΩ by context-sensitive service menus in order to support the interactive de-
velopment of mathematical documents at a high level of abstraction.

On the one hand, these services could include the possibility to automatically generate
parts of the proof as well as computations in order to disburden the user of taking care about
cumbersome details and to let him concentrate on the substantial parts of the proof. Thus,
menu interaction may lead to changes of the formal representation which are reflected by
PLATΩ in changes of the semantic representation in the document. On the other hand,
further proof development in the text-editor leads to changes in the document which are
propagated by PLATΩ to changes in the formal representation inΩMEGA.

Altogether, this approach allows for the incremental, interactive development of math-
ematical documents which in addition can be formally validated byΩMEGA, hence ob-
taining verified mathematical documents. This approach is generally independent of the
proof assistance system as well as the text-editor. Nevertheless the scientific WYSIWYG
text-editor TEXMACS [27] provides professional type-setting and supports authoring with
powerful macro definition facilities like in LATEX. It moreover allows for the definition of
plug-ins that automatically process the document and is thus especially well-suited for an
integration of PLATΩ.

This paper is organized as follows: Section2 presents an overview on theΩMEGA

system in order to more concretely motivate our setting. Section 3 introduces the mediator
PLATΩ with a focus on the interfaces to the text-editor and the proof assistance system. A
working example is presented in Section4 that illustrates the integration of PLATΩ into a
scientific text editor like for example TEXMACS. The paper concludes with an overview on
related work (Section5) and a summary of the major results in Section6.

2 Preliminaries: ΩMEGA , M AYA , and the TASK L AYER

The development of the proof assistance systemΩMEGA is one of the major attempts to
build an all encompassing assistance tool for the working mathematician or for the formal
work of a software engineer. It is a representative of systems in the paradigm ofproof
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planningand combines interactive and automated proof

construction for domains with rich and well-structured
mathematical knowledge (see Figure on the right). The
ΩMEGA-system is currently under re-development where,
among others, it is augmented by the development graph
manager MAYA and the underlying natural deduction
calculus is replaced with the CORE-calculus [4].

The MAYA system [8] supports an evolutionary for-
mal development by allowing users to specify and verify
developments in a structured manner, it incorporates a
uniform mechanism for verification in-the-large to ex-
ploit the structure of the specification, and it maintains
the verification work already done when changing the specification. Proof assistance sys-
tems likeΩMEGA rely on mathematical knowledge formalized in structured theories of
definitions, axioms and theorems. The MAYA system is the central component in the new
ΩMEGA system that takes care about the management of change of these theories via its
OMDOC-interface [19].

The CORE-calculus supports proof development directly at theassertion level[17],
where proof steps are justified in terms of applications of definitions, axioms, theorems or
hypotheses (collectively calledassertions). It provides the logical basis for the so-called
TASK LAYER [14], that is an instance of the new proof datastructure (PDS) [5]. The TASK

LAYER is the central component for computer-based proof construction in ΩMEGA. It of-
fers a uniform proof construction interface to both the human user and the automated proof
search procedures MULTI [21] andΩANTs [9,26]. The nodes of the PDS are annotated with
tasks, which are Gentzen-style multi-conclusion sequents augmented by means to define
multiple foci of attention on subformulas that are maintained during the proof. Each task
is reduced to a possibly empty set of subtasks by one of the following proof construction
steps: (1) the introduction of a proof sketch [30] 1 , (2) deep structural rules for weakening
and decomposition of subformulas, (3) the application of a lemma that can be postulated
on the fly, (4) the substitution of meta-variables, and (5) the application of an inference.
Inferences are the basic reasoning steps of the TASK LAYER, and comprise assertion appli-
cations, proof planning methods or calls to external theorem provers or computer algebra
systems (see [14,6] for more details about the TASK LAYER).

A formal proof requires to break down abstract proof steps tothe CORE calculus level
by replacing each abstract step by a sequence of calculus steps. This has usually the effect
that a formal proof consists of many more steps than a corresponding informal proof of
the same conjecture. Consequently, if we manually construct a formal proof many inter-
action steps are typically necessary. Formal proof sketches [30] in contrast allow the user
to perform high level reasoning steps without having to justify them immediately. The un-
derlying idea is that the user writes down only the interesting parts of the proof and that
the gaps between these steps are filled in later, ideally fully automatically (see also [24]).
Proof sketches are thus a highly relevant for a mediator likePLATΩ whose task it is to sup-
port the transition to fully formal representations from aninformal proof in a mathematical
document via intermediate representations of underspecified proof sketches.

1 In the oldΩMEGA system this was realized by using so-calledIsland-methods.
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Figure 1. PLATΩ mediates between natural mathematical texts and the proof assistantΩMEGA

3 The PLAT Ω System

The mediator PLATΩ is designed to run either locally as a plugin for a particulartext-
editor or as a mathematical service provider which text editors could access through the
web. In order to manage different text-editor clients as well as different documents in the
same client, we integrated session management into PLATΩ. The text-editor may request
a unique session key which it has to provide as an argument forany further interaction in
this particular session.

PLATΩ is connected with the text-editor by an informal representation language which
flexibly supports the usual textual structure of mathematical documents. Furthermore, this
semantic annotation language, calledproof language(PL), allows for underspecification as
well as alternative (sub)proof attempts. In order to generate the formal counterpart of a PL
representation, PLATΩ separates theory knowledge like definitions, axioms and theorems
from proofs. The theories are formalized in thedevelopment graph language(DL), which
is close to the OMDOC theory language supported by the MAYA system, whereas the proofs
are transformed into thetasklayer language(TL) which describes the PDS instance of the
TASK LAYER. Hence, PLATΩ is connected with the proof assistance systemΩMEGA by a
formal representation close to its internal datastructure.

Besides the transformation of complete documents, it is essential to be able to propa-
gate small changes from an informal PL representation to theformal DL/TL one and the
way back. If we always perform a global transformation, we would on the one hand rewrite
the whole document in the text-editor which means to lose large parts of the natural lan-
guage text written by the user. On the other hand we would reset the datastructure of the
proof assistance system to the abstract level of proof sketches. For example, any already
developed expansion towards calculus level or any computation result from external sys-
tems would be lost. Therefore, one of the most important aspects of PLATΩ’s architecture
is the propagation of changes.

The formal representation finally allows the underlying proof assistance system to sup-
port the user in various ways. PLATΩ provides the possibility to interact through context-
sensitive service menus. If the user selects an object in thedocument, PLATΩ requests
service actions from the proof assistance system regardingthe formal counterparts of the
selected object. Hence, the mediator needs to maintain the mapping between objects in the
informal language PL and the formal languages DL and TL.
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In particular, the proof assistance system could support the user by suggesting possible
inference applications for a particular proof situation. Since the computation of all infer-
ence argument instantiations may take a long time, a multi-level menu with the possibility
of lazy evaluation is required. PLATΩ supports the execution of nested actions inside a
service menu which may result in a change description for this menu.

Through service menus the user may get access to automatic theorem provers and com-
puter algebra systems which could automatically verify conclusions and computations and
suggest possible corrections. These and many more functionalities are supported by PLATΩ
through its mechanism to propagate changes as well as the possibility of custom answers
to the user of the text-editor. Altogether, the mediator PLATΩ is designed to support the
interactive development of mathematical documents at a high level of abstraction.

3.1 PLATΩ’s Interfaces

PLATΩ provides abstract interfaces to the text-editor and the proof assistance system (see
also Fig.1). Before we discuss their design and realization, we first present the functional-
ities of PLATΩ from the perspective of the text-editor. PLATΩ’s methods are:

• Initialize a session: plato:init starts a new session in PLATΩ
• Upload a document: plato:upload uploads a whole document in the informal lan-

guage PL, from which PLATΩ builds up the formal representations DL and TL. If a
document has already been uploaded, PLATΩ performs an internal difference analysis
using a semantic based differencing mechanism [22] and then proceeds as with patching
the document.

• Patch a document: plato:patch patches an already uploaded document in the in-
formal language PL with patch information given in the XUPDATE standard (see Sec-
tion 3.2). PLATΩ transforms this patch information into patches for the formal repre-
sentations DL and TL, which are used to patch the datastructure of the proof assistance
system.

• Request a menu: plato:service requests a menu for an object in the informal lan-
guage PL inside the document. The response is either a menu inthe service language
SL (or an error message). PLATΩ uses its maptable relating objects in PL with objects
in DL and TL to requests service support from the proof assistance system for the latter.

• Execute a menu action: plato:execute triggers the execution of an action with its
actual arguments. The result can be a patch for the current menu, a patch for the doc-
ument or a custom answer (or an error message). The purpose isto evaluate an action
inside a menu. This style of responses offers quite many interaction possibilities: If the
selected action was nested somewhere in the menu, the proof assistance system will usu-
ally modify the menu. This will be propagated by PLATΩ to a corresponding response
which only modifies the menu and leaves the patch for the document and the custom
answer empty. If the selected action was situated on top level of the menu, the execution
in the proof assistance system will more likely change the formal representation. Any-
how, PLATΩ propagates these changes to changes in the informal presentation of the
text-editor, such that the response will usually remove themenu and patch the document
appropriately. The custom answer leaves room for arbitraryinteraction possibilities like
knowledge retrieval or natural language feedback.
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• Close a session: plato:close terminates a session.

A detailed descriptions of PLATΩ’s interface functions is given in AppendixA.

3.2 Interface to the Text-Editor and Proof Assistance System

The goal of PLATΩ is to lay a compatible foundation for a text-editor interface across dif-
ferent environments. It should be a clean, extensible interface that is very simple and easy
to implement such that it could quickly be adapted to run withany scientific text editor on
any operating system. Therefore we decided to represent themathematical document as
well as the service menus in XML [11], the patches for documents and menus in the XUP-
DATE update language [20] and to use XML-RPC [31] as interface protocol. XUPDATE

[20] is an XML update language which uses XML to encode its updates and the expression
language XPATH [10] to select elements for processing. An update may contain the fol-
lowing types of elements relevant for PLATΩ: insert-before, insert-after, append,
update, remove. All operations in an update have to be applied in parallel tothe target
document. XML-RPC is a remote procedure call protocol whichuses XML to encode its
calls and HTTP as a transport mechanism. It is a very simple protocol, defining only a
handful of data types and commands, and its entire two page description can be found at
[31].

TheΩMEGA system is implemented in LISP. Therefore, we decided to implement the
interface toΩMEGA, which provides LISP functions for each PLATΩ method, in LISP too.
These functions operate only on the formal representation of the mathematical document
and they will be illustrated in more detail in the next Section. PLATΩ allows to start, stop
and manage multiple servers in parallel for the same proof assistance instance. Generally,
we aim at an approach that is independent of the particular proof assistance system to be
integrated. Therefore the proof language as well as the service menu language are param-
eterized over the sublanguages for definitions, formulas, references and menu argument
content. Extending these sublanguages allows to scale up the power of the whole system
regarding representation capabilities as well as service functionalities. As soon as there will
be significant progress in the area of natural language analysis, one could even allow full
natural language in these sublanguages. Thus PLATΩ is designed to support the evolution
of the underlying proof assistance system towards an ideal mathematical assistance system.
We will present some more aspects of this more general viewpoint in the next Section. The
focus, however, is on the integration of theΩMEGA system into the scientific WYSIWYG
text-editor TEXMACS.

4 A Working Example

In this section we will evaluate the mediator PLATΩ in combination withΩMEGA and
TEXMACS. We will illustrate all available methods of PLATΩ by discussing a working
example in the theory of Simple Sets.

In this paper, we describe the mediation between the informal representation in the text-
editor and the formal representation in the proof assistance system on an abstract level. All
details on the communicated documents, patch descriptionsand menus for this example
can be found in [28].

Since the TEXMACS interface for proof assistance systems is under continuousdevelop-
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Figure 2. TheorySimple Setsin TEXMACS

ment, a PLATΩ plugin for TEXMACS has been developed by theΩMEGA group that maps
the interface functions of PLATΩ to the current ones of TEXMACS and which defines a style
file for PL macros in TEXMACS. In the following example, we use this plugin to establish a
connection between TEXMACS and PLATΩ’s XML-RPC server.

First of all, the text-editor TEXMACS initializes a new session by calling the method
plato:init together with a client name, for example ”texmacs#1”. The resulting session
name has to be saved by the text-editor in order to use it for the following communication
with PLATΩ.

In the text-editor, we have written an example document withthe semantic annotation
language PL (defined in [28]). The theorySimple Setsin this document contains for exam-
ple definitions and axioms forsubset, set=, unionandintersection. Fig.2 shows the theory
as seen in TEXMACS and Fig.3 shows the encoding of this theory in TEXMACS with PLATΩ
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Figure 3. Encoding of TheorySimple Setsin TEXMACS

macros.
Furthermore, we have written a theoryDistributivity in Simple Setswhich imports all

knowledge from the first theorySimple Sets. This second theory consists of a theorem about
theDistributivity of intersection. The user has already started a proof for this theorem by
introducing two subgoals. Fig.4 shows the theory as seen in TEXMACS and Fig.5 shows
the encoding of this theory in TEXMACS.

By pressing a keyboard shortcut, the user can always easily switch between both views
in the text-editor. The PL macros contained in the document must be provided by the
user2 and are used to automatically extract the corresponding PL document, the informal
representation of the document for PLATΩ.

Uploading this PL document withplato:upload, PLATΩ separates theory knowl-

2 Currently this still requires some expertise about PL and the TEXMACS macro language. Future work includes to provide
better support for this task.
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Figure 4. TheoryDistributivity in Simple Setsin TEXMACS

Figure 5. Encoding of TheoryDistributivity in Simple Setsin TEXMACS

edge like definitions, axioms and theorems from proofs and starts generating the formal
representation.

On the one hand, PLATΩ creates a DL document containing definitions, axioms and
theorems in a representation close to OMDOC. On the other hand, the proof is transformed
into a TL document, an abstract representation for the PDS instance of the TASK LAYER

in the proof assistance system.
From the DL document, the PLATΩ instance forΩMEGA generates a theory represen-

tation in OMDOC that MAYA takes as input for the creation of a development graph. Fig.6
shows the theories uploaded inΩMEGA. For this evaluation we use the old user interface
LΩUI [25] to visualize the status ofΩMEGA. The user interacts of course only with the
text-editor. The old LΩUI interface, including the display of MAYA ’s development graphs,
shall be entirely replaced by TEXMACS and PLATΩ. They are only presented in this paper
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Figure 6. TheorySimple Setsin ΩMEGA

Figure 7. Partial Proof of TheoremDistributivity of intersectionin ΩMEGA

to show the internal representation obtained from TEXMACS via PLATΩ. From the TL doc-
ument, the PLATΩ instance forΩMEGA builds up the concrete datastructure of the TASK

LAYER (see Fig.7).
The upload procedure has terminated successfully with the complete generation of the

formal representation in the proof assistance system, hence PLATΩ returns ”OK”.
Further developing the document, the user has started to prove the first subgoal by de-
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Figure 8. Modification of the Proof in TEXMACS by the User

Figure 9. Modification of the Encoding of the Proof in TEXMACS by the User

riving a new subgoal and introducing an assumption (see Fig.8). This modification of the
encoding of the document (see Fig.9) has to be propagated by PLATΩ to the formal repre-
sentation inΩMEGA. In general, the difference with respect to the last synchronized version
of the document should be computed and send to PLATΩ by usingplato:patch. At the
moment, TEXMACS is not able to compute this difference, therefore the whole document is
send again byplato:upload and PLATΩ computes the difference.

The difference of the informal PL document is then transformed by PLATΩ to a dif-
ference of the formal representations in DL and TL. Since themodifications do not affect
theory knowledge, this transformation only results in modifications for the intermediate
representation and finally the representation of the TASK LAYER proof data structure.

The PLATΩ instance forΩMEGA uses this patch information to modify the TASK

LAYER rather than to completely rebuild it from scratch (see Fig.10). The patch pro-
cedure has terminated successfully, hence PLATΩ returns ”OK”. Altogether, the user is
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Figure 10. Modification of the Proof inΩMEGA by PLATΩ

Figure 11. Service Menu in TEXMACS requested by the User

able to synchronize his informal representation in the text-editor document with the formal
representation in the proof assistance system.

The next interesting feature of PLATΩ is the possibility of getting system support from
the underlying proof assistance system. Selecting the recently introduced formula in the
assumption, the user requests a service menu from PLATΩ.
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Figure 12. Modification of the Service Menu in TEXMACS by PLATΩ

Figure 13. Modification of the Proof inΩMEGA by the System

Requesting services for the corresponding task in the TASK LAYER, a list of available
inferences is returned to PLATΩ. In order to answer quickly to the text-editor, we gen-
erate nested actions that allow to incrementally compute the formulas resulting from the
application of an inference rather than to precompute all possible resulting formulas for all
available inferences. For this example, the inferences were manually generated in the proof
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Figure 14. Modification of the Encoding of the Proof in TEXMACS by PLATΩ

assistance system, since the automatic inference generation from the theory knowledge in
the development graph is still under development.

The menu is displayed to the user in TEXMACS as shown in Fig.11, where we already
expanded the actionApply Definition of intersection - to its nested actionCompute Re-
sults. ExecutingCompute Resultscalls the methodplato:execute in PLATΩ, which
leads in the TASK LAYER to the computation of all resulting formulas for the inference
Definition of intersection -, defined by the corresponding axiom. PLATΩ tells the text-
editor how to change the menu by sending a patch description for the menu.

The user selects the desired formula (see Fig.12) which triggers the application of the
top level inference and launches aplato:execute. PLATΩ calls the TASK LAYER for
the application of the selected inference in order to obtainthe chosen formula. The TASK

LAYER performs the requested operation which typically modifies the proof data structure
(see Fig.13). This modification is transformed by the PLATΩ instance forΩMEGA into a
patch description for the formal representation in TL.

After that, PLATΩ transforms this TL patch into an IL patch and finally a PL patch
for the informal document in TEXMACS, which is then send to the text-editor. Further-
more, the menu is closed by sending a patch description whichremoves it. Currently, the
new proof fragments are inserted together with additional predefined natural language frag-
ments. However, we plan to integrate the natural language proof presentation system P.REX

[15] into PLATΩ, in order to generate true natural language output for the proof steps added
by the proof assistance system.

The text-editor finally patches the encoding of the document(see Fig.14) according to
this patch description. Fig.15shows the patched document displayed in TEXMACS.

Note that the user can change any part of the document, including the parts generated
by the proof assistance system. Due to the maintenance of consistent versions, the further
development of the document can be a mix of manual authoring by the user and interactive
authoring with the proof assistance system.

Last but not least, closing the document or the text-editor will close the active session in
PLATΩ and in the proof assistance systemΩMEGA by calling the methodplato:close.
For this evaluation we chose a simple mathematical domain inorder to focus on the system
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Figure 15. Modification of the Proof in TEXMACS by PLATΩ

behavior of the mediator. In general, the problem solving capabilities only depend on
the underlying proof assistance system. Cutting edge proofassistance can be provided by
extending the representational sublanguages for complicated domains.

5 Related Work

The AUTOMATH project [13] of Nicolas de Bruijn and his idea of a mathematical ver-
nacular has to be mentioned as pioneering work in the field. Similar to AUTOMATH, the
M IZAR 3 and ISAR [29] projects aim at a well balanced compromise between rigorous, for-
mal representation languages suitable for machine processing and human readable, natural
representations. The “grammatical framework” approach (GF) [23] goes one step further
and employs aλ-calculus based formalism to define grammars consisting of an abstract
and a concrete syntax. In the abstract syntax one can formally represent mathematical def-
initions, theorems and proofs and check their correctness and the concrete syntax defines
a mapping from the abstract syntax into linguistic objects.A common problem of these
approaches are the diverging requirements of representation to the machine and the user
side. AUTOMATH as well as MIZAR and ISAR sacrifice readability to obtain machine pro-
cessability. GF in contrast shows high readability as well as machine processability but the
supported fragment of natural language is far too small and inflexible to allow mathemati-
cians to use their familiar language.

Many mathematical assistance systems favor machine processability over human au-
thoring, while trying to enhance readability. This is done by separating input and output
language: the input language remains machine oriented whereas the output language gets
close to natural language. The system PCOQ [2] for example uses a schematic approach
to represent its output in quasi-natural language. The systems NUPRL [16], CLAM [1] and
ΩMEGA/P.REX [15] go further and use natural language processing techniquesto generate

3 www.mizar.org
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true natural language output. THEOREMA [12] is a system which strictly separates infor-
mal and formal parts in mathematical documents: The user caninput informal parts of text
without any restriction but these parts are not used for machine processing. The formal
parts, however, have to be written in the input language of the computer algebra system
MATHEMATICA .

In contrast to that, we suggest in our approach [7] a formal representation language
for mathematical content detached from any particular logic or calculus. This allows us
to represent arbitrary content regardless of the underlying logic. Moreover, the language
allows us to represent both different levels of concept and underspecification and is thus
particularly well-suited to represent proofs that are authored in a natural way by human
beings. Closely related to our approach is theMathLang project [18]. It also proposes a
top-down approach starting from natural mathematical texts towards machine processing.
However, theMathLang project so far concentrates mainly on supporting the analysis of
the abstract representations based on type checking and, incontrast to our approach, the
gap between real theorem provers and mathematical assistance tools remains open.

To our knowledge there has not been any attempt to integrate aproof assistance system
with text-editors in the flexible way as done via PLATΩ. All approaches described above do
not consider the input document as an independent, first-class citizen with an internal state
that has to be kept consistent with the formal representations in the proof assistance system
while allowing arbitrary changes on each side. The only workin that direction has been
carried in the context of PROOFGENERAL [3]. In PROOFGENERAL the user edits a central
document in a suitable editing environment, from which it can be evaluated by various
tools, such as a proof assistant, which checks whether the document contains valid proofs,
or a renderer which typesets or renders the document into human oriented documentation
readable outwith the system. However, the system is only an interface to proof assistance
systems that process their input incrementally. Hence, thedocuments edited in PROOF

GENERAL are processed incrementally in a top-down manner and especially parts that have
been processed by the proof assistance systems are locked and cannot be edited by the user.
Furthermore, the documents are in the input format of the proof assistant rather than in the
format of some type-setting program. Though we have tried todesign the functionalities
and representation languages in PLATΩ’s interface as general as possible, future work will
have to show that PLATΩ can be as easily adapted to different proof assistants as is already
possible for PROOF GENERAL.

6 Conclusion

The main contribution is the design and development of a generic mediator, called PLATΩ,
between text-editors and the proof assistance systemΩMEGA. The presented mediator al-
lows the user to write his mathematical documents in the language he is used to, that is
a mixture of natural language and formulas. These documentsare semantically annotated
preserving the textual structure by using a flexible parameterized proof language. PLATΩ
automatically builds up the corresponding formal representation inΩMEGA and takes fur-
ther care of the maintenance of consistent versions while providing a mechanism to prop-
agate changes between both representations. All kinds of services of the underlying proof
assistance system regarding the formal representation canbe provided through PLATΩ by
context-sensitive service menus in order to support the interactive development of math-
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ematical documents at a high level of abstraction. Altogether, PLATΩ contributes to the
evolution of proof assistance systems towards ideal mathematical assistance systems.

In this paper we have illustrated how informal, natural proofs developed in the text-
editor are mapped to formal representations inΩMEGA. Does this mapping already im-
ply that the informal proofs are validated? Clearly not, since ΩMEGA proof sketches at
the TASK LAYER may be unsound and only full expansion of these proof sketches to the
CORE-calculus layer will assure soundness. In our approach, this expansion can ideally be
automated byΩMEGA’s reasoning tools. However, this clearly depends on the structural
quality and the granularity of the informal proof. And, of course, if the informal proof is
wrong, the expansion will fail and an interaction with the user to patch the proof is required.
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Appendix

A PLAT Ω’s Interfaces

In this section we provide detailed descriptions of PLATΩ’s abstract interface functions:

• Initialize a session:

plato:init (client.name) -> session.name

initializes a new session. It takes the client name (string)as only argument and returns
the session name (string) or an error message. The purpose isto start a session in PLATΩ
and in the proof assistance system in order to get a session identifier which can be used to
indicate the working session in all following interactionswith PLATΩ. This is important,
for example, if the text editor user wants to get support for two or more documents, or
if PLATΩ is launched as mathematical service provider to allow text-editors the access
over the web.

• Upload a document:

plato:upload (session.name, document) -> OK
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uploads a whole document in the informal language PL. The arguments are the session
name (string), received previously byplato:init, and the document (string). It returns
a simpleOK (boolean) or an error message. PLATΩ first verifies the syntax of the doc-
ument and then automatically builds up the corresponding formal representations DL
and TL, which are uploaded into the proof assistance system.If a document has already
been uploaded, PLATΩ performs an internal difference analysis using a semantic based
differencing mechanism [22] and then proceeds as with patching the document.

• Patch a document:

plato:patch (session.name, diff) -> OK

patches an already uploaded document in the informal language PL with patch informa-
tion. The arguments are the session name (string) and the patch information (XUPDATE,
see Section3.2). PLATΩ returns a simpleOK (boolean) or an error message. PLATΩ
transforms this patch information into patches for the formal representations DL and
TL, which are used to patch the datastructure of the proof assistance system.

• Request a menu:

plato:service (session.name, object.id) -> menu

requests a menu for an object in the informal language PL inside the document. The
arguments are the session name (string) and the unique identifier of the selected object
(string). The response is either a menu in the service language SL (string) or an error
message. The purpose is to useplato:service in order to get a service menu from
the proof assistance system with actions for the selected object in the document. PLATΩ
looks into his maptable for the corresponding objects in theformal representation and
requests service support from the proof assistance system on these objects.

• Execute a menu action:

plato:execute (session.name, action.id, arguments)

-> (menu.diff, document.diff, custom)

triggers the execution of an action with its evaluated arguments. The arguments are
the session name (string), the unique identifier of the selected action (string) and the
arguments as a list of pairs with name (string) and value (string). It returns a list with
a patch for the current menu (string), a patch for the document (string) and a custom
answer (string), or an error message.

• Close a session:

plato:close (session.name) -> OK

closes a session. The argument is the session name (string).It returns a simpleOK
(boolean) or an error message. The purpose is to terminate a session appropriately, such
that PLATΩ as well as the proof assistance system are able to delete any information
regarding this session.
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Abstract

Modern integrated development environments (IDEs) provide programmers with a variety of sophisticated
tools for program visualization and manipulation. These tools assist the programmer in understanding
legacy code and making coordinated changes across large parts of a program. Similar tools incorporated
into an integrated proof environment (IPE) would assist proof developers in understanding and manipulating
the increasingly larger proofs that are being developed. In this paper we propose some tools and techniques
developed for software engineering that we believe would be equally applicable in proof engineering.

Keywords: IDE, IPE, proof visualization, program visualization, refactoring, program extraction, Coq,
proof dependencies, proof transformations, proof strategies, proof framework, proof reuse, proof
explanation

1 Introduction

Modern integrated development environments (IDEs) provide programmers with

a variety of sophisticated tools for program understanding and manipulation. In

addition to such basics as syntax highlighting and project building, these tools

commonly offer refactorings and program visualization components. Many of the

techniques developed for IDEs can be transferred directly to the world of UITPs.

Others can be modified to exploit the special nature of theorem provers.

The idea of transferring IDE techniques to theorem provers is not new [2,7,21,36].

However, there have been significant advances in IDEs in the last decade. Many of

these advances have been motivated by the needs of developers who must maintain

and extend large bodies of existing code. The increasing complexity of real world

programs means that even an experienced programmer will struggle to understand

the relationships between different software components. When extending or fixing

existing code the programmer may spend hours or days merely figuring out what
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other parts of the program these changes may affect. Moreover, the changes the

programmer must make may be scattered across several program components. For

this reason, numerous software management tools have been developed to assist in

visualizing program properties. Others allow a programmer to navigate a project

easily and to make automatic changes across multiple files.

As automated theorem proving matures, the proportion of old proofs to new

as well as their size will continue to grow. Tools to visualize, understand, and

automatically change these proofs will become vital. Integrated proof environments

(IPEs) 5 should incorporate these tools in the same manner as IDEs.

In the following sections we discuss several techniques useful in software devel-

opment that can be extended to theorem proving. These techniques are navigation

by derivation, multiple views, automatic refactorings, and proof visualization in the

large.

2 Navigation by Derivation

Formal proofs, even relatively simple ones, are necessarily very large. For exam-

ple, a formalization of the Sudoku puzzle and an accompanying solution procedure

in Coq [35] required approximately 5000 lines. A formal proof of the four color

theorem [12, 41] took about 60,000 lines and a few years to develop. Sophisticated

automated proof assistants have been developed to assist in the construction of

such proofs using tactics. These tactics may be manually selected by the user or

automatically chosen by the proof assistant. The structure of a proof object gener-

ated by these tactics may be difficult for a user to predict even when the user has

selected the tactic. When a tactic is selected automatically the structure may be

further obscured. The proof objects themselves may be far too large to be easily

read. For example, the Sudoku development mentioned above contains a proof that

the permutation relation on two lists is invertible. That is, where a pair of lists

are permutations of each other, and the head elements of the lists are equal, the

tails of the two lists must also be permutations of each other. About ten lines of

tactics are required to complete the proof of the theorem, but at roughly 750 lines

the generated proof is two orders of magnitude larger. Nonetheless, there are many

occasions on which it becomes necessary to study such proofs. A tactic implemented

in a proof assistant may not be working as expected; it may be necessary to inspect

proof objects themselves in order to debug the tactic. A user may be developing

a proof specifically to exploit a proof assistant’s extraction mechanism and may

need to inspect the proofs to understand why the extracted code is inefficient or, in

some cases, non-existent [8]. It may be necessary to rediscover what auxiliary theo-

rems were used to prove a given theorem; such auxiliary theorems may be selected

without the user’s intervention by a proof assistant with support for automation.

Most programmers are familiar with the Unix diff utility which identifies the

textual differences between two files. A number of visual tools exploit an underlying

diff tool. For example, the Eclipse Compare view allows the user to compare up

to three files. The tool automatically aligns the differences between the files and

5 The authors would like to thank one of the anonymous reviewers for acquainting them with this term.
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Fig. 1. Overall structure of a three panel proof navigation tool. The proof is taken from the Coq List
library, one of the standard libraries in the Coq distribution. The scroll bars on the left and right allow the
user to navigate the proof script and the derived program respectively.

matches corresponding parts using visual cues. This technique, using visual cues

to identify associated entities, can be extended to other domains. For example,

a proof developer will often have two perspectives on a given proof. The first

perspective consists of the definitions and theorems along with their corresponding

tactics. The second perspective consists of the same definitions and theorems, this

time associated with their proofs. There is a correspondence between the tactics

and the terms of the proof. This correspondence differs from that arising in file

comparison. In one way it is more straightforward since the proof has a formal

relationship to the tactics whereas in a file comparison the relationship between

the files must be discovered by an heuristic. However, the correspondence is also

more complex. One tactic may correspond to multiple terms in a proof. Hence,

an interactive tool which allows the user to select a tactic or group of tactics and

responds by highlighting the associated terms in a proof would be a valuable aid to

proof understanding.

A number of theorem provers, e.g., PX [13], Minlog [22], Isabelle/HOL [23],

NuPRL [24] and Coq [34], exploit the Curry-Howard isomorphism [10,40] to offer a

program extraction facility [19, 20, 27]. A program extraction facility automatically

generates programs from proofs. In the extraction process the logical parts of a proof

are deleted and the computational parts are translated into the source code of the

target language. Programs extracted from the proofs of their desired properties are

known as certified programs. As long as the extraction facility and proof checker are

themselves correct, a certified program is guaranteed to be a correct implementation

of its specification, i.e., the proof from which it is extracted. Generally, the extracted

programs are several orders of magnitude smaller than their associated proofs and
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Fig. 2. Proof of the decidability of equality on lists. The Tactics pane on the left displays the proof tactics
while the Program pane on the right displays the extracted program. The Proof pane displays the proof
proper.

much easier to understand. In the case of theorem provers with an extraction

mechanism a three way association would be appropriate and useful. Figure 1

shows the overall structure of such a navigation tool.

Each component is associated with its corresponding component in the adja-

cent panel. Examples of proof script components are definitions or theorems with

tactics, examples of proof components are definitions or proofs, examples of compo-

nents in an extracted program are definitions of types or functions. Corresponding

components are automatically aligned as the user focuses on different areas in the

proof script or extracted program. Light gray is used for portions of the proof script

that are not incorporated into the proof such as directives to the proof engine or

comments. Narrow gray bars are also used to separate proof and program compo-

nents. Pale blue indicates that a component has been generated indirectly from a

component in the proof script. In this example, some induction principles for the

list type have been automatically generated. Some components of the proof do not

have corresponding components in the extracted program. In this case the adjacent

separators are merged in the program pane.

The tool in Figure 1 is useful for high-level inspection. The user may also want
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Fig. 3. Proof of the decidability of equality on lists. The user has highlighted the h parameter in the
list eq dec function. Uses of the h parameter in the function and the corresponding H parameter of the
proof are highlighted.

to examine individual proof entities in more detail. Figure 2 shows a proof and its

associated tactics and program. In the Tactics pane on the left the auto tactic has

been selected. Preceding tactics are green and subsequent tactics are left in black.

The proof terms generated by the highlighted tactic are themselves highlighted and

proof terms generated by the preceding tactics are in green. The bar on the left

of the Proof pane summarizes the entire proof. Note that there is a green line at

the bottom of the bar indicating that the last few lines of the proof are generated

by the tactics preceding auto. The Program pane on the right shows the extracted

program. The corresponding terms in the generated program are highlighted.

In the preceding example, elements in the proof were selected via the proof

script. It is also possible to select these elements via the extracted program or to

select elements in the program via the proof. Figure 3 shows the same proof as

before. In this example, however, the user has selected an element in the Program

pane, specifically h, the formal argument of the list eq dec function. Uses of h in

list eq dec and corresponding elements in the proof are highlighted. The summary
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Fig. 4. View of a proof script showing syntax highlighting. The highlighting scheme is adapted from that
in the CoqIDE.

bar in the Proof pane indicates that there are no matches other than those visible in

the text. This confirms our intuition about the proof. h is a function which decides

whether two list elements are equal. Its corresponding proof, H, is a proof of the

decidability of equality on list elements. h is applied to the head element of each

list to determine whether the two are equal and in the case where the elements are

equal is passed as an argument in the recursive call (otherwise list eq dec returns

false). In the corresponding inductive proof we would expect that H is also used just

once, as an hypothesis in the proof that lists are equal if their heads and their tails

are equal, and we see that this is the case.

When a program is compiled with debugging enabled the compiler encodes extra

information for the debugger’s use in the generated object files. In particular,

it stores debugger “symbol tables” [33] which are mappings between the source

code and the generated object code. Using this information a symbolic debugger

can execute a machine instruction and yet display to the user the corresponding

source code. We envision a similar approach for a theorem prover. As the prover

executes tactics to generate a proof it can store a mapping between the tactics and

the generated proof object, making it available to a program navigation tool such

as that described above. We have observed that the correspondence between the

tactics and the proof object may be complex; but compilers and debuggers are able

to generate and navigate the equally intricate mappings between source code and

highly optimized machine code.

3 Common Conveniences

3.1 Multiple Views

Syntax highlighting, which is ubiquitous in IDEs, is available in some form in a

number of proof assistants [29,34]. Figure 4 shows a Coq proof script. The various

sorts of keywords are distinguished by the use of different colors, and this helps us to
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(b) Outline View with Section
Functions on lists expanded

Fig. 5. View of a proof script outline.

understand the basic structure of the small portion of the program we are looking

at. When we zoom out, the syntax coloring becomes virtually useless. But this

problem can be addressed by techniques already in use in a number of IDEs. For

example, the Eclipse [9] Java Perspective provides an Outline view which allows the

user to see the basic structure of an individual file at a glance. The Outline view is

used for navigation as well. Figure 5 shows a suggested outline for the proof script

of Figure 4. Another idea that could be extended directly to proof assistants is the

technique of collapsing and expanding parts of a source file. Often a programmer

wishes to elide certain parts of a source file that are irrelevant, so that the rest of the

file becomes easier to understand. In a similar fashion a proof developer may wish

to elide portions of a proof script, of a proof, or of its associated program. Figure

6 shows the proof of the decidability of equality on lists with two of the functions

in the proof collapsed. The first collapsed function is a proof that equality of the

heads of the lists is irrelevant under the hypothesis that the tails are unequal (in

which case it is clear that the lists are unequal). The second function is a similar

proof, with heads and tails reversed. Such subproofs, although required to complete

a formal proof, and in some cases constituting a significant proportion of the whole

proof, are generally uninteresting to the human reader.
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Fig. 6. A proof of the decidability of equality on lists with two functions collapsed. The collapsed function
is inspected by allowing the cursor to hover over the arrow; pressing the arrow causes the function to be
expanded.

3.2 Automatic Refactoring

A refactoring is a way of restructuring a program so that the overall organization

of the program is improved but the behavior is unchanged [25]. Where large parts

of a proof have been developed separately, refactoring may be necessary to make

common the underlying assumptions of the different components [12]. Refactorings

may also facilitate proof reuse [16]. While modern IDEs offer extensive support

for automatic refactorings [30, 37, 38] UITPs offer very little. IDEs offer support

for renaming of functions and variables; UITPs should offer a similar facility for

renaming lemmas. IDEs offer facilities for restructuring programs; for example, a

local variable may be converted to a field in a Java class definition. In the same

way, UITPs should offer facilities for restructuring existing proof scripts; in Coq,

for example, a user might wish to encapsulate a group of proof entities within a

module. In the Eclipse Java IDE, a developer can generalize the type of a field,

lifting the field to its supertype [38] and changing all uses of the field appropriately.

Similarly, UITPs should offer refactoring support for abstracting over definitions

and hypotheses [28]. Many other refactorings are likely to be dependent on the

logic and organization of the individual proof assistant.

Additionally we propose a requirement for transformations similar to the “best

effort” standard used by IDE developers. When a developer changes the signature

of a method an IDE may “do its best” by changing the signature of all overriding

and overridden methods appropriately. However, if the signature is changed by
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the addition of a formal parameter, it will generally be impossible to automatically

determine the actual parameter to be passed at the invocation site. After the trans-

formation the resulting type mismatch will induce compiler errors in the program.

However, the IDE has eased the programmer’s task by automatically performing

a task that the programmer would otherwise need to perform manually. The pro-

grammer can complete the transformation by identifying the call sites that must be

changed, determining the actual parameter to be passed at each call site, and up-

dating the code correctly. Generally, the compiler itself will assist the programmer

in identifying the call sites which must be updated through specific error messages.

UITP developers may feel that an automatic transformation that makes a correct

proof incorrect is simply unacceptable. We argue that if the transformation gets

the proof developer “closer” to the correct proof that he actually desires such a

“best effort” transformation is still of value and worth incorporating in a UITP. A

developer may realize only after substantial work has been done on a proof that

some component must be changed. For example, it may turn out to be the case

that a list must have not only the familiar properties of lists but also the extra

property that its elements are sorted for a proof to be completed. One method of

expressing this additional property in Coq is through the use of dependent types [3].

If the developer changes the type of the list to include a proof that it is sorted then

any previously developed theorems that include this list must also have their type

changed. It is relatively easy to implements such a straightforward transformation.

It may even be possible for a refactoring tool to modify the tactic scripts for certain

proofs that do not rely on the sorted property so that the proof can be reconstructed

entirely. But perhaps the developer must now construct additional lemmas to prove

that the sorted property is preserved by some transformations defined in the proof.

The proof cannot be completed without this additional manual work on the part

of the developer. Still, a refactoring tool that automated the straightforward steps

and left the developer to perform the more difficult steps that cannot easily be

automated would be desirable.

4 Proof Visualization in the Large

Program visualization is a well established field. Techniques to represent programs

visually are used in teaching [5, 15] and in the professional world [39] and new

techniques are continually developed [18, 26, 31, 32]. These techniques incorporate

both static visualization [18, 5, 39, 26, 32] and animations [15]. Often they use a

complicated visual vocabulary to communicate relationships among many entities

in a program.

An important insight of Ball and Eick [1] is that a less complicated visual vo-

cabulary can also convey useful information. They show how a coloring scheme can

be used to convey to the programmer the overall “shape” of an application. They

use color to encode unary properties of individual lines such as the number of times

a line has been changed. Such coloring can allow a programmer to see at a glance

some overall property of the program. For example, parts of the system that are

predominantly red are edited frequently and most likely contain bugs. Parts that

are blue are edited less frequently and are likely to be relatively bug free. This
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approach can be extended to textual units of larger granularity such as procedures

or files and has been used in applications such as fault localization [17].

Techniques for proof visualization are less common. Proof animations [14] exist

for restricted domains such as graph properties [11]. Static visualization techniques

are used to describe the relationships among proof entities [4,6]. We argue that the

insights of Ball and Eick can be applied to proof visualization as well as program

visualization. They can be applied in a straightforward way to encode such proper-

ties as revision information which are really identical between proofs and programs.

Other properties are more specific to UITPs. In a proof assistant with an automatic

component theorems may be applied without a user specifically requesting them. A

coloring scheme that encoded the relative frequency with which different theorems

were used could be used to visualize “hot spots” in much the same way a coloring

scheme that encodes software profiling information is used.

5 Conclusion

We have described a number of ways in which techniques developed to assist pro-

grammers in maintaining and extending large programs can be of use to proof

developers who must maintain and extend large proofs. Many software projects

involve a considerable number of people working over several years. As the disci-

pline of automated theorem proving matures proofs of similar size and complexity,

which are now considered extraordinary [41], will grow more common. Program

extraction is gaining acceptance as a technique for developing programs which must

be correct. As these trends continue, the tools we have described will become more

and more valuable to proof developers.

Moreover, we feel that the theoretical difficulties of developing the tools that we

have described are negligible. For example, the navigation tool described in Section

2 requires an underlying encoding which records the correspondence between the

proof script, its associated proof, and the derived program. It is clear that this

data is available. The relationship between the entities in a proof script and its

corresponding proof must be calculated by the proof engine that develops the proof.

Similarly, the relationship of the terms in a proof to the corresponding terms in the

extracted program must be calculated by the program extraction mechanism. The

difficulty does not lie in establishing these relationships but rather in recording them

and displaying them in a useful manner.

On the other hand, work in this area may yield significant theoretical insights.

The refactorings described in Section 3.2 are all quite straightforward; just a bit

more sophisticated than textual replacement. Some program refactorings are much

more ambitious. For instance, Tip et al. [37] describe a refactoring from Java

programs that do not exploit a polymorphic type system to ones that do. More

ambitious refactorings for theorem provers could very well yield unexpected insights.
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Abstract

The Mizar proof language has both many human-friendly presentation features, and also firm semantical
level allowing rigorous proof checking. Both the presentation features and the semantics are important
for users, and an ideal Mizar presentation should be both human-friendly (i.e. very close to textbook
presentations), and also allowing fast access to the detailed semantics and detailed proof explanations. This
poses several questions, problems and choices when presenting original Mizar texts, presenting results of
semantic queries over the Mizar library, and also when presenting texts produced directly on the semantical
level, e.g. by automated theorem provers. This paper discusses solutions to these problems, and particularly
implements an initial system for presenting detailed explanations of atomic Mizar inferences. This is done
by the cooperation of the Mizar XML presentation tools, the MML Query system, and automated theorem
provers working on the MPTP semantic translation of Mizar.

1 Introduction

One of the main objectives in the development of the Mizar [Rud92,RT99] proof

language has always been its intuitive presentation and closeness to mathematical

vernacular. The following features are worth mentioning in this context:

• It uses Jaskowski’s natural deduction [Pel99,Jas34] for the high-level proof struc-

ture, complemented with “simple justification” (“by”) steps, which are the atomic

inferences checked by the fast Mizar refutational checker [Wie00,NB04]. These

atomic steps are fine-tuned to be of the “right” human-like granularity, i.e., they

should be easy to understand to humans, but should not bother the reader with

too much obvious details.
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2 Email: bancerek@mizar.org

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:urban@kti.ms.mff.cuni.cz
mailto:bancerek@mizar.org


Urban and Bancerek

• The language is essentially first-order predicate theory, but it supports a number

of linguistic features that make in more human-like. This includes, e.g., usage

of adjectives and types and implicit usage of their hierarchies and dependen-

cies (called “registrations” or “clusters” for adjectives), implicit usage of various

properties (symmetry, reflexivity, projectivity, etc.), Mizar structures, implicit

definitional expansions, etc.

• The language supports wide variety of notations and several kinds of symbol

overloading, to allow faithful notation for different mathematical fields encoded

in the large Mizar Mathematical Library (MML).

On the other hand, the main purpose of having formal proof languages is their

mechanized proof checking. This means that all the above mentioned presentation

features ultimately have to be transformed to a proof-checkable level with clear

semantics. In Mizar, this is done in several compiler-like passes, which gradually

transform the syntactic features to their semantic counterparts (possibly inform-

ing users about syntactic errors, etc.), and finally check on the semantic level the

correctness of the proofs.

1.1 The semantic level of Mizar

The Mizar semantic level is characterized mainly by two transformations

• Formulas are transformed to the Mizar normal form (MNF), which uses only

certain logical connectives (∧, ¬, ⊤, and ∀). 3

• The disambiguation of all the notation (symbols and their patterns) into the

“constructors”. While the former are usually quite complicated and overloaded,

constructors are the unique semantical elements (functors, predicates, etc.).

Both these transformations are many-to-one, and in some sense also many-to-many.

Multiple user-level formulas can have the same MNF, and multiple user-level no-

tations can end up being expressed in the same way on the constructor level. As

for the many-to-many property, it is theoretically possible to have multiple MNF

for one user-level formula, but in practice this does not happen, since the Mizar

transformation algorithm is deterministic. 4 It is much more possible to have one

user notation (symbols and their patterns) transformed to different constructors,

since this heavily depends on the Mizar environment (e.g. type rules contributing

to different ways of the overloading disambiguation). 5 The important consequence

of this is that given a piece of a semantic-level Mizar text, there are usually multiple

ways how it can be presented.

This semantic level directly serves for a number of purposes: It is used by Mizar

itself for the proof checking and for storing the Mizar internal database. It is also

used in the MML Query [BR03] searching and presentation system. It also serves

as the basis for the formats used in the MoMM [Urb06a] system, the Mizar Proof

Advisor and MPTP [Urb04,Urb06b] systems, and for the format used for semantic

3 The term “semantic correlate” introduced by Roman Suszko is usually used in the Mizar world for MNF.
4 So if we defined MNF as the product of the Mizar transformation algorithm, it would indeed be just
many-to-one.
5 And again, this is just many-to-one, if we fix the particular environment.
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browsing in the MizarMode [Urb05,BU04].

It should be noted that this semantic level still expresses the Mizar logic, not

the standard untyped first-order predicate logic used in current automated theorem

provers (ATPs) like E [Sch02], Vampire [RV02], SPASS [Wei01,WBH+02], Otter

[McC94] or Prover9. Further processing is needed when that logic is transformed to

standard predicate logic: e.g., the Mizar types need to be encoded, all knowledge

used implicitly by Mizar (e.g. type hierarchies) has to be expressed explicitly,

etc. This is now done in a certain way (characterized mainly by encoding types

as predicates) by the MPTP system, however there are also many possible choices

in this transformation. Conversely, this transformation is again generally many-to-

many, there will usually be multiple ways of encoding pure predicate logic in the

Mizar logic.

1.2 Using the semantic level for linked presentation

Recently, the Mizar semantic level has been completely XML-ized [Urb06c], and

XSLT tools 6 are being developed for creating linked HTML presentation of Mizar 7

from it. The XML-ized semantic format has been designed so that it is relatively

easy to do the HTML linking of symbols and other Mizar resources, and it has

been modified several times (usually by adding additional information as XML

attributes) using the HTML presentation bottlenecks as a feedback. It currently

allows quite faithful re-creation of the original Mizar presentation (see Section 3

for more details), while it also reveals a lot of information computed by the Mizar

system (e.g. various formulas computed implicitly - for stating Mizar properties,

correctness conditions, etc.), which are normally not accessible to Mizar authors.

The main point of using pure XSLT for creating the HTML presentation is that all

major browsers today support the XSLT language. This means that Mizar authors

can now load the XML file (a by-product of the Mizar verification) directly into

their browser whenever they need it during the authoring, and thus immediately

get all the additional information contained there.

The XML-ized form of a Mizar article (and hence also the HTML presentation)

however does not contain any explanation of the atomic “simple justification” (“by”)

steps. This kind of explanation was never needed for any purpose for the Mizar

processing itself, and its addition (i.e., providing documentation mode for the proof

checking of the “simple justification” steps) would involve a very large change of

Mizar itself. This means that the users so far could not find out why a particular

atomic step was accepted by Mizar. As mentioned above, these steps are designed

to be “easy to understand but not unnecessarily verbose” for humans, which is

however a very subjective matter depending on many factors. As with the normal

natural-language proofs, sometimes the number of “obvious” facts used in an atomic

Mizar step can be simply too high for a reader, making the “understanding search

space” too large. Humans are also good at occasionally forgetting what should be

obvious. One of Mizar’s probably greatest contributions to the field of formalization

of mathematics is its stress on the readability of proofs (i.e., unlike in the tactical

6 http://kti.ms.mff.cuni.cz/cgi-bin/viewcvs.cgi/xsl4mizar/miz.xsltxt?view=markup
7 http://merak.pb.bialystok.pl/mml/
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provers, the language is not supposed to be “write-only”). While the readability is

a very worthy goal per se (well, why shouldn’t all of mathematics be presented in a

readable, yet formally correct and mechanically checked way?), this feature of the

language actually seems to be quite important in the maintenance of such a large

repository of formal mathematics as is MML today, and for its refactoring (e.g.,

generalizing, reformulating of entire theories, etc.). For all these reasons, providing

an optional finer explanation level, which helps to understand the more difficult

steps when necessary, should be useful.

1.3 The rest of this paper

We describe our initial solution to the problem of providing and presenting the ex-

planations of the Mizar atomic “simple justification” inference steps. This solution

(cf. Diagram 1) uses the ATP technology (now the E-PROVER) for providing the

actual explanations as ATP proof objects. The MPTP system is used to transform

the Mizar “simple justification” inference steps to ATP problems, and the MML

Query system is used to transform the ATP proof objects back into the Mizar

notation. The proof objects transformed by MML Query are then linked to the

appropriate places in the HTML presentation of Mizar articles, so that users can

easily access them, when a particular atomic inference steps is not clear to them.

This kind of processing requires several of the above mentioned many-to-many

transformations (mainly in the opposite order than mentioned above). We explain

the general algorithm used by MML Query for presenting arbitrary semantic-level

formulas in the user-friendly notation. This algorithm has been generally used

for presenting the MML Query search results, and we are now using it also for

the presentation of the text created by ATPs directly on the semantic level. The

MML Query solution to this presentational problem is compared to the solution

implemented in the HTML presentation of Mizar articles, and their suitability for

different purposes is discussed.

2 Explaining and Presenting Mizar Simple Justifica-

tions

Readers can check the functionality for explaining the Mizar atomic inferences (im-

plemented now for 35 initial Mizar articles) at the authors’ web site 8 . This is a

development version of the Mizar HTML presentation, very similar to the official

one at the Mizar site 9 . The main difference at the moment is the linking of the by

keyword, which leads to the MML Query rendered ATP proof objects, also available

at our site 10 . We provide a simple example below.

2.1 Simple example from user’s perspective

Consider e.g. the first Theorem 11 in the Mizar article ZFMISC 1 [Byl89]:

8 http://lipa.ms.mff.cuni.cz/~urban/xmlmml/html_bytst/
9 http://mmlquery.mizar.org/mml/4.48.930/
10http://lipa.ms.mff.cuni.cz/~urban/xmlmml/html_bytst/_by/
11http://lipa.ms.mff.cuni.cz/~urban/xmlmml/html_bytst/zfmisc_1.html#T1
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Fig. 1. Diagram of systems used for presentation of Mizar atomic steps

theorem Th1: :: ZFMISC_1:1

bool {} = {{} }

proof

now

let c1 be set ;

( c1 c= {} iff c1 = {} ) by XBOOLE_1:3;

hence ( c1 in bool {} iff c1 in {{} } ) by Def1, TARSKI:def 1;

end;

hence bool {} = {{} } by TARSKI:2;

end;

Its (probably redundant) natural-language explanation is that the powerset of the

empty set is a singleton containing just the empty set. The symbol in used inside

the proof denotes the set-theoretical membership, and the symbol c= used below

denotes the set-theoretical inclusion. Note that the theorem XBOOLE 1:3 12

theorem E3: :: XBOOLE_1:3

for b1 being set holds ( b1 c= {} implies b1 = {} )

12http://lipa.ms.mff.cuni.cz/~urban/xmlmml/html_bytst/xboole_1.html#T3
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is just an implication, not equivalence. So the user might want to know, why the

first inference 13

( c1 c= {} iff c1 = {} ) by XBOOLE_1:3;

is logically valid. Clicking on its by keyword will reveal the following E-PROVER’s
proof 14 rendered by MML Query 15 (we rather recommend to check this (above
given link) directly in a browser, since the linking cannot be seen here in text form).
The very first axiom there is reflexivity r1 tarski, stating the reflexivity of the
inclusion predicate. This is a Mizar property, which the system uses automatically,
assuming that it is obvious to the readers. With this axiom, the inference easily
follows:
MML Query rendering of ATP proof steps

axiom: reflexivity_r1_tarski
A:step 1
for x1, x2 being set holds
x1 c= x1
______________________________________________________
conjecture: e1_10_1
A:step 7

(c11001 c= {}
iff

c11001 = {})
______________________________________________________
axiom: t3_xboole_1
A:step 8
for x1 being set

st x1 c= {}
holds x1 = {}

______________________________________________________
inference: assume_negation(7)
A:step 9
(c11001 c= {} & c11001 <> {} or c11001 = {} & not c11001 c= {})
______________________________________________________
inference: variable_rename(1)
A:step 11
for x3, x4 being set holds
x3 c= x3
______________________________________________________
inference: split_conjunct(11)
A:step 12
x1 c= x1
______________________________________________________
inference: fof_nnf(9)
A:step 22
(c11001 c= {} implies c11001 <> {}) &
(c11001 c= {} or c11001 = {})

______________________________________________________
inference: split_conjunct(22)
A:step 23
(c11001 = {} or c11001 c= {})
______________________________________________________
inference: split_conjunct(22)
A:step 24
(c11001 = {} implies not c11001 c= {})
______________________________________________________
inference: fof_nnf(8)
A:step 25
for x1 being set

st x1 c= {}
holds x1 = {}

______________________________________________________
inference: variable_rename(25)
A:step 26
for x2 being set

st x2 c= {}
holds x2 = {}

______________________________________________________
inference: split_conjunct(26)
A:step 27

13http://lipa.ms.mff.cuni.cz/~urban/xmlmml/html_bytst/zfmisc_1.html#E1:10_1
14http://lipa.ms.mff.cuni.cz/~urban/xmlmml/html_bytst/_by/zfmisc_1/164_29.html
15Note that the constant c1 has been renamed by our system to c11001. This is actually c11001 in the
HTML rendering, the subscript encodes the current Mizar proof level. This is a result of the MPTP system
naming conventions, which need to provide unique name to every MPTP object.
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(x1 <> {} implies not x1 c= {})
______________________________________________________
inference: csr(24,27)
A:step 29
not c11001 c= {}
______________________________________________________
inference: sr(23,29)
A:step 30
c11001 = {}
______________________________________________________
inference: rw(rw(29,30),12)
A:step 31
contradiction

2.2 Simple example further explained

Now we will explain the particular stages of creating and rendering of the ATP

explanation.

2.2.1 Creation of the ATP problem
The problems are generated by the development version of the MPTP system.
This is a system for translating Mizar into untyped first-order predicate logic, and
encoding Mizar problems in a way suitable for solving by ATP systems. The recent
(second) version of the system has been quite heavily tested (see [Urb06b]), and
for problems which do not contain possible arithmetical evaluations (which will
need further treatment) it now seems to provide all the information necessary for
reproving Mizar inferences by ATPs. As mentioned above, MPTP encodes the Mizar
types as predicates, and explicitly adds to problem specifications various kinds of
information which is obvious to Mizar (like type hierarchy, or the reflexivity property
mentioned above). The ATP problem specification (file named zfmisc 1 164 29,
using the TPTP [SS98] format) is as follows:

% Mizar problem: e1_10_1,zfmisc_1,164,29
fof(reflexivity_r1_tarski, axiom, (! [A, B] : r1_tarski(A, A)) ,

file(tarski, r1_tarski), []).
fof(dt_k1_xboole_0, axiom, $true, file(xboole_0, k1_xboole_0), []).
fof(dt_c1_10_1, axiom, $true, file(zfmisc_1, c1_10_1), []).
fof(fc1_xboole_0, axiom, v1_xboole_0(k1_xboole_0),

file(xboole_0, fc1_xboole_0), []).
fof(rc1_xboole_0, axiom, (? [A] : v1_xboole_0(A)) ,

file(xboole_0, rc1_xboole_0), []).
fof(rc2_xboole_0, axiom, (? [A] : ~ (v1_xboole_0(A)) ) ,

file(xboole_0, rc2_xboole_0), []).
fof(e1_10_1, conjecture,

(r1_tarski(c1_10_1, k1_xboole_0) <=> c1_10_1=k1_xboole_0) ,
inference(mizar_bg_added, [],
[reflexivity_r1_tarski, dt_k1_xboole_0, dt_c1_10_1, fc1_xboole_0,
rc1_xboole_0, rc2_xboole_0, t3_xboole_1]), [file(zfmisc_1, e1_10_1)]).

fof(t3_xboole_1, axiom,
(! [A] : (r1_tarski(A, k1_xboole_0) => A=k1_xboole_0) ) ,
file(xboole_1, t3_xboole_1), []).

This encoding is in more detail described in [Urb06b]. Note that there are more

axioms than are actually needed for the proof above. This is because the MPTP al-

gorithm for adding the “background knowledge” can be only approximative, and the

main goal is to approximate it from the safe side, i.e. maintaining the completeness

of the specification.

2.2.2 Creation of the ATP proof
The MPTP problems generated from the Mizar simple justifications are usually very
easy for current ATP systems. We are using the latest version (0.91) of Stephan
Schulz’s E-PROVER, both because of its strength, and also because of its support
of the TPTP standards, which allow us to use the TPTP tools for preprocessing
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and postprocessing. Running the E-PROVER through SystemOnTPTP 16 yields
the following TSTP proof object:

fof(1, axiom,![X1]:![X2]:r1_tarski(X1,X1),
file(’/tmp/SystemOnTPTP15237/zfmisc_1__e1_10_1.p’, reflexivity_r1_tarski)).

fof(7, conjecture,(r1_tarski(c1_10_1,k1_xboole_0)<=>equal(c1_10_1, k1_xboole_0)),
file(’/tmp/SystemOnTPTP15237/zfmisc_1__e1_10_1.p’, e1_10_1)).

fof(8, axiom,![X1]:(r1_tarski(X1,k1_xboole_0)=>equal(X1, k1_xboole_0)),
file(’/tmp/SystemOnTPTP15237/zfmisc_1__e1_10_1.p’, t3_xboole_1)).

fof(9, negated_conjecture,
~((r1_tarski(c1_10_1,k1_xboole_0)<=>equal(c1_10_1, k1_xboole_0))),
inference(assume_negation,[status(cth)],[7])).

fof(11, plain,![X3]:![X4]:r1_tarski(X3,X3),
inference(variable_rename,[status(thm)],[1])).

cnf(12,plain,(r1_tarski(X1,X1)),inference(split_conjunct,[status(thm)],[11])).
fof(22, negated_conjecture,

((~(r1_tarski(c1_10_1,k1_xboole_0))|~(equal(c1_10_1, k1_xboole_0)))
&(r1_tarski(c1_10_1,k1_xboole_0)|equal(c1_10_1, k1_xboole_0))),

inference(fof_nnf,[status(thm)],[9])).
cnf(23,negated_conjecture,(c1_10_1=k1_xboole_0|r1_tarski(c1_10_1,k1_xboole_0)),

inference(split_conjunct,[status(thm)],[22])).
cnf(24,negated_conjecture,(c1_10_1!=k1_xboole_0|~r1_tarski(c1_10_1,k1_xboole_0)),

inference(split_conjunct,[status(thm)],[22])).
fof(25, plain,![X1]:(~(r1_tarski(X1,k1_xboole_0))|equal(X1, k1_xboole_0)),

inference(fof_nnf,[status(thm)],[8])).
fof(26, plain,![X2]:(~(r1_tarski(X2,k1_xboole_0))|equal(X2, k1_xboole_0)),

inference(variable_rename,[status(thm)],[25])).
cnf(27,plain,(X1=k1_xboole_0|~r1_tarski(X1,k1_xboole_0)),

inference(split_conjunct,[status(thm)],[26])).
cnf(29,negated_conjecture,(~r1_tarski(c1_10_1,k1_xboole_0)),

inference(csr,[status(thm)],[24,27])).
cnf(30,negated_conjecture,(c1_10_1=k1_xboole_0),

inference(sr,[status(thm)],[23,29,theory(equality)])).
cnf(31,negated_conjecture,($false),

inference(rw,[status(thm)],
[inference(rw,[status(thm)], [29,30,theory(equality)]),
12,theory(equality)])).

cnf(32,negated_conjecture,($false),inference(cn,[status(thm)],
[31,theory(equality)])).

cnf(33,negated_conjecture,($false),32,[’proof’]).

Obviously, different ATP systems (or even the same ATP run with different set-

tings) can produce different refutational proofs, and these proofs will generally also

differ from the hypothetical “Mizar proof” (i.e., the steps done by the Mizar checker

to justify the conjecture). Certainly, we might try to optimize the search in order

to find e.g., the shortest (and thus hopefully the “best understandable”) proofs.

On the other hand, as noted above, these inferences are supposed to be quite easy

for humans, and they turn out to be quite easy also for ATPs, so such (potentially

quite resource-intensive) optimization is probably not worth its cost. A much bet-

ter way to make the proofs more understandable is to spend some effort on their

presentation, which is what we do in the following steps.

2.2.3 Preparing the ATP proof for MML Query rendering

The TSTP proof object is first transformed to the XML encoding of TSTP, by Petr

Pudlák’s and Geoff Sutcliffe’s tool TPTP2XML. The XML listing would be too

long to be included here, and it is available on our web site 17 . Then we apply our

XSLT stylesheet tstp2dli.xsl 18 which translates the TPTP notation to the MML

Query DLI (Decoded Library Item) format. MML Query is only used to process

the DLI-encoded formulas, so another task of tstp2dli.xsl is to take care of the

linking of formula names to the Mizar HTML pages, and linking of the ATP step

16http://www.cs.miami.edu/~tptp/cgi-bin/SystemOnTPTPFormMaker
17http://lipa.ms.mff.cuni.cz/~urban/xmlmml/html.930/_by_xml/zfmisc_1/164_29.xml
18http://kti.ms.mff.cuni.cz/cgi-bin/viewcvs.cgi/xsl4mizar/tstp2dli.xsltxt?view=markup
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references. The result is again on our web site 19 .

2.2.4 Presentation with MML Query

As mentioned above, the MML Query DLI format is a notation for the Mizar

semantic level. Therefore two tasks have to be done by MML Query:

• translate the formulas in MNF back into a human-friendly notation (i.e., usually

compress it by using more logical connectives)

• translate Mizar constructors back into a human-friendly notation (i.e., find suit-

able Mizar symbols and their patterns, which correspond to the given constructor

form)

First we explain the MNF transformation. A conjunction in MNF used in MML

Query may have more than two conjuncts (the result of the associativity of con-

junction in Mizar). Such situation is denoted here by &(. . .). The reconstruction of

richer set of connectives (∃, ∨, ⇒, and ⇔) tries to reverse the Mizar transformation

algorithm and could be described by following rules:

¬∀xϕ→∃x¬ϕ

¬&(ϕ1, . . . , ϕn−1,¬ϕn)→&(ϕ1, . . . , ϕn−1) ⇒ ϕn

¬&(¬ϕ1, . . . ,¬ϕn)→ϕ1 ∨ . . . ∨ ϕn

The reconstruction of ⇔ is a bit more complicated. If formula has the form

¬&(ϕ1, . . . , ϕk, ϕk−1, . . . ,¬ϕn) ∧ ¬&(ψ1, . . . , ψm)

and

&(¬&(), ϕ1, . . . , ϕk) ≡ &(ψ1, . . . , ψm)

then it is transformed to

&(ϕ1, . . . , ϕk) ⇔ ¬&(ϕk+1, . . . , ϕn)

The equivalence ≡ is the smallest equivalence satisfying the conditions of double

negation and single conjunction:

¬¬ϕ ≡ ϕ and &(ϕ) ≡ ϕ

The compression of quantifiers is also applied and formulas of the form ∀x(ϕ ⇒

ψ) are presented as for x st ϕ holds ψ. The indenting and breaking of long

formulas is applied for better readability. The above rules assume that transformed

formulas do not include double negations nor nested or single conjunctions (this is

the case of formulas generated from Mizar). So, the transformation of an arbitrary

formula expressed with ∧, ¬, ⊤, and ∀ requires additional pruning at beginning.

This has been implemented to handle our ATP-generated data.

The translation of Mizar constructors into the human-friendly notation uses

the “rule of first available notation”. Generally, multiple synonyms (or antonyms)

can exist as user symbols corresponding to one Mizar constructor (in other words,

19http://lipa.ms.mff.cuni.cz/~urban/xmlmml/html_bytst/_by_dli/zfmisc_1/zfmisc_1__164_29.dli
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when a Mizar author introduces a synonym, it exists only on the presentation

level). Since in the general case (like the one when data come from ATPs) we have

no other information than the constructor format, it is reasonable to present the

constructor using just the first human symbol found in the MML, which corresponds

to that constructor. More special rules can be (and are) used by MML Query, when

additional information is available, e.g., about the Mizar articles from which the

constructor encoding comes.

The result of the final MML Query rendering step on our example is already

shown above, it is the final explanation of the “simple justification” inference that

is presented to the reader.

3 MML Query presentation versus the XML-based HTML

presentation of full articles

The above described by-explanation system, which we have implemented for the

35 initial Mizar articles, uses two different techniques for presentation of the Mizar

semantic level. The presentation of the by-explanations is done by the MML Query

“artificial intelligence” reconstruction of a possible user notation (described in 2.2.4).

With no other information added to the constructor encoding, there is really no

other choice. On the other hand, for the XML-based HTML presentation of full ar-

ticles, to which the MML Query explanations are linked, a lot of further information

is available, namely from the Mizar parser, which was used to process the original

Mizar text. Even though the purpose of the Mizar XML format is to primarily

contain the semantic information, the XML format allows for easy addition of the

original presentation information. This feature has been added to Mizar some time

ago, and the XML produced by recently distributed Mizar versions already contains

this additional presentational information.

It is therefore quite likely, that in many cases the presentations of the same Mizar

formula by these two systems will differ. We don’t think that in the particular case of

the system presented above this is necessarily harmful. While the goal of the XML-

based HTML presentation is to achieve high resemblance to the original article, with

as much additional semantic information as possible, the goal of the MML Query

presentation is to present pieces of Mizar text in a uniform and predictable way.

In this sense the MML Query presentation can be thought of as a tool for strong

uniform formatting of Mizar. While this difference may be initially surprising for a

reader, when he first uses the by-explanation functionality, this might also lead to

his deeper understanding of the presentation process, and of Mizar itself. Should

this become a serious problem, we can always offer to the user to apply the MML

Query formatting to the whole XML-based article presentation.

4 Conclusions and Future Work

We have provided an initial implementation of a system explaining the Mizar atomic

“simple justification” inferences, and demonstrated it on 35 initial Mizar articles.

For this, we have used or newly developed a chain of tools working on the Mizar

semantic level. The systems could be already now extended to a much larger por-
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tion of MML, since the ATP success rate on solving nonnumerical Mizar “simple

justification” problems is very high (above 90% with 4s timelimit and one ATP

used in a push-button manner, and above 99% with more sophisticated, but still

fully automated methods described in Section 4.3. of [Urb06b]). However we still do

not have a satisfactory algorithm for serious transformation of the ATP solutions on

heavily typed Mizar articles to the Mizar typed semantic level. It is possible already

now to render such solutions with MML Query as mentioned above, and it probably

would be useful purely for the explanation purpose. However such rendering will be

incorrect from the Mizar parser’s point of view, which requires that variables are

qualified with proper types when typed functors or predicates are applied to them.

A transformation of the ATP untyped solutions to Mizar-acceptable typed solutions

is probably feasible, and it is an interesting line of further research. Obviously all

the tools participating in our chain can be improved too. One interesting idea is to

have all of the systems participating in the chain working in real time, passing the

solutions to each other. Such functionality will probably be developed quite soon,

and generally used for providing ATP support to Mizar authors. From this point

of view, providing the current by-explanation functionality can be thought of as a

test-bed, making the way for more ambitious ATP-for-Mizar applications.
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Abstract

This work describes the Interactive Derivation Viewer (IDV) tool for graphical rendering of derivations that
are written in the TPTP language. IDV provides an interactive interface that allows the user to quickly view
various features of the derivation. A particularly novel feature of IDV is its ability to provide a synopsis of
a derivation by identifying interesting lemmas within a derivation, and hiding less interesting intermediate
formulae. IDV is deployed online as part of the SystemOnTPTP interface, thus providing ready access via
any web browser.
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1 Introduction

The proofs output by automated reasoning systems provide useful information to

system users, e.g., the proof structure, lemmas that may be useful in future proofs,

which axioms are most used, etc. Even derivations that do not form completed

proofs are of interest, as they may provide insights leading to changes in the problem

formulation or the system application, that result in a proof being found - automated

reasoning systems are often debugged in this way. However, the proofs output by

automated reasoning systems are often unsuitable for human consumption. For

first-order automated theorem proving (ATP) systems, the reasons include:

• The conversion of problems stated in “natural” first-order form (FOF) to clause

normal form (CNF).

• The use of proof by contradiction, which introduces formulae that are not logical

consequences of the axioms.

• The use of fine grained inference steps, such as binary resolution, that exaggerate

the size of a proof.

Several types of tools have been developed to make the output from ATP systems

easier for humans to understand. These include graphical renderings of derivations

1 Email: strac@mail.cs.miami.edu

This paper is electronically published in
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[10], structuring of proofs by identification of lemmas [1], translation of resolution

refutation proofs to natural deduction proofs [4], and full translation of proofs to

natural language form [2]. This work describes the Interactive Derivation Viewer

(IDV) tool for graphical rendering of derivations that are written in the TPTP [13]

language [12]. IDV provides an interactive interface that allows the user to quickly

view various features of the derivation. A particularly novel feature of IDV is its

ability to provide a synopsis of a derivation by identifying interesting lemmas within

a derivation, and hiding less interesting intermediate formulae. IDV is deployed

online as part of the SystemOnTPTP interface [11], thus providing ready access via

any web browser.

Section 2 describes the basic IDV tool and it’s rendering process. Section 3 de-

scribes the production of proof synopses. Section 4 explains how IDV is deployed on

the web, and provides an illustrative application. Section 5 concludes and discusses

future developments planned for IDV.

2 Basic IDV

A derivation is a directed acyclic graph (DAG) whose leaf nodes are formulae (pos-

sibly derived) from the input problem, whose interior nodes are formulae inferred

from parent formulae, and whose root nodes are the final derived formulae. For

example, a CNF refutation proof is a derivation whose leaf nodes are the clauses

formed from the axioms and the negated conjecture, and whose root node is the

false clause. The information required to record a derivation is, minimally, the leaf

formulae, and each inferred formula with references to its parent formulae. More

detailed information that may be recorded and useful includes: the role of each

formula, e.g., axiom, conjecture, plain derived, etc; the name of the inference rule

used in each inference step; sufficient details about each inference step to determin-

istically reproduce the step; and the semantic relationship of each inferred formula

with respect to its parents, e.g., logical consequence, counter theorem, etc. The

TPTP language is sufficient for recording all this, and more.

A derivation written in the TPTP language is a list of annotated formulae. Each

annotated formula contains a name, a role, the logical formula, a source record, and

a field for recording arbitrary useful information, as required for user applications.

The source of each inferred formula is an inference record containing the inference

rule name, a status record containing the semantic relationship of the formula to its

parents as an SZS ontology value [14], and a list of references to its parent formulae.

IDV takes a derivation in the TPTP language and renders the DAG using Java’s

Swing components. IDV can run as a standalone application, or as a web browser

applet; this description focuses on the web option, because it provides ready (re-

mote) access to IDV without any installation required.
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2.1 Interface

Figure 1 shows the rendering of the derivation output by the ATP system EP 0.91 [9]

for the TPTP problem PUZ001+1. 2 The IDV window is divided into three panes: the

top control strip pane provides control buttons and sliders, the main middle pane

shows the rendered DAG, and the bottom pane gives the text of the annotated

formula for the node pointed to by the mouse.

Fig. 1. EP’s Proof by Refutation of PUZ001+1

The buttons and sliders in the control strip pane are, from left to right:
• Zoom in - zooms in 50%
• Fit vertical - scales the rendering to fit the height of the middle pane
• Fit horizontal - scales the rendering to fit the width of the middle pane

2 PUZ001+1 is the “Aunt Agatha” problem, which describes a scenario in which three people live in a
mansion, and Aunt Agatha is killed. The goal is to prove that Aunt Agatha killed herself. All TPTP
problems, their solutions, and IDV renderings of the solutions, are available online via http://www.tptp.org/
- follow the Problems link to reach the problems, the TSTP link to reach the solutions, and the View IDV Tree
link at the top of any solution page (that has the solution in TPTP format) to generate the IDV rendering.
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• Zoom out - zooms out 50%
• Display height - sets the number of text lines in the bottom pane
• Synopsis level - sets the minimal interestingness level for display - see Section 3.
• Redraw - redraws the derivation. This is typically used after extracting a synopsis

- see Section 3.
• Synopsis undo - sets the minimal interestingness level to its previous value.
• Synopsis redo - sets the minimal interestingness level to its next value, after any

undo steps.
• About button

The rendering of the derivation DAG uses shape and color to visually provide

information about the derivation. Each node corresponds to a formula in the deriva-

tion, with FOF nodes outlined in black and CNF nodes outlined in orange. The

role of the formulae is indicated by the shape of the node: triangle for axioms,

hexagons for lemmas, inverted trapezium for hypotheses, house for conjectures, in-

verted house for negated conjectures (as done when converting a FOF problem to

CNF), circle for plain derived formulae, and square for false formulae. A node may

be annotated above with a = sign in a circle to indicate that equality reasoning was

used in its inference, e.g., a paramodulation inference. A node may be annotated

inside at the top with a red circle to indicate that the formula is not a logical con-

sequence of its parents, e.g., in Skolemization and splitting inferences, as indicated

by the SZS status. A node may be annotated below with a red triangle to indicate

that it is the parent of a splitting inference, e.g., an explicit split as implemented

by SPASS [15] or a pseudo-split as implemented by Vampire [7,8] or E [9].

The user can interact with the derivation rendering in two ways. First, moving

the mouse over any node causes the annotated formula corresponding to the node

to be shown in the bottom pane. At the same time, the moused-over node is

highlighted in blue, all nodes leading down from leaf nodes into the moused-over

node are highlighted in green, and all nodes leading down from the moused-over

node to root nodes are highlighted in red. The effect is evident in Figure 1. The

green highlighting shows from which formulae the moused-over node is derived, and

the red highlighting shows which formulae are derived from the moused-over node.

The intensity of the highlighting decreases according to the minimal path length

from the moused-over node to the highlighted node. This allows easy differentiation

between closer and more distant ancestors and descendants. A particularly useful

effect is to identify which axioms (leaf nodes) are the closest ancestors. The second

form of interaction is to click on any node. This creates a pop-up window containing

the annotated formulae of the clicked node and its parents, as shown in Figure 2.

The annotated formula of the clicked node is shown twice once above the parents

and again below, allowing for bidirection reading of the inference step.

2.2 Implementation

IDV reads in a derivation in TPTP format. It is sensitive to the form of the for-

mulae, either FOF or CNF. The rendering is performed in two phases: the first

phase determines the layout of the DAG nodes and edges, and the second phase

implements the graphical display of the derivation DAG.
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Fig. 2. Pop-up in EP’s Proof by Refutation of PUZ001+1

The layout of the DAG is determined in a five-pass algorithm, similar to that in

[3]. The first pass assigns a rank to each node. The rank is the level of the node in

the rendered tree, with the top row containing the nodes at level 1, and increasing

downwards. The rank is used in the third pass to determine the Y coordinate of

each node. The first row of FOF nodes (leaf nodes) are placed in the first rank.

A depth first search (DFS) is then used to assign increasing rank to the rest of

the FOF nodes. Next the first row of CNF nodes are placed in the rank above

the maximum FOF node rank. Finally, the DFS algorithm is run again to assign

increasing rank to the rest of the CNF nodes. After ranks are assigned to all nodes,

the edges are partitioned as follows: If an edge connects two nodes that are more

than one rank apart, the edge is replaced by a chain of virtual nodes and edges.

The virtual nodes are given incremental ranks between the two end nodes’ ranks.

If a non-virtual node has more than one chain of virtual nodes leading down from

it, the chains are combined as far as possible, dividing immediately above the end

nodes of the chains.

The second pass directly follows the algorithm from [3], setting the left-to-right

vertex order within ranks by an iterative heuristic incorporating a weight function

and local transpositions to reduce edge crossings. The introduction of the virtual

nodes at each rank guarantees that edge crossings can only occur between adjacent

ranks.

The third pass sets an initial X coordinate and final Y coordinate for each

node. The rank with the largest number of nodes determines the maximum width

of the graph. With the left-to-right vertex ordering within ranks from the second

pass, equidistant X coordinates are given to the nodes in each rank, between 0 and
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maximum width of the graph. The final Y coordinate is based linearly on the nodes’

ranks.

The fourth pass finds the optimal X coordinate for each node. For this pass

spring embedding is used. 3 Spring embedding is a graph drawing technique that

models a graph as a system of springs and then uses energy minimization to space

the nodes. The following forces are balanced: edge spring force for keeping edges at

a certain length, node-to-node repulsive forces to keep nodes from being too close,

gravity force that keeps all edges pointing downwards, and repulsive boundary forces

to keep the nodes from spreading too far apart horizontally. After the fourth pass

the X and Y coordinates are fixed - the nodes cannot be moved by user interaction.

The fifth pass generates Bezier curves to draw edges between nodes. If two non-

virtual nodes are connected by a chain of virtual nodes, then the chain of virtual

nodes is used to plot the points of the Bezier curve.

The layout determined by the first phase does not guarantee that nodes will

not overlap (or hence, given the use of virtual nodes to guide edge generation, that

edges will not pass through nodes). The extent to which node overlaps are avoided

is determined by the number of iterations in the spring embedding. The number

of iterations in the current implementation has been found to be sufficient to avoid

most overlaps. After the layout has been determined, the interface and DAG are

rendered.

IDV is implemented in Java, mainly using basic Swing components. The TPTP

formulae are read in using StreamTokenizer. The IDV window is a JFrame, and

the rendering is a JPanel. A MouseMotionListener is used in the JPanel to detect

when the mouse moves over a node, to implement the node coloring feature. A

MouseListener is used in the JPanel to detect when a node is clicked, to implement

the pop-up window feature. The JFrame is implemented with ActionListener and

ChangeListener to detect the user’s manipulations in the control strip.

3 Derivation Synopses

As mentioned in Section 1, one of the features of derivations output by ATP systems

is the use of fine grained inference steps such as binary resolution, which exaggerate

the size of a proof. Derivations output by humans typically use coarser grained in-

ference steps, leaving intermediate steps “to the reader”. The inferred formulae of

such coarser grained inference steps are logical consequences of their leaf ancestors,

at various levels of saliency - humans often single out certain of the logical conse-

quences to be specifically designated as lemmas. By considering only those logical

consequences above a certain level of saliency (hiding those below that level), a

synopsis of the detailed derivation is formed. In a synopsis the lowest visible an-

cestors of a hidden formula become the parents of the highest visible descendents.

A synopsis hides the fined grained inference steps and the intermediate formulae,

thus making is easier for a user to grasp an overview of the proof. The user may

later choose to examine the details. Synposes may similarly be used to summarize

extremely large derivations.

3 Thanks to Christian Duncan for providing the original spring embedding code.
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IDV is able to form a synopsis of a proof by CNF refutation. This is achieved

by rating the interestingness of inferred CNF formula, and hiding the nodes whose

formula rating is below a user specified threshold. The interestingness rating of

inferred CNF formulae is computed by the AGInT system [6] - see Section 3.3, and

the user sets a threshold using the slider in the control strip pane.

3.1 Interface

The interestingness of each formula is a value in the range 0.0 to 1.0. Some formulae

have a preset interestingness rating: leaf formulae are set at 1.0, the topmost CNF

formula are set at 1.0, the intermediate formulae between leaf FOF formulae and

topmost CNF formulae are set at 0.0, all formulae derived from the negation of a

conjecture are set at 1.0, and root formulae are set at 1.0. The interestingness of

values for the other formulae, i.e., the internal CNF formulae of the derivation, are

computed by the AGInT system, as described in Section 3.3. Initially the threshold

slider in the top pane is set to an interestingness value of 0.0, and all nodes are

displayed in the rendering. As the slider is moved up the interestingness thresh-

old increases, and nodes whose formula rating is below the threshold are hidden.

Figure 3 shows the derivation in Figure 1, with a interestingness threshold of 0.5.

After extracting a synopsis it is possible to zoom in, rendering only the visible

nodes. This is done in IDV with the redraw button in the control strip. Figure 4

shows the synopsis derivation rendering of Figure 3. After a redraw the threshold

slider may be moved and the derivation redrawn again, to produce a different level

of synopsis. Note that after a redraw, if the threshold is moved to below the

interestingness level used for the redraw, the hidden nodes do not immediately

become visible - another redraw is required. The user is warned of this state by

the threshold value being shown in red. Sequences of redraws can be undone and

redone using the synopsis undo and redo buttons.

While using the slider to adjust the interestingness level, the layout of the nodes

does not change - simply more or less of the nodes are hidden. This provides a

identity mental map of the derivation (a mental map is the user’s memory of the

rendering [5]). When redrawing a synopsis it important to maintain the mental

map as far as possible. To this end, all nodes that are not hidden in a synopsis are

kept in the same order as in the original. The Bezier curves that connect the visible

nodes are recomputed, but maintain the same form as in the original.

As mentioned in Section 2.1, when a node is clicked a pop-up window appears

containing the annotated formula of the node and its parents. After a reddraw, the

parents shown in a pop-up window are the parents of the formula in this rendering,

i.e., they might not be the formulae’s original parents. If some parent information

is different than the original, then the pop-up window informs the user of this.

3.2 Implementation

Interestingness ratings are stored in a record in the useful info fields of annotated

formulae. There are two ways for formulae to have interestingness ratings. First, the

annotated formulae input to IDV may already have interestingness values. Second,

the input formulae do not have interestingness ratings, and the AGInT system has to
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Fig. 3. Interesting nodes of EP’s Proof by Refutation of PUZ001+1

be called by IDV. In this case AGInT is called as soon as the user uses the threshold

slider in the control pane.

When the redraw button is clicked by the user, the derivation synopses is ren-

dered as follows: First, non-virtual nodes in the DAG are set to be interesting if

their interestingness rating is greater than the threshold value, and all virtual nodes

are set to be uninteresting. Each rank is then checked to see if it contains any inter-

esting nodes. If a rank contains at least one interesting node the rank is retained,

otherwise the rank is empty and all nodes in ranks below are moved up a rank (i.e.,

their rank is decremented). The original rank of each node is stored for redrawing

purposes. After the ranks are updated the Y coordinates of the nodes in the re-

tained ranks are updated, as in Section 2.2. Finally, the Bezier curves are updated

to uniquely connect each interesting node to its closest interesting ancestors, which

are found using a DFS search up the DAG. All uninteresting nodes remain hidden

after a redraw.
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Fig. 4. Synopsis of EP’s Proof by Refutation of PUZ001+1

When the synopsis undo/redo button is clicked, the current interesting threshold

value changes to the last value pushed onto the undo/redo stack and above redraw

procedure is called.

3.3 Interestingness Ratings

The interestingness ratings of derived CNF formulae in a derivation are computed

by the runtime filter and static ranker components of the AGInT system. AGInT

is a system that discovers interesting theorems of a given set of axioms. AGInT

uses a deductive approach to discovery - it uses an ATP system to generate CNF

logical consequences of the given set of axioms, filters the logical consequences to

extract interesting theorems, and then computes an interestingness rating for each

theorem. This basic process takes place in the context of an outer level control loop

that regularly refocuses the generation of logical consequences, thus enabling AGInT

to proceed deeply into the search space of logical consequences. Details are given

in [6].

In the context of IDV, the derived CNF formulae of a derivation are given to

AGInT as the logical consequences of the topmost CNF formulae (i.e., the topmost

CNF formulae are considered to be the axioms from which the formulae are derived).

AGInT’s runtime filter and static ranker are used to compute interestingness values

for the formulae. Figure 5 shows the combined architecture of these two components.

The task of the runtime filter is to aggressively filter out and discard boring

formulae. Each formula must first pass the pre-processor, and must then pass the

majority (i.e., at least four) of the seven filters: obviousness, weight, complexity,
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Runtime Filter

Pre-processor

1st 
pass

Update 
sliding windows

Obviousness, Weight, Complexity, 
Surprisingness, Intensity, Adaptivity, Focus
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2nd 
pass

2nd pass

Usefulness, 
Normalization and Averaging

Static Ranker

Fig. 5. Architecture of AGInT’s Runtime Filter and Static Ranker

surprisingness, intensity, adaptivity, and focus. Each filter maintains a sliding win-

dow defined by the best distinct scores from the filter’s evaluation of the formulae

seen so far. The upper and lower bounds of each window are initialized to the

worst possible score for that filter. If an incoming formula is scored equal to or

better than the lower bound, it passes the filter, and the score is used to update the

window. Initializing the upper and lower bounds to the worst possible score allows

all formulae through until the window starts sliding up. As a result some boring

formulae early in the stream may pass the runtime filter. Therefore the formulae

that pass the runtime filter in the first pass are stored, and after all formulae have

been processed the stored formulae are filtered again, with the windows fixed from

the first pass. This removes any that do not meet the final lower bounds.

The individual filters are as follows:

Pre-processor: The preprocessor detects and discards obvious tautologies, e.g.,

clauses that contain an atom and it’s negation, and clauses containing a true atom.

Obviousness: Obviousness estimates the difficulty of proving a formula. The

obviousness score of a formula is the number of inferences in its derivation. A

higher score is better.

Weight: Weight estimates the effort required to read a formula. Formulae that

contain very many symbols (variables, function and predicate symbols) are less

interesting. The weight score of a formula is the number of symbols it contains. A

lower score is better.

Complexity: Complexity estimates the effort required to understand a formula.

Formulae that contain very many different function and predicate symbols, repre-

senting many different concepts and properties, are less interesting. The complexity

score of a formula is the number of distinct function and predicate symbols it con-

tains. A lower score is better.

Surprisingness: Surprisingness measures new relationships between concepts and

properties. Formulae that contain function and predicate symbols that are seldom

seen together in a formula are more interesting. The symbol-pair surprisingness

score of a pair of symbols is the number of axioms that contain both symbols

divided by the number of axioms that contain either symbol. The surprisingness

score of a formula is the sum of the symbol-pair surprisingness scores, over all pairs

of distinct symbols in the formula. A lower score is better.

Intensity: Intensity measures how much a formula summarizes information from

the leaf ancestors in its derivation tree. The plurality score of a formula (or set of

formulae) is number of function and predicate symbols in the formula divided by

the number of distinct function and predicate symbols in the formula. The intensity

score of a formula is the plurality of its leaf ancestors divided by the plurality of
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the formula itself. A higher score is better.

Adaptivity: Adaptivity measures how tightly the universally quantified variables

of a formula are constrained. The adaptivity score of a clause is the number of

distinct variables in the clause divided by the number of variable occurrences in the

clause. A lower score is better.

Focus: Focus measures the extent to which a formula is making a positive or

negative statement. Let FPL and FNL be the fractions of positive and negative

literals in a clause. The focus score of a clause is 1 + FPL ∗ log2(FPL) + FNL ∗

log2(FNL). Clauses with up to three literals are considered to have perfect focus

because their polarity distribution is limited. A higher score is better.

The formulae that pass the runtime filter are considered to be interesting. The

task of the static ranker is to compute a final interestingness rating for the formulae.

This is done in two phases: first a usefulness score is computed for each formula,

and second, all the scores are individually normalized and then averaged.

Usefulness: Usefulness measures how much an interesting formula has con-

tributed to proofs of further interesting formulae, i.e, its usefulness as a lemma.

The usefulness score of a formula is the ratio of its number of interesting descen-

dents (i.e., descendents that have passed the runtime filter) over its total number

of descendents. A higher score is better.

Normalization and Averaging: The scores of the formulae, from each of the

runtime filter and static evaluations, are normalized into the range 0.0 to 1.0. The

formulae with the worst score are given a final score of 0.0, the formulae with the best

score are given a final score of 1.0, and all other scores are linearly interpolated in

between. If the worst and best score of a particular filter are equal, then that filter

does not differentiate between the formulae, and those scores are removed. The

remaining scores of each formula are averaged to produce a final interestingness

rating.

4 Deployment and an Application

IDV is deployed online as part of the SystemOnTPTP interface at

http://www.tptp.org/cgi-bin/SystemOnTPTPFormMaker

The IDV code is wrapped as a web browser applet, and all computation for the

rendering is done on the client side. The annotated formulae that constitute the

derivation to be rendered may be passed to the applet as a parameter within the

<APPLET> tags in the encompassing web page, or retrieved from a URL specified as

a parameter within the <APPLET> tags. The AGInT code is deployed as a server side

cgi-bin script, and is invoked by the IDV code via a POST call when interestingness

ratings are required. Figure 6 shows the deployment architecture.

IDV has been used to analyze proofs of theorems, to identify key steps in the

proofs. As an example EP’s proof of the TPTP problem SET615+3 is considered.

This problem proves that for any three sets X, Y , and Z, (X ∪ Y )\Z = (X\Z) ∪

(Y \Z). Figure 7 shows EP’s derivation DAG - clearly a hairy beast which is hard

to comprehend as a whole. Figure 8 shows a synopsis of the derivation. It is very

easy to see which nodes are key points in the synopsis, e.g., the one with the blue

(darkest) coloring has the formula X = (X ∪Y )\(Y \X). Another key node has the
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Fig. 6. Deployment of IDV

formula X ∪ (Y \Z) = (X ∪ Y )\(Z\X).

5 Conclusion

This paper has presented the design, implementation, deployment, and application

of an interactive derivation viewer, implemented as the IDV tool. IDV provides

strong visual information showing the structure of a derivation, with original details

available as text. IDV provides interactive features that enable a user to visually

highlight and examine salient parts of a derivation. In particular, the ability to

extract proof synopses sets IDV apart from other existing derivation viewers. The

use of “interestingness ratings”, which are artificially intelligently determined, to

provide a sliding scale of proof synopsis, is particularly powerful and certainly highly

novel. The online deployment makes IDV easily available to users (who use the

TPTP language for their derivations), without any need for software installation.

Future work planned for IDV includes finer grained synopsis of the FOF to

CNF parts of derivations, which are currently considered to be not interesting at

all. Future work on the implementation includes tighter integration with the Syste-

mOnTPTP interface, so that interestingness ratings are computed in advance of their

need, improving the performance on extremely large derivations, and improving the

Bezier curve drawing in synopses of very large derivations. When the features have

been optimized and implementation is stable, user evaluation will also be desirable.
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Abstract

ACL2 is the latest inception of the Boyer-Moore theorem prover, the 2005 recipient of the ACM Software
System Award. In the hands of experts it feels like a finely tuned race car, and it has been used to prove
some of the most complex theorems ever proved about commercially designed systems. Unfortunately,
ACL2 has a steep learning curve. Thus, novices tend have a very different experience: they crash and burn.
As part of a project to make ACL2 and formal reasoning safe for the masses, we have developed ACL2s,
the ACL2 sedan. ACL2s includes many features for streamlining the learning process that are not found
in ACL2. In general, the goal is to develop a tool that is “self-teaching,” i.e., it should be possible for an
undergraduate to sit down and play with it and learn how to program in ACL2 and how to reason about
the programs she writes.

Keywords: ACL2, Eclipse, theorem proving, script management

1 Introduction

“ACL2” stands for “A Computational Logic for Applicative Common Lisp.” It is

the name of a programming language, a first-order mathematical logic based on

recursive functions, and a mechanical theorem prover for that logic [9,5,4]. ACL2 is

an industrial-strength version of the Boyer-Moore theorem prover [2] and was devel-

oped by Kaufmann and Moore, with early contributions by Robert Boyer; all three

developers were awarded the 2005 ACM Software System Award for their work. Of

special note is its “industrial-strength”: as a programming language, it executes so

efficiently that formal models written in it have been used as simulation platforms

for pre-fabrication requirements testing; as a theorem prover, it has been used to

prove the largest and most complicated theorems ever proved about commercially

designed digital artifacts.
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ACL2’s power comes with a steep learning curve. This is not an issue of docu-

mentation. ACL2 has extensive documentation, including tutorials, a user’s manual,

workshop proceedings, and related papers, all of which are available from the ACL2

homepage [9]. ACL2 is also described in a textbook by Kaufmann, Manolios, and

Moore [5], and there is also a book of case studies [4]. The sources for ACL2 are

freely available on the Web, under the GNU General Public License.

ACL2’s steep learning curve is due to two major factors. The first factor is usabil-

ity. Beginners have to use ACL2’s command line user interface and are encouraged

to learn GNU Emacs. Once they start proving theorems, they are confronted with

the problem of developing a mental model of what ACL2 is doing, something that

is inherently difficult: reasoning about a system that reasons about other systems.

Driving a user interface that is unfamiliar, non-intuitive, and happily permits lots

of illogical actions distracts new users from what is important.

The second factor is the ACL2 logic. ACL2 has this tremendous advantage

over many other theorem provers: it is grounded in a programming language. This

makes it very easy to introduce ACL2 to users with a computer science background.

However, once the logic is introduced, termination becomes an issue. In order to

guarantee soundness, ACL2 only accepts functions that are shown to terminate.

While ACL2 can do this automatically in many cases, there are also simple cases that

require user guidance. Termination reasoning in ACL2 is very powerful because it is

based on the ordinal numbers. While students and beginners eventually understand

(and are even sometimes fascinated by) the ordinal numbers, their introduction

significantly increases the knowledge required for interesting interaction with ACL2.

Note that termination is not only used to admit recursive functions, it induces sound

induction schemes, which play a central role in ACL2.

To address the above two factors and thereby make ACL2 more accessible to

beginners, we have developed and released ACL2s, the ACL2 sedan [3]. ACL2s is

available at http://www.cc.gatech.edu/home/manolios/acl2s and is being de-

veloped with the goal of making formal reasoning accessible to the masses, with an

emphasis on building a tool that any undergraduate can profitably use in a short

amount of time.

To address the usability factor, ACL2s features a modern graphical integrated

development environment in Eclipse that provides an intuitive, robust “script man-

agement” interface with an improved front-end to the familiar “command line”

interface. The prior is good for augmenting or curtailing the current theory while

the latter is good for querying, testing, or debugging the current theory. ACL2s

permits the user to switch between the two without fear of either one misrepre-

senting the relevant logical history. Other features help to eliminate other simple

misunderstandings that distract from the specification and proof process: full syn-

tax highlighting, syntax error underlining, auto-indenting, character pair matching,

and input command demarcation. In addition, “session modes” serve to hide com-

plicated functionality from novice users.

To address the logic factor, we have developed and incorporated into ACL2s

CCG termination analysis [8]. This is a powerful, state-of-the-art termination anal-

ysis method which significantly automates termination arguments. This eliminates

the need for students to justify the kind of user-defined recursive functions and in-
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Fig. 1. Snapshot of Eclipse workbench running ACL2s. The top-left frame is Eclipse’s file Navigator
view. The top-right frame is an ACL2s source code editor. The bottom-right is an ACL2s session editor
associated with that source code editor. The bottom-left is a “proof tree” view of proof happening in the
session editor.

duction schemes that would be covered in an undergraduate class. We can therefore

avoid discussing termination analysis completely or until well after students have

become proficient ACL2 users. In addition, ACL2s includes several levels appropri-

ate for beginners through experts. This allows us to introduce the major concepts

in ACL2 in easy-to-understand modules that do not overwhelm beginners.

Together, the features of ACL2s lower barriers to learning specification and

verification in ACL2—which was the sense after two graduate courses switched to

requiring use of the tool.

2 GUI Overview

In the Eclipse workbench, development with ACL2s is centered around two types

of editors: the source editor (also called “Lisp editor” or “.lisp editor”), and the

session editor (or “.a2s editor”). In most cases, the user will use linked pairs of

these editors, such as editing somefile.lisp and somefile.lisp.a2s. Based on

their naming, the plugin links these so that each provides a consistent view of their

shared logical history.

2.1 Line(s) in the Source Code

The source editor is where the user enters top-level definitions and commands as if

programming offline, but the editor also provides script management [1] capabilities,
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providing what ACL2 literature calls “the line” [5]. The editor actually maintains

two lines, which we call the “completed line” and the “todo line.” Because the

“completed line” is never beyond the “todo line”, the lines induce three (potentially

empty) regions in this order: the “completed region” (gray highlight and read-only),

the “todo region” (green highlight and read-only), and the “working region” (no

highlight, read/write). These regions can be seen in Figure 1. The lines and other

metainformation are stored in special comments on disk, preserving source code

compatibility.

User interface actions grant essentially free manipulation of the “todo line”,

regardless of the state of the associated ACL2 session, or whether it’s even running.

The “todo line” will only advance past syntactically well-formed ACL2/Lisp input

and only at the granularity of whole commands (see Section 4.1). Moving the

“todo line” can have consequences including initiating processing of “todo” forms,

interrupting the processing of a form no longer in the “todo” region and “UNDO”ing

of completed commands (see Section 4.3). As ACL2 is processing forms from the

“todo” region, it advances the “completed” line on success and resets the “todo line”

to the point of the “completed line” on failure. If ACL2 is restarted, the “completed

line” is moved to the top. In each case, we are maintaining the simple invariant that

the “completed” forms have been accepted by ACL2 (and have not been undone),

the “todo” forms are being processed (if the ACL2 session is running), and the

“working” area is freely editable.

“Script management”-style interaction usually involves the session editor as well,

which gives ACL2’s output in response to forms processed as a result of line motion.

The session editor shows almost exactly what the user would see if she had been

manually copying processed forms into a terminal running ACL2—though the ses-

sion editor has some significant enhancements for browsing output (see Section 5.3).

2.2 Command Line

Even with a script-style interface, lots of ACL2 interaction does not make sense

from such an interface. We therefore made the session editor much more than a

provider of detailed output. The session editor implements a command line interface

to the same session used by the script-style interface of the source code editor. Most

importantly, the user cannot “trick” ACL2s into an inconsistent state by switching

between the two interfaces. The basic mechanism for this is copying any successful,

relevant commands (see Section 4.2) submitted at the prompt in the session editor

to the “completed region” in the associated source code editor.

The session editor looks like a dump of the input and output to a sequence of

ACL2 sessions, but input coming from the “todo” region and input typed at the

prompt look the same in the history.

2.3 Other UI Pieces

ACL2s also incorporates a clickable proof tree view, much like the proof trees pro-

vided by the Emacs interface to ACL2. Our tool takes the view a step further,

though, by remembering the final proof tree of all completed commands and bring-

ing them up as the cursor is moved to corresponding sections of the session editor.
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So far, the only wizard provided by ACL2s is a “New ACL2s/Lisp file” wizard,

which allows the user to pick a session mode (see Section 3.1) and has some options

for generating some skeleton code that commonly appears at the top of ACL2 files.

2.4 User Experiences

Our above description of some intricate interaction between the session editor and

the source code editor do not translate to difficult understanding by users. ACL2s

has been a required tool for two graduate courses with an introduction to theorem

proving, and students have understood our merger of the script management and

command line interfaces almost immediately.

3 Language Extensions

As part of ACL2s, we have made some extensions to the underlying ACL2 tool,

but we have always made sure not to disable or obscure any ACL2 functionality

available outside of ACL2s.

3.1 Session Modes

Analogous to “language levels” in DrScheme [10], ACL2s offers (at present) three

modes of behavior for the underlying ACL2. In teaching ACL2, the modes can be

introduced in this order:

• Programming Mode. This mode is intended to introduce new users to ACL2

as a programming language of untyped, total functions. None of the ordinary

restrictions relating to logical soundness apply. With the exception memory ex-

haustion (heap or stack), no runtime errors are possible with functions defined in

Programming Mode. Macro definition and usage is also available in this mode.

Implementation Note: Readers with knowledge of ACL2 will note that this is

similar to the built-in “program mode” for definitions, but there is at least one

important difference: runtime checking of guards. Guards facilitate fast, raw lisp

execution but are irrelevant to the logical language of ACL2. To novices, guard

checking is a distraction, which is why our Programming Mode disables it. ACL2

version 3.0 has fixed the shortcoming in “program mode” by adding an option to

turn off all guard checking. This will eliminate the need for the hack we currently

use to implement our “Programming Mode.”

• Recursion & Induction Mode. Defining functions and macros in this mode is just

like in pure ACL2, except that the theorem prover is able to prove termination

of most terminating functions with no help (using CCG termination analysis,

described in Section 3.2). Theorem proving in this mode is accomplished with a

macro that inhibits automatic, guessed induction and adding the rules generated

by the theorem to the enabled theory. To perform induction, therefore, the user

must provide an explicit hint with the scheme to use, forcing the user to think

carefully about when and how induction should be applied. Utilizing user-defined

lemmas (theorems) as proof rules also requires explicit hints. This helps users to

focus on individual proofs rather than building a coherent theory, which is harder

still.
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(defun sum-lists (x y)

(if (or (consp x) (consp y))

(cons (+ (car x) (car y))

(sum-lists (cdr x) (cdr y)))

nil))

Fig. 2. The function, sum-lists, takes two lists and returns the list whose elements are the sums of the
elements of the inputs. If one input list is longer than the other, the returned list is as long as the longer
and the smaller is considered to be padded with 0s.

• Pure ACL2 This mode is just like regular ACL2, except that we offer CCG

termination analysis as a convenience.

3.2 CCG Termination Analysis

Termination in ACL2. A significant stumbling block for new users and a source

of frustration for experienced users of ACL2 is termination. Every function admit-

ted to ACL2 must be proven to terminate for all inputs before ACL2 will accept it.

First, this guarantees the logical consistency of function definitions—that every syn-

tactically legal function application corresponds to exactly one value. Second, ACL2

derives induction schemes from recursive functions, and those induction schemes are

sound as a consequence of termination of the corresponding function. Induction is

an integral part of the theorem proving capability of ACL2, especially in proving

properties over infinite classes of input.

To prove termination of a function, ACL2 uses a specified or guessed measure to

map the function’s inputs into values in the domain of a well-founded relation, such

as the < relation on the natural numbers. If the measure always returns a value in

the relation’s domain and recursive calls always use inputs that, according to the

measure and well-founded relation, are “smaller than” the previous, it cannot go

on forever. (No sequence decreasing according to a well-founded relation can be

infinite.)

ACL2 uses only simple heuristics to guess measures when proving termination, so

it is easy to define functions for which ACL2 is not able to guess the correct measure.

Therefore, new users soon find the need to learn about engineering and justifying

measures to ACL2, which tends to overwhelm those who are still struggling to prove

simple theorems.

For example, ACL2 cannot guess the measure for the sum-lists in Figure 2. Us-

ing < (the normal less-than relation) over the natural numbers as our well-founded

relation, our measure can be (+ (len x) (len y)), where len returns the length

of a list (0 for atoms, and 1 + (len (cdr x)) for conses, x).

Mechanics of CCG analysis. In [8], we introduce a new, more automatic termi-

nation analysis based on CCGs, or context calling graphs. Within a function (or

set of mutually recursive functions) we augment each recursive call site with predi-

cates that are needed to get there (“rulers”) within the function. These augmented

call sites are calling contexts, and a calling context graph (CCG) is a graph whose

vertices are calling contexts and has an edge from e to e′ if e calls the function con-
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taining e′ and e can lead directly to e′ during execution. Intuitively, a CCG is like a

call graph but in terms of call sites instead of functions, giving it finer granularity.

Now we apply the notions of measure and well-founded relation CCGs. Suppose

we can assign a set of measures—called calling context measures, or CCMs—to

each context such that every infinite path through the CCG has a corresponding

sequence of CCMs that never increase and decrease infinitely often. It follows that

every computation must then terminate. Theorem proving plays a key role in this

analysis as it is used to prune edges from CCGs and to determine when CCMs are

non-increasing or decreasing as we traverse edges in CCGs.

Our algorithm uses heuristics to pick CCMs, together with a sufficient condition

for the above path-related criterion that is based on [7]. More details and other

improvements are described in our extended abstract [8].

Results of using CCG analysis. We ran our CCG implementation on ACL2’s re-

gression suite. This is a collection of ACL2 libraries on a variety of topics including

arithmetic, set theory, processor verification, and model checking. These libraries

were submitted by various members of the ACL2 community over a decade, and

are therefore representative of typical ACL2 usage. The regression suite contains

over 10,000 function definitions, a significant number of which required explicit user

intervention to prove termination. When running our termination analysis on the

regression suite, we discarded explicit user hints, and provided no manual assis-

tance. Our analysis successfully proved 98.7% of the 10,000 functions terminating,

including 68.2% of those that previously required explicit user hints.

We have implemented our algorithm into the current version of ACL2s [6]. The

result is that ACL2s now proves termination automatically for a much higher pro-

portion of functions, particularly among simpler functions that new users tend to

define. The sum-lists function, for example, is easily proven to terminate by our

analysis. With our analysis, a discussion of the complex concepts of termination

analysis can be postponed for new users, allowing them to become more familiar

and comfortable with the basic concepts of ACL2 first. In addition, advanced users

can spend less time carefully engineering and justifying measures.

4 Script Management

Implementing a powerful, robust “script management”-style interface for ACL2 was

non-trivial. First, we would need to be able to detect entire input forms for ACL2.

Next, some input forms require explicit “undo” while others have no effect other

than printing some result. Others still are not undoable with the regular “undo”

command, but we do not want to restrict the commands available from the interface.

Another complication has to do with our command line interface. Recall that

successful, “relevant” commands entered at the session editor’s command prompt

are inserted at the completed line in the source editor. We needed to come up with

a notion of “relevance” that made sense.
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4.1 Input Demarcation

To know where to move the todo line when the user asks to advance it one ACL2

form, we implemented a Common Lisp parser in Java. This parser (call it the

“batch parser”) was implemented before and independent of the parser that does

syntax highlighting and checking for the editors (call that one the “online parser”;

see Section 5.1). The batch parser also pulls entire ACL2 forms typed at the session

editor’s command prompt.

Another view of the job of the batch parser is to make sure that each time the

ACL2 reader asks for an expression, it is given exactly one syntactically well-formed

expression. “Well-formed” in this case means that it will not generate a read error

by ACL2’s reader. In the case of ill-formed input, the batch parser generates an

appropriate error message with a relevant location in the input. With the batch

parser in place, neither the plugin nor the user need worry about odd behavior from

ACL2 in recovering from read errors or getting stuck with ACL2 expecting more

input but not know exactly what is needed to complete an expression. These cases

are particularly frustrating to novices.

ACL2’s keyword commands are convenient, but are more prone to that “what

else am I supposed to type” experience when used at a terminal because they poten-

tially require several expressions to compose a single input form. Our tool imposes

a stricter interpretation of keyword commands that, in a sense, fixes the confusion:

keyword commands are terminated only by a newline outside of a Lisp expression,

which corresponds to existing conventional usage. The mechanism enabling us to

adopt this interpretation is our plugin’s translation of keyword commands to their

non-keyword equivalents before giving them to ACL2. This means that if the wrong

number of parameters is given, instead of ACL2 blocking or misinterpreting input,

it simply reports, “wrong number of arguments.”

4.2 Input Classification

The next step in our solution was to classify each input form before letting the

underlying session execute it. This would tell us (ACL2s) about the form’s relevance

and also provide some useful feedback to the user. In fact, the only real textual

difference between a terminal dump and our session editor contents is that we

prepend each input with a classification that categorizes the potential effects it

could have. Figure 3 shows some examples.

Classifications can depend on the history of the particular session, so the easiest

way to classify an input is inside of ACL2. Part of our extensions to the ACL2

core is some code for classifying inputs, that builds on some existing code in ACL2

for deconstructing and analyzing inputs. Also, we designed our Eclipse plugin code

that interfaces with the ACL2 core to be able to handle requests that are hidden

from the user. The output seen in the session editor is not all the output that

the ACL2 session has generated; it’s only the output that is relevant to the forms

entered by the user!

Here are most of the possible classifications:

• EVENT is usually a definition of a function or theorem and is always considered

relevant because it could modify or extend the logical world. Events also play an
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Fig. 3. Close-up of the Session Editor.

important role in book development, discussed in Section 5.2.

• VALUE is some computation that, by the top-level function’s signature, is

unable to change any state, including the logical world. The best example is

testing a function on some input to see its result. Values are irrelevant.

• QUERY is one of many built-in commands that relate to the logical world,

but are known not to change anything. Examples include printing the rules

associated with a symbol or trying to prove an unnamed (thus, immediately

forgotten) conjecture. Queries are irrelevant.

• BAD is given to an input if the categorization code is able to detect an error

the plugin’s batch parser is not. Such semantic errors include trying to invoke a

function with the wrong number of parameters. Because BAD inputs always fail,

they are, in a sense, inherently irrelevant.

• COMMAND changes something in ACL2 that the built-in undo mechanism

does not handle but ACL2s can undo cleanly and reliably. To be safe, commands

are considered relevant.

• IN-PACKAGE is a special COMMAND that changes the current package. It is,

thus, relevant, but is singled out for its role in book development (see Section 5.2).

• ACTION is a catch-all for inputs that could have effects we don’t know how

to undo. It would be rare for a novice to invoke such an input and rarer still for

a non-undoable effect to affect soundness. Actions are considered relevant and

cause a warning to be printed when they are undone (to the extent we are able).

• UNDO and REDO are generated by motion of the “completed” line, as
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discussed below.

These classifications give us a sane way of implementing script management and

maintaining consistency between the two editors.

4.3 Undo

To have clean, powerful support for retreat of the “completed” line, the modified

ACL2 core used by ACL2s includes an undo mechanism that is, in a sense, more

primitive than the built-in undo mechanism. In other words, an ACL2 undo can be

used as just another command on top of ACL2s’s undo mechanism. Basically, our

mechanism keeps a list of old pseudo-states, each of which contains a logical world

and many other settings that affect the treatment of input. To perform an UNDO,

the Eclipse plugin simply invokes the mechanism for restoring a previous pseudo-

state. It is non-trivial for the ACL2s user to invoke this mechanism with a command

(rather than causing the plugin to invoke it in response to line motion) because using

the mechanism requires knowledge of a secret number chosen at random for each

session. The secret is hidden in the ACL2 session such that only an expert who

really wanted to usurp our undo structure would be able to do so.

4.4 Redo

Whenever ACL2s performs an UNDO, the pseudo-state it was in before the UNDO

is not forgotten—nor is any pseudo-state that got us here by some sequence of

UNDOs, REDOs, and irrelevant forms. Thus, we have a mechanism to return to

such states. A REDO is actually invoked if, following the UNDO of a form x plus any

sequence of matching UNDO/REDOs and irrelevant forms, a form y is submitted

with the same abstract syntax as x. Two forms have the same abstract syntax

if they parse to the same Lisp objects. Comments, for example, are irrelevant to

abstract syntax, but an extreme example would be

(1+ 42) ∼= (Ac|L|2::1\+ #c(840/20 -0.) . ())

A nice consequence of the REDO mechanism is the ability to modify comments

and such above the line in a way that ensures ACL2 would process it the same way,

but without having to wait for ACL2 to reprocess it. Simply retreat the line high

enough, make the modifications, and move the line back to where it was. If the

abstract syntax is unchanged, the completed line will move back to where it was

almost immediately using REDOs. In fact, ACL2s even allows this with no session

running! (It pretends to perform the UNDOs and REDOs that would be legal.)

5 Editor Features

5.1 Source Code

The source code editor can be used to edit .lisp files even when no corresponding

.lisp.a2s file is present, meaning the editor is not paired with a session editor. The

editor complains about some Common Lisp syntax that is illegal in ACL2, but an

option to disable those cases might be included in future releases.
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Fig. 4. Close-up of the Source Editor.

An important part of the source editor is the “online parser” it utilizes, which is

a hand-coded incremental Lisp lexer with some parser-like capabilities as well. This

part of the plugin is responsible for dividing up and classifying tokens for syntax-

based coloring, depicted in Figure 4. It also computes matching character pairs and

annotates the code in the case of any illegal syntax. The token representation also

plays a role in intelligent auto-indenting.

The editor matches open and close parentheses, as one would expect, but it also

matches double-quotes around strings, pipes within symbols, potentially nested #|-

style comments, and parentheses within comments. Particularly impressive to a

crowd of ACL2 experts was the editor’s matching of “,” and “,@” tokens to their

respective backquote characters.

Only one type of potential ACL2 read error is not annotated in the source editor:

the undefined package error. The set of defined packages can grow dynamically, so

such errors are not identified until checked by the batch parser. All other errors

show up as usual in Eclipse, with red or yellow underlining, a mark in the overview

ruler, and a message that appears when hovered over. Examples are depicted in

Figure 4.

The auto-indenting is much like Emacs or DrScheme. A notable, much-praised

exception is indenting inside of string literals according to rules followed by ACL2’s

built-in functions for formatted output.

The editor scales nicely, for it performs acceptably fast on (ASCII text) Lisp

files from the ACL2 source code that exceed a megabyte. The only exception is

when a change causes the reformatting of almost the entire megabyte file—such as
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commenting out the whole file. This can take a few seconds to complete, but the

bulk of that cost is Eclipse applying off-screen style information we give it.

5.2 Book Development

In many cases, ACL2 development is the development of a book, which is basically a

reusable collection of definitions. Defining a book, though, can be tricky for several

reasons, most of them relating to the requirement that books be processable by

Common Lisp outside of ACL2. First, the preamble must be processed by ACL2

before the contents of the book, but it cannot simply appear above the book in the

book’s source file. Some users put the preamble into a special comment, some put

it in a separate file, and many do both. This is a pain. In ACL2s, the preamble

can be written directly at the top of the source file, though on disk it is stored in a

comment (and possibly another generated file).

ACL2s has its own special construct for marking the end of the preamble:

(begin-book), which actually takes some optional parameters that are given to

(certify-book ...) when the user asks to certify the book. When submitted to

a running session, (begin-book) does not do anything special—nor does it need

to.

What does happen when (begin-book) is submitted, is the source editor begins

highlighting that part of the completed region with light purple instead of gray. As

more forms are completed, the light purple highlight extends as long as the forms

are legal for a book. After the (begin-book) this must be an (in-package ...).

After that, only EVENTS (see Section 4.2) are legal.

During book development, it is not unusual for the user to move the line past

some forms that are not legal within books. This is fine, and we call this a “tangent”.

When the user is ready to undo his tangent, the light purple highlighting indicates

the point where legal book constructs were last abandoned.

We have not yet implemented “one click” certification of books within ACL2s,

but the infrastructure is mostly there.

Finally, if (begin-book) is never used, no preamble is stored and no special

highlighting of the completed region is done. The book development features do

not complicate things if not utilized.

5.3 Session Editor

The session editor is the locus of our improved command line interface to ACL2

and captures much more than just a “dump” of the input and output. The saveable

and restorable session history is a sequence of 〈Environment , Input ,Output ,Status〉

tuples. The Environment contains information such as the current Lisp package, the

length of the logical history, the prompt printed to the user, and other settings that

can influence the meaning of input. The Input captures the concrete and abstract

syntax of an input form and a categorization describing its potential effects. The

Output stores the text of the output, the location of checkpoints within the output,

and the final proof tree associated with the command. The Status indicates whether

the command was successful and, if not, whether it was interrupted.

The editor uses color to distinguish sources or types of text. For example, the
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prompt is blue, the input categorization is gray, the actual input is black, and the

output is red on failure or green on success, as depicted in Figure 4.

The output can be navigated like any other read-only editor in Eclipse, but

there are special shortcuts for traversing from input to input and among checkpoints

within a single command’s output.

The only editable region is beyond the final prompt, and it is only editable

if ACL2 is waiting for input. This region, which we call the “immediate” region

(for typing “immediate” commands), uses the same online parser and presentation

scheme as the source editor. The command line interface, therefore, has charac-

ter matching, syntax error highlighting, and even auto-indenting. The history of

immediate commands is also navigable, much like in a UNIX shell.

The typed immediate command is submitted when Enter is pressed, though it’s

not quite that simple. When Enter is pressed, the batch parser checks to see if some

prefix of the typed input is a syntactically well-formed input form. If not, the Enter

simply causes a newline to be inserted. If a prefix is a full command, that prefix is

removed and submitted as the next input. This could leave some text left over if an

eager user decides to type more than one command at a time. The immediate text

disappears while ACL2 is busy but reappears once another command is expected.

The session editor also supports typing input to ACL2 that is not command

input. For example, ACL2 sometimes prompts the user for an answer to a yes/no

type question. Another example is interacting with the proof checker, which has

its own set of commands. All of these cases expect a single Lisp object as input,

and our plugin is able to detect when ACL2 is expecting non-command input.

Non-command input is never taken from the source editor, but must be typed in

the session editor, which, in fact, tracks an independent command line history for

non-command input.

One never interacts with raw Lisp from ACL2s. There are cases in ACL2 in

which errors take the user to a raw Lisp prompt and the user must manually break

out of it to return to ACL2. ACL2s takes care of this for the user, partly for

convenience but partly because it’s hard to determine when raw Lisp is expecting

input.

6 Related Work

6.1 ACL2 in DrScheme

Researchers at Northeastern University have hooked ACL2 into DrScheme [12].

Their preliminary system has some features we would like to have in ACL2s, but it

also has some inherent limitations.

One part of the system is a DrScheme language for “ACL2 Beginner,” which

is an attempt to duplicate the ACL2 language using Scheme macros and Scheme

functions. This simulated ACL2 benefits from the features of the DrScheme de-

velopment environment, including its simple GUI, its debugging features, and its

static checking features. The feature that would be most difficult to mimic is the

“Check Syntax” feature, which performs macro expansion in a way that allows

uses of lambda variables to be linked to their point of definition/declaration in the
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original source code.

The complication, however, is that Scheme is only partially compatible with

Common Lisp, the basis of ACL2 proper. A clean embedding of full ACL2 in

Scheme probably is not possible, due to incompatibilities such as packages and

other namespace issues. The current “ACL2 beginner” language has other incom-

patibilities, including use of functions as first-class values and a restricted macro

language.

Not necessarily an incompatibility but, in our opinion, a poor design decision for

the current “ACL2 beginner” language was incorporation of contracts for functions,

analogous to ACL2 guards. Guards are not part of the logical ACL2 language, so

we feel such dynamic type errors complicate a beginner’s ACL2.

ACL2 in DrScheme also provides a basic script management interface for in-

teracting with the theorem prover. The implementation is still rough and easy to

break, but of theoretical concern is the relative independence of the two interfaces.

One can track two separate logical environments that pertain to the same input

buffer. For example, defining a function in the read-eval-print interface does not

cause it to be defined in the theorem prover.

6.2 PG/Eclipse

The Eclipse version of Proof General has some nice features [13,11]. The project

is ahead of ACL2s in terms of utilizing the graphical interface for browsing help,

documentation, and the logical world. As we have overcome the technical chal-

lenges of hooking a robust script-management interface to ACL2, someone hooking

ACL2 to PG/Eclipse using the Proof General Interaction Protocol could utilize our

extensions to the ACL2 core.

7 Conclusion

In this paper, we have described ACL2s, the ACL2 sedan. ACL2s is a publicly

available system that we have developed in order to make formal reasoning more

accessible to the masses. One of our goals is to create a “self-teaching” system

that enables undergraduates to learn how to prove theorems about the computing

systems they design by “playing” with ACL2s. As an initial step in this direction,

ACL2s includes many novel features for streamlining the learning process. This

includes a modern graphical integrated development environment in Eclipse that

provides an intuitive, robust “script management” interface with an improved front-

end to the familiar “command line” interface. It also includes CCG termination

analysis, a powerful, state-of-the-art termination analysis method which essentially

eliminates the need for students to justify the kind of user-defined recursive functions

and induction schemes that would be covered in an undergraduate class. Together,

the features of ACL2s lower barriers to learning specification and verification in

ACL2—which was the sense after two graduate courses switched to requiring use of

the tool.

For future work, we are planning to use ACL2s to teach an undergraduate course

on processor design. The goal is that students should learn more about processor
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design than they would have learned without the use of ACL2s. We plan to ac-

complish this by having student use ACL2s as a specification language and as an

oracle that will be configured with the use of various libraries we are developing

to either prove the correctness of the student designs or to provide useful informa-

tion for finding errors. We also want to extend ACL2s so that it can provide more

visualization and query support for proving theorems.
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Abstract

This paper proposes an extension to theorem proving interfaces for use with proof-directed debugging and
other disproof-based applications. The extension is based around tracking a user-identified set of rules to
create an informative program slice. Information is collected based on the involvement of these rules in both
successful and unsuccessful proof branches. This provides a heuristic score for making judgements about
the correctness of any rule.
A simple mechanism for syntax highlighting based on such information is proposed and a small case study
presented illustrating its operation. No implementation of these ideas yet exists.
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1 Introduction

The use of verification for locating errors in theorems, and more specifically pro-

grams, is a relatively neglected area as is the provision of interfaces to assist in this

task. This paper considers the proof-directed debugging of functional programs and

proposes an extension to current theorem proving interfaces to support this.

The extension is based on the assumption that the debugging process involves

locating a program statement or, in the case of functional programs, function case

which is incorrect. This incorrect statement will appear in a program slice which

can be identified during verification. Other program slices leading to correct de-

ductions may also be identified during proof. This information can then be used

to create appropriate syntax highlighting of function cases in an interface. A po-

tential highlighting scheme is put forward and a simple case study based around

Isabelle/HOL [12] and ProofGeneral [1] is performed to show how this would work.

No implementation has yet been performed however potential issues are dis-

cussed in the context of Isabelle Proof General.
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Although the discussion in this paper is based around an application to proof-

directed debugging it is likely that similar mechanisms may also be useful in other

situations where the cause of a proof failure needs to be identified.

The paper is organised as follows: §2 discusses the concepts of proof-directed

debugging and program slicing; §3 present a mechanism for tracking program slices

through a proof and §4 presents examples of this mechanism at work via a simple

case study; §5 discusses some results using a similar mechanism within an automated

system; §6 looks at some related work and §7 discusses implementation issues and

other further work.

2 Proof Directed Debugging and Program Slicing

Proof-directed debugging was first suggested by Harper [10] and work is underway

to extend this into a framework for locating program errors through the proof pro-

cess [6]. The idea of using a framework rather than relying on a user’s skill at general

proof, is based on the example of Algorithmic debugging [15,9,11]. Algorithmic de-

bugging constructs an execution tree of a run of the program on some input and

then queries the user each time this tree branches. This identifies branches which

are returning false results and so locates sections of code responsible for errors.

Program Slicing was first suggested by Weiser [17]. The key idea was to identify

a variable of interest at some point in a program (called the slicing criterion) and

then extract a fragment of the program (a program slice) either containing all those

statements upon which the value of the variable at that point depended or that

fragment whose values were effected by the value of that variable at that point.

Program Slicing techniques for imperative languages have generally followed this

work [16] using control flow graphs, data flow graphs or other graph-based repre-

sentations of programs with statements represented as nodes in the graph and a

program slice as a set of nodes from the graph. In functional programs function

application takes the place of program statements. The notion of a slicing criterion

can also be generalised (e.g. to a projection as in [14]).

The intention behind proof-directed debugging is to use the branching structure

of a proof to create program slices and use these to assist in the location of errors.

There is clearly a need to provide appropriate tools (i.e. tactics/Isar methods)

tailored to this task. This paper does not concentrate on this aspect but consid-

ers instead the way a theorem prover’s interface could assist a user through the

presentation of relevant program slices.

3 Proof Tree Branches as a Slicing Criterion

The verification of functional programs naturally involves splitting a program into a

set of equational rules each corresponding to a case in its functional definition. The

usage of these rules in the proof can thus be tracked, effectively creating a program

slice (ie. those parts of the program used in the proof of any program), and a

“score” maintained indicating how many true and false branches of the proof have

used that rule (typically as part of a simplification process). These scores can then

be used by the interface to return additional information to the user. For simplicity,
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we shall continue to refer to these rule traces as program slices even though, in the

context of theorem proving, there is no reason why they should not be a general

collection of definitions, lemmas and theorems unrelated to a any program.

Let us consider a simple insertion sort program written in ML.

fun insert x [] = [x]
| insert x(h::t) =

if x ≤ h then x :: h :: t
else h :: insert x t;

fun sort [] = []
| sort (x :: xs) = insert x (sort xs);

Each case of the definition becomes one of four equational rules:

(i) insert x [] = [x]

(ii) insert x (h::t) = if x ≤h then x :: h :: t

else h :: insert x t

(iii) sort [] = []

(iv) sort (x :: xs) = insert x (sort xs)

We suggest that a proof-directed debugging interface should allow a user to

nominate a selection of such definitions as “suspect” during a verification attempt.

Obviously a user could choose to nominate all definitions involved in their devel-

opment as suspect including ones related to the specification and even pre-existing

definitions from the theorem prover’s theory database however our suspicion is that

this would lead to an overloading of information rendering program slicing of little

use. This is an obvious subject for some experimental investigation once such an

interface has been implemented.

We assume that a theorem proving system generates a sequence of proof states

which, at the very least, contain lists of current open goals in the proof attempt.

The central idea is to associate program slices with the goals in these proof states.

Each goal, g, in a proof state is associated with a set of suspect rules (a slice), S(g),

which have been used in the derivation of that goal. In addition to this the system

also stores a set of triples in each proof state, s, associating each suspect rule, r, with

two integers the first of which, the good integer, good(r, s) is incremented whenever

a proof branch is closed (because it has been successfully proved) and the second

of which, the bad integer, bad(r, s), is incremented whenever a goal is derived with

a False conclusion (this can be revised if a contradiction is subsequently found in

the hypotheses). Where it is obvious, the state argument will be dropped from

these functions. These two scores can be used to form a probabilistic estimate of

the chance that a rule is correct.

Initially good(r) and bad(r) are set to zero for all rules, r, and the initial goal,

gi, is associated with the empty program slice, S(gi) = []. As the proof progresses

the system updates the information as follows:

Consider two proof states, sn followed by sn+1. sn+1 is derived from sn by a

tactic t which replaces some parent goals with a set of child subgoals. For each new

subgoal, g, in such a proof state with parent, gp.

• Let R be the set of suspect rules used by t to derive g from gp, S(g) = S(gp)∪R.

• If g has a False conclusion and gp did not then for all rules r in S(g), bad(r, sn+1) =
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bad(r, sn) + 1.

• If g has a True conclusion then for all rules r in S(g), good(r, sn+1) = good(r, sn)+

1. Furthermore if the conclusion of gp was False then bad(r, sn+1) = bad(r, sn)−1.

This last modification allows a False goal to become closed (by discovering a

contradiction in the hypotheses) and then corrects the bad integer to cancel out

the effect produced by the previous deduction of False.

• For all remaining rules, r, good(r, sn+1) = good(r, sn) and bad(r, sn+1) = bad(r, sn).

On the whole it would appear to be preferable if interfaces take on the task

of tracking rule usage information rather than the underlying theorem prover since

this information is extra-logical. However in automated, or semi-automated systems

such as proof planners (e.g. IsaPlanner [8] and λClam [13]) there would appear to

be benefits in tracking such information in the proof system itself so that it can

inform an automated debugging process [5].

The obvious mechanism for presenting this tracking information to a user is

as a syntax highlighted list of rules associated with each goal. For instance this

paper will use the monochrome conventions shown in Table 1. The categories have

Highlighting convention

r ∈ S(g) bold

bad(r) > good(r) underline

bad(r) < good(r) italics

Table 1
Highlighting Conventions used in this Paper

been selected because they proved to be the most informative in the examples

discussed below. The are interpreted as used to derive this goal, probably incorrect

and probably correct. There is no reason, in principle, why such highlighting should

be restricted to just three categories. Indeed, following results in an automated

system, we argue in §5 for a further category of “worst” rule based on an ordering

of tuples of bad and good integers.

4 Case Study

We now show some examples of proof attempts of incorrect theorems undertaken in

the Isabelle/Isar system [12,18]. These examples are drawn from a corpus of buggy

student ML programs [7].

We will consider the verification of the ML program shown in figure 1. This

is a real example submitted by a student as the solution to an exercise to provide

a function, onceOnly, that when applied to a list, l, returned a new list containing

only one copy of each element in l. There are three errors in this program. Firstly

the basis case of the insert function is incorrect. Secondly a case is missing in the

definition of the Once function (the case for lists of length one) and lastly in the else

branch of the recursive case the expression should be x1 :: Once (x2 :: xs).

An Isabelle formalisation of the student’s program taken from [7] is shown in
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fun insert x [] = []
| insert x(h::t) =

if x ≤ h then x :: h :: t
else h :: insert x t;

fun sort [] = []
| sort (x :: xs) = insert x (sort xs);

fun Once [] = []
| Once (x1 :: x2 :: xs) =

if x1 = x2 then Once (x2 :: xs)
else x1 :: x2 :: Once xs;

fun onceOnly [] = []
| onceOnly (x :: xs) = Once (sort (x :: xs));

Fig. 1. A Buggy ML Program

primrec
insert_nil: "insert x [] = []"
insert_cons: "insert x (h#t) = (if x ≤ h then

x#h#t else h#insert x t)"

primrec
sort_nil: "sort [] = []"
sort_cons: "sort (x#xs) = insert x (sort xs)"

recdef Once "measure length"
once_nil: "Once [] = []"
once_cons: "Once (x1#x2#xs) = (if x1=x2 then

Once (x2#xs) else x1#x2#Once xs)"

primrec
onceOnly_nil: "onceOnly [] = []"
onceOnly_cons: "onceOnly (x#xs) = Once (sort (x#xs))"

Fig. 2. Isabelle Formalisation of the Buggy program

figure 2. It should be noted that this represents a naive shallow embedding of ML

into Isabelle but one sufficient for proof-directed debugging at this scale. In order

to verify this program a further function, count_list which counts the number of

occurrences of its first argument in its second was used. The first theorem to be

proved is:

¬x ∈ l =⇒ count list x (onceOnly l) = 0

For the purposes of this case study we assume that the definitions of insert,

sort, Once and onceOnly are all considered suspect which gives us eight suspect rules:

insert_nil, insert_cons, sort_nil, sort_cons, once_nil, once_cons, onceOnly_nil and

onceOnly_cons. We also assume that the following theorem has been proved:

onceOnly l = Once(sort l)(1)

The remainder of this section is organised as follows. §4.1 illustrates slice cre-

ation in the initial stages of the proof in order to give an idea of how the information

updating works, §4.2 illustrates the effect of reaching a false goal, and §4.3 illustrates

what happens when cases are missing.

4.1 Basic Usage

The following table shows the information held in the initial proof state
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Rule good bad Rule good bad

insert_nil 0 0 Once_nil 0 0

insert_cons 0 0 Once_cons 0 0

sort_nil 0 0 onceOnly_nil 0 0

sort_cons 0 0 onceOnly_cons 0 0

From now on we will omit the full table but concentrate instead on the summary

of the information that can be provided with syntax highlighting.

At the start of the proof there is one Isabelle goal

1. ¬ x ∈ l =⇒ count_list x (onceOnly l) = 0

to which is attached the empty slice. Presentationally it seems advisable to omit

any rules defining constants not appearing in the current goal So the initial goal

would display the additional information (NB. at present these rules do not fit into

any of the categories described in Table 1 therefore neither is highlighted in any

way):

• "onceOnly [] = []"

• "onceOnly (x#xs) = Once (sort (x#xs))"

The proof attempt proceeds by simplifying, replacing onceOnly l with Once (sort l),

according to (1), and then applying length induction on the list 3 . Since (1) isn’t

in our suspect list its use in simplification isn’t recorded. We don’t chain rule

tracking back through additional lemmas so there is no record that, even implicitly,

onceOnly_nil and onceOnly_cons were involved in the goal. Once again it will need

experimentation with an implementation to determine whether this is a sensible

choice. This gives us the following Isabelle goal:

1. !!xs. [| ∀ ys. length ys < length xs → ¬ x ∈ ys
→ count_list x (Once (sort ys)) = 0;

¬ x ∈ xs |]
=⇒ count_list x (Once (sort xs)) = 0

This introduces two new suspect constants but has so far used none of our rules.

Furthermore the constant onceOnly is no longer mentioned and so its definitional

rules are dropped from the display list. Hence the following suggested output.

• "sort [] = []"

• "sort (x#xs) = insert x (sort xs)"

• "Once [] = []"

• "Once (x1#x2#xs) = (if x1=x2 then Once (x2#xs)

else x1#x2#Once xs)"

The next step is a case split on xs using the Isar cases method followed imme-

diately by simplification of all goals. This automatically discharges the first goal

associated with the case split (for xs = []) leaving us with one goal:

3 It takes some experience with these styles of proof to select length induction as the appropriate scheme.
At present this work presumes a user with relatively sophisticated theorem proving ability yet paradoxically
rather naive program debugging skills – providing further support in the choice of Isar methods is left to
further work.
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1. !!a list. xs = a # list =⇒
count_list x (Once (insert a (sort list))) = 0

Discharging the first goal creates a slice consisting of sort_nil and once_nil and up-

dates the good integers so that good(sort nil) = good(once nil) = 1. The remaining

goal was generated using the rule sort_cons and so its slice is [sort_cons].

Following the syntax highlighting conventions, therefore, we get the following

rule annotations:

• "insert x [] = []"

• "insert x (h#t) = (if x < h then x#h#t else h#insert x t)"

• "sort [] = []"

• "sort (x#xs) = insert x (sort xs)"

• "Once [] = []"

• "Once (x1#x2#xs) = (if x1=x2 then Once (x2#xs)

else x1#x2#Once xs)"

already we are seeing information about program slices in which we can have some

confidence and we get some information on the slice which is relevant to the current

goal.

4.2 Inferring False

It becomes clear, while attempting the above proof, that some independent lemmas

need to be established about the sort function. This provides a good example of

how the system behaves when a goal evaluates to False. Let us consider a simple

lemma to show that all members of a list, l, are also members of sort l.

We start with the goal:

theorem "x ∈ l =⇒ x ∈ (sort l)"

Following our previous rules and guidelines the displayed rules are:

• "sort [] = []"

• "sort (x#xs) = insert x (sort xs)"

The proof continues by length induction on l (which does not change the an-

notation) followed by a case split on xs and simplification of all goals. The first

subgoal is discharged automatically, leaving:

1. !!a list.
[| if a = x then True else x ∈ list; xs = a # list;

∀ ys. length ys < Suc (length list) →
x ∈ ys → x ∈ sort ys;

if a = x then True else x ∈ list |]
=⇒ x ∈ insert a (sort list)

and the highlighted rules:

• "insert x [] = []"

• "insert x (h#t) = (if x ≤h then x#h#t else h#insert x t)"

• "sort [] = []"

• "sort (x#xs) = insert x (sort xs)"
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It then proceeds by cases on (sort list) followed by simplification which gives

two subgoals with their associated program slices:

1. [| ¬ x ∈ list; if a = x then True else x ∈ list;
sort list = [];
if a = x then True else x ∈ list |]

=⇒ False

• "insert x [] = []"

• "insert x (h#t) = (if x ≤h then x#h#t else h#insert x t)"

• "sort [] = []"

• "sort (x#xs) = insert x (sort xs)"

2. [| if a = x then True else x ∈ list; sort list 6= [];
x ∈ list → x ∈ sort list;
if a = x then True else x ∈ list |]

=⇒ x ∈ insert a (sort list)

• "insert x [] = []"

• "insert x (h#t) = (if x ≤h then x#h#t else h#insert x t)"

• "sort [] = []"

• "sort (x#xs) = insert x (sort xs)"

This identifies a program slice that has been involved in producing the False

goal ([insert_nil, sort_cons]) and therefore assists in the hunt for errors.

In some similar proofs the step case is automatically discharged in which case

good(sort cons) = bad(sort cons) = 1 and the rule’s annotation becomes

"sort (x#xs) = insert x (sort xs)" for the first goal leaving only insert_nil high-

lighted as “probably incorrect” giving further clues as to the culprit.

In this particular proof, attempts to prove the second goal lead to further proof

branches that result in False conclusions attributable to insert_nil but also several

branches that are discharged – overall good(insert nil) = 0 in all states while in

general bad(sort cons) = good(sort cons) + 1. This suggests that the user may

need access to further information about a rule’s good and bad integers. Although

it is unclear how such information can be conveyed by syntax highlighting alone,

it would certainly be possible to introduce a further highlight for the “worst” rules

(see §5) and/or to allow optional display of the good and bad values alongside the

rules in which case insert_nil would be singled out in this example.

4.3 Getting Stuck

Assuming that insert_nil has been fixed, the last example we will consider picks

up the main verification at a later stage. We will now assume that insert and sort

have been removed from the suspect list. Two new functions and a new lemma have

been introduced. minl returns the minimum element of a list of naturals and -minl

returns a list with one occurrence of its minimum element removed. Among other

things the following lemma has been established:

l 6= [] =⇒ (sort l) = (minl l)#sort(−minl l)

which when used in the proof leads to the goal
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1. count_list x (Once (minl (a#list) #
sort (-minl (a#list)))) = 0

and the highlighted rules:

• "Once [] = []"

• "Once (x1#x2#xs) = (if x1=x2 then Once (x2#xs)

else x1#x2#Once xs)"

A proof by cases follows on whether −minl(a#list)) = [] simplification of the

first goal leaves two subgoals of which the first:

1. [| a 6= x & ¬ x ∈ list;
(if a = minl (a # list) then list

else a # -minl list) = [];
xs = a # list |]

=⇒ count_list x (Once [minl (a # list)]) = 0

is associated with the following highlighted slices:

• "Once [] = []"

• "Once (x1#x2#xs) = (if x1=x2 then Once (x2#xs)

else x1#x2#Once xs)"

While this doesn’t directly highlight an error, the juxtaposition of the goal and

the relevant rules, particularly with neither highlighted as used directly in the goal

should prompt a user to recognise the omission of the relevant information.

5 Supportive Results

The ideas behind the interface design proposed here arise from work on the auto-

mated detection and repair of such errors within the proof planning framework [4].

Program slice tracking has been implemented in the λClam [13] proof planning sys-

tem. In the absence of an implementation in a theorem prover interface we report

some results on the success of the heuristics within this system. We used a variation

on the system reported in [4] 4 . That system attempts to repair erroneous rewrite

rules. The system reported here simply terminated false branches and concluded

the proof attempt by, for each rule, r, reporting good(r) and bad(r). Unfortunately

some errors, especially those appearing in the recursive cases of definitions caused

the system to be non-terminating, therefore an additional heuristic was used to close

branches if the step case of an inductive proof could not be solved by appeal to the

induction hypothesis 5 . We ran two experiments. In Experiment 1 closed step case

branches did not contribute to the good/bad scores (ie. strictly adopting the con-

ventions proposed in this paper). In Experiment 2 such closed branches increased

the bad scores (arguably in a human proof attempt these branches would eventually

have led to a False goal rather than the non-termination caused in λClam).

The table 2 shows the results for both sets of runs. The experiments involved 24

non-theorems based around errors in the definitions of list append, list membership

and the insert and sort programs already covered in this paper. The theorems were

4 Relevant code is available from the author on request.
5 with the exception of a few special cases, for instance where the step case proof had branched following
a case split
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selected from the λClam benchmark set rather than being actual specifications

for these functions. As such these results should be considered indicative only.

The tables report, for each experiment, whether the “incorrect” rewrite rule was

underlined (ie. whether its good score was greater than its bad score) and the

average number of rules underlined. This is the average number when at least

one rule is underlined – in several cases no rule had a larger bad integer than a

good integer. The intention in presenting this average is to provide evidence of the

extent to which the heuristics help focus attention on an erroneous rule – after all

it is not much help if all the rules are underlined. Including cases where no rule is

underlined reduces this average and tends to suggest better discrimination than is

actually the case. To follow this up we provide a percentage of the rules excluded.

This is the percentage of the rules involved with definitions actually used in the

proof which were not underlined. Again this only refers to situations where at least

one rule was highlighted to give an impression of the extent to which the choices

were narrowed down. False positives reports the number of situations where some

rule was highlighted but the incorrect rule was not. We also computed an overall

score for each rewrite rule as a tuple of the bad score and the good score. These

tuples were then ordered according to ≻ where

(b1, g1) ≻ (b2, g2) ⇐⇒ (b1 < b2) ∨ ((b1 = b2) ∧ (g1 > g2))

and < and > are the standard order on natural numbers. We report on the per-

centage of cases where the intended error was picked out by this heuristic and when

it was the only rule with the highest score.

Exp 1. Exp 2.

Incorrect Rewrite Underlined 50% 66%

Average No. Rules underlined 1.62 2.11

Rules Excluded 52% 38%

False Positives 0 1

Incorrect Rewrite has Highest Score 62.5% 79.17%

Incorrect Rewrite has Unique Highest Score 29.17% 54.17%

Table 2
Summary of Experimental Results in λClam

The results show that it would be useful if the interface could also flag those

rules which are scoring most highly under ≻ even where all rules are being used in

more good branches than bad since this is clearly giving the best information about

the location of errors.

The use of bad scoring for “stuck” goals (Experiment 2) is problematic – it

improves the rate at which incorrect rules are identified, and the rate at which

bad rules are highlighted as “worst” at the cost of losing discrimination (see Rules

Excluded). Since the stuck heuristic is a crude attempt to mimic human “getting

stuck” behaviour it is perhaps not surprising the effects are equivocal. At any rate
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it is clear that, to a certain extent, this heuristic is too eager and prevents (in the

first case) the proof from progressing to false branches that would (hopefully) later

get scored if pursued by a human prover and, in the second case, generates too

many false positives. Improving the heuristic is well outside the scope of this paper

but interpretation of the above results need to bear its limitations in mind. The

heuristic does suggest that there may be some benefit in allowing a human prover

intervene in the scoring process and mark some branches as “bad” even where a

False conclusion has not been reached.

Obviously these results are only indicative of how the heuristics might serve

human users as opposed to an automated system but they do suggest that profitable

use can be made of the information contained in program slices attached to proof

branches. In particular the “worst” score looks particularly promising in terms of

directing a user’s attention to errors.

6 Related Work

The HAT tool [2] uses a mixture of algorithmic debugging and program slicing to

direct a user’s attention to relevant parts of a program’s source. HAT creates an

Evaluation Dependency Tree (EDT) tracing the execution sequence of function calls

on a sample input. The nodes in this tree can be associated with their “call site”

in the program. This allows the system to use a syntax highlighting mechanism to

relate debugging traces back to specific parts of code. The tool works by identifying

slices in the EDT and relating these back to the relevant portions of the code. This

has recently been extended [3] to use a very similar polling system to that described

above based on superimposing “correct” EDTs and “incorrect” EDTs to generate

heuristic scores by which a “worst” slice can be identified.

In general the HAT tool only displays the most immediate redex rather than all

those involved in a slice in order to reduce information overload – while it may be

desirable to do something similar in proof-directed debugging it isn’t at all obvious

that the last rule to be used will generally prove to be the one at fault.

This is the first work I’m aware of that considers the use of proof tree branches

as a slicing criterion or considers integrating the syntax highlighting interface of a

debugging tool such as HAT into a Theorem Prover.

7 Further Work

7.1 Implementation

Clearly the most pressing and important piece of further work is providing an im-

plementation of verification based program slicing to allow experimental evaluations

of the extent to which it genuinely helps locate errors.

Out intention is to provide an implementation in Isabelle/Isar using the Proof

General interface. This allows there to be a clean separation between the informa-

tion used by the interface and that used by the underlying theorem prover. Such

an approach also creates some challenges however, since the necessary properties of

goals and proof states will have to be inferred. On the whole it should be relatively
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straightforward to identify goals and key constants within goals although it there

will be some challenges involved in keeping track of proof states, in particular the

relationships between parent and child goals needed to make updates correctly. In

Isabelle successfully discharged goals are dropped from the proof state presented

to the interface which again is likely to raise some challenges in the tracking of

information.

Although no examples have been shown here where a rule is used directly with

a tactic (e.g. the rule method in Isar) this also needs to trigger updates of tracking

information. In general this should be relatively straightforward based on simple

analysis of tactic calls.

Simplification is the major step where the exact rules used by the system are

effectively concealed from the user. It is also the most important tactic which

can be used across multiple goals discharging some but not others (so leading to

ambiguities about successful proof branches) and can generate and discharge new

branches within its own application invisible to the user. Fortunately Isabelle’s

simplifier provides a tracing mechanism from which is it possible to infer rule usage

and determine when a proof branch has been discharged, from which it should be

possible to infer the necessary information. It may also be possible to use the proof

object (of the top theorem) to track program slice information 6 .

We have not considered how backtracking should interact with program slicing.

At present the design assumes that proof states are generated in sequence and

implicitly assumes that they can only be backtracked in that sequence. However

many theorem provers allow backtracking on any open goal not just the those most

recently derived. In this case it may be necessary for the interface to store additional

information about the relationships between goals and their parents from proof state

to proof state. This problem may also mean that ultimately it is cleaner to store

program slice information in the prover’s proof state rather than in the interface.

7.2 More Detailed Program Slices

So far we have considered program slices whose nodes are identifiable with the simple

case structure of function definitions however there are further advantages to be

gained if more sophisticated slicing is used in which function calls/sub-expressions

are considered as nodes (as is common when applying program slicing to functional

programs).

In the following example, again genuine, a student has been asked to provide

a function, removeAll, which removes all occurrences of its first argument from its

second. They appear to have programmed by analogy from a previous function,

removeOne, where only one occurrence was to be removed and have forgotten to

replace one call to this program. The code is expressed in Isabelle as:

primrec
removeAll_nil: "removeAll x [] = []"
removeAll_cons: "removeAll x (h#t) = (if x = h

then removeAll x t else h#removeOne x t)"

6 My thanks to an anonymous referee for this suggestion.
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Consider an attempt to establish that

¬x ∈ removeAll x l

The proof proceeds by induction on l followed by simplification of all goals auto-

matically discharging the base case and leaving the step case goal:

1. !!a l. ¬ x ∈ removeAll x l
=⇒ (x = a → ¬ a ∈ removeAll a l) &

(x 6= a → a 6= x & ¬ x ∈ removeOne x l)

and highlighted rules.

• "removeAll x [] = []"

• "removeAll x (h#t) = (if x = h then removeAll x t

else h#removeOne x t)"

Use of some introduction rules (impI and conjI) and more simplification gives

three subgoals which are based around a case split on whether x = h and then (fol-

lowing from a lemma about ∈) on the values in the head and tail of h#removeOne x t.

The first of these (where x = h) is automatically discharged leaving two subgoals,

the first of which is

1. [| x 6= a; ¬ x ∈ removeAll x l |] =⇒ a 6= x

Ideally we would like to highlight the rules associated with this goal as follows:

• "removeAll x [] = []"

• "removeAll x (h#t) = (if x = h then removeAll x t

else h #removeOne x t)"

showing that removeAll x t is probably correct and that this goal is based on the

value of h in h#removeOne x t.

This goal is easily discharged leaving only the goal:

2. [| x 6= a; ¬ x ∈ removeAll x l |] =⇒ ¬ x ∈ removeOne x l

Again ideally we would like to highlight parts of the second program slice dif-

ferently:

• "removeAll x [] = []"

• "removeAll x (h#t) = (if x = h then removeAll x t

else h# removeOne x t)"

Focusing attention on the problematic part of the rule which will eventually lead to

False goals.

It should be easy enough to represent these slices within a system, for instance

a simple list of integers can be used to indicate the position of a sub-expression

within a rule and all sub-expressions of suspect rules stored in for use program slices.

However it is much harder to see how information about which slice is relevant to

a goal can be inferred without help by an interface such as Proof General. Indeed

in order to supply the necessary information a theorem prover’s internals may need

modification in order to track the unifications performed when rules are applied in

a meaningful way.
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7.3 Imperative Programs

Obviously a long term objective is to extend this work to imperative programs.

In these cases we lose the correspondence between program locations and rewrite

rules. We would therefore need to adapt the concept of “used in a proof branch”

to, for instance, identify individual program statements that had been involved in

an instantiation of the assignment axiom in this branch of the proof.

8 Conclusion

This paper has discussed the use of verification as a program slicing tool. It has

discussed how proof branches can be used to build up program slices based around

equational rewrite rules and described a simple mechanism for deriving a heuristic

score for how likely a given rule is to be correct. It has then discussed how such

information might be presented to a user.

The mechanism proposed relies on a user identifying “suspect” rules. In the

case study these all related to program function cases however there is no reason,

in principle, why any definition or theorem in a theory could not be treated in the

same way, allowing suspect specifications and definitions in general (non-verification

based) proofs to be handled in the same way. The general mechanism can almost

certainly be used in any situation where a reason is being sought for a proof failure.

Considerable further work, including an implementation, is required.
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