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Algorithms and Data Structures

for

First-Order Equational Deduction

(extended abstract)

Stephan Schulz

Technische Universität München

schulz@eprover.org

1 Introduction

First-order logic with equality is one of the most widely used logics. While there is a
large number of different approaches to theorem proving in this logic, the field has been
dominated by saturation-based systems using some variant of the superposition calcu-
lus [BG90, BG94, BG98, NR01], i.e. systems that employ paramodulation, restricted
by ordering constraints and possibly literal selection, as the main inference mechanism,
and rewriting and subsumption as the main redundancy elimination techniques. Many
systems complement equational reasoning with explicit resolution for non-equational
literals. Examples of provers based on the combination of paramodulation, rewriting
and (possibly) resolution include SPASS [WBH+02], Vampire [RV01], Otter [MW97],
its successor Prover9, and E [Sch02, Sch04b].

The power of a saturating prover depends on four different, but interrelated aspects:

• The calculus (What inferences are necessary and possible?)

• The inference engine (How are they implemented?)

• The search organization (How is the the proof state organized and which invariants
are maintained?)

• The heuristic control of the search (Which subset of inferences is performed and
in what order?)

In this talk I will discuss the basic concepts of the given clause saturation algorithm
and its implementation. In particular, I will describe the behaviour of the DISCOUNT
loop version of this algorithm on practical examples, and discuss how this affected the
choice of algorithms and data structures for E. I will try point out some low-hanging
fruit, where a lot of performance can be gained for relatively modest investment in code
complexity, as well as some more advanced techniques that have a significant pay-off.
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2 Rewrite-Based Theorem Proving

Superposition is a refutational calculus. It attempts to make the potential unsatisfiabil-
ity of a formula (consisting of axioms and negated conjecture) explicit using saturation.
The search state is represented by a set of first-order clauses (disjunctions of literals
over terms). The proof search employs two different mechanisms. First, new clauses are
added to the proof state by generating inference rules, using existing clauses as premises.
Secondly, simplifying or contracting inference rules are used to remove clauses or to re-
place them by simpler ones. The proof is successful if this process eventually produces
the empty clause, i.e. an explicit contradiction.

While the generating inferences are crucial to establish the theoretical completeness
of the calculus, extensive use of contracting inferences has turned out to be indispensable
for actually finding proofs.

The practical difficulty of implementing a high-performance theorem prover results
mostly from the fact that the proof state grows extremely fast with the depth of the
proof search. A successful implementation has to be able to handle large data sets,
efficiently find potential inference partners, and in particular, be able to quickly identify
clauses that can be simplified or removed.

While the number of inference and simplification rules can be much larger, in nearly
all cases only three rules are critical from a performance point of view:

• Superposition (including resolution as a special case) or a similar restricted form
of paramodulation is by far the most prolific generating inference rule. Typically,
between 95% and 99% of clauses in a non-trivial proof search are generated by
a paramodulation inference. Paramodulation can essentially be described as a
combination of instantiation (guided by unification) and lazy conditional rewriting.
For superposition, this inference is further restricted by ordering constraints (a
smaller term cannot be replaced by a larger term) and literal selection (only certain
literals need to be considered as applicable or as targets of the application).

• Unconditional rewriting allows the simplification of a clause by replacing a term
with an equivalent, but simpler term. In contrast to superposition, no instantiation
of the rewritten clause takes place, and a term is always replaced by a smaller
one. As a consequence, this is a simplifying inference, and the original of the
rewritten clause can be discarded. Practical experience has shown that in most
cases rewriting drastically improves the search behaviour of a prover.

• Subsumption allows the elimination of clauses if a more general clause already is
known. As such, it helps to reduce the search space explosion typical for saturating
provers. However, finding subsumption relations between clauses can be very
expensive.

For completeness, it is necessary to eventually consider all combinations of non-
redundant clauses as premises for generating inferences. To avoid the overhead of keep-
ing track of each possible combination, the given-clause algorithms splits the proof
state into two distinct subsets, the set P of processed (or active) clauses, and the set
U of unprocessed (or passive) clauses, and maintains the invariant that all necessary
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inferences between clauses in P have been performed. On the most abstract level, the
algorithm picks a clause from U , performs all inferences with this clause and clauses
from P (adding the resulting newly deduced clauses to U), and puts it into P . This
process is repeated until either the empty clause is deduced, the set U runs empty (in
which case there is not proof), or some time or resource limit has been reached (in which
case the prover terminates without a useful result). The major heuristic decision in this
algorithm is in which order clauses from U are picked for processing.

The two main variants of the given clause algorithm differ in how they integrate
simplification into this basic loop. The Otter loop maintains the whole proof state in
a fully simplified (or interreduced) state. It uses all unit equations for rewriting and
all clauses for subsumption attempts. The DISCOUNT loop, on which E is built, only
maintains this invariant for the set P of processed clauses. It simplifies newly generated
clauses once (to weed out obviously redundant clauses and to aid heuristic evaluation,
but it does not use them for rewriting or subsumption until they are actually selected
for processing. It thus trades reduced simplification for a higher rate of iterations of the
main loop. Opinions differ on which of the two designs is more efficient (see e.g. [RV03]).

3 Representing the Proof State

Analysis of the behavior of provers over a large set of examples has shown that the size of
U typically grows about quadratically with the size of P . Therefore for non-trivial proof
problems, the vast majority of clauses is in U , and unprocessed clauses are responsible
for most of the resources used by the prover. The overall proof state can easily reach
millions clauses, with a corresponding number of literals and terms as their constituents.

Surprisingly, with naive implementations much of the CPU time can be taken up
with seemingly trivial operations. In the first version of DISCOUNT [ADF95, DKS97]
we found to our surprise that assumedly complex operations like first-order unification
were negligible, while linear time operations like the naive insertion of clauses into U

(organized as a linear list sorted by heuristic evaluation) took up around half of the
total search time.

The first and most basic data type for a first-order prover is the term. Simple,
direct implementations realize terms as ordered trees, with each node labeled by a
function or variable symbol, and with the subterms of a term as successor nodes in
the tree. Alternatives to this basic design are either increasingly optimized for size, as
flat-terms, string terms, and eventually implicit terms (reconstructed on demand) as in
the Waldmeister prover [GHLS03], or they try to store more and more precomputed
information at the term nodes to speed up repetitive operations. This is particularly
successful if sets of terms are not represented as sets of trees, but as a shared directed
acyclic graph, with repeated occurrences of any given term or subterm only represented
once. This approach has been followed in E. We found sharing factors varying from 5-15
in the unit equational case, up to several 1000 in the general non-Horn case.
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4 Rewriting

Shared terms do not only allow a reduction in memory consumption, they also allow
the sharing of (some) term-related inferences. In particular, they allow the sharing of
rewrite operations and, even more importantly, normal form information among terms.
For any rewritten term, we can add a link pointing to the result of the rewrite operation.
If we encounter the same term again in the future, we can just follow this link instead
of performing a real search for matching and applicable rewrite rules. Less glorious, but
not less effective, is the sharing of information about non-rewritability. In either version
of the given clause algorithm, the set of potential rewrite rules changes over time, and
the strength of the rewrite relation grows monotonically. If a term is in normal form
with respect to all rules at a given time, no older rule has to be ever considered again for
rewriting this term. This criterion can be integrated into indexing techniques to further
speed up normal form computation.

5 Subsumption

A single rewriting step is usually cheap to perform. The high cost of rewriting comes
from the large number of term positions and rules to consider. For subsumption, on
the other hand, even a single clause-clause check can be very expensive, as the problem
is known to be NP-complete [KN86]. Unless reasonable care is taken, the exponential
worst case can indeed be encountered, and with clauses that are large enough that this
hurts performance significantly1.

To overcome this problem, a number of strategies can be implemented. First, pre-
sorting of literals with a suitable ordering stable under substitutions can greatly reduce
the number of permutations that need to be considered. Secondly, a number of required
conditions for subsumption can be tested rather cheaply. If any of these tests fail, the
full subsumption test becomes superfluous.

Feature vector indexing [Sch04a] arranges several of these tests in a way that they
can be performed not only for single clauses, but for sets of clauses at a time.

6 Conclusion

Engineering a modern first-order theorem prover is part science, part craft, and part
art. Unfortunately, there is no single exposition of the necessary knowledge available at
the moment - something that the community should aim to rectify.
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Abstract

We present a new term indexing approach which shall support efficient auto-
mated theorem proving in classical higher order logic. Key features of our indexing
method are a shared representation of terms, the use of partial syntax trees to
speedup logical computations and indexing of subterm occurrences. For the im-
plementation of explicit substitutions, additional support is offered by indexing of
bound variable occurrences. A preliminary evaluation of our approach shows some
encouraging first results.

1 Introduction

Term indexing has become standard in first order theorem proving and is applied in
all major systems in this domain [RV02, Sch02, WBH+02]. An overview on first order
term indexing is given in [RSV01] and [NHRV01] presents an evaluation of different
techniques. Comparably few term indexing techniques have been developed and studied
for higher order logic. An example is Pientka’s work on higher order substitution tree
indexing [Pie03].

In this paper we present a new approach to higher order term indexing developed for
the higher order resolution prover LEO-II1, the successor of LEO [BK98]. Our approach
is motivated by work presented in [TSP06], which studies the application of indexing
techniques for interfacing between theorem proving and computer algebra.

Pientka’s approach is based on substitution tree indexing and relies on unification of
linear higher order patterns. While higher order pattern unification is a comparatively
high level operation, the approach we present here is based on coordinate and path
indexing [Sti89] and thus relies on lower level operations, for example, operations on
hashtables. Apart from indexing and retrieval of terms, we particularly want to speedup
basic operations such as replacement of (sub-)terms and occurs checks.

1The LEO-II project at Cambridge University has just started (in October 2006). The project is
funded by EPSRC under grant EP/D070511/1.
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2 Terms in de Bruijn Notation

LEO (and its successor LEO-II under development) is based on Church’s simple type
theory, that is, a logic built on top of the simply typed λ-calculus [Chu40]. In contrast
to LEO, our new term data structure for LEO-II uses de Bruijn [dB72] indices for the
internal representation of bound variables. In this paper, de Bruijn indices have the form
xi, where x is a nameless dummy and i the actual index. Constants and free variables
in LEO-II, called symbols in the remainder of this paper, have named representations.
Due to Currying, applications have only one argument term in LEO-II.2

Terms in LEO-II are thus defined as follows:

• Symbols are either constant symbols (taken from an alphabet Σ) or (free, existen-
tial) variable symbols (taken from an alphabet V). Every symbol is a term.

• Bound variables, represented by de Bruijn indices xi for some index i ∈ {1, 2, . . .},
are terms.

• If s and t are terms, then the application s@t is a term.

• If t is a term, then the abstraction λ.t is a term.

For bound variables xi, the de Bruijn index i denotes the distance between the
variable and its binder in terms of scopes. Scopes are limited by occurrences of λ-binders,
thus the index i is determined by the number of occurrences of λ-binders between the
variable and its binder.

For instance, the term

λa.λb.(b = ((λc.(cb))a))

translates to

λλ.(x0 = ((λ.(x0x1))x1))

in de Bruijn notion. While de Bruijn indices ease the treatment of α-conversion in
the implementation, they are less intuitive. As it can be seen in the above example,
different occurrences of the same bound variable may have different de Bruijn indices.
This is the case here for b, which translates to both x0 and x1. Vice versa, different
occurrences of the same de Bruijn index may refer to different λ-binders. This is the case
for x0, which relates to both the bound variable b (first occurrence of x0) and the bound
variable c (second occurrence of x0). Similarly, x1 is related to the bound variables b
and the bound variable a.

2Alternative representations, for example, spine notation [CP97], offer at first sight shorter paths to
term parts that are relevant for a number of operations. The difference is primarily the order in which
the parts of a term can be accessed. In the case of the spine notation, for example, the head symbol of
a term can be directly accessed. In our approach we try to offer these shortcuts by representing indexed
terms in a graph structure. This allows to adopt additional ways of accessing (sub-)terms by introducing
additional graph edges. For instance, the head symbol of each term and its position are indexed in our
data structure.
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The presentation of LEO-II’s type system (simple types) is omitted here. With
respect to LEO-II’s term indexing, typing only provides an additional criterion for the
distinction between terms, for example, different occurrences of the same de Bruijn
index may have different types. Apart from this, typing has no further impact on the
indexing mechanism. Overall correctness is ensured outside the index structure, that is,
by indexing only terms in βη normal form.

3 The Index

The indexing mechanism we describe here supports fast access to indexed terms and its
subterms. The index will be used in LEO-II to store intermediate results (consisting
of clauses, literals, and terms in literals) of LEO-II’s resolution based proof procedure.
The idea is that these intermediate results are always kept in βη normal form (that is, η
short and β normal; for example, the term (λ.(λ.(x1x0))))((λ.gx0)c) has the βη normal
form (gc)). Hence, βη normalisation is an invariant of our approach and we assume that
we never insert non-normal terms to an index.

Key features of our indexing mechanism are a shared representation of terms (see
Section 3.1), the use of partial syntax trees to speedup logical computations (see Sec-
tion 3.2) and the indexing of subterm occurrences (see Section 3.3). For the imple-
mentation of explicit substitutions [FKP96, ACCL90], additional support is offered by
indexing of bound variable occurrences (see Section 3.4).

Partial syntax trees are used to index occurrences of symbols and subterms within a
term. They help to avoid occurs checks and to early prune superfluous branches in the
implementation of operations like replacement, substitution or β-reduction. Checking
whether or not a symbol occurs within a term or in a given branch of its syntax tree
requires only constant time.

The implementation of the index is furthermore based on the use of cascaded hashta-
bles, for example, to index application terms according to their function or argument
term. This allows requests for terms in a style similar to SQL [Ame92]. For example,
indexing of applications is realised similar to an SQL table Applications featuring the
columns appl for application terms, func for their respective function terms and arg for
their argument terms. Retrieval of terms is similar to SQL queries like “select appl

from Applications where func=t”, which returns terms whose function term is t.

3.1 Shared Representation of Terms

Terms in LEO-II have a perfectly shared representation, that is, all occurrences of
syntactically equal terms (in de Bruijn notation) are represented by a single instance. An
exception are bound variables, where instances of the same variable may have different
de Bruijn indices. The treatment of bound variables is described further in Section 3.4.

Terms are represented as term nodes. Term nodes are numbered by n ∈ {1, 2, . . .} in
the order they are created. In the following, term nodes are referred to either by their
number or by their graph representation, which is defined as follows:

• For each symbol s ∈ Σ occurring in some term, a term node symbol(s) is created.

• For each bound variable xi occurring in some term, a term node bound(i) is created.
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• If an application s@t occurs in some term, where s is represented by term node i
and t by term node j, a term node application(i, j) is created.

• If an abstraction λt occurs in some term, where t is represented by term node i, a
term node abstraction(i) is created.

This graph representation of terms is implemented using hashtables:

• Hashtable abstr with scope : IN → IN is used to lookup abstractions with a
given scope i.

• Hashtable appl with func : IN → IN → IN is used to lookup an application with
a given function i and argument j.

• Hashtable appl with arg : IN → IN → IN is used to lookup an application with
a given argument j and function j. This is similar to appl with func, but the
hashtable keys are used here in reversed order.

This hashtable system can be employed to retrieve term nodes in a similar way as
in a relational database. It can be used to retrieve single terms as well as sets of terms,
for example, all application term nodes whose function term is represented by node i.

3.2 Partial Syntax Trees

Term indexing in LEO-II is based on partial syntax trees (PST), a concept that is
newly introduced in this paper. Partial syntax trees are used to indicate positions of a
symbol or a particular subterm within a term. PSTs are called partial because they only
represent relevant parts of a term. Examples are PSTs recording symbol occurrences
in a term, where relevant part means, that the term part in question actually contains
an occurrence of that symbol. Such PSTs allow for early detection of branches in a
term’s syntax tree with no occurrences of a specific symbol, since these branches are not
represented in the PST for this symbol.

In LEO-II’s term system (remember that this is based on simply typed λ-calculus
with Currying) a term position is defined as follows:

• While symbol nodes and bound variable nodes have no children in a term’s syn-
tax tree, abstraction nodes respectively application nodes have exactly one child
respectively exactly two children. The relative position of these children to their
parent node is described by either abstr (the relation between an abstraction
node and its scope), func or arg (the relation between an application node and
its function term respectively its argument term).

• A position is defined as a (possibly empty) sequence of relative positions. Starting
from the top position in a term, each entry of the sequence describes one traversal
step in the term’s syntax tree.

• An empty sequence of relative positions represents the root position or empty
position, which is the topmost position in a term.
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Consider, for example, the term (λ.x0)@(f@a). Its subterms occur at the following
positions:

(λ.x0)@(f@a) : []
λ.x0 : [func]
x0 : [func; arg]
f@a : [arg]
f : [arg; func]
a : [arg; arg]

Based on this notion of positions, we introduce the notion of partial syntax trees.
As an example3, consider the term a = 0 · a, which translates in Curried form to
(= @a)@((·@0)@a). The example term’s syntax tree is given by:

@

@ @

= a @ a

· 0

A partial syntax tree (PST) is a tree of nodes corresponding to positions in a term.
Each term position which occurs in a PST is represented as a node which

• has up to three child trees4 (these children are partial syntax trees which corre-
spond to the terms at one of the relative positions abstr, func or arg), and

• may be annotated by some data.

A partial syntax tree t is denoted by pst(tabstr , tfunc , targ ), where tabstr is the PST of
the scope of t if t is an abstraction, and where tfunc and targ are the PSTs of the function
term and the argument term of t if t is an application. If no position in a branch of
the syntax tree is annotated by some data, this branch is empty and is denoted by an
underscore ( ).

The PST corresponding to the whole term in the above example and its annotations
is thus given by:

3We present a simple first order example here, since the the treatment of bound variables is special
and is described later in Section 3.4.

4The data structure of PSTs can not only be partial, its structure can also exceed the syntax tree of
terms as defined in Section 2 if all three children of a node are nonempty. This may be the case when
using PSTs to represent coordinates, that is term positions which occur in some term. This is used when
building the index as described in Section 3.3, which is similar to Stickel’s path indexing and coordinate
indexing methods [Sti89, McC92].
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p1 = pst( , p2, p5)
p2 = pst( , p3, p4)
p3 = pst( , , ) with annotation =
p4 = pst( , , ) with annotation a
p5 = pst( , p6, p9)
p6 = pst( , p7, p8)
p7 = pst( , , ) with annotation ·
p8 = pst( , , ) with annotation 0
p9 = pst( , , ) with annotation a

When the term is added to the index, however, not the PST of the entire term is
recorded, but the PSTs of each of the occurring symbols (and subterms). For example,
the PST of all occurrences of the symbol a in a = 0 · a is given by:

@

@ @

a a

PST for a

If a symbol occurs at a term position, the corresponding PST entry is annotated by
that symbol. If a branch of a term’s syntax tree has no occurrences of the symbol in
question, the PST contains no entry for this branch. The PST for occurrences of symbol
a in the above example is thus given by:

pa1 = pst( , pa2, pa4)
pa2 = pst( , , pa3)
pa3 = pst( , , ) with annotation a
pa4 = pst( , , pa5)
pa5 = pst( , , ) with annotation a

Similarly, the PSTs for the remaining symbols are recorded:

@

@

=

@

@

@

·

@

@

@

0

PST for = PST for · PST for 0

If the PST of all occurrences of a symbol (or subterm) t′ in a given term t is available,
this provides a basis for speeding up replacements of t′. Also a costly occurs check is
avoided, since the existence or non-existence of a PST for a symbol can be used as
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criterion. The nodes of the PST for t′ determine the nodes in t that have to be modified
when performing the replacement operation, and all nodes in t that are not represented
in the PST for t′ remain unchanged (i.e., the recursion over the term structure for
replacement operations is pruned early).

When replacing a by (f@b) in the above example, the operation proceeds as follows:

• The operations starts at root position with term (= @a)@((·@0)@a) and with the
corresponding PST for a, pa1 = pst( , pa2, pa4). As both the function child pa2

and the argument child pa3 of the PST are nonempty, the replacement operation
recurses over both the function term (= @a) and the argument term ((·@0)@a):

[(f@b)/a](= @a)@((·@0)@a) ⇒ ([(f@b)/a](= @a))@([(f@b)/a]((·@0)@a))

• To replace a in (= @a) with corresponding PST pa2 = pst( , , pa3), only the
argument term has to be processed. The child PST corresponding to the function
term in pa2 is empty, indicating that there are no further occurrences of a in this
term. Thus we have:

[(f@b)/a](= @a) ⇒ (= @([(f@b)/a]a))

and analogously for ((·@0)@a)) and pa4 = pst( , , pa5), where again processing
the function term (·@0) is avoided:

[(f@b)/a]((·@0)@a)) ⇒ ((·@0)@([(f@b)/a]a))

• Finally a is replaced in the term a with corresponding PST pa3 respectively pa5.
Both pa3 and pa5 have no child nodes and are annotated with a, so the result is
in both cases the replacement term (f@b):

[(f@b)/a]a ⇒ (f@b)

The result of this operation is thus:

[(f@b)/a](= @a)@((·@0)@a) ⇒ (= @(f@b))@((·@0)@(f@b))

During the operation, only those branches of the syntax tree with an actual oc-
currence of a are processed and branches with no occurrences of a, here the terms =
and (·@0), are avoided. In this example, only five out of nine term nodes have to be
processed due to the guidance provided by the PST.

As a probably useful indicator for the speedup for replacements obtainable this way
we therefore investigate the ratio of term size to PST size counted in nodes of the tree,
that is, the number of abstractions, applications, symbols and bound variables. As is
illustrated above, this ratio is a measure for the speedup which we expect for replacement
operations.

In the above example, the term size is 9 (we have 9 nodes), which gives the following
rates for the occurring symbols:
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Symbol PST size PST/term size
a 5 0.56
= 3 0.33
· 4 0.44
0 4 0.44

We examined an excerpt of Jutting’s Automath encoding of Landau’s book Grund-
lagen der Analysis [vBJ77, Lan30] with over 900 definitions and theorems (see Section 4
for details) and found an average PST size/term size rate of 0.21 for symbol occur-
rences. When indexing nonprimitive terms, too (that is, applications and abstractions),
this rate dropped to 0.12.

3.3 Building the Index

The index records whether and at which positions a subterm5 occurs in a term. Similar
to relational databases, both subterms occurring in a given term and terms in which
a given subterm occurs are indexed. Thus, the index can be used to find terms in the
database with occurrences of particular subterms and also to speed up logical operations
such as substitution by avoiding occurs checks.

The index is built recursively, starting from symbols, which are the leaf nodes in
a term’s syntax tree. The only term which occurs in a symbol is the symbol itself at
root position. Nonprimitive terms, that is abstractions and applications are built up as
follows:

• The subterms occurring in an abstraction are all subterms which occur in the scope
of the abstraction. For a symbol whose occurrences in a term A are recorded in
the PST t′, its occurrences in the abstraction λ.A are given by t = pst(t′, , ).

• The subterms occurring in an application are all subterms which occur in its
function term or in its argument term. For a symbol whose occurrences in the
function and argument term are recorded in the PSTs t′func and t′arg , the PST t
recording its occurrences in the application is given by t = pst( , t′func , t

′

arg ). If the
term occurs only in the argument respectively in the function of an application,
tfunc respectively targ is empty.

Furthermore each primitive and nonprimitive term is recorded to occur as a subterm
of itself at root position.

The result is a PST for each subterm of the term to be indexed, describing the oc-
currences of this subterm. These PSTs are added to the hashtable occurrences. Addi-
tionally, terms are indexed according to their subterms in a second hashtable occurs in.
A third hashtable is occurrs at, which is used to index terms according to subterms
at a given term position. Thus the core of the index consists of:

5In the current implementation, both occurring symbols and nonprimitive subterms are indexed.
However, we plan to further evaluate the tradeoff between the speedup gained this way and the cost
for maintenance of the index. Depending on this evaulation, we may want to restrict the nonprimitive
subterms to be indexed, for example, by using their size as a criterion. Similar ideas have been examined
by McCune [McC92], for example, the effect of limitations on the length of paths used in path indexing.
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• Hashtable occurrences : IN → IN → PST indexes occurrences of subterms (the
second key) in a given term (the first key). The indexed value is a PST of the
positions where the subterm occurs. If a subterm does not occur, then there is no
entry in the hashtable.

• Hashtable occurs in : IN → IN∗ is used to index a list of all terms in which a
given subterm (the key) occurs.

• Hashtable occurrs at : pos → IN → IN∗ is a hashtable to index all terms in which
a given subterm (the second key) occurs at a given position (the first key).

For example, occurrences of symbol a in the example term (= @a)@((·@0)@a) are
indexed by the following hashtable updates (we assume that a is represented by term
node i and (= @a)@((·@0)@a) by term node j):

• add psta with first key j and second key i in occurrences

• add j with key i in occurs in

• add j to the set hashed in occurs at with first key [func; arg] and second key i;
if no such set exists in the hashtable, add the singleton {j}

• add j to the set hashed in occurs at with first key [arg; arg] and second key i; if
no such set exists in the hashtable, add the singleton {j}

The basic operations of adding a term to the index take constant time (except for
rehashing). The indexing of a term of length n takes time O(n).

3.4 Bound Variables

Bound variables play a special role in the term system. To see this, remember our
example from the beginning, that is, the term λa.λb.((= b)((λc.(cb))a)) or, with de
Bruijn indices, λλ.((= x0)((λ.(x0x1))x1)). This example shows that two occurrences of
the same bound variable may have syntactically different de Bruijn indices and that the
de Bruijn indices of occurrences of different variables may be syntactically equal. It is
desirable to provide quick access to all variables bound by a given binder to speedup
β-reduction and related operations such as raising or lowering of bound variable indices.
We will now illustrate our solution to this issue. Remember that indexed terms are
always kept in βη normal form, hence, normalisation is mandatory after instantiation
of existential variables or expansion of defined constants (if the modified terms shall be
indexed again).

The syntax tree of our example term in de Bruijn notation is
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λ

λ

@

@ @

= x0 λ x1

@

x0 x1

In this case the bound variable b has two instances which are denoted by x0 and
x1, while x0 (resp. x1) can denote both c or b (resp. b or a). Since bound variables
are indexed as described in Section 3.3, this gives a somewhat scattered information
on where to find the variables that are bound by one particular λ-binder. This kind
of information, however, is important in practice, for example, to support efficient β-
reduction. We therefore once more employ PSTs to describe the occurrences of variables
bound by one and the same λ-binder:

λ1

λ2

@

@

x1

λ1

λ2

@

@ @

x0 λ3

@

x1

λ1

λ2

@

@

λ3

@

x0

Variables bound by λ1 Variables bound by λ2 Variables bound by λ3

For example, the PST indicating occurrences of variables bound by λ2 in the above
example is given by:

p1 = pst(p2, , )
p2 = pst(p3, , )
p3 = pst( , p4, p6)
p4 = pst( , , p5)
p5 = pst( , , ) with annotation 0
p6 = pst( , p7, )
p7 = pst(p8, , )
p8 = pst( , , p9)
p9 = pst( , , ) with annotation 1
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The explicit notation of variables bound by λ2 and λ3 is analogous and therefore
omitted here.

This list of PSTs is also recorded in LEO-II’s index, in the order shown above. Each
PST is assigned a scope number, where the scopes are defined by the occurrence of λ-
binders. When traversing the syntax tree, the PST recording occurrences of variables
bound by the first λ-binder is assigned scope number 1, the PST related to the second
λ-binder has scope number 2 and so on.

While the term λ((λ.x0) = ((λ.(x0x1))x1)) is closed, that is, all de Bruijn indexed
variables are bound by a λ-binder within the term, this is not always true for its sub-
terms. Unbound variables occur, for example, in λ.(x0x1), where x1 refers to a binder
outside the term. In particular, all primitive terms consisting only of de Bruijn vari-
ables refer to a binder outside this term. While the PSTs for bound variables can be
constructed as shown above, the determination of the scope numbers deserves a special
treatment in case of loose bound variables, that is bound variables without a binder in
the given subterm. If a term has occurrences of loose bound variables, their de Bruijn
index allows to determine the distance to their (virtual) binder measured in scopes up-
wards from the term’s root position. PSTs for loose bound variables are assigned a
scope number s ≤ 0. The PST to denote all occurrences of x1 in itself is consequently
assigned the scope number −1, and the PST denoting the occurrence of x1 in λ.(x0x1)
is assigned scope number 0.

Indexing of bound variable occurrences in a term is used to speedup β-reduction.
For each λ-binder the positions of variables bound by this binder are known, thus,
only the parts of the term that actually are modified have to be processed. In the
context of explicit substitutions [FKP96, ACCL90], the implementation of shift and lift
operators can furthermore be reduced to recalculation of the offset and elimination of
bound variable PSTs from the list.

3.5 Using the Index

3.5.1 Adding and Retrieving Terms:

Terms are added to and retrieved from an index in a similar way as in coordinate or path
indexing [Sti89]. When a term t is added to the index, the PSTs of symbol occurrences
are constructed as described in Section 3.3. Then the following hashtables are updated:

• In occurrences, the PSTs of the occurring symbols (or subterms) are added.

• For each occurring symbol (or subterm), t is added to the set of terms which is
recorded for that symbol in occurs in. If there is no such entry in occurs in,
the singleton {t} is added.

• For each term position in t, t is indexed in occurs at in the same way with the
position as first key and the the subterm as second key.

Furthermore, the PSTs for bound variables are constructed as described in Sec-
tion 3.4 and are added to the hashtable boundvars.

For each occurrence of a subterm at a given position in a query term, a set of candi-
date terms is retrieved from hashtable occurs at. Sets of candidate terms can further-
more be retrieved from hashtable occurrences for subterms occurring at unspecified
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positions. The result of the query is the intersection of all candidate sets obtained this
way.

3.5.2 Speeding up Computation:

Using the index, efficient occurs checks are reduced to single hashtable lookups. Efficient
replacement of a symbol or subterm t is furthermore supported by PSTs recorded in the
index (in hashtable occurrences), since these PSTs make it possible to avoid processing
of term parts with no occurrences of t. Fast β-reduction is supported by the PSTs
recorded in hashtable boundvars.

3.5.3 Explicit Substitutions:

Our approach can also support explicit substitutions. Note that subterm occurrences
in a term t can be quickly determined as described above. Similarly, the occurrences of
a subterm s in the result of applying a substitution σ to a term t can be determined
using our indexing technique. To determine occurrences of s in σt where σ = [b/a],
occurrences of s and a in t are looked up from the index, as well as occurrences of s in
b. Thus we get three PSTs psts/t, psta/t and psts/b. To find all occurrences of s in σt,
all positions annotated by a in psta/t are replaced by a new sub PST pst s/b, and the
result is merged with psts/t. For σ1σ2 . . . σnt, this operation is cascaded.

4 Preliminary Evaluation

Full evaluation of the indexing method presented here is still work in progress. This is
because the implementation of LEO-II is still at its very beginning, so that we cannot
pursue an empirical evaluation within theorem proving applications with LEO-II at
the current stage of development. A purely theoretical examination is difficult and
furthermore questionable, as the computational complexity can be expected to heavily
depend on the structure of the application domains [NHRV01].

However, we were able to undertake some first experiments which may give us an im-
pression of the efficiency gain we may expect for LEO-II (for example, in comparison to
LEO and other higher order theorem provers that do not use term indexing techniques).

In order to get a realistic impression of the structural characteristics of real world
term sets, we indexed a sample selection of 900 theorems and definitions from a HOTPTP
[GS06] version of Jutting’s Automath encoding of Landau’s book Grundlagen der Anal-
ysis [vBJ77, Lan30]. An overview on the results of this experiment is given in Figure 1.
We will now discuss these results.

In our study, we determined, for example, the rate of term sharing, which is the
average number of parent nodes per node and the average number of terms a given
node occurs in. At first sight the average number of parent nodes of 1.68 appears to
be relatively low, an impression which is underlined by the high number of nodes with
no or one parent node (about 90%). For nodes which are deeply buried in a term’s
structure, however, the sharing rate multiplies along the path up to root position, so
the average number of terms a node occurs in (33.5) relativises this impression. Our
experiments indicate furthermore an increase of the sharing rate by operations like
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Number of indexed terms 977
Number of created term nodes 11618
Average term size 54
Number of nodes with no parent nodes 904
Number of nodes with one parent node 9633
Number of nodes with two more more parent nodes 1083
Maximum number of parent nodes 2778 (symbol ∀)
Average number of parent nodes 1.68
Average number of terms a node occurs in 33.5
-”-(for symbols) 493.9
-”-(for nonprimitive term nodes) 24
Average PST/term size for symbol occurrences 0.21
Average PST/term size for bound variable occurrences 0.33
Average PST/term size for all term nodes 0.12

Figure 1: Structure of the Landau sample.

replacement, substitution and β-reduction, due to the reuse of already indexed subterms.
Additionally, the maintenance of the index is supported by data already existing in the
index. As most logical operations on terms reuse parts of these terms, the cost to
maintain the index is less than indexing a set of terms starting from an empty index,
as required for instance, when initially loading a mathematical theory to memory.

An indicator for the term retrieval performance is the average number of terms a
node occurs in. With an average number of occurrences of 33.5 and a total of 11618 term
nodes, a theoretical average of 99.7% of candidate nodes for retrieval can be excluded by
checking occurrences of subterms only (compared to a naive approach). By specifying
the position of the subterm’s occurrence, the set of retrieved terms is further restricted.

The use of shared terms is responsible for a further improvement of performance
similar to the transition from coordinate indexing to path indexing [Sti89]. While both
methods employ a common underlying idea, path indexing is substantially faster. In the
former approach terms are discriminated by occurrences of single symbols at specified
positions (or coordinates, hence the name). The criterion in the latter is the occurrence
of a path, that is the occurrence of a sequence of specified symbols in a descending
path in the syntax tree. The retrieval of candidates for one path of length n is thus
corresponding to n passes of retrieval in coordinate indexing. We expect a similar effect
in our approach due to shared representation of terms, since terms are indexed according
to the occurrence of nonprimitive term structures, too. This assumption is supported
by the increase of the exclusion rate of 95.7% for symbol occurrences only (with an
average number of 493.9 superterms per node) to 99.8% for nonprimitive terms (with
an average of 24 superterms per node). This rise corresponds to a theoretical speedup
by factor 20.

We can also predict a significant performance improvement of operations, such as
replacement, substitution and occurs check. They all are critical in theorem proving.
The indexing method we present here supports occurs checks in constant time, based
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on simple hashtable lookup. This applies not only to symbols, but also to nonprimitive
terms. This also supports global replacement of defined terms (for example, a = b) by
their definiendum (for example, ∀P.Pa ⇒ Pb).

A measure of the efficiency improvement for replacement operations is the PST/term
size rate. The value is 0.21 for symbols, which is relevant, for example, for variable sub-
stitution, and which corresponds to a theoretical speedup by factor 5. The value for
bound variables, which is relevant for β-reduction, is 0.33, corresponding to a theoret-
ical speedup by factor 3. The probably least common operation is the replacement of
nonprimitive terms, as discussed above.

We are aware of the fact that the results shown here are based on a theoretical
juggling with average values. These results may thus differ strongly from the behaviour
when used in a realistic application in theorem proving as we intend. This is due to
several factors: First we expect the structure of the set of indexed terms to change
during operation. In general the basic operations of a theorem prover will increase the
sharing rate of some symbols and subterms. This makes occurrences of these terms a less
discriminating criterion, on the other hands it decreases the cost of maintenance of the
index. The tradeoff of these two factors will be subject to further examination. Second,
the evaluation of average values does most likely not correspond to index operation
sequences as they actually occur in a realistic theorem proving application.

5 Conclusion and Future Work

The main features of the new higher order term indexing method we presented in this
paper are shared term representation, relational indexing of subterm occurrences and
the use of partial syntax trees. Occurrences of subterms are indexed in several ways
and can be flexibly combined to design customised procedures for term retrieval and
heuristics. Our method furthermore provides support for potentially costly operations
such as global unfolding of defined terms. Our indexing method is based on simple
hashtable operations, so there is little computational overhead in term retrieval and
maintenance of the index. Indexing of subterm occurrences allows furthermore for an
occurs check in constant time. Additionally, the performance is improved by the use of
PSTs. Finally, a shared representation of terms helps to keep the costs for maintaining
the index low and improves the performance of retrieval operations.

The indexing technique presented in this paper has been implemented in OCaml
[LDG+05]. A proper evaluation of the approach within a real theorem proving context
is still work in progress. However, first experiments are promising.

The preliminary evaluation in this paper is based on some statistical data we com-
puted for 900 example terms from an encoding of Landau’s textbook. To what extend
our predictions on efficiency gain are realistic will be examined in future work.

Furthermore, as the experience from first order term indexing shows, most successful
systems employ a combination of various indexing methods which are used complemen-
tarily. We will thus also evaluate which aspects of our indexing method result in a real
performance gain and which do not. Our evaluation will be done with the LEO-II prover
as soon as a first version of its resolution loop is available. In the LEO-II context we
are particularly interested in the fast determination of clauses (resp. literals and terms
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in clauses) with respect to certain filter criteria. In the extreme case, these criteria may
be based on complex operations such as higher order pattern unification [PP03] or even
full higher order unification [Hue75, SG89].

Our approach differs from Pientka’s work, which has a stronger emphasis on term
retrieval. Pientka’s method is based on high level operations such as unification of linear
higher order patterns to construct substitution trees, while our method relies mainly on
simpler low level operations and makes strong use of hashtables. Both methods appear
complementary to some extend, which motivates the study of a combination of both.

Future work also includes the investigation of alternative term representation tech-
niques, such as suspension calculus [Nad02], spine representation [CP97] and explicit
substitutions [FKP96, ACCL90] in the context of our term indexing approach. We are
especially interested in the combination of aspects from different representation tech-
niques within a single graph structure.

References

[ACCL90] Mart́ın Abadi, Luca Cardelli, Pierre-Louis Curien, and Jean-Jacques Lèvy.
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Abstract

We present an interface connecting the ACL2 theorem prover with external de-
duction tools. The logic of ACL2 contains several constructs intended to facilitate
structuring of interactive proof development, which complicates the design of such
an interface. We discuss some of these complexities and develop a precise specifica-
tion of the requirements from external tools for sound connection with ACL2. We
also develop constructs within ACL2 to enable the developers of external tools to
satisfy our specifications.

1 Introduction

Recent years have seen rapid advancement in the capacity of automatic reasoning tools,
most notably for decidable theories such as propositional calculus and Presburger arith-
metic. For instance, modern BDD packages and Boolean satisfiability solvers can auto-
matically solve problems with tens of thousands of variables and have been successfully
used to reason about commercial hardware system implementations. This advancement
has sparked significant interest in the general-purpose, interactive theorem proving com-
munity to improve the efficiency and automation in theorem provers by providing a
connection with state-of-the-art automatic reasoning tools. In this paper, we present a
general mechanism we are building to connect deduction tools, external to the ACL2
theorem prover, with that prover.

ACL2 [KMM00, KM06] is an industrial-strength interactive theorem proving sys-
tem. It consists of an efficient programming interface based on an applicative sub-
set of Common Lisp [KM94], and a first-order, inductive theorem prover for a logic
of recursive functions. The ACL2 theorem prover supports several deduction mech-
anisms such as congruence-based conditional rewriting, well-founded induction, sev-
eral decision procedures, and generalization. The theorem prover has been particu-
larly successful in the verification of microprocessors and hardware designs such as

∗This material is based upon work supported by DARPA and the National Science Foundation under
Grant No. CNS-0429591, by the National Science Foundation under Grant No. ISS-0417413, and by
DARPA under Contract No. NBCH30390004.
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the floating point multiplication, division, and square root algorithms of AMD proces-
sors [MLK98, Rus98, RF00, FKR+02], microcode for the Motorola CAP DSP [BH97],
separation properties for the Rockwell Collins AAMP7TM processor [GRW04], and a
non-trivial pipelined machine with interrupts, exceptions, and speculative instruction
execution [SH97]. However, the applicability of ACL2 (as in fact that of any theorem
prover) is often limited by the amount of user expertise required to drive the theorem
prover; indeed, the verification projects referenced above represent many man-years of
effort. Yet, a significant number of lemmas proven in the process, in particular many
proofs exhibiting invariance of predicates over executions of hardware design implemen-
tations, can be expressed in a decidable theory and automatically dispatched by an
automatic decision procedure for the theory.

On the other hand, it is not trivial to connect ACL2 with an external deduction tool.
The logic of ACL2 is complicated by the presence of several constructs intended to facili-
tate effective proof structuring [KM01]. It is therefore imperative (i) to determine under
what logical constraints a conjecture certified by a combination of the theorem prover
and other tools can be claimed to be a valid theorem, and (ii) to provide mechanisms
so that a tool implementor might be able to meet the logical constraints so determined.

In this paper, we propose a general interface for connecting external tools with ACL2.
The user can instruct ACL2 to use external deduction tools for reducing a goal formula
C to a list of formulas LC during a proof attempt. The claim is that provability of each
formula in LC implies the provability of C. We present a sufficient condition expressible
in ACL2 guaranteeing this claim, and discuss the soundness requirements on the tool
implementor. We also propose a modest augmentation of the logical guarantees provided
by ACL2, in order to facilitate connection with certain types of tools (cf. Section 5).

We distinguish between two classes of external tools, namely (i) tools verified by
the ACL2 theorem prover, and (ii) unverified but trusted tools. A verified tool must
be formalized in the logic of ACL2 and the sufficient condition alluded to above must
be formally established by the theorem prover. An unverified tool can be defined using
the ACL2 programming interface, and can invoke arbitrary executable programs using
calls to the underlying operating system via a system call interface. An unverified tool
is introduced with a “tag” acknowledging that the validity of the formulas proven using
the tool depends on the correctness of the tool.

The interface for unverified tools enables us to invoke Boolean Satisfiability solvers,
BDD packages, etc., for simplifying ACL2 subgoals. Why might verified tools be of
interest? The formal language of ACL2 is a programming language, based on an ap-
plicative subset of Common Lisp. The close connection with Lisp makes it possible to
write efficiently executable programs in the ACL2 logic [KM94]. In fact, most of the
ACL2 source code is implemented in this language. We believe it will be handy to
provide facilities to the ACL2 user to control proofs by (i) implementing customized
domain-specific reasoning code, (ii) verifying with ACL2 that the code is sound, and
(iii) invoking the code for proving theorems in the target domain. In fact, ACL2 cur-
rently provides a way for users to augment its built-in term simplifier with their own
customized reasoning code, via the so-called “meta rules” [BM81]. However, such rules
essentially augment the reasoning engine of ACL2 without providing the user control to
manipulate a specific subgoal arising during a proof. Furthermore, meta rules only allow
reducing a term to one that is provably equivalent—they do not allow generalization.
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With our interface, an ACL2 user can invoke directly a customized, verified reasoning
tool to replace a subgoal by a collection of possibly more general subgoals.

The remainder of the paper is organized as follows. In Section 2 we provide a brief
overview of the ACL2 system. In Sections 3 through 5 we present our interface for
connecting verified and unverified external tools with ACL2, touching upon the logical
underpinnings involved. We discuss related work in Section 6 and conclude in Section 7.
No previous familiarity with ACL2 is assumed in this presentation; the relevant features
of the logic and the theorem prover are discussed in Section 2.

2 ACL2

The name “ACL2” stands for “A Computational Logic for Applicative Common Lisp”.
The name is used to denote (i) a programming language based on an applicative subset
of Common Lisp, (ii) a first-order logic of recursive functions with induction, and (iii) a
theorem prover for the logic. In this section, we provide a brief overview of ACL2. The
review is not complete, but only intended to lay the foundation for our work. Readers
interested in learning ACL2 are referred to the ACL2 Home Page [KM06] which contains
extensive hypertext documentation together with references to several books and papers.

2.1 The logic

The kernel of the ACL2 logic consists of a formal syntax, some rules of inference, and
some axioms. Kaufmann and Moore [KM97] provide a precise description of the kernel
logic. The logic supported by the theorem prover is an extension of the kernel logic.

The kernel syntax describes terms composed of variables, constants, and function
symbols applied to a fixed number of argument terms. The kernel logic introduces “for-
mulas” as composed of equalities between terms and the usual propositional connectives.

The syntax of ACL2 is the prefix-normal syntax of Lisp; thus, the application of a
binary function f on arguments a and b is represented by (f a b) rather than the more
traditional f(a, b). However, in this paper we will use the formal syntax only when it is
relevant for the associated discussion. In particular we will write (x× y) instead of (*
x y) and (if x then y else z) instead of (if x y z).

The axioms of ACL2 describe the properties of certain Common Lisp primitives. For
example, the following are axioms about the primitives equal and if:

Axioms.
x = y ⇒ equal(x, y) = T
x 6= y ⇒ equal(x, y) = NIL
x = NIL ⇒ (if x then y else z) = z
x 6= NIL ⇒ (if x then y else z) = y

Notice that the kernel syntax is quantifier-free and each formula is implicitly universally
quantified over all the free variables in the formula. Furthermore, the use of function
symbols equal and if make it possible to embed propositional calculus and equality into
the term language. When we write a term τ in place of a formula, it stands for the
formula τ 6= NIL. Thus, in ACL2, the following term is an axiom relating the Lisp
functions cons, car, and equal.
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Axiom.
equal(cons(car(x, y)), x)

This axiom stands for the formula equal(car(cons(x, y)), x) 6= NIL, which is provably
equivalent to car(cons(x, y)) = x. With this convention, we will feel free to interchange
terms and formulas. We will similarly feel free to apply logical connectives to a term or
formula. Thus when we write ¬τ , where τ is a term, we mean the term (or formula by
the above convention) obtained by applying the function symbol not to τ , where not is
axiomatized as:

Axiom.
not(x) = if x then NIL else T

The convention above enables us to interpret an ACL2 theorem as follows. If the
term τ (when interpreted as a formula) is a theorem then for all substitutions σ of free
variables in τ to objects in the ACL2 universe the (ground) term τ/σ evaluates to a
non-NIL value. This alternative view will be critical in deriving sufficient conditions for
correctness of external tools integrated with ACL2.

The kernel logic includes axioms that characterize the primitive Lisp functions over
numbers, characters, strings, symbols, and ordered pairs. These objects together make
up the ACL2 standard universe; but “non-standard” ACL2 universes may contain other
objects. Lists are represented as ordered pairs, so that the list (1 2 3) is represented
as cons(1, cons(2, cons(3, NIL))). For brevity, we will write list(x, y, z) as an abbrevia-
tion for cons(x, cons(y, cons(z, NIL))). Another convenient data structure built out of
ordered pairs is the association list (or alist) which is essentially a list of pairs, e.g.,
list(cons("a", 1), cons("b", 2)). We often use alists for describing finite mappings; the
above alist can be thought as a mapping that associates the strings "a" and "b" with 1
and 2, respectively.

In addition to propositional calculus and equality the rules of inference of ACL2 in-
clude instantiation, together with first-order induction over ε0 (see below). For instance,
the formula car(cons(2, x)) = 2 is provable by instantiation from the above axiom relat-
ing car, cons, and equal.

The ACL2 theorem prover initializes with a boot-strapping (first-order) theory called
the Ground Zero theory (GZ for short). In the sequel, whenever we mention an ACL2
theory, we mean a theory obtained by extending GZ via the extension principles ex-
plained below. The theory GZ contains the axioms of the kernel logic. In addition,
it also contains a well-founded first-order induction principle, by way of an embedding
of ordinals below ε0. In particular, GZ is assumed to be inductively complete, that
is, it is assumed implicitly to contain all the first-order well-founded induction axioms
expressible using formulas φ in the language of GZ:

(∀y < ε0)[((∀x < y)φ/{y := x}) ⇒ φ(y)] ⇒ (∀y < ε0)φ(y)

2.1.1 Extension Principles

ACL2 also provides several extension principles that allow the user to extend a theory
by introducing new function symbols and axioms about them. Two extension principles
that are particularly relevant to us are (i) the definitional principle to introduce total
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functions, and (ii) the encapsulation principle to introduce constrained functions,1 and
we discuss them in some detail. Note that whenever we say (below) that a theory is
extended by axiomatizing new function symbols we implicitly assume that the resulting
theory is also inductively complete, that is, all the induction axioms in the language of
the extended theory are also introduced together with the axioms explicitly specified.

Definitional Principle:

The definitional principle allows the user to extend a theory by axiomatizing new total
(recursive) functions. For example, one can use this principle to introduce the unary
function symbol fact axiomatized as follows, which returns the factorial of its argument.

Definitional Axiom.
fact(n) = if natp(n) ∧ (n > 0) then n× fact(n− 1) else 1

Here, natp(n) is axiomatized in GZ to return T if n is a natural number, and NIL
otherwise. To ensure that the extended theory is consistent, ACL2 first proves that the
recursion terminates. This is achieved by exhibiting some measure m that maps the
set of function arguments to some well-founded structure derived from the embedding
of ordinals below ε0. For the axiom above, an appropriate measure is nfix(n) which is
axiomatized in GZ to return n if n is a natural number, otherwise 0.

Encapsulation Principle:

The encapsulation principle allows the extension of the ACL2 logic with functions intro-
duced with constraints rather than full definitions. This principle, for instance, allows
us to extend a theory by introducing a new unary function foo with only the following
axiom that merely posits that foo always returns a natural number:

Encapsulation Axiom.
natp(foo(x))

The encapsulation axioms are also referred to as constraints, and the functions intro-
duced via this principle are called constrained functions. To ensure the consistency of
the resulting theory, one must show that there exist (total) functions satisfying the al-
leged constraints; such functions are called witnesses to the constraints. For foo above,
an appropriate witness is the constant function that always returns 1.

For a constrained function f the only axioms known are the constraints. Therefore,
any theorem proved about f is also valid for a function f ′ that also satisfies the con-
straints. More precisely, call the conjunction of the constraints on f the formula φ. For
any formula θ, let θ′ be the formula obtained by replacing the function symbol f by the
function symbol f ′. Then a derived rule of inference, functional instantiation, specifies
that if φ′ and ψ are theorems then ψ′ is also a theorem. Consider, for example, the con-
stant function of one argument that returns 10. This function satisfies the constraint
for foo; thus if bar(foo(x)) is provable for some function bar then functional instantiation
can be used to prove bar(10). .

1Other extension principles include the introduction of Skolem (choice) functions and specification
of a formula as an axiom. The latter is discouraged since one can introduce unsoundness by adding
arbitrary axioms. For this paper, we will ignore the possibility of introducing arbitrary axioms.
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2.2 The Theorem Prover

As a theorem prover, ACL2 is an automated, interactive proof assistant. It is automated
in the sense that no user input is expected once the theorem prover has embarked on the
search for the proof of a conjecture. It is interactive in the sense that the proof search
is largely determined by the previously proven lemmas in its database at the beginning
of a proof attempt; the user essentially programs the theorem prover by stating lemmas
for it to prove, to use automatically in subsequent proofs. There is also a goal-directed
interactive loop (called the “proof-checker”), similar in nature to what is offered by
LCF-style provers; but it is much less frequently used and not relevant to the discussion
below.

Interacting with the ACL2 theorem prover principally proceeds as follows. The user
creates a relevant theory (extending GZ) using the extension principles to model some
artifact of interest. Then she poses some conjecture about the functions in the theory
and instructs the theorem prover to prove the conjecture, possibly providing hints on
how to proceed in the proof search. For instance, if the artifact is the factorial function
above, an appropriate conjecture might be the following formula, which says that fact
always returns a natural number.

Theorem fact-is-natp:
natp(fact(x)) = T

The theorem prover attempts to prove such a conjecture by applying a sequence of
transformations to it, replacing each goal (initially, the conjecture) with a list of sub-
goals. ACL2 provides a hint mechanism that enables the user to instruct the theorem
prover on how to proceed with its proof search at any goal or subgoal. For instance, the
user can instruct the theorem prover to begin its proof search by inducting on x.

Once a theorem is proven, the theorem prover stores it in a database, for use in
subsequent derivations. This database groups theorems into various rule classes, which
affects how the theorem prover will automatically apply them. The default rule class
is rewrite, which causes the theorem prover to replace instances of the left-hand-side
of an equality with its corresponding right-hand-side. If the conjecture fact-is-natp
above is a rewrite rule, then subsequently whenever ACL2 encounters a term of the form
natp(fact(τ)) in the course of a proof attempt, it rewrites the term to T.

ACL2 users interact with the theorem prover primarily by issuing a sequence of event
commands for introducing new functions and proving theorems with appropriate rule
classes. For example, fact-is-natp is the name of the above theorem event. During
proof development the user typically records events in a file, often referred to as a book.
Once the desired theorems have been proven, the user instructs ACL2 to certify such
a book in order to facilitate the use of the events in other projects. A book can be
certified once and then included during a subsequent ACL2 session without rerunning
the associated proofs. To facilitate structured proof development, the user is permitted
to mark some of the events in a book as local events. For instance, to prove some relevant
theorem the user might introduce several auxiliary functions and intermediate lemmas
that are not generally useful; such events are typically marked to be local. When a
book is included in a subsequent proof project, only the non-local events in the book
are accessible, thus preventing unwanted clutter in the database of the theorem prover.
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The presence of local events complicates the soundness claims for ACL2. Note
from above that local events in a book might include commands for introducing new
functions (thus extending an ACL2 theory with new axioms), which are not available
in the subsequent sessions where the book is loaded. Yet, in order to prove some non-
local theorem in the book ACL2 might have used some of these local axioms. One
must therefore answer under what condition it is legitimate to mark an axiomatic event
in a book as local, and what formal soundness claims can be provided for an ACL2
session in which such a pre-certified book is loaded. Such questions have been answered
by Kaufmann and Moore [KM01]: if a formula φ is proven as a theorem in an ACL2
session, then φ is in fact first-order derivable (with induction) from the axioms of GZ
together with (hereditarily) only the axiomatic events in the session that involve the
function symbols in φ. (In particular, every ACL2 session corresponds to a theory
that is a conservative extension of GZ.) Thus, any definition or theorem that does not
involve the function symbols in the non-local events of a book can be marked local. To
implement this requirement, book certification involves two passes. In the first pass,
ACL2 proves each theorem (and admits each axiomatic event) sequentially. In the
second pass, it skips proofs, and makes a so-called local incompatibility check, checking
primarily that each axiomatic event involved in any non-local theorem in the book is
also non-local.

2.3 The ACL2 Programming Environment

ACL2 is closely tied with Common Lisp. The formal syntax of the logic is essentially
the syntax of Lisp, and the axioms in GZ for the primitive Lisp functions are carefully
crafted so that the return value of a function as predicted by the axioms matches with
the value specified in the Common Lisp Manual on arguments in the intended domain
of its application. Furthermore, events corresponding to functions introduced using the
definitional principle are essentially Lisp definitions. For instance, consider the factorial
function fact described above. The formal event introducing the definitional axiom of
fact is written in ACL2 as follows.

(defun fact (n) (if (and (natp n) (> n 0)) (* n (fact (- n 1))) 1))

This is essentially a Lisp definition of the function! The connection with Common Lisp
enables the users of ACL2 to execute formal definitions by using the underlying Lisp
evaluator. Since Lisp is an ANSI-standard, efficient functional programming language,
ACL2 users often make use of the connection to implement formally defined yet efficient
code. Indeed, the theorem prover itself makes use of this connection for simplifying
ground terms during proof search; for instance, ACL2 will simplify fact(3) to 6 by
evaluation in the underlying Lisp.

In order to facilitate efficient code development, ACL2 also provides a logic-free
programming environment. A user can implement any applicative Lisp function and
mark it to be in program mode. No proof obligation is generated for such functions.
ACL2 can evaluate such functions using the Lisp evaluator, although no logical guarantee
(including termination) is provided. Furthermore, ACL2 provides an interface to the
underlying operating system, which enables the user to invoke arbitrary executable code
(and operating system commands) from inside an ACL2 session.
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2.4 Evaluators

ACL2 provides a convenient notation for defining an evaluator for a fixed set of functions.
Evaluators are used to support meta reasoning [BM81]. We will not consider meta
reasoning in this paper, but we briefly mention evaluators since they will be useful in
characterizing the correctness of external tools.

A proof search involves applying transformations to reduce a goal to a collection
of subgoals. Internally, ACL2 stores each goal as a clause represented as an object
in the ACL2 universe. For instance, when ACL2 attempts to prove a theorem of the
form τ1 ∧ τ2 ∧ . . . ∧ τn ⇒ τ , it represents the proof goal internally as a list of terms,
(¬τ1 ... ¬τn τ), which can be thought of as the disjunction of its elements (literals).
When ACL2 works on any subgoal, the transformation procedures work on the internal
representation of the subgoal, called the current clause. Since this representation is an
ACL2 object, we can define functions over such objects.

An evaluator makes explicit the connection between terms and their internal repre-
sentations. Assume that f1, . . . , fn are functions axiomatized in some ACL2 theory T .
A function ev, also axiomatized in T is called an evaluator for f1, . . . , fn, if the axioms
associated with ev can be viewed as specifying an evaluation semantics for the internal
representation of terms composed of f1, . . . , fn that is consistent with the definitions of
these functions; such axioms are then referred to as evaluator axioms. A precise char-
acterization of all the evaluator axioms is described in the ACL2 Manual [KM06] under
the documentation topic defevaluator; here we only mention one for illustration, which
corresponds to the evaluation of the m-ary function symbol fi:

An Evaluator Axiom.
ev(list(′fi,′ τ1, ...,′ τm), a) = fi(ev(′τ1, a), . . . , ev(′τm, a))

Here ’fi is assumed to be the internal representation of fi and ’τj is the internal
representation of τj , for 1 ≤ j ≤ m. It is convenient to think of a as an association
list that maps the (internal representation of the) free variables in τ1, . . . , τm to ACL2
objects. Then the axiom specifies that the evaluation of the list (’fi ’τ1 ... ’τm)
(which corresponds to the internal representation of fi(τ1, . . . , τm)) under some mapping
of free variables to objects is the same as the function fi applied to the evaluation of
each τj under the same mapping.

3 Verified External Tools

In this section, we discuss verified external tools. We consider verified tools first since
they are amenable to perhaps a simpler understanding than unverified ones. The ideas
and infrastructure we develop in this section will be extended successively in the next
two sections to support connections with unverified tools.

We will refer to external deduction tools as clause processors. Recall that ACL2
internally represents terms as clauses, so that a subgoal of the form τ0∧τ1∧ . . .∧τn ⇒ τ
is represented as a disjunction by the list (¬τ0 ¬τ1 ... ¬τn τ). Our interface enables
the user to transform the current clause with custom code. More precisely, a clause
processor is a function that takes a clause C (together with possibly other arguments)
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disjoin(C) = if ¬consp(C) then ∗NIL∗ else list(if, car(C), ∗T∗, disjoin(cdr(C)))
conjoin(LC) = if ¬consp(LC) then ∗T∗ else list(if, disjoin(car(LC)), conjoin(cdr(LC)), ∗NIL∗)

Figure 1: Axioms to support clause processors in GZ. Here *T* and *NIL* are assumed
to be the internal representation of T and NIL respectively. The predicate consp is
defined in GZ such that consp(x) returns T if x is an ordered pair, and NIL otherwise.

and returns a list of clauses LC .2 The intention is that if each clause in LC is a theorem
of the current ACL2 theory then so is C. In the remainder of the paper, when we talk
about clause processors, we will mean such clause manipulation functions.

Our interface for verified external tools constitutes the following components.

• A new rule class for installing clause processors. Suppose the user has defined a
function tool0 that she desires to use as a clause processor. She can then prove
a specific theorem about tool0 (described below) and attach this rule class to the
theorem. The effect is to install tool0 in the ACL2 database as a clause processor
for use in subsequent proof attempts.

• A new hint for using clause processors. Once tool0 has been installed as a clause
processor it can be invoked via this hint to transform a conjecture during a sub-
sequent proof attempt. If the user instructs ACL2 to use tool0 to help prove
some goal G, then ACL2 transforms G into the collection of subgoals generated
by executing tool0 on (the clause representation of) G.

We now explain the theorem alluded to above for installing a function tool0 as a clause
processor. Recall that one way to interpret a formula proven by ACL2 is via an evalu-
ation semantics; that is, a formula Φ is a theorem if, for every substitution σ mapping
each free variable of Φ to some object, Φ/σ does not evaluate to NIL. Our formal proof
obligation for installing functions as clause processors is based on this evaluation se-
mantics. Let C be a clause whose disjunction is the term τ , and let tool0, with C as its
argument, produce the list (C1 ... Cn) whose respective disjunctions are the terms
τ1, . . . , τn. Informally, we want to ensure that if τ/σ evaluates to NIL for some substitu-
tion σ then there is some σ′ and i such that τi/σ′ also evaluates to NIL. This condition
can be made precise in the logic of ACL2 by extending the notion of evaluators discussed
in Section 2.4 from terms to clauses. Before describing the extension, we will assume
that the ACL2 ground zero theory GZ contains two functions disjoin and conjoin axiom-
atized as shown in Figure 1. Informally, the axioms specify how to interpret objects
representing clauses and clause lists. For instance, the function disjoin specifies that the
interpretation of a clause (τ0 τ1 τ2) is the same as the interpretation of (if τ0 T (if
τ1 T (if τ2 T NIL)))), which represents the disjunctions of the terms τ0, τ1, and τ2.

Based on these axioms, we can formalize the correctness of clause processors by
defining an evaluation semantics for clauses. In particular, assume that ev is an eval-
uator for the single function if. Thus ev(list(if, τ0, τ1, τ2), a) stipulates how the term
“if τ0 then τ1 else τ2” can be evaluated. For any theory T (obtained by extending GZ

2The formal definition of a clause processor is somewhat more complex. In particular, it can optionally
take as argument the current ACL2 state among others, and return, in addition to the list of clauses,
an error message and possibly a new ACL2 state. We will ignore such details in this paper.
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term-listp(C) ∧ alistp(a) ∧ (ev(disjoin(C), a) = ∗NIL∗)
⇒

ev(conjoin(tool0(args, C)), tool0-env(args, C, a)) = ∗NIL∗

Figure 2: Correctness condition for clause processors. Here ev is assumed to be an
evaluator for if, and args represents the remaining arguments of tool0 (in addition
to clause C). The predicates term-listp and alistp are axiomatized in GZ such that
(i) term-listp(x) returns a Boolean, which is T if and only if x is an object in the ACL2
universe representing a well-formed list of terms (and hence a clause), and (ii) alistp(a)
returns a Boolean, which is T if and only if a is a well-formed association list.

via the extension principles), a clause processor function tool0(args, C) will be said to
be legal in T if there exists a function tool0-env in T such that the formula shown in
Figure 2 is a theorem. The function tool0-env returns an association list like σ′ in our in-
formal example above: it potentially modifies the original association list to respect any
generalization being performed by tool0. Note that a weaker theorem would logically
suffice, replacing the use of the association list tool0-env(args, c, a) by an existentially
quantified variable.

A theorem of the form shown in Figure 2 can be tagged with the new rule class
for clause processors, instructing ACL2 to use the function tool0 as a new verified
external tool. Theorem 1 below, based on the “Essay on Correctness of Meta Reasoning”
comment in the ACL2 sources, guarantees that the above condition is sufficient for the
soundness of using tool0 to transform goal conjectures.

Theorem 1 Let T be an ACL2 theory for which tool0 is a legal clause processor, and
let tool0 return a list LC of clauses given an input clause C. If each clause in LC is
provable in T , then C is also provable in T .

Proof: The theorem is a simple consequence of the following lemma, given the correct-
ness condition shown in Figure 2.

Lemma 1 Let τ be a term with free variables v0, . . . , vn, ev an evaluator for the function
symbols in τ , and e a list of cons pairs of the form (〈’v0, ’τ0〉 ... 〈’vn, ’τn〉),
where ’vi and ’τi are internal representation of vi and τi respectively. Let σ be a
substitution mapping each vi to τi, and let ’τ be the internal representation of the term
τ . Then the following formula is a theorem: ev(′τ , e) = τ/σ.

Proof: An easy induction on the structure of term τ .

The simplicity of the above proof might belie some of the subtleties involved. For
instance, recall that each ACL2 theory T is a conservative extension of GZ. Furthermore,
note that theorems whose proofs use an invocation of tool0 often do not involve the
function symbols occurring in the definition of the function tool0 itself. For instance,
assume that tool0 is a simple clause generalizer that replaces each occurrence of a specific
subterm in a clause by a free variable not present in the original clause. Such a function
can be invoked for generalization in the proof of a formula Φ although Φ might not
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contain any occurrence of tool0. On the completion of a successful proof of Φ, can
we then mark tool0 as local? The answer is in general “no”, since Theorem 1 only
guarantees provability of the clause input to the clause processor from those returned
in the theory in which the clause processor is legal. In particular such a theory must
contain the definitions of the function symbols being manipulated by tool0, and for this
it suffices that tool0 not be marked local. In fact a soundness bug in a previous but very
recent release of ACL2 occurred in an analogous context for meta rules, due to ACL2’s
previous inability to track the fact that the theory in which such rules are applied indeed
included the definitions supporting the corresponding evaluators.

4 Basic Unverified External Tools

Verified clause processors are useful when the user intends to augment the reasoning
engine of ACL2 with mechanically checked code for customized clause manipulation.
However, more often, we want to manipulate goal conjectures using a tool that is external
to the theorem prover, for instance a state-of-the-art Boolean satisfiability solver or
model checker. In this section, we will consider an extension of the mechanisms to
incorporate such tools. In the next section we will present additional constructs to
facilitate integration with more general tools.

Our interface for unverified tools involves extending the theorem prover with a new
event that enables ACL2 to recognize some function tool1 defined by the user as an
unverified clause processor. Here the function tool1 might be implemented using program
mode and might also invoke arbitrary executable code using ACL2’s system call interface
(cf. Section 2.3). The effect of the event in subsequent proof search with ACL2 is the
same as if tool1 were introduced as a verified clause processor: hints can be used to
invoke the function for manipulating terms arising during proofs.

Suppose an unverified tool tool1 simplifies a clause in the course of proving some
goal conjecture. What guarantees should an implementor of tool1 provide (and must
the user trust) in order to claim that the goal conjecture is indeed a theorem? In this
simple case, a sufficient guarantee is that there is a theory T containing the definition
of tool1 and appropriate evaluators such that the formula analogous to the one shown
in Figure 2 in the previous section for tool1 is a theorem of T . The soundness of the
use of tool1 then follows from Theorem 1.

Since the invocation of an unverified tool for simplifying ACL2 conjectures carries a
logical burden, the event introducing such tools provides two constructs, namely (i) a
tag for the user of the tool to acknowledge this burden, and (ii) a concept of supporters
for the tool developer to implement the tool in a way as to be able to guarantee that
the logical restrictions are met. We now explain these two constructs.

The tag associated with an event installing an unverified tool tool1 is a symbol (the
default value being the name of the tool itself), which must be used to acknowledge
that the soundness of any theorem proven by an application of tool1 depends on the
implementor of tool1 satisfying the logical guarantees above. The certification of any
book that contains an event installing an unverified clause processor (or hereditarily
includes such a book, even locally) requires the user to tag the certification command
with the name of the tags introduced with the event. Note that technically the mere act
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of installing an unverified tool does not introduce any unsoundness; the logical burden
expressed above pertains to the use of the tool. Nevertheless, our decision to insist that
the certification of any book with an installation of an unverified tool (whether subse-
quently used or not) to be tagged is governed by implementation convenience. Recall
that the local incompatibility check (that is, the second pass of a book certification) skips
proofs, and thereby ignores the hints provided during the proof process. By “tracking”
the installation rather than the application of an unverified clause processor, we disallow
the possibility of a user certifying a book that locally introduces an unverified tool and
uses it for simplifying some formulas, without acknowledging the application of the tool.

Finally we turn to supporters. This construct enables a tool developer to provide
the guarantee outlined above in the presence of local events. To understand why this
construct is necessary, consider the following scenario. Suppose a developer creates
a book (say, book1) in which the function f is introduced locally with the following
definitional axiom:

Local Definitional Axiom.
f(x) = x

Suppose further that book1 also installs an unverified clause processor tool1. Assume
that the definition of tool1 does not involve invocation of f , but it replaces terms of the
form f(τ) with τ ; thus the correctness of tool1 depends on the intended definition of f .
However, if an ACL2 session is extended by including book1, then the extended session
contains the definition of tool0 tagged as an unverified clause processor, but does not
contain the (local) definition of f . Thus we can write another book (say, book2) that
includes book1 and then provides a new definition of f , for instance the following:

Definitional Axiom.
f(x) = cons(x, x)

We now are working in a theory in which tool1 may be used to perform term manipu-
lations that are completely unjustified by the current definition of f , thus invalidating
any guarantee provided by the implementor of tool1.

In general, then, suppose that a tool has built-in knowledge about some function
symbols. The tool implementor cannot meet the logical burden expressed above un-
less the user of the tool is required to include the axioms that have been introduced
for those function symbols. The supporters construct of the event installing unverified
clause processors provides a way for the implementor to insist that such axioms are
present, by listing the names of axiomatic events (typically function symbols that name
their definitions, e.g., f in the example above). We will refer to these events as the sup-
porting events for the clause processor. Whenever ACL2 encounters an event installing
a function tool1 as an unverified clause processor with a non-empty list of supporters,
it will check that tool1 and all of the supporting event names are already defined.

5 Templates and Generalized External Tools

The view above of unverified tools is that if a clause processor replaces some clause with
a list of clauses then the provability of the resulting clauses implies the provability of the
original clause. A clause processor is thus an efficient procedure for assisting in proofs
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of theorems that could, in principle, have been proven from the axiomatic events of the
current theory. This simple view is sufficient in most situations; for instance, one can
use it to connect ACL2 with a Boolean satisfiability solver that checks if a propositional
formula is a tautology. However, some ACL2 users have found the necessity to use more
sophisticated tools that implement their own theory. We will now discuss an extension
to the ACL2 logic that facilitates connection with such tools.

To motivate the need for such tools, assume that we wish to prove a theorem about
some hardware design. Most such designs are written in a Hardware Description Lan-
guage (HDL) such as VHDL or Verilog. One way of formalizing such designs is to
define a semantics of the HDL in ACL2, possibly by defining a formal interpreter for
the language. However, defining such an interpreter is typically extremely complex and
labor-intensive. On the other hand, there are several model checkers available which
can parse designs written in VHDL or Verilog. An alternative is merely to constrain
some properties of the interpreter and use a combination of theorem proving and model
checking in the following manner:

• Establish low-level properties of parts of a design using model checkers or other
decision procedures.

• Use the theorem prover to compose the properties proven by the model checker
together with the constrained properties of the interpreter to establish the cor-
rectness of the design.

The above approach has shown promise in scaling formal verification to industrial de-
signs. For instance, Sawada and Reeber [SR06] have recently verified an industrial
VHDL floating-point multiplier using a combination of ACL2 and an IBM internal ver-
ification tool called SixthSense [MBP+04]. They introduce two functions, sigbit and
sigvec, with the following assumed semantics:

• sigbit(e, s, n, p) returns a bit corresponding to the value of bit signal s of a VHDL
design e at cycle n and phase p.

• sigvec(e, s, l, h, n, p) returns a bit vector corresponding to the bit-range between l
and h of s for design e at cycle n and phase p.

In ACL2 these two functions are constrained only to return a bit and bit-vector respec-
tively. The key properties of the different multiplier stages are proven using SixthSense.
For instance, one of the properties proven is that sigvec when applied to (i) a constant
C representing the multiplier design, (ii) a specific signal s of the design, (iii) two spe-
cific values lb and hb corresponding to the bit-width of s, and (iv) a specific cycle and
phase, returns the sum of two other bit vectors at the previous cycle; this corresponds
to one stage of the Wallace-tree decomposition implemented by the multiplier. All such
theorems are then composed by ACL2 to verify that the multiplier, when provided two
vectors of the right size, produces their product after 5 cycles.

How do we support this verification approach? Note that the property above is not
provable from the constraints on the associated functions alone (namely sigvec returns
a bit vector). Thus if we use encapsulation to constrain sigvec and posit the property
as a theorem then functional instantiation can derive an inconsistency. The problem
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is that the property is provable from the constraints together with axioms about sigvec
that are unknown to ACL2 but assumed to be accessible to SixthSense.

Our solution to the above is to extend the extension principles of ACL2 with a
new principle called encapsulation templates (or simply templates). Function symbols
introduced via templates are constrained functions just like those introduced via the
encapsulation principle, and the soundness of extending an ACL2 theory is analogously
guaranteed by exhibiting a local witness satisfying the constraints. However, there is one
significant distinction between encapsulation principle and templates: the constraints
introduced are marked incomplete, acknowledging that they might not encompass all
the constraints on the functions. ACL2 therefore disallows functional instantiation of
theorems by substituting for functions introduced via templates.

The use of template events facilitates integration of ACL2 with tools like SixthSense
above. Suppose that we wish to connect ACL2 with an unverified tool tool1 that im-
plements a theory that we do not wish to define explicitly in ACL2. We then use a
template event to introduce the function symbols (say f and g) regarding which the
theory of the clause processor contains additional axioms. Finally we introduce tool1 as
an unverified clause processor, marking f and g as supporting events.

We now explain the logical burden for the developer of such a connection. Assume
that an ACL2 theory T is extended by a template event E, and suppose that the
supporting events for tool1 mention some function introduced by E. Then the developer
of tool1 must guarantee that it is possible, in principle, to introduce f and g via the
encapsulation principle (which we will refer to as the “promised” encapsulation EP of
the functions) such that the following conditions hold:

1. The constraints in EP include the constraints in E.

2. EP does not introduce any additional function symbols other than those intro-
duced by E.

3. EP is admissible in theory T .

4. For any extension T0 of T together with the constraints in EP , if one can invoke
tool1 to reduce some clause C to a list of clauses LC then if each clause of LC is
first-order provable (with induction) in T0 then C must be provable in T0.

Furthermore, in order to make logical guarantees regarding ACL2 sessions that contain
events corresponding to several unverified external tools, ACL2 enforces the following
“disjointness condition”: a template event may not be extended to a promised encap-
sulate by two different clause processors. Thus, when an unverified clause processor
installation event has a supporting event name, f , such that f is a function symbol that
had been introduced by a template, it is required that no unverified clause processor
has been previously installed in the current ACL2 session that has a supporting event
name that is a function symbol introduced in the same template. This makes it possible
to view the event as essentially the (unique) promised encapsulation whose existence is
guaranteed by the implementor of the tool. Note that condition 2 above is necessary
for this purpose to preclude the possibility that the theory implemented by different
external tools might have conflicting implicit axioms in their promised encapsulations
for function symbols not introduced by the template.
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With these conditions, we can make the following informal claim for an ACL2 session
which includes templates together with the use of unverified clause processors:

Perform the following transformation in sequence to each template event
E in the session. If there is a tool tool1 whose supporting events mention
a function symbol introduced by E then replace E with the encapsulation
EP promised by the developer of tool1. Otherwise extend E to an arbitrary
admissible encapsulate. (Note that at least one such extension exists, namely
one in which no additional constraint is introduced.) Then every alleged
theorem in the session is in fact derivable in first-order logic (with induction)
from the axiomatic events in the session produced after this transformation.

The informal claim above can be made precise by formalizing the notion of an ACL2
session. Kaufmann and Moore [KM01] describe such a formalization where a valid
session is modeled as a chronology, inductively defined as a sequence of events that is
either (i) the empty sequence, or (ii) constructed from a sequence by introducing one
of the legal ACL2 events such as commands for introducing new functions, and proving
theorems. We omit that description here and refer the reader to their paper [KM01] for
details. For this paper, we point out that given a careful inductive characterization of
a session as a chronology, it is easy to see that an ACL2 session transformed as above
really corresponds to a chronology. The basic observation is that for any chronology
in which no function introduced by an encapsulation is functionally instantiated, the
encapsulation may be strengthened and the result is still a chronology. The proof is by
induction on the formation of chronologies, and each proof obligation encountered in
the inductive step is discharged against the possibly stronger theory.

6 Related Work

The importance of allowing the hooking up of external tools has been widely recognized
in the theorem proving community. Some early ideas for connecting different theorem
provers are discussed in a proposal for so-called “interface logics” [Gut91], with the
goal to connect automated reasoning tools by defining a single logic L such that the
logics of the individual tools can be viewed as sub-logics of L. More recently, with
the success of model checkers and Boolean satisfiability solvers, there has been signifi-
cant work connecting such tools with interactive theorem proving. The PVS theorem
prover provides connections with several decision procedures such as model checkers
and SAT solvers [RSS95, Sha01]. The Isabelle theorem prover [Pau] uses unverified
external tools as oracles for checking formulas as theorems during a proof search; this
mechanism has been used to integrate model checkers and arithmetic decision proce-
dures with Isabelle [MN95, BF00]. Oracles are also used in the HOL family of higher
order logic theorem provers [GM93]; for instance, the PROSPER project [DCN+00] uses
the HOL98 theorem prover as a uniform and logically-based coordination mechanism
between several verification tools. The most recent incarnation of this family of theo-
rem provers, HOL4, uses an external oracle interface to decide large Boolean formulas
through connections to state-of-the-art BDD and SAT-solving libraries [Gor02], and also
uses that oracle interface to connect HOL4 with ACL2 as discussed in the next section.

38



The primary basis for interfacing external tools with theorem provers for higher-
order logic (specifically HOL and Isabelle) involves the concept of “theorem tagging”,
introduced by Gunter for HOL90 [Gun98]. The idea is to introduce a tag in the logic
for each oracle and view a theorem certified by the oracle as an implication with the tag
corresponding to the certifying oracle as a hypothesis. This approach enables tracking
of dependencies on unverified tools at the level of individual theorems. In contrast,
our approach is designed to track such dependencies at the level of files, that is, ACL2
books. Our coarser level of tracking is at first glance unfortunate: if a book contains
some events that depend on such tools and others that do not, then the entire book
is “tainted” in the sense that its certification requires an appropriate acknowledgement
for the tools. We believe that this will not prove to be an issue in practice, as ACL2
users typically find it easy to move events between books. On the positive side, it is
simpler to track a single event introducing an external tool rather than uses of such
an event, especially since hints are ignored when including previously certified books.
As an aside, we note that a very general tagging mechanism is under development for
ACL2, serving as a foundation in particular for tagging of unverified clause processors.

There has also been work on using an external tool to search for a proof that can
then be checked by the theorem prover without assistance from the tool. Hurd [Hur02]
describes such an interface connecting HOL with first-order logic. McCune and Shum-
sky [MS00] present a system called Ivy which uses Otter to search for first-order proofs
of equational theories and then invokes ACL2 to check such proof objects. Meng and
Paulson [MP04] interface Isabelle with a resolution theorem prover.

Several ACL2 users have integrated external tools with ACL2; but without the
disciplined mechanisms of this paper, such integration has essentially involved imple-
mentation hacks on the ACL2 source code. Ray, Matthews, and Tuttle integrate ACL2
with SMV [RMT03]. Reeber and Hunt connect ACL2 with the Zchaff satisfiability
solver [RH06], and Sawada and Reeber provide a connection with SixthSense [SR06].
Manolios and Srinivasan connect ACL2 with UCLID [MS04, MS05].

7 Conclusion and Future Work

Different deduction tools bring in different capabilities to formal verification. A strength
of general purpose theorem provers compared to many tools based on decision procedures
is in the expressive power of the logic, which enables succinct definitions. Automatic
decision procedures provide more automated proof procedures for decidable theories.
Several ACL2 users have requested ways to connect ACL2 with automated decision
procedures. We believe that the mechanisms described in this paper will provide a dis-
ciplined way of using ACL2 with other tools with a clear specification of the expectations
from the tool in order to guarantee soundness of the ACL2 session. Furthermore, we
believe that verified clause processors will provide a way for the user to control a proof
more effectively without relying on ACL2’s heuristics.

We have presented an approach to connecting ACL2 with external deduction tools,
but we have merely scratched the surface. It is well-known that developing an effective
interface between two or more deduction tools is a complicated exercise [KM92]. It
remains to be seen how to effectively decompose theorem proving problems so as to
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make effective use of clause processors to provide the requisite automation.
Some researchers have criticized our interface on the grounds that developing a con-

nection with an external tool requires significant knowledge of the ACL2 logic. While
we acknowledge that our interface requires understanding of that logic, including the
term representation, we believe that such requirement is necessary for any developer
interested in developing connections between formal tools. A connection between differ-
ent formal tools must involve a connection between two logics, and the builder of such
connection must understand both the logics, including the legal syntax of terms, and
the axioms and rules of inferences. It should be noted that the logic of ACL2 is perhaps
more complex than many others, principally because it offers proof structuring mecha-
nisms by enabling the user to mark events as local. This complexity manifests itself in
the interface; constructs such as supporters are provided essentially to enable the tool
implementor to provide logical guarantees in the presence of local events. However, we
believe that with these constructs it will be possible for the tool developers to implement
connections with ACL2 with reasonable understanding of the theorem prover.

Finally, note that the restrictions for the tool developers that we have outlined
preclude certain external deduction tools. For instance, there has been recent work
connecting HOL with ACL2 [GHKR06a, GHKR06b]; the approach there has been for a
HOL user to make use of ACL2’s proof automation and fast execution capabilities. It
might be of interest to the ACL2 user to take advantage of HOL’s expressive power as
well. We are working on extending the logical foundations of ACL2 to facilitate such
a connection. The key idea is that the ACL2 theorem prover might be viewed as a
theorem prover for the HOL logic. If the view is accurate then it will be possible for
the user of ACL2 to prove some formulas in HOL and use them in an ACL2 session,
claiming that the session essentially reflects a HOL session mirrored in ACL2.
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Abstract

This paper describes the integration of zChaff and MiniSat, currently two leading
SAT solvers, with Isabelle/HOL. Both SAT solvers generate resolution-style proofs
for (instances of) propositional tautologies. These proofs are verified by the theorem
prover. The presented approach significantly improves Isabelle’s performance on
propositional problems, and exhibits counterexamples for unprovable conjectures.
It is shown that an LCF-style theorem prover can serve as a viable proof checker even
for large SAT problems. An efficient representation of the propositional problem in
the theorem prover turns out to be crucial; several possible solutions are discussed.

1 Introduction

Interactive theorem provers like PVS [ORS92], HOL [GM93] or Isabelle [Pau94] tradi-
tionally support rich specification logics. Proof search and automation for these logics
however is difficult, and proving a non-trivial theorem usually requires manual guidance
by an expert user. Automated theorem provers on the other hand, while often designed
for simpler logics, have become increasingly powerful over the past few years. New algo-
rithms, improved heuristics and faster hardware allow interesting theorems to be proved
with little or no human interaction, sometimes within seconds.

By integrating automated provers with interactive systems, we can preserve the
richness of our specification logic and at the same time increase the degree of automa-
tion [Sha01]. This is an idea that goes back at least to the early nineties [KKS91].
However, to ensure that a potential bug in the automated prover does not render the
whole system unsound, theorems in Isabelle, like in other LCF-style [Gor00] provers,
can be derived only through a fixed set of core inference rules. Therefore it is not suffi-
cient for the automated prover to return whether a formula is provable, but it must also
generate the actual proof, expressed (or expressable) in terms of the interactive system’s
inference rules.

Formal verification is an important application area of interactive theorem prov-
ing. Problems in verification can often be reduced to Boolean satisfiability (SAT), and
recent SAT solver advances have made this approach feasible in practice. Hence the
performance of an interactive prover on propositional problems may be of significant
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practical importance. In this paper we describe the integration of zChaff [MMZ+01]
and MiniSat [ES04], two leading SAT solvers, with the Isabelle/HOL [NPW02] prover.

We have shown earlier [Web05a, Web05b] that using a SAT solver to prove theo-
rems of propositional logic dramatically improves Isabelle’s performance on this class of
formulae, even when a rather naive (and unfortunately, as we will see in Section 3, inef-
ficient) representation of propositional problems is used. Furthermore, while Isabelle’s
previous decision procedures simply fail on unprovable conjectures, SAT solvers are able
to produce concrete counterexamples. In this paper we focus on recent improvements
of the proof reconstruction algorithm in Isabelle/HOL, which cause a speedup by sev-
eral orders of magnitude. In particular the representation of the propositional problem
turns out to be crucial for performance. While the implementation in [Web05a] was still
limited to relatively small SAT problems, the recent improvements now allow to check
proofs with millions of resolution steps in reasonable time. This shows that, somewhat
contrary to common belief, efficient proof checking in an LCF-style system is feasible.

The next section describes the integration of zChaff and MiniSat with Isabelle/HOL
in more detail. In Section 3 we evaluate the performance of our approach, and report
on experimental results. Related work is discussed in Section 4. Section 5 concludes
this paper with some final remarks and points out directions for future research.

2 System Description

To prove a propositional tautology φ in the Isabelle/HOL system with the help of zChaff
or MiniSat, we proceed in several steps. First φ is negated, and the negation is converted
into an equivalent formula φ∗ in conjunctive normal form. φ∗ is then written to a file
in DIMACS CNF format [DIM93], the standard input format supported by most SAT
solvers. zChaff and MiniSat, when run on this file, return either “unsatisfiable”, or a
satisfying assignment for φ∗.

In the latter case, the satisfying assignment is displayed to the user. The assignment
constitutes a counterexample to the original (unnegated) conjecture. When the solver
returns “unsatisfiable” however, things are more complicated. If we have confidence in
the SAT solver, we can simply trust its result and accept φ as a theorem in Isabelle.
The theorem is tagged with an “oracle” flag to indicate that it was proved not through
Isabelle’s own inference rules, but by an external tool. In this scenario, a bug in the
SAT solver could potentially allow us to derive inconsistent theorems in Isabelle/HOL.

The LCF-approach instead demands that we verify the solver’s claim of unsatisfia-
bility within Isabelle/HOL. While this is not as simple as the validation of a satisfying
assignment, the increasing complexity of SAT solvers has before raised the question of
support for independent verification of their results, and in 2003 zChaff has been ex-
tended by L. Zhang and S. Malik [ZM03] to generate resolution-style proofs that can be
verified by an independent checker. (This issue has also been acknowledged by the an-
nual SAT Competition, which has introduced a special track on certified unsat answers
in 2005.) More recently, a proof-logging version of MiniSat has been released [ES06],
and John Matthews has extended this version to produce human-readable proofs that
are easy to parse [Mat06], similar to those produced by zChaff. Hence our main task
boils down to using Isabelle/HOL as an independent checker for the resolution proofs
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found by zChaff and MiniSat.
Both solvers store their proof in a text file that is read in by Isabelle, and the

individual resolution steps are replayed in Isabelle/HOL. Section 2.1 briefly describes
the necessary preprocessing of the input formula, and details of the proof reconstruction
are explained in Section 2.2. The overall system architecture is shown in Figure 1.

2.1 Preprocessing

Isabelle/HOL offers higher-order logic (on top of Isabelle’s meta logic), whereas most
SAT solvers only support formulae of propositional logic in conjunctive normal form
(CNF). Therefore the (negated) input formula φ must be preprocessed before it can be
passed to the solver.

Two different CNF conversions are currently implemented: a naive encoding that
may cause an exponential blowup of the formula, and a Tseitin-style encoding [Tse83]
that may introduce (existentially quantified) auxiliary Boolean variables, cf. [Gor01].
The technical details can be found in [Web05a]. More sophisticated CNF conversions,
e.g. from [NRW98], could be implemented as well. The main focus of our work however
is on efficient proof reconstruction, less on transformations of the input formula: the
benchmark problems used for evaluation in Section 3 are already given in CNF anyway.

Note that it is not sufficient to convert φ into an equivalent formula φ∗ in CNF.
Rather, we have to prove this equivalence inside Isabelle/HOL. The result is not a sin-
gle formula, but a theorem of the form ! φ = φ∗. The fact that our CNF transformation
must be proof-producing leaves some potential for optimization. One could implement
a non proof-producing (and therefore much faster) version of the same CNF transfor-
mation, and use it for preprocessing instead. Application of the proof-producing version
would then be necessary only if the SAT solver has in fact shown a formula to be un-
satisfiable. The total runtime on provable formulae would increase slightly, as the CNF
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transformation needed to be done twice – first without, later with proofs. Preprocessing
times for unprovable formulae however should improve.

φ∗ is written to a file in DIMACS CNF format, and the SAT solver is invoked on
this input file.

2.2 Proof Reconstruction

When zChaff and MiniSat return “unsatisfiable”, they also generate a resolution-style
proof of unsatisfiability and store the proof in a text file [ZM03, Mat06]. While the
precise format of this file differs between the solvers, the essential proof technique is the
same. Both SAT solvers use propositional resolution to derive new clauses from existing
ones:

P ∨ x Q ∨ ¬x
P ∨Q

It is well-known that this single inference rule is sound and complete for propositional
logic. A set of clauses is unsatisfiable iff the empty clause is derivable via resolution.
(For the purpose of proof reconstruction, we are only interested in the proof returned
by the SAT solver, not in the techniques and heuristics that the solver uses internally
to find this proof. Therefore the integration of zChaff and MiniSat is quite similar –
minor differences in their proof trace format aside –, and further SAT solvers capable
of generating resolution-style proofs could be integrated with Isabelle in the exact same
manner.)

We assign a unique identifier – simply a non-negative integer, starting with 0 –
to each clause of the original CNF formula. Further clauses derived by resolution are
assigned identifiers by the solver. Often we are not interested in the clause obtained by
resolving just two existing clauses, but only in the result of a whole resolution chain,
where two clauses are resolved, the result is resolved with yet another clause, and so
on. Consequently, we define an ML [MTHM97] type of propositional resolution proofs
as a pair whose first component is a table mapping integers (to be interpreted as the
identifiers of clauses derived by resolution) to lists of integers (to be interpreted as the
identifiers of previously derived clauses that are part of the defining resolution chain).
The second component of the proof is just the identifier of the empty clause.

type proof = int list Inttab.table * int

This type is merely intended as an internal format to store the information contained
in a resolution proof. There are many restrictions on valid proofs that are not enforced
by this type. For example, it does not ensure that its second component indeed denotes
the empty clause, that every resolution step is legal, or that there are no circular depen-
dencies between derived clauses. It is only important that every resolution proof can
be represented as a value of type proof, not conversely. The proof returned by zChaff
or MiniSat is translated into this internal format, and passed to the actual proof recon-
struction algorithm. This algorithm will either generate an Isabelle/HOL theorem, or
fail in case the proof is invalid (which should not happen unless the SAT solver contains
a bug).
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2.2.1 zChaff ’s Proof Trace Format

The format of the proof trace generated by zChaff has not been documented before.
Therefore a detailed description of the format and its interpretation, although not the
main focus of this paper, seems in order.

The proof file generated by zChaff consists of three sections, the first two of which
are optional (but present in any non-trivial proof). The first section defines clauses
derived from the original problem by resolution. A typical line would be “CL: 7 <= 2
3 0”, meaning that a new clause was derived by resolving clauses 2 and 3, and resolving
the result with clause 0. In this example, the new clause is assigned the identifier 7,
which may then be used in further lines of the proof file. Clauses of the original CNF
formula are implicitly assigned identifiers starting from 0, in the order they are given in
the DIMACS file. When converting zChaff’s proof into our internal format, the clause
identifiers in a CL line can immediately be added to the table which constitutes the
proof’s first component, with the new identifier as the key, and the list of resolvents as
the associated value.

The second section of the proof file records variable assignments that are implied by
the first section, and by other variable assignments. As an example, consider “VAR: 3
L: 2 V: 0 A: 1 Lits: 4 7”. This line states that variable 3 must be false (i.e. its
value must be 0; zChaff uses “V: 1” for variables that must be true) at decision level 2,
the antecedent being clause 1. The antecedent is a clause in which every literal except
for the one containing the assigned variable must evaluate to false because of variable
assignments at lower decision levels (or because the antecedent is already a unit clause).
The antecedent’s literals are given explicitly by zChaff, using an encoding that multiplies
each variable by 2 and adds 1 for negative literals. Hence “Lits: 4 7” corresponds
to the clause x2 ∨ ¬x3. Our internal proof format does not allow to record variable
assignments directly, but we can translate them by observing that they correspond to
unit clauses. For each variable assignment in zChaff’s trace, a new clause identifier is
generated (using the number of clauses derived in the first section as a basis, and the
variable itself as offset) and added as a key to the proof’s table. The associated list of
resolvents contains the antecedent, and is otherwise obtained from the explicitly given
literals: for each literal’s variable (except for the one that is being assigned), a similar
unit clause must have been added to the table before; its identifier computed according
to the same formula. We ignore both the value and the level information in zChaff’s
trace. The former is implicit in the derived unit clause (which contains the variable
either positively or negatively), and the latter is implicit in the overall proof structure.

The last section of the proof file consists of just one line which specifies the conflict
clause, a clause which has only false literals: e.g. “CONF: 3 == 4 6”. Literals are
encoded in the same way as in the second section, so clause 3 would be x2 ∨ x3 in this
case. We translate this line into our internal proof format by generating a new clause
identifier i which is added to the proof’s table, with the conflict clause itself and the
unit clause for each of the conflict clause’s variables as associated resolvents. Finally,
we set the proof’s second component to i.
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2.2.2 MiniSat’s Proof Trace Format

The proof-logging version of MiniSat originally generated proof traces in a rather com-
pact (and again undocumented) binary format, for which we have not implemented a
parser. John Matthews [Mat06] however has extended this version with the ability to
produce readable proof traces in ASCII format, similar to those produced by zChaff.
We describe the precise proof trace format, and its translation into our internal proof
format.

MiniSat’s proof traces, unlike zChaff’s, are not divided into sections. They contain
four different types of statements: “R” to reference original clauses, “C” for clauses
derived via resolution, “D” to delete clauses that are not needed anymore, and “X” to
indicate the end of proof. Aside from “X”, which must appear exactly once and at the
end of the proof trace, the other statements may appear in any number and (almost)
any order.

MiniSat does not implicitly assign identifiers to clauses in the original CNF formula.
Instead, “R” statements, e.g. “R 0 <= -1 3 4”, are used to establish clause identifiers.
This particular line introduces a clause identifier 0 for the clause ¬x1∨x3∨x4, which must
have been one of the original clauses in this example. (Note that MiniSat, unlike zChaff,
uses the DIMACS encoding of literals in its proof trace.) Since our internal proof format
uses different identifiers for the original clauses, the translation of MiniSat’s proof trace
into the internal format becomes parameterized by a renaming R of clause identifiers.
An “R” statement does not affect the proof itself, but it extends the renaming. The
given literals are used to look up the identifier of the corresponding original clause, and
the clause identifier introduced by the “R” statement is mapped to the clause’s original
(internal) identifier.

New clauses are derived from existing clauses via resolution chains. A typical line
would be “C 7 <= 2 5 3 4 0”, meaning that a new clause with identifier 7 was derived
by resolving clauses 2 and 3 (with x5 as the pivot variable), and resolving the result with
clause 0 (with x4 as the pivot variable). In zChaff’s notation, this would correspond
to “CL: 7 <= 2 3 0”. We add this line to the proof’s table just like for zChaff, but
with one difference: MiniSat’s clause identifiers cannot be used directly. Instead, we
generate a new internal clause identifier for this line, extend the renaming R by mapping
MiniSat’s clause identifier (7 in this example) to the newly generated identifier, and
apply R to the identifiers of resolvents as well.

Clauses that are not needed anymore can be indicated by a “D” statement, followed
by a clause identifier. Currently such statements are ignored. Making beneficial use of
them would require not only a modified proof format, but also a different algorithm for
proof reconstruction.

Finally a line like “X 0 42” indicates the end of proof. The numbers are the mini-
mum and maximum, respectively, identifiers of clauses used in the proof. We ignore the
first identifier (which is usually 0 anyway), and use the second identifier, mapped from
MiniSat’s identifier scheme to our internal one by applying R, as the identifier of the
empty clause, i.e. as the proof’s second component.

There is one significant difference between MiniSat’s and zChaff’s proof traces that
should have become apparent from the foregoing description. MiniSat, unlike zChaff,
records the pivot variable for each resolution step in its trace, i.e. the variable that occurs
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positively in one clause partaking in the resolution, and negatively in the other. This
information is redundant, as the pivot variable can always be determined from those two
clauses: If two clauses containing more than one variable both positively and negatively
were to be resolved, the resulting clause would be tautological, i.e. contain a variable and
its negation. Both zChaff and MiniSat are smart enough not to derive such tautological
clauses in the first place. We have decided to ignore the pivot information in MiniSat’s
traces, since proof reconstruction for zChaff requires the pivot variable to be determined
anyway, and using MiniSat’s pivot data would need a modified internal proof format.
This however leaves some potential for optimization wrt. replaying MiniSat proofs.

2.2.3 Proof Reconstruction

We now come to the core of this paper. The task of proof reconstruction is to derive
False from the original clauses, using information from a value of type proof (which
represents a resolution proof found by a SAT solver). This can be done in various ways.
In particular the precise representation of the problem as an Isabelle/HOL theorem (or
a collection of Isabelle/HOL theorems) turns out to be crucial for performance.

Naive HOL Representation In an early implementation [Web05a], the whole prob-
lem was represented as a single theorem ! (φ∗ =⇒ False) =⇒ (φ∗ =⇒ False), where
φ∗ was completely encoded in HOL as a conjunction of disjunctions. Step by step, this
theorem was then modified to reduce the antecedent φ∗ =⇒ False to True, which would
eventually prove ! φ∗ =⇒ False.

This was extremely inefficient for two reasons. First, every resolution step required
manipulation of the whole (possibly huge) problem at once. Second, and just as im-
portant, SAT solvers treat clauses as sets of literals, making implicit use of associa-
tivity, commutativity and idempotence of disjunction. Likewise, CNF formulae are
treated as sets of clauses, making implicit use of the same properties for conjunction.
The encoding in HOL however required numerous explicit rewrites (with theorems like
! (P ∨Q) = (Q ∨ P )) to reorder clauses and literals before each resolution step.

Separate Clauses Representation A better representation of the CNF formula was
discussed in [FMM+06]. In order to understand it, we need to look at the ML datatype
of theorems that Isabelle uses internally. Every theorem encodes a sequent Γ ! φ, where
φ is a single formula, and Γ is a finite set of formulae (implemented as an ordered list
of terms, although this detail doesn’t matter to us). The intended interpretation is
that φ holds when every formula in Γ is assumed as a hypothesis. So far we have only
considered theorems where Γ = ∅, written ! φ for short. This was motivated by the
normal user-level view on theorems in Isabelle, where assumptions are encoded using
implications =⇒ , rather than hypotheses. Isabelle’s inference kernel however provides
rules that let us convert between hypotheses and implications as we like:

{φ} ! φ
Assume

Γ ! ψ

Γ \ φ ! φ =⇒ ψ
impI

Γ ! φ =⇒ ψ Γ′ ! φ

Γ ∪ Γ′ ! ψ
impE

Let us use [[A1; . . . ;An]] =⇒ B as a short hand for A1 =⇒ . . . =⇒ An =⇒ B (with
implication associating to the right). In [FMM+06], each clause p1 ∨ . . .∨ pn is encoded
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as an implication p1 =⇒ . . . =⇒ pn =⇒ False (where pi denotes the negation normal
form of ¬pi, for 1 ≤ i ≤ n), and turned into a separate theorem

{p1 ∨ . . . ∨ pn} ! [[p1; . . . ; pn]] =⇒ False.

This allows resolution to operate on comparatively small objects, and resolving two
clauses Γ ! [[p1; . . . ; pn]] =⇒ False and Γ′ ! [[q1; . . . ; qm]] =⇒ False, where ¬pi = qj

for some i and j, essentially becomes an application of the cut rule. The first clause
is rewritten to Γ ! [[p1; . . . ; pi−1; pi+1; . . . ; pn]] =⇒ ¬pi. A derived Isabelle tactic then
performs the cut to obtain

Γ ∪ Γ′ ! [[q1; . . . ; qj−1; p1; . . . ; pi−1; pi+1; . . . ; pn; qj+1; . . . ; qm]] =⇒ False

from the two clauses. Note that this representation, while breaking apart the given
clauses into separate theorems allows us to view the CNF formula as a set of clauses,
still does not allow us to view each individual clause as a set of literals. Some reordering
of literals is necessary before cuts can be performed, and after each cut, duplicate literals
have to be removed from the result.

Sequent Representation We can further exploit the fact that Isabelle’s inference
kernel treats a theorem’s hypotheses as a set of formulae, by encoding each clause using
hypotheses only. Consider the following representation of a clause p1 ∨ . . . ∨ pn as an
Isabelle/HOL theorem:

{p1 ∨ . . . ∨ pn, p1, . . . , pn} ! False.

Resolving two clauses p1 ∨ . . . ∨ pn and q1 ∨ . . . ∨ qm, where ¬pi = qj , now starts with
two applications of the impI rule to obtain theorems

{p1 ∨ . . . ∨ pn, p1, . . . , pi−1, pi+1, . . . , pn} ! ¬pi =⇒ False

and
{q1 ∨ . . . ∨ qm, q1, . . . , qj−1, qj+1, . . . , qm} ! pi =⇒ False.

We then instantiate a previously proven theorem

! (P =⇒ False) =⇒ (¬P =⇒ False) =⇒ False

(where P is an arbitrary proposition) with pi for P . Instantiation is another basic
operation provided by Isabelle’s inference kernel. Finally two applications of impE yield

{p1∨. . .∨pn, p1, . . . , pi−1, pi+1, . . . , pn}∪{q1∨. . .∨qm, q1, . . . , qj−1, qj+1, . . . , qm} ! False.

This approach requires no explicit reordering of literals anymore. Furthermore,
duplicate literals do not need to be eliminated after resolution. This is all handled by
the inference kernel now; the sequent representation is as close to a SAT solver’s view of
clauses as sets of literals as possible in Isabelle. With this representation, we do not rely
on derived tactics anymore to perform resolution, but we can give a precise description
of the implementation in terms of (five, as we see above) applications of core inference
rules.
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CNF Sequent Representation The sequent representation has the disadvantage
that each clause contains itself as a hypothesis. Since hypotheses are accumulated
during resolution, this leads to larger and larger sets of hypotheses, which will eventually
contain every clause used in the resolution proof. Forming the union of these sets
takes the kernel a significant amount of time. It is therefore faster to use a slightly
different clause representation, where each clause contains the whole CNF formula φ∗

as a hypothesis. Let φ∗ ≡
∧k

i=1 Ci, where k is the number of clauses. Using the Assume
rule, we obtain a theorem {

∧k
i=1 Ci} !

∧k
i=1 Ci. Repeated elimination of conjunction

(with the help of two theorems, namely ! P ∧ Q =⇒ P and ! P ∧ Q =⇒ Q) yields a
list of theorems {

∧k
i=1 Ci} ! C1, . . . , {

∧k
i=1 Ci} ! Ck. Each of these theorems is then

converted into the sequent form described above, with literals as hypotheses and False
as the theorem’s conclusion. This representation increases preprocessing times slightly,
but throughout the entire proof, the set of hypotheses for each clause now consists of∧k

i=1 Ci and the clause’s literals only. It is therefore much smaller than before, which
speeds up resolution. Furthermore, memory requirements do not increase: the term∧k

i=1 Ci needs to be kept in memory only once, and can be shared between different
clauses. This can also be exploited when the union of hypotheses is formed (assuming
that the inference kernel and the underlying ML system support it): a simple pointer
comparison is sufficient to determine that both theorems contain

∧k
i=1 Ci as a hypothesis

(and hence that the resulting theorem needs to contain it only once); no lengthy term
traversal is required.

We should mention that this representation of clauses, despite its superior practical
performance, has a small downside. The resulting theorem always has every given
clause as a premise, while the theorem produced by the sequent representation only has
those clauses as premises that were actually used in the proof. If the logically stronger
theorem is needed, it can be obtained by analyzing the resolution proof to identify the
used clauses beforehand, and filtering out the unused ones before proof reconstruction.

We still need to determine the pivot literal (i.e. pi and ¬pi in the above example)
before resolving two clauses. This could be done by directly comparing the hypotheses
of the two clauses, and searching for a term that occurs both positively and negatively.
It turns out to be slightly faster however (and also more robust, since we make fewer
assumptions about the actual implementation of hypotheses in Isabelle) to use our own
data structure. With each clause, we associate a table that maps integers – one for each
literal in the clause – to the Isabelle term representation of a literal. The table is an
inverse of the mapping from literals to integers that was constructed for translation into
DIMACS format, but restricted to the literals that actually occur in a clause. Positive
integers are mapped to positive literals (atoms), and negative integers are mapped to
negative literals (negated atoms). This way term negation simply corresponds to integer
negation. The table associated with the result of a resolution step is the union of the
two tables that were associated with the resolvents, but with the entry for pi (¬pi,
respectively) removed from the table associated with the first (second, respectively)
clause.

Another optimization, related not to the representation of individual clauses, but
to the overall proof structure, is perhaps more obvious and has been present in our
implementations since the beginning. zChaff and MiniSat, during proof search, may
generate many clauses that are ultimately not needed to derive the empty clause. Instead
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of replaying the whole proof trace in chronological order, we perform “backwards” proof
reconstruction, starting with the identifier of the empty clause, and recursively proving
the required resolvents using depth-first search.

While some clauses may not be needed at all, others may be used multiple times
in the resolution proof. It would be highly inefficient to prove these clauses over and
over again. Therefore all clauses proved are stored in an array, which is allocated
at the beginning of proof reconstruction (with a size big enough to possibly hold all
clauses derived during the proof). Initially, this array only contains clauses present
in the original CNF formula, still in their original format as a disjunction of literals.
Whenever an original clause is used as a resolvent, it is converted into the sequent format
described above. (Note that this avoids converting original clauses that are not used
in the proof at all.) The converted clause, along with its literal table, is stored in the
array instead of the original (unconverted) clause. Each clause obtained as the result of
a resolution chain is stored as well. Reusing a previously proved clause merely causes
an array lookup.

For this reason, it could be beneficial to analyze the resolution chains in more detail:
sometimes very similar chains occur in a proof, differing only in a clause or two. Common
parts of resolution chains could be stored as additional lemmas (which only need to
be derived once), thereby reducing the total number of resolution steps. A detailed
evaluation of this idea is beyond the scope of this paper.

2.3 A Simple Example

In this section we illustrate the proof reconstruction using a small example. Consider
the following input formula

φ ≡ (¬x1 ∨ x2) ∧ (¬x2 ∨ ¬x3) ∧ (x1 ∨ x2) ∧ (¬x2 ∨ x3).

Since φ is already in conjunctive normal form, preprocessing simply yields the theorem
! φ = φ. The corresponding DIMACS CNF file, aside from its header, contains one line
for each clause in φ:

-1 2 0
-2 -3 0
1 2 0

-2 3 0

zChaff and MiniSat easily detect that this problem is unsatisfiable. zChaff creates a
text file with the following data:

CL: 4 <= 2 0
VAR: 2 L: 0 V: 1 A: 4 Lits: 4
VAR: 3 L: 1 V: 0 A: 1 Lits: 5 7
CONF: 3 == 5 6

We see that first a new clause, with identifier 4, is derived by resolving clause 2,
x1 ∨ x2, with clause 0, ¬x1 ∨ x2. The pivot variable which occurs both positively (in
clause 2) and negatively (in clause 0) is x1; this variable is eliminated by resolution.
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¬x2 ∨ x3

x1 ∨ x2 ¬x1 ∨ x2
x2

x3

¬x2 ∨ ¬x3

x1 ∨ x2 ¬x1 ∨ x2
x2

¬x3

⊥

Figure 2: Resolution Proof found by zChaff

Now the value of x2 (VAR: 2) can be deduced from clause 4 (A: 4). x2 must be
true (V: 1). Clause 4 contains only one literal (Lits: 4), namely x2 (since 4÷2 = 2),
occuring positively (since 4 mod 2 = 0). This decision is made at level 0 (L: 0), before
any decision at higher levels.

Likewise, the value of x3 can then be deduced from clause 1, ¬x2 ∨¬x3. x3 must be
false (V: 0).

Finally clause 3 is our conflict clause. It contains two literals, ¬x2 (since 5÷ 2 = 2,
5 mod 2 = 1) and x3 (since 6 ÷ 2 = 3, 6 mod 2 = 0). But we already know that both
literals must be false, so this clause is not satisfiable.

In Isabelle, the resolution proof corresponding to zChaff’s proof trace is constructed
backwards from the conflict clause. A tree-like representation of the proof is shown in
Figure 2. Note that information concerning the level of decisions, the actual value of
variables, or the literals that occur in a clause is redundant in the sense that it is not
needed by Isabelle to validate zChaff’s proof. The clause x2, although used twice in the
proof, is derived only once during resolution (and reused the second time), saving one
resolution step in this little example.

The proof trace produced by MiniSat for the same problem happens to encode a
different resolution proof:

R 0 <= -1 2
R 1 <= -2 -3
R 2 <= 1 2
R 3 <= -2 3
C 4 <= 3 3 1
C 5 <= 0 2 4
C 6 <= 2 2 4
C 7 <= 5 1 6
X 0 7

The first four lines introduce clause identifiers for all four clauses in the original
problem, in their original order as well (effectively making the renaming R from Mini-
Sat’s clause identifiers to internal clause identifiers the identity in this case). The next
four lines define four new clauses (one clause per line), derived by resolution. Clause 4 is
the result of resolving clause 3 (¬x2∨x3) with clause 1 (¬x2∨¬x3), where x3 is used as
pivot literal. Hence clause 4 is equal to ¬x2. Likewise, clause 5 is the result of resolving
clauses 0 and 4, and clause 6 is obtained by resolving clauses 2 and 4. Finally resolving
clauses 5 and 6 yields the empty clause, which is assigned clause identifier 7. The proof
is shown in Figure 3. Again one resolution step is saved in the Isabelle implementation
because clause ¬x2 is proved only once.
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¬x1 ∨ x2

¬x2 ∨ x3 ¬x2 ∨ ¬x3
¬x2

¬x1

x1 ∨ x2

¬x2 ∨ x3 ¬x2 ∨ ¬x3
¬x2

x1

⊥

Figure 3: Resolution Proof found by MiniSat

Problem Representation Proof Reconstruction (zChaff)
Naive HOL 726.5
Separate Clauses 7.8
Sequent 1.2
CNF Sequent 0.5

Table 1: Runtimes (in seconds) for MSC007-1.008

3 Evaluation

In [Web05a], we compared the performance of our approach, using the naive HOL
problem representation, to that of Isabelle’s existing automatic proof procedures on
all 42 problems contained in version 2.6.0 of the TPTP library [SS98] that have a
representation in propositional logic. The problems were negated, so that unsatisfiable
problems became provable. The benchmarks were run on a machine with a 3 GHz Intel
Xeon CPU and 1 GB of main memory.

19 of these 42 problems are rather easy, and were solved in less than a second each by
both the existing procedures and the SAT solver approach. On the remaining 23 prob-
lems, zChaff proved to be clearly superior to Isabelle’s built-in proof procedures. zChaff
solved all problems in less than a second, and proof reconstruction in Isabelle/HOL took
a few seconds at most for all but one problem: with the naive HOL representation, the
proof for problem MSC007-1.008 was reconstructed in just over 12 minutes.

To give an impression of the effect that the different clause representations discussed
in Section 2.2.3 have on performance, Table 1 shows the different times required to
prove problem MSC007-1.008. The proof found by zChaff for this problem has 8,705
resolution steps. MiniSat finds a proof with 40,790 resolution steps for the same problem,
which is reconstructed in about 3.8 seconds total with the sequent representation, and
in 1.1 seconds total with the CNF sequent representation. The times to prove the other
problems from the TPTP library have decreased in a similar fashion and are well below
one second each now.

This enables us to evaluate the performance on some significantly larger problems,
taken from the SATLIB library [HS00]. These problems do not only push Isabelle’s
inference kernel to its limits, but also other parts of the prover. While the smaller TPTP
problems were converted to Isabelle’s input syntax by a Perl script, this approach turns
out to be infeasible for the larger SATLIB problems. The Perl script still works fine, but
Isabelle’s parser (which was mainly intended for small, hand-crafted terms) is unable
to parse the resulting theory files, which are several megabytes large, in reasonable
time. Also, the prover’s user interface is unable to display the resulting formulae. We
have therefore implemented our own little parser, which builds ML terms directly from
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Problem Variables Clauses zChaff (s) Proof (s) Resolutions Total (s)
c7552mul.miter 11282 69529 73 70 252200 145
6pipe 15800 394739 167 321 268808 512
6pipe 6 ooo 17064 545612 308 2575 870345 3179
7pipe 23910 751118 495 1132 357136 1768

Table 2: Runtimes (in seconds) for SATLIB problems, zChaff

Problem Variables Clauses MiniSat (s) Proof (s) Resolutions Total (s)
c7552mul.miter 11282 69529 25 49 908231 106
6pipe 15800 394739 x — — —
6pipe 6 ooo 17064 545612 x — — —
7pipe 23910 751118 x — — —

Table 3: Runtimes (in seconds) for SATLIB problems, MiniSat

DIMACS files, and we work entirely at the system’s ML level, avoiding the usual user
interface, to prove unsatisfiability.

Statistics for four unsatisfiable SATLIB problems (chosen among those that were
used to evaluate zChaff’s performance in [ZM03]) are shown in Tables 2 and 3, for zChaff
and MiniSat respectively. The first column shows the time in seconds that it takes the
SAT solver to find a proof of unsatisfiability. The second column, “Proof”, shows the
time in seconds required to replay the proof’s resolutions steps in Isabelle/HOL, using
the CNF sequent representation of clauses. The third column shows the number of
resolution steps performed during proof replay. The last column, “Total”, finally shows
the total time to prove the problem unsatisfiable in Isabelle, including SAT solving
time, proof replay, parsing of input and output files, and any other intermediate pre-
and postprocessing. These timings were obtained on an AMD Athlon 64 X2 Dual Core
Processor 3800+ with 4 GB of main memory. An x indicates that the solver ran out of
memory, or that the proof trace file exceeded a size of 2 GB. Needless to say that none
of these problems can be solved automatically by Isabelle’s built-in proof procedures.

It seems that proof checking in Isabelle/HOL, despite all optimizations that we have
implemented, is sometimes about an order of magnitude slower than proof verification
with an external checker written in C++ [ZM03]. From Table 2 we conclude that proving
unsatisfiability in Isabelle/HOL is by a factor of roughly 2 to 10 slower than using zChaff
alone. This additional overhead was to be expected: it is the price that we have to pay
for using Isabelle’s LCF-style kernel, which is not geared towards propositional logic.
However, we also see that proof reconstruction in Isabelle scales quite well with our
latest implementation, and that it remains feasible even for large SAT problems.

Comparing the runtimes for problem c7552mul.miter on the proofs found by zChaff
and MiniSat, we see that the time taken to reconstruct a proof does not solely depend on
the number of resolutions steps. In particular our algorithm for resolving two clauses,
as described in Section 2.2.3, is linear in the length (i.e. number of literals) of those
clauses. The average length of a clause is about 31.0 for the MiniSat proof, and about
98.6 for the proof found by zChaff. This explains why the zChaff proof, despite its
smaller number of resolution steps, takes longer to reconstruct.
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4 Related Work

Michael Gordon has implemented HolSatLib [Gor01], a library which is now part of the
HOL 4 theorem prover. This library provides functions to convert HOL 4 terms into
CNF, and to analyze them using a SAT solver. In the case of unsatisfiability however, the
user only has the option to trust the external solver. No proof reconstruction takes place,
“since there is no efficient way to check for unsatisfiability using pure Hol98 theorem
proving” [Gor01]. A bug in the SAT solver could ultimately lead to an inconsistency in
HOL 4.

Perhaps closer related to our work is the integration of automated first-order provers,
in the context of Isabelle recently further explored by Joe Hurd [Hur99, Hur02], Jia
Meng [Men03], and Lawrence Paulson [MP04, MP06]. Proofs found by the automated
system are either verified by the interactive prover immediately [Hur99], or translated
into a proof script that can be executed later [MP04]. Also Andreas Meier’s TRAMP sys-
tem [Mei00] transforms the output of various automated first-order provers into natural
deduction proofs. The main focus of their work however is on the necessary translation
from the interactive prover’s specification language to first-order logic. In contrast our
approach is so far restricted to instances of propositional tautologies, but we have fo-
cused on performance (rather than on difficult translation issues), and we use a SAT
solver, rather than a first-order prover. Other work on combining proof and model
search includes [dNM06].

A custom-built SAT solver has been integrated with the CVC Lite system [BB04]
by Clark Barrett et al. [BBD03]. While this solver produces proofs that can be checked
independently, our work shows that it is possible to integrate existing, highly efficient
solvers with an LCF-style prover: the information provided by recent versions of zChaff
and MiniSat is sufficient to produce a proof object in a theorem prover, no custom-built
solver is necessary.

An earlier version of this work was presented in [Web05a], and improved by Alwen
Tiu et al. [FMM+06]. Furthermore Hasan Amjad [Amj06b] has recently integrated a
proof-generating version of the MiniSat solver with HOL 4 in a similar fashion. In
this paper we have discussed our most recent implementation, which is based on a
novel clause representation and constitutes a significant performance improvement when
compared to earlier work.

5 Conclusions and Future Work

The SAT solver approach dramatically outperforms the automatic proof procedures that
were previously available in Isabelle/HOL. With the help of zChaff or MiniSat, many
formulae that were previously out of the scope of Isabelle’s built-in tactics can now be
proved – or refuted – automatically, often within seconds. Isabelle’s applicability as a
tool for formal verification, where large propositional problems occur in practice, has
thereby improved considerably.

Furthermore, using the data structures and optimizations described in this paper,
proof reconstruction for propositional logic scales quite well even to large SAT problems
and proofs with several hundred thousand resolution steps. The additional confidence
gained by using an LCF-style prover to check the proof obviously comes at a price (in

57



terms of runtime), but it’s not nearly as expensive as one might have expected after
earlier implementations.

While improving the performance of our implementation, we confirmed an almost
self-evident truth: use profiling to see which functions take a lot of time, and focus on
improving them – this is were the greatest benefits lie. This was an iterative process.
A better implementation would allow us to tackle larger SAT problems, which in turn
would uncover new performance bottlenecks. More importantly, we discovered some
inefficiencies in the implementation of the Isabelle kernel. (Instantiating a theorem with
a term, for example, was linear in the size of the term, rather than in constant time.)
These inefficiencies played no important role as long as the kernel only had to deal with
relatively small terms, but in our context, where formulae sometimes consist of millions
of literals, they turned out to have a negative impact on performance. Subsequently the
kernel implementation was modified, and these inefficiencies were removed.

Tuning an implementation to the extend presented here requires a great deal of
familiarity with the underlying theorem prover. Nevertheless our results are applica-
ble beyond Isabelle/HOL. Other interactive provers for higher-order logic, e.g. HOL 4
and HOL-Light, use very similar data structures to represent their theorems. Hasan
Amjad has confirmed that the CNF sequent representation works equally well in these
provers [Amj06b].

We have already mentioned some possible directions for future work. There is prob-
ably not very much potential left to optimize the implementation of resolution itself
at this point. However, to further improve the performance of proof reconstruction, it
could be beneficial to analyze the resolution proof found by the SAT solver in more
detail. Merging similar resolution chains may reduce the overall number of resolutions
required, and re-sorting resolutions may help to derive shorter clauses during the proof,
which should improve the performance of individual resolution steps. Some preliminary
results along these lines are reported in [Amj06a].

The approach presented in this paper has applications beyond propositional reason-
ing. The decision problem for richer logics (or fragments thereof) can be reduced to
SAT [ABC+02, Str02, MS05, RH06]. Consequently, proof reconstruction for proposi-
tional logic can serve as a foundation for proof reconstruction for other logics. Based
on our work, only a proof-generating implementation of the reduction is needed to inte-
grate the more powerful, yet SAT-based decision procedure with an LCF-style theorem
prover. This has already been used to integrate haRVey, a Satisfiability Modulo Theo-
ries (SMT) prover, with Isabelle [Hur06]. haRVey, like other SMT systems, uses various
decision procedures (e.g. congruence closure for uninterpreted functions) on top of a
SAT solver.

Acknowledgments. The author would like to thank Markus Wenzel for several
good ideas and his extensive help with tuning the implementation, and Hasan Amjad
for more good ideas and the challenge that he posed. The clause representations used
in this paper were suggested to me by various people, including Hasan Amjad, John
Harrison, John Matthews, and Markus Wenzel.
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Implementing an Instantiation-based Theorem Prover

for First-order Logic

Konstantin Korovin
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The basic idea behind instantiation-based theorem proving is to combine clever gen-
eration of instances of clauses with satisfiability checking of ground formulas. There are
a number of approaches developed and implemented in recent years: Ordered Semantic
Hyper Linking of Plaisted and Zhu, Disconnection Calculus of Letz and Stenz imple-
mented in DCTP, Model Evolution Calculus of Baumgartner and Tinelli implemented
in Darwin, and instantiation approach of Claessen implemented in Equinox.

One of the distinctive features of the approach we have been developing is a mod-
ular combination of ground reasoning with instantiation. In particular, this approach
allows us to employ any off-the-shelf propositional satisfiability solver in a general con-
text of first-order reasoning. In our previous work (together with Harald Ganzinger)
we developed a theoretical background for this instantiation method and have shown
completeness results together with general criteria for redundancy elimination. In order
to evaluate the practical applicability, we implemented our method in iProver.

This talk focuses on implementation issues of an instantiation-based theorem prover,
based upon our experience with iProver. We show how our abstract framework can
be turned into a concrete implementation. We discuss how well-studied technology
of implementing resolution theorem provers can be adapted for implementing iProver
and issues specific to instantiation. We show some concrete redundancy criteria for
instantiation and how they are implemented in iProver. Finally, we discuss some future
directions.
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Abstract

The contribution of this paper consists in some techniques to bound the proof
search space in propositional intuitionistic logic. These techniques are justified by
Kripke semantics and they are the backbone of a tableau based theorem prover
(PITP) implemented in C++ language. PITP and some known theorem provers
are compared by the formulas of ILTP v1.1.1 benchmark library. It turns out that
PITP is, at the moment, the propositional prover that solves most formulas of the
library.

1 Introduction

The development of effective theorem provers for intuitionistic and constructive logics
is of interest both for the investigations and applications of such logics to formal soft-
ware/hardware verification and program synthesis (see i.e. [ML84, Con86, ES99, Men00,
FFO02, BC04, AFF+06]).

In this paper we present a strategy and an implementation based on a tableau
calculus for propositional intuitionistic logic. Our decision procedure implements the
tableau calculus of [AFM04] (this calculus is an enhancement of the calculus given in
[Fit69] and it is related to the tableau and sequent calculi of [MMO97, Hud93, Dyc92]).

We introduce some new techniques utilized by our decision procedure to narrow the
search space and the width of the proofs. The PSPACE-completeness of intuitionistic va-
lidity ([Sta79]) suggests that backtracking and branching cannot be eliminated. In order
to improve the time efficiency of the implementations and make them usable, strategies
have to be developed to bound backtracking and branching as much as possible.

The optimizations we present are explained by the Kripke semantics for intuitionistic
logic. Such semantical techniques are related to the fact that tableau calculi are strictly
joined to the semantics of the logic at hand. Loosely speaking, a tableau proof for a
formula is the attempt to build a model satisfying the formula. The construction of such
a model proceeds by increasing, step by step, the information necessary to define such
a model (thus, step by step the accuracy of the model increases). If the proof ends in
a contradiction, then there is no model for the formula. Otherwise, a model satisfying
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the formula is immediately derived from the proof. With this machinery at hand, first
we provide a sufficient condition allowing us to stop a tableau proof without loosing
the completeness. Then we describe a technique to bound branching on the formulas
which only contain conjunctions and disjunctions. Finally we present a technique to
deduce the satisfiability of a set of formulas S, when the satisfiability of a set S′ and
a permutation τ such that S = τ(S′) are known. Such a technique allows us to bound
backtracking. Our technique to bound backtracking is different from the semantical
technique provided in [Wei98].

Besides the strategy and its completeness, in the final part of the paper we present
some experimental results on the implementation PITP. PITP is written in C++ and
it is tested on the propositional part of ILTP v1.1.1 benchmark library ([ROK06]). Of
274 propositional benchmarks contained in ILTP v1.1.1, PITP decides 215 formulas
including 13 previously unsolved problems within the time limit of ten minutes. To
give the reader more elements to evaluate PITP strategies, comparisons with different
versions of PITP are provided.

2 Notation and Preliminaries

We consider the propositional language L based on a denumerable set of propositional
variables or atoms PV and the logical connectives ¬,∧,∨,→. (Propositional) Kripke
models are the main tool to semantically characterize (propositional) intuitionistic logic
Int (see [CZ97] and [Fit69] for the details). A Kripke model for L is a structure K =
〈P,≤, ρ, !〉, where 〈P,≤, ρ〉 is a poset with minimum ρ and ! is the forcing relation, a
binary relation between elements α of P and p of PV such that α ! p and α ≤ β imply
that β ! p. The forcing relation is extended in a standard way to arbitrary formulas of
L as follows:

1. α ! A ∧B iff α ! A and α ! B;

2. α ! A ∨B iff α ! A or α ! B;

3. α ! A → B iff, for every β ∈ P such that α ≤ β, β ! A implies β ! B;

4. α ! ¬A iff for every β ∈ P such that α ≤ β, β ! A does not hold.

We write α ! A when α ! A does not hold.
It is easy to prove that for every formula A, if α ! A and α ≤ β, then β ! A. A

formula A is valid in a Kripke model K = 〈P,≤,ρ,!〉 if and only if ρ ! A. It is well
known that Int coincides with the set of formulas valid in all Kripke models.

If we consider Kripke models K = 〈P,≤,ρ,!〉 such that |P | = 1 we get classical mod-
els for (propositional) classical logic Cl. Classical models are usually seen as functions
σ from PV to {true, false}. Given a formula A and a model σ, we use σ |= A with
the usual meaning of satisfiability. Finally, given a set S, the set PV(S) denotes the
elements of PV occurring in S.

In the following presentation, we give a brief overview of the tableau calculus Tab of
[AFM04] which is implemented by our decision procedure. The rules of the calculus are
given in Table 1. The calculus works on signed well formed formulas (swff for short),
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where a swff is a (propositional) formula prefixed with a sign T, F or Fc. Given a
Kripke model K = 〈P,≤,ρ,!〉, a world α ∈ P , a formula A and a set of swffs S, the
meaning of the signs is as follows:

• α ! TA (α realizes TA) iff α ! A;

• α ! FA iff α ! A;

• α ! FcA iff α ! ¬A;

• α ! S iff α realizes every swff in S.

• K ! S iff ρ ! S.

A proof table (or proof tree) for S is a tree, rooted with S and obtained by the subsequent
application of the rules of the calculus. As an example, let Γ = {T(A ∧ B),T(B ∧
C),F(A ∨ B)}. With “ rule T∧ applies to Γ taking H ≡ T(A ∧ B) as main swff” we
mean that T∧ applies to Γ as Γ

Γ\{T(A∧B)},TA,TBT∧. If no confusion arises we say that
a rule applies to Γ or equivalently a rule applies to H. Finally with Rule(H) we mean
the rule related to H (in our example Rule(T(A ∧B)) is T∧).

For every proof table for S, the depth and the number of symbols occurring in the
nodes is linearly bounded in the number of symbols occurring in S (see [AFM04] for
further details). This is the key feature to implement a depth-first decision procedure
whose space complexity is O(n lg n) (as a matter of fact, it is well known that to generate
all the proof tables in the search space and to visit them with a depth-first strategy, it
is sufficient to have a stack containing, for every node of the visited branch, the index
of the main swff and a bit to store if the leftmost branch has been visited [Hud93]).

We emphasize that the sign Fc is introduced to give a specialized treatment of the
negated formulas. In this sense the rules for the formulas signed with Fc could be
rewritten replacing in the Fc-rules every occurrence of the sign Fc with T¬.

Given a set of swffs S, the signed atoms of S are the elements of the set δS =
{H|H ∈ S and H is a signed atom}. We say that S contains a complementary pair iff
{TA,FA} ⊆ S or {TA,FcA} ⊆ S. Given δS , we denote with σδS the (classical) model
defined as follows: if Tp ∈ δS , then σδS (p) = true, σδS (p) = false otherwise.

Given a classical model σ, (i) σ!TH iff σ |= H; (ii) σ!FH and σ!FcH iff σ *|= H.
Given a set of swffs S, a swff H (respectively a set of swffs S′) and the set of signed
atoms δS defined as above, we say that δS realizes H (respectively δS realizes S′), and
we write δS ! H (respectively δS ! S′), iff there exists a classical model σ fulfilling the
following conditions:

(i) σ ! H (respectively σ ! H ′ for every H ′ ∈ S′).

(ii) if Tp ∈ δS , then σ(p) = true;

(iii) if Fp ∈ δS or Fcp ∈ δS , then σ(p) = false

In other words, the relation ! between δS and a signed formula H holds if there exists
a classical model σ both realizing δS and H. If {Tp,Fcp,Fp} ∩ S = ∅ then there is no
condition on the truth value that σ gives to p.
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S,T(A ∧B)
S,TA,TB

T∧ S,F(A ∧B)
S,FA|S,FB

F∧ S,Fc(A ∧B)
Sc,FcA|Sc,FcB

Fc∧

S,T(A ∨B)
S,TA|S,TB

T∨ S,F(A ∨B)
S,FA,FB

F∨ S,Fc(A ∨B)
S,FcA,FcB

Fc∨

S,TA,T(A → B)
S,TA,TB

T → Atom, with A an atom

S,F(A → B)
Sc,TA,FB

F → S,Fc(A → B)
Sc,TA,FcB

Fc →

S,T(¬A)
S,FcA

T¬ S,F(¬A)
Sc,TA

F¬ S,Fc(¬A)
Sc,TA

Fc¬

S,T((A ∧B) → C)
S,T(A → (B → C))

T → ∧ S,T(¬A → B)
Sc,TA|S,TB

T → ¬

S,T((A ∨B) → C)
S,T(A → p),T(B → p),T(p → C)

T → ∨

S,T((A → B) → C)
Sc,TA,Fp,T(p → C),T(B → p)|S,TC

T →→

where Sc = {TA|TA ∈ S} ∪ {FcA|FcA ∈ S} and
p is a new atom

Table 1: the Tab calculus

We say that a wff or a swff is classically evaluable (cle-wff and cle-swff for short) iff
conjunctions and disjunctions are the only connectives occurring in it. Finally, a set S
of swffs is contradictory if at least one of the following conditions holds:

1. S contains a complementary pair;

2. S contains a cle-swff H such that δS " H;

3. δS " S and for every propositional variable p occurring in S, Tp ∈ S or Fcp ∈ S.

Proposition 2.1 If a set of swffs S is contradictory, then for every Kripke model K =
〈P,≤,ρ,!〉, ρ " S.

Proof: If S is contradictory because the first condition holds, then for some formula
A, {TA,FA} ⊆ S or {TA,FcA} ⊆ S holds. By the meaning of the signs and the
definition of the forcing relation in Kripke models, the claim immediately follows. If
S is contradictory because the second condition holds, then δS " H. Thus, there is
no classical model realizing both the signed atoms of S (that is δS) and H. Since H
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is a cle-swff, its classical and intuitionistic realizability coincide, thus no Kripke model
realizes S. If S is contradictory because the third condition holds, then let us suppose
there exists a Kripke model K = 〈P,≤,ρ,!〉 such that ρ!S. Then for every p ∈ PV(S),
ρ ! p or ρ ! ¬p and this means that every world in K forces the same propositional
variables occurring in S, that is for every α, β ∈ P and for every p ∈ PV(S), α ! p
iff β ! p. Let φ ∈ P be a maximal state in the poset 〈P,≤, ρ〉. Since φ behaves as a
classical model, by hypothesis, φ " S. Then, since every world of K forces the same
propositional variables of S we deduce that ρ " S. ./

A closed proof table is a proof table whose leaves are all contradictory sets. A closed
proof table is a proof of the calculus: a formula A is provable if there exists a closed
proof table for {FA}. For every rule of the calculus it is easy to prove that if there
exists a Kripke model K = 〈P,≤,ρ,!〉 and α ∈ P such that α realizes the premise of
the rule, then there exists (a possibly different) Kripke model K ′ = 〈P ′,≤′, ρ′,!′〉 and
β ∈ P ′ such that β realizes the conclusion. This is the main step to prove the soundness
of the calculus:

Theorem 2.2 (Soundness) Let A be a wff. If there exists a closed proof table starting
from {FA}, then A is valid.

3 The optimizations and the proof search algorithm

Below we describe a recursive procedure Tab(S) which given a set S of swffs, returns
either a closed proof table for S or NULL (if there exists a Kripke model realizing S).

To describe Tab we use the following notation. Let S be a set of swffs, let H ∈ S
and let S1 or S1 | S2 be the nodes of the proof tree obtained by applying to S the rule
Rule(H) corresponding to H. If Tab1 and Tab2 are closed proof tables for S1 and S2

respectively, then S

Tab1
Rule(H) or S

Tab1 | Tab2

Rule(H) denote the closed proof table for

S defined in the obvious way. Moreover, Ri(H) (i = 1, 2) denotes the set containing the
swffs of Si which replaces H. For instance:
R1(T(A ∧B)) = {TA,TB },
R1(T(A ∨B)) = {TA}, R2(T(A ∨B)) = {TB},
R1(T((A → B) → C)) = {TA,Fp,T(B → p),T(p → C) },
R2(T((A → B) → C)) = {TC}.

As stated in the introduction, Tab uses substitutions. For our purposes, the only
substitutions we are interested in are permutations from PV to PV. Given a substitution
τ and a swff H (respectively, a set of swffs S and tableau T ) τ(H) (respectively, τ(S)
and τ(T )) means the swff (respectively, the set of swffs and the tableau) obtained by
applying the substitution in the obvious way.

The procedure Tab divides the formulas in six groups according to their behavior
with respect to branching and backtracking:
C1 = {T(A∧B), F(A∨B), Fc(A∨B), T(¬A), T(p → A) with p an atom, T((A∧B) →
C), T((A ∨B) → C)};
C2 = {T(A ∨B), F(A ∧B);
C3 = {F(¬A), F(A → B)};
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C4 = {T((A → B) → C), T(¬A → B)};
C5 = {Fc(A → B), Fc(¬A)};
C6 = {Fc(A ∧B)}.
We call Ci-swffs (i = 1, . . . , 6), respectively Ci-rules, the swffs of the group Ci, respectively
the rules related to Ci-swffs.

The intuition behind these groups can be explained as follows. It is well known that
in classical logic the order in which the rules are applied does not affect the completeness
of the decision procedure: if a proof exists it is found independently of the order in
which the rules are applied. Thus the search space consists of a single proof tree whose
branches have to be visited by the decision procedure. The rules having two conclusions
give rise to branches. Rules of this kind are T∨ and F∧. In intuitionistic logic the
order in which the rules are applied is relevant and affect the completeness. Given a
set Γ, there are many ways to go on with the proof (that is many swffs can be chosen
as main swff). Since the order is relevant, if the choice of a swff as main swff does not
give a closed proof table, we have to backtrack and try with another swff as main swff.
This means that in intuitionistic logic there is a space of proof tables to be visited by
backtracking. Rules requiring backtracking are, i.e., F →, T →→. In order to bound
time consumption, Tab applies the rules not requiring branching and backtracking first,
then the rules not requiring backtracking, finally the rules requiring backtracking. In the
Completeness Lemma (Lemma 4.1, page 11) we prove that we do not lose completeness
if C5 and C6-rules are applied only when no other rule applies. Thus the application of
C5 and C6-rules is invertible and no backtracking is required. On the other hand, to get
completeness, backtracking is unavoidable when C3 and C4-rules are applied.

Now we come to the optimizations. First we discuss two checks that allow us to
bound the depth of the proofs. Let S be a set such that σδS ! S. Thus the Kripke
model coinciding with the classical model σδS realizes S and we do not need to go on
with the proof. The second check is related to Point 3 in the definition of contradictory
set. If δS " S and every propositional variable occurring in S occurs in S as swff signed
T or Fc, then there is no Kripke model realizing S and we do not need to proceed
with the proof. Although these checks could be performed after every rule application,
our strategy performs it when neither a C1 nor a C2-rule applies to S (in Section 5 this
optimization is referred as opt1).

In order to bound branching, Tab treats in a particular way the cle-swffs in S, that
is the swffs in which only ∧ and ∨ occur (in other words swffs whose intuitionistic truth
coincides with classical truth). When Tab treats C2-swffs (Point 3 of the algorithm
given below), first of all Tab checks if in S there exists a cle-swff H such that δS " H.
If S fulfills this condition, then S is not realizable, as we pointed out in Proposition 2.1.
Otherwise, if in S a cle-swff H occurs, such that σδS does not satisfy H, the splitting
rule Rule(H) is applied (we recall that σδS is the classical model defined from S by
taking as true the atoms p such that Tp ∈ S). Thus the cle-swffs of S, satisfying
the underlying model, are never applied. Despite this, from the realizability of one
among (S \ {H})∪R1(H) and (S \ {H})∪R2(H) we have enough information to prove
the realizability of S. In other words, we consider only the cle-swffs of C2 that are
not realized by the model underlying S (see Point 3 and Completeness Lemma for the
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details). As an example consider

S = { F(P0 ∧ P2),F(P0 ∧ P4),F(P2 ∧ P4),F(P1 ∧ P3),F(P1 ∧ P5),
F(P3 ∧ P5),T(P0 ∨ P1),T(P2 ∨ P3),T(P4 ∨ P5) }.

Since σδS realizes the F-swffs in S but σδS does not realize any of the T-swffs of S, then
Tab chooses one of them, let us suppose H = T(P0 ∨ P1). The rule T∨ is applied
to S and S1 = (S \ {H}) ∪ {TP0} and S2 = (S \ {H}) ∪ {TP1} are the subsequent
sets of S. Now consider S1. Since σδS1

realizes TP0 and all the F-swffs in S1, but σδS1

realizes neither T(P2 ∨ P3) nor T(P4 ∨ P5), Tab chooses one of them, let us suppose
H = T(P2 ∨ P3). The rule T∨ is applied to S1 and S3 = (S1 \ {H}) ∪ {TP2} and
S4 = (S1 \ {H}) ∪ {TP3} are the subsequent sets of S1. Since δS3 does not realize
F(P0 ∧ P2) we deduce that S3 is contradictory. Similarly for the other sets. We
emphasize that at every step, the C2-rules applicable to Si are only the ones where the
related swffs are not realized by σδSi

. Without this strategy a huge closed proof table
could arise (in Section 5 this optimization is referred as opt2).

To bound the search space, [Wei98] describes a decision procedure in which back-
tracking is bounded by a semantical technique inspired by the completeness theorem.
The completeness theorem proves the satisfiability (realizability in our context) of a
set S under the hypothesis that S does not have any closed proof table. As an ex-
ample, let S = {F(A → B),T((A → B) → C),FC,TD}. From S we can de-
fine the Kripke model K(S) = 〈P,≤,ρ,!〉 such that P = {ρ} and ρ ! D. Note
that K(S) realizes TD but K(S) does not realize S. To prove the realizability of
S, the realizability of S1 = {TA,FB,T((A → B) → C),TD} and one between
S2 = {TA,Fp,T(B → p),T(p → C),TD} and S3 = {F(A → B),TC,FC,TD}
have to be proved. Since S3 is not realizable, the realizability of S1 and S2 must
be proved. From S1 we define the Kripke model K(S1) = 〈{α},≤,α,!〉, where α ≤ α,
α ! D and α ! A such that K(S1) ! S1. If we glue K(S1) above K(S) we get a
new Kripke model K = 〈{ρ,α},≤,ρ,!〉 where ρ ≤ ρ, ρ ≤ α, α ≤ α, ρ ! D,α ! D
and α ! A. Since K ! S, we do not need to apply T →→ to S in order to obtain
S2 = {TA,Fp,T(B → p),T(B → C),TD} (from S2 a Kripke model K(S2) is defin-
able; K(S2) glued above K(S) gives rise to a Kripke model realizing S). In this case the
work on S2 is spared. In the general case, see [Wei98], the information collected from
non closed proof tables built from a set S is used to build a Kripke model K. As a mat-
ter of fact, let S be a set such that no C1 or C2-rule is applicable. Let {H1, . . . ,Hu} ⊆ S
the C3 and C4-swffs of S. If there exists a Hj such that K " Hj , then Rule(Hj) have
to be applied. If a closed proof table is found, then S is not realizable, otherwise the
Kripke model K can be extended in a new one, Kj satisfying Hj . The procedure of
[Wei98] continues until a closed proof table or a Kripke model Ki, 1 ≤ i ≤ u, such that
Ki ! {H1, . . . ,Hu} is found. The procedure prunes the search space, since in S not all
the swffs requiring backtracking are considered, but only the swffs which, when checked,
are not realized from the Kripke model at hand.

Now, consider S = {F(A → B),F(C → D)}. From S we can define the Kripke model
K(S) = 〈P,≤,ρ,!〉 such that P = {ρ} and ! is the empty set. K(S) does not realize
S. By applying F → to S with F(A → B) as the main formula we get S1 = {TA,FB}.
The underlying model is K(S1) = 〈{α},≤,α,!〉 with α ! A. K(S1) glued above K(S)
gives rise to a model that does not realize F(C → D). Thus we must backtrack. We
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apply F → to S with F(C → D) as the main formula. We get S2 = {TC,FD}. The
underlying model is K(S2) = 〈{β},≤,β,!〉 such that β ≤ β and β ! C realizes S2. By
gluing K(S1) and K(S2) above K(S) the resulting model K = 〈{ρ,α,β},≤,ρ,!〉 such
that

ρ ≤ α, ρ ≤ β, ρ ≤ ρ,α ≤ α, β ≤ β, α ! A and β ! C

realizes S. But by a permutation τ : PV → PV such that τ(C) = A and τ(D) = B,
τ(S2) = S1 and we can build K(S2) = 〈P,≤,!′, ρ, 〉 from K(S1) as follows: K(S2) has
the same poset as K(S1) and !′ is: for every α ∈ P and for every p ∈ PV, α !′ p iff
α ! τ(p). In other words, K(S1) can be translated into K(S2) via τ and we can avoid
backtracking on S. As another example consider

S = { T(((P0 → (P1 ∨ P2)) → (P1 ∨ P2))),
T(((P2 → (P1 ∨ P0)) → (P1 ∨ P0))),
T(((P1 → (P2 ∨ P0)) → (P2 ∨ P0))),F((P1 ∨ (P2 ∨ P0))) },

where only a few steps are needed to obtain S starting from {FH}, where H is the
axiom schema

∧2
i=0

(
(Pi →

∨
j #=i Pj) →

∨
j #=i Pj

)
→

∨2
i=0 Pi characterizing the logic of

binary trees (a logic in the family of k-ary trees logics, [CZ97], also known as Gabbay-de
Jongh logics). From S we can define the model K(S) = 〈P,≤,ρ,!〉 such that P = {ρ}
and ! is the empty set. K(S) does not realize S. By applying T →→ to S with
H = T(((P0 → (P1 ∨ P2)) → (P1 ∨ P2))) we get S1 = (S \ {H}) ∪ R2(H) and
S2 = (S \ {H})c ∪R1(H). Since S1 is not realizable, to prove the realizability of S we
have to prove the realizability of S2. S2 defines the Kripke model K(S2) = 〈{α},≤,α,!〉,
where α ≤ α and α ! P0. Thus K(S2) ! S2 holds. Now, if we glue K(S2) above K(S)
we get a new model K ′(S) = 〈{ρ,α},≤,ρ,!〉, where ρ ≤ ρ, ρ ≤ α, α ≤ α and α ! P0.
K ′(S) does not realize S. Thus we must backtrack twice:

(i) by applying T →→ to S with H = T(((P2 → (P1 ∨ P0)) → (P1 ∨ P0))) we get,
S3 = (S \ {H})c ∪R1 and S4 = (S \ {H}) ∪R2(H);

(ii) by applying T →→ to S with H = T(((P1 → (P2 ∨ P0)) → (P2 ∨ P0))) we get
S5 = (S \ {H}) ∪R2(H) and S6 = (S \ {H})c ∪R1(H).

In a few steps we find that S4 and S6 are not realizable. From S3 we define the Kripke
model K(S3) = 〈{β},≤,β,!〉 where β ≤ β and β ! P2. K(S3) ! S3. From S5 we define
the Kripke model K(S5) = 〈{γ},≤,γ,!〉 where γ ≤ γ and γ ! P1. K(S5) ! S5. Thus
by gluing K(S2),K(S3) and K(S5) above K(S) we get a model K realizing S. Since we
can define the permutations τ1 and τ2 such that τ1(S3) = S2 and τ2(S5) = S2 we can
avoid backtracking. Thus no proof of realizability of S3 or S5 is needed and the Kripke
models realizing S3 and S5 can be obtained by applying the permutations on the forcing
relation of the Kripke model for S2.

Thus to avoid backtracking Tab builds a permutation τ between sets of swffs. Let
H be C3-swff. Before applying Rule(H) we check if there exists a permutation τ from
PV(S) to PV(S) such that τ((S \ {H})c ∪R1(H)) = (S \ {H ′})c ∪R1(H ′). We already
know that the set (S \ {H ′})c ∪R1(H ′) obtained treating H ′ is realizable by a Kripke
model K ′. Since we have a permutation τ , then the set (S \{H})c∪R1(H) is realized by
the Kripke model K having the same poset as K ′ and such that for every world α and
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every propositional variable p, α !K′ p iff α !K τ(p). This means that the permutation
τ allows us to go from K ′ to K (and the permutation τ−1 allows us to go from K to K ′).
In particular, τ and τ−1 translate the forcing relation between the models. Analogously
if H is a C4-swff. We emphasize that given a Kripke model K, a permutation τ and a
swff H, K ! H does not imply K ! τ(H). Thus we have taken a different route with
respect to [Wei98], where the realizability of τ(H) is checked on K that realizes H and
the two methods work in different situations. We emphasize that both methods imply a
certain computational cost. The method of [Wei98] implies checking the realizability on
a Kripke model, which is time consuming for swffs of the kind T(A → B). Our method
can be time consuming if we perform a search of a permutation among the Pv(S)!
possible permutations. However, as we describe in Section 5, the procedure searches in
a small subset of all possible permutations (in Section 5, this optimization is referred as
opt3).

Finally, we could also define a permutation to prove that a set is not realizable. As a
matter of fact, if S is not realizable and there exists a permutation τ such that τ(S) = S′,
then S′ is not realizable. Thus, given a set S and a C2 or C6-swff H ∈ S, if (S \ {H}) ∪
R1(H) is closed and there exists a permutation τ such that τ((S \ {H}) ∪ R1(H)) =
(S \ {H}) ∪R2(H) then (S \ {H}) ∪R2(H) is not realizable and the tableau proof for
(S \ {H}) ∪R1(H) can be translated via τ in a tableau proof for (S \ {H}) ∪R2(H)
(see Points 3 and 6 of Tab). As a trivial application, consider a valid wff H(p), where
p = {p1, . . . , pn} are all the propositional variables occurring in H. To prove that
{F(H(p) ∧ H(q))} is closed, it is sufficient to prove, by an application of F∧, that
{FH(p)} is closed and there exists a permutation such that {FH(p)} = τ({FH(q)}).

To save work space, we describe Tab in natural language. The algorithm is divided
in seven main points. We recall that the input of Tab is a set S of swffs. If S is
realizable, then Tab returns NULL, otherwise Tab returns a closed proof table for S. In
the following description, given a set V of swffs, Tab (V) is the recursive call to Tab
with actual parameter V . Some instructions ’return NULL’ are labeled with r1,. . . , r6.
In the Completeness Lemma we refer to such instructions by means of these labels.
Function Tab (S)
1. If S contains a complementary pair, then Tab returns the proof S;

2. If a C1-rule applies to S, then let H be a C1-swff. If Tab((S \ {H})∪R1(H)) returns

a proof π, then Tab returns the proof S
π

Rule(H), otherwise Tab returns NULL (r1);

3. If a C2-rule applies to S, then if there exists a C2-swff H such that H is a cle-swff
and δS " H, then Tab returns (the proof) S. Otherwise, let H be a cle-swff such that
σδS " H, if there is any, otherwise let H be a C2-swff. Let π1 = Tab(S \ {H}∪R1(H)).
If π1 is NULL, then Tab returns NULL. If there exists a permutation τ such that (S \
{H})∪R1(H) = τ(S \{H})∪R2(H)), then Tab returns the proof S

π1 | τ−1(π1)
Rule(H).

If such a permutation does not exist, then let π2 = Tab(S \ {H} ∪R2(H)). If π2 is a

proof, then Tab returns the proof S

π1 | π2

Rule(H), otherwise (π2 is NULL) Tab returns

NULL;

4. If a C3 or C4-rule applies to S, then Tab proceeds as follows: if σδS ! S, then Tab
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returns NULL (r2). If for every p ∈ PV(S), Tp ∈ S or Fcp ∈ S, then Tab returns S.
If the previous points do not apply, then Tab carries out the following Points 4.1 and
4.2:
4.1 Let {H1, . . . Hn} be all the C3-swffs in S. For i = 1, . . . , n, the following instructions
are iterated: if there is no swff Hj (j ∈ {1, . . . , i − 1}) and a permutation τ such that
(S \{Hj})c∪R1(Hj) = τ((S\{Hi})c∪R1(Hi)), then let π = Tab((S \{Hi})c∪R1(Hi)).

If π is a proof, then Tab returns the proof S
π

Rule(Hi);
4.2 Let {H1, . . . Hn} be all the C4-swffs in S. For i = 1, . . . , n, the following Points (4.2.1)
and (4.2.2) are iterated.
(4.2.1) If there is neither swff Hj (j ∈ {1, . . . , i − 1}) nor a permutation τ such that
(S\{Hj})∪R2(Hj) = τ((S\{Hi})∪R2(Hi)), then let π2,i = Tab((S\{Hi})∪R2(Hi)). If
π2,i is NULL, then Tab returns NULL (r3). If there is neither swff Hj , with j ∈ {1, . . . , i−
1}, nor a permutation τ such that (S \{Hj})c∪R1(Hj) = τ((S \{Hi})c∪R1(Hi)), then

if Tab((S \{Hi})c∪R1(Hi)) returns a proof π1, Tab returns the proof S

π1 | π2,i

Rule(Hi).

(4.2.2) If Point (4.2.1) does not hold, then there exists a permutation τ and a swff Hj

(j ∈ {1, . . . , i−1}) such that (S\{Hj})∪R2(Hj) = τ((S\{Hi})∪R2(Hi)). If there is no
swff Hu, with u ∈ {1, . . . , i−1}, and a permutation τ such that (S \{Hu})c∪R1(Hu) =
τ((S \ {Hi})c ∪ R1(Hi)), then if Tab((S \ {Hi})c ∪ R1(Hi)) returns a proof π1, Tab

returns the proof S

π1 | τ−1(π2,j)
Rule(Hi).

If in Points (4.1) and (4.2) Tab does not find any closed proof table, then Tab returns
NULL (r4).

5. If a C5-rule applies to S, then let H be a C5-swff. If Tab((S \{H})c∪R1(H)) returns

a proof π, then Tab returns the proof S
π

Rule(H), otherwise Tab returns NULL;

6. If a C6-rule applies to S, then let H be a C6-swff. Let π1 = Tab((S \{H})c∪R1(H)).
If π1 is NULL, then Tab returns NULL. If there exists a permutation τ such that (S \
{H})c∪R1(H) = τ((S\{H})c∪R2(H)), then Tab returns the proof S

π1 | τ−1(π1)
Rule(H).

If such a permutation does not exist, then let π2 = Tab((S \ {H})c ∪R2(H)). If π2 is a

proof, then Tab returns S

π1 | π2

Rule(H), otherwise (π2 is NULL) Tab returns NULL (r5);

7. If none of the previous points apply, then Tab returns NULL (r6).

end function Tab.
Point 4 deserves some comments. If the classical model σδS realizes S (condition

“σδS ! S”) then such a model is a Kripke model realizing S. If for every propositional
variable p ∈ Pv(S), Tp ∈ S or Fcp ∈ S holds, then the subsequent sets of S do not
contain more information than S and from σδS " S we deduce δS " S. Since δS " S,
then S is not realizable (see Proposition 2.1). The iteration in Points 4.1 and 4.2 can
be summarized as follows: a proof for S is searched: for every C3 or C4-swff H in S,
Rule(H) is applied to S. If no proof is found, then S is realizable. Now consider C3-swffs.
If for a previous iteration j the set obtained by applying Rule(Hj) to S is realizable
and can be translated via a permutation τ in (S \ {Hi})c ∪R(Hi), then Tab does not
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apply Rule(Hi) to S. The permutation τ and the realizability of (S \ {Hj})c ∪R(Hj)
imply the realizability of (S \ {Hi})c ∪ R(Hi) (see Case 4 in Completeness Lemma).
Tab applies the same idea in Point 4.2 to C4-swffs of S. This point is more complex
because C4-rules have two conclusions.

4 Completeness

In order to prove the completeness of Tab, we prove that given a set of swffs S, if the
call Tab(S) returns NULL, then we have enough information to build a countermodel
K = 〈P,≤,ρ,!〉 such that ρ ! S. To prove the proposition we need to introduce the
function deg defined as follows:

• if p is an atom, then deg(p) = 0;

• deg(A ∧B) = deg(A) + deg(B) + 2;

• deg(A ∨B) = deg(A) + deg(B) + 3;

• deg(A → B) = deg(A) + deg(B)+ (number of implications occurring in A) + 1;

• deg(¬A) = deg(A) + 1;

• deg(S) =
∑

H∈S deg(H).

It is easy to show that if S′ is obtained from a set of swffs S by an application of a rule
of Tab, then deg(S′) < deg(S).

Lemma 4.1 (Completeness) Let S be a set of swffs and suppose that Tab(S) returns
the NULL value. Then, there is a Kripke model K = 〈P,≤,ρ,!〉 such that ρ ! S.

Proof: The proof goes by induction on the complexity of S, measured with respect to
the function deg(S).
Basis: if deg(S) = 0, then S contains atomic swffs only. Tab(S) carries out the in-
struction labeled (r6). Moreover, S does not contain sets of the kind {Tp,Fp} and
{Tp,Fcp}. Let K = 〈P,≤,ρ,!〉 be the Kripke model such that P = {ρ} and ρ ! p iff
Tp ∈ S. It is easy to show that ρ ! S.

Step: Let us assume by induction hypothesis that the proposition holds for all sets S′

such that deg(S′) < deg(S). We prove that the proposition holds for S by inspecting
all the possible cases where the procedure returns the NULL value.
Case 1: the instruction labeled r1 has been performed. By induction hypothesis there
exists a Kripke model K = 〈P,≤,ρ,!〉 such that ρ!(S \{H})∪R1(H), with H ∈ C1. We
prove ρ ! H by proceeding according to the cases of H. If H is of the kind T(A ∧ B),
then by induction hypothesis ρ ! {TA,TB}, thus ρ ! A and ρ ! B, and therefore
ρ ! A ∧B. This implies ρ ! T(A ∧B). The other cases for H ∈ C1 are similar.
Case 2: the instruction labeled r2 has been performed. Thus σδS ! S holds. We use σδS

to define a Kripke model K with a single world ρ such that ρ ! p iff σ(p) = true. Since
ρ behaves as a classical model, ρ ! S holds.
Case 3: the instruction labeled r3 has been performed. By induction hypothesis there
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exists a model K such that ρ! (S \{Hi})∪R2(Hi), where Hi ∈ C4. Let us suppose that
H is of the kind T((A → B) → C), thus ρ ! TC and this implies ρ ! Hi. The proof
goes similarly if Hi is of the kind T(¬A → B).
Case 4: the instruction labeled r4 has been performed. This implies that: (i) for ev-
ery H ∈ S ∩ C3, we have two cases: (ia) Tab((S \ {H})c ∪ R1(H)) = NULL, thus
by induction hypothesis there exists a Kripke model KH = 〈PH ,≤H , ρH , !H〉 such
that ρH ! (S \ {H})c ∪ R1(H); (ib) there exists a permutation τ from PV(S) to
PV(S) and a swff H ′ ∈ S ∩ C3 such that Tab((S \ {H ′})c ∪ R1(H ′)) = NULL and
(S\{H ′})c∪R1(H ′) = τ((S\{H})c∪R1(H)). Thus by Point (a) applied to H ′, there ex-
ists a Kripke model KH′ = 〈PH′ ,≤H′ , ρH′ , !H′〉 such that ρH′ !(S\{H ′})c∪R1(H ′). By
using τ we can translate KH′ into a model KH = 〈PH ,≤H , ρH ,!H〉, where PH = PH′ ,
≤H=≤H′ , ρH = ρH′ and for every world α ∈ PH , if p ∈ PV(S), then α !H τ(p)
iff α !H′ p. By definition of KH , it follows KH ! (S \ {H})c ∪ R1(H)); (ii) for ev-
ery H ∈ S ∩ C4, we have two cases: (iia)Tab((S \ {H})c ∪ R1(H)) = NULL, thus
by induction hypothesis there exists a Kripke model KH = 〈PH ,≤H , ρH , !H〉 such
that ρH ! (S \ {H})c ∪ R1(H). (iib) there exist a permutation τ from PV(S) to
PV(S) and a swff H ′ ∈ S ∩ C4 such that Tab((S \ {H ′})c ∪ R1(H ′)) = NULL and
(S\{H ′})c∪R1(H ′) = τ((S\{H})c∪R1(H)). Thus by Point (a) applied to H ′, there ex-
ists a Kripke model KH′ = 〈PH′ ,≤H′ , ρH′ , !H′〉 such that ρH′ !(S\{H ′})c∪R1(H ′). By
using τ we can translate KH′ into a model KH = 〈PH ,≤H , ρH ,!H〉, where PH = PH′ ,
≤H=≤H′ , ρH = ρH′ and for every world α ∈ PH , if p ∈ PV(S), then α !H τ(p) iff
α !H′ p. By definition of KH , it follows KH !(S\{H})c∪R1(H)). Let K = 〈P,≤, ρ, !〉
be a Kripke model defined as follows:

P =
⋃

H∈S∩(C3
S
C4) PH ∪ {ρ};

≤=
⋃

H∈S∩(C3
S
C4) ≤H ∪{(ρ,α)|α ∈ P};

! =
⋃

H∈S∩(C3
S
C4) !H ∪{(ρ, p)|Tp ∈ S}.

By construction of K, ρ ! S
Case 5: the instruction labeled r5 has been performed. We point out that S ∩ C1 =
S ∩ C2 = S ∩ C3 = S ∩ C4 = S ∩ C5 = ∅. By induction hypothesis there exists a model
KH = 〈PH ,≤H , ρH ,!H〉 such that ρH ! (S \ {H})c ∪R2(H), where H ∈ C6. Let K =
〈P,≤, ρ, !〉 be a Kripke defined as follows: P = PH ∪ {ρ}, ≤ = ≤H ∪{(ρ,α)|α ∈ P},
! =!H ∪{(ρ, p)|Tp ∈ S}. By the construction of K, ρ ! S, in particular, by induction
hypothesis ρH ! ¬B and therefore ρH ! ¬(A ∧B). This implies ρ ! Fc(A ∧B).
Case 6: the instruction r6 has been carried out. In this case S contains atomic swffs
and swffs of the kind T(p → A) and with Tp /∈ S. Let K = 〈P,≤,ρ,!〉 be the Kripke
model such that P = {ρ} and ρ ! p iff Tp ∈ S. It is easy to show that ρ ! S. As a
matter of fact, if T(p → A) ∈ S, since Tp /∈ S, ρ ! p therefore ρ ! p → A. ./

By Lemma 4.1 we immediately get the completeness of Tab.

Theorem 4.2 (Completeness) If A ∈ Int, then Tab({FA}) returns a closed proof
table starting from FA.
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5 Implementation and Results

We have implemented Tab as an iterative procedure in C++ language. At present
there are some features that are missing. First, there is no any kind of lexical nor-
malization. This feature, together with backjumping ([Bak95]) and BCP ([Fre95]),
only to give a partial list of the possible optimization techniques, is typical in the-
orem provers and will be one of the changes in the new version of the implementa-
tion. Moreover, when PITP applies C3 and C4-rules, the search for a permutation pro-
ceeds as follows: let S be a set of swffs and let H and H ′ be C3-swffs in S. PITP
does not perform a full search among the Pv(S)! possible permutations. PITP tries
to build a permutation τ such that H = τ(H ′) and τ = τ−1. If such a τ fulfills
(S \ {H})c ∪R1(H) = τ((S \ {H ′})c ∪R1(H ′)), then τ is used. Otherwise PITP con-
siders that no permutation exists and solves (S \ {H ′})c ∪ R1(H ′). Analogously for
C4-swffs. Since our search is narrow, many permutations are disregarded. This problem
is made worse by the fact that conjunctions and disjunctions are not implemented as
lists of formulas. Thus at present this optimization is applied only to two families of
formulas of ILTP v1.1.1 library. Finally PITP does not implement the search for a
permutation in Points 3 and 6 of Tab. Despite the fact that some optimizations are

ft Prolog ft C LJT STRIP PITP
solved 188 199 175 202 215
(%) 68.6 72.6 63.9 73.7 78.5
proved 104 106 108 119 128
refuted 84 93 67 83 87
solved after:

0-1s 173 185 166 178 190
1-10s 5 6 4 11 10

10-100s 6 7 2 11 9
100-600s 4 1 3 2 6

(>600s) 86 75 47 43 58
errors 0 0 52 29 1

Table 2: ft Prolog, ft C, LJT, STRIP and PITP on ILTP v1.1.1 formulas

SYJ202+1 SYJ205+1 SYJ206+1 SYJ207+1 SYJ208+1 SYJ209+1 SYJ211+1 SYJ212+1
provable provable provable refutable refutable refutable refutable refutable

ft Prolog 07 (516.55) 08 (60.26) 10 (144.5) 07 (358.05) 08 (65.41) 10 (543.09) 04 (66.62) 20 (0.01)
ft C 07 (76.3) 09 (85.84) 11 (481.98) 07 (51.13) 17 (81.41) 10 (96.99) 04 (17.25) 20 (0.01)
LJT 02 (0.09) 20 (0.01) 05 (0.01) 03 (2.64) 08 (0.18) 10 (461.27) 08 (546.46) 07 (204.98)
STRIP 06 (11.28) 14 (267.39) 20 (37.64) 04 (9.3) 06 (0.24) 10 (132.55) 09 (97.63) 20 (36.79)
PITP 09 (595.79) 20 (0.01) 20 (4.07) 04 (11.11) 08 (83.66) 10 (280.47) 20 (526.16) 11 (528.08)

Table 3: ILTP v1.1.1 formulas solved by classes

missing, results in Table 2 (this table is taken from http://www.iltp.de/download/-
ILTP-v1.1.1-prop-comparison.txt) shows that PITP outperforms the known theo-
rem provers on ILTP v1.1.1 library. Within 10 minutes PITP decides 215 out of 274
formulas of ILTP v1.1.1 The library divides the formulas in several families. Every
family contains formulas sharing the same pattern of increasing complexity. In Table 3
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SYJ201+1 SYJ202+1 SYJ207+1 SYJ208+1 SYJ209+1 SYJ211+1 SYJ212+1
PITP none 20 (1.29) 03 (0.01) 04 (43.77) 04 (2.50) 10 (596.55) 20 (526.94) 11 (527.72)
PITP -opt1 20 (0.03) 08 (44.59) 04 (44.76) 08 (93.60) 10 (325.93) 20 (558.11) 11 (548.01)
PITP -opt2 20 (1.67) 03 (0.01) 04 (12.18) 04 (2.37) 10 (311.37) 19 (293.34) 10 (88.92)
PITP -opt3 20 (0.03) 08 (44.21) 04 (11.36) 08 (94.30) 10 (591.68) 19 (291.18) 10 (92.05)
PITP ALL 20 (0.03) 08 (45.30) 04 (12.74) 08 (90.11) 10 (297.83) 19 (313.11) 10 (93.18)

Table 4: Comparison between PITP optimizations

(this table is taken from http://www.iltp.de/) for every family (some families of ILTP
v1.1.1 are missing because they are decided within 1s by all provers) we report the index
of the largest formula which every prover is able to decide within 600s CPU time and in
parenthesis the CPU time necessary to solve such a formula. PITP solves all the formu-
las in three families and it is the best prover in three families (SYJ202+1, SYJ206+1,
SYJ211+1), ft-C solves all the formulas of SYJ212+1 and it is the best prover in four
families (SYJ207+1, SYJ208+1, SYJ210+1, SYJ212+1), finally STRIP solves all the
formulas in two families but in no class is it the best prover. Finally we run PITP on our
Xeon 3.2GHz machine to evaluate the effect of using the optimizations described above.
It is well known to people working in ATP that an optimization can be effective for
one class of formulas and be negative for other classes. In Table 4 we compare different
optimizations and give the results of their use on some classes of ILTP v1.1.1 formulas.
First, PITP without optimizations outperforms the other versions of PITP on the fam-
ilies SYJ211+1 and SYJ212+1. To give an idea of the overhead of the optimizations on
formulas where such optimizations do not apply, PITP without optimizations solves the
19th formula of SYJ211+1 in 247.19 seconds and the 10th formula of SYJ212+1 in 76.55
seconds. Among the optimizations the most important seems opt2. When opt2 is not
active the performances decrease. Thus even if this optimization can be used only on
particular classes of formulas, it dramatically influences the performances (in our opin-
ion this gives an idea of the great importance of bounding branching in propositional
intuitionistic logic). With regard to the other optimizations, there are some advantages
in some classes and disadvantages in others. In table 5 we provide the results of the
comparison between PITP and STRIP on twelve thousand random formulas with three
hundred connectives (since the performance of ft-C was worse than STRIP and PITP,
table 5 lacks of ft-C). Given the time limit of five minutes, STRIP does not decide 780
formulas, PITP does not decide 16 formulas.
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Abstract

We present a new approach for solving first-order Markov decision processes
combining first-order state abstraction and heuristic search. In contrast to existing
systems, which start with propositionalizing the decision process and then perform
state abstraction on its propositionalized version we apply state abstraction directly
on the decision process avoiding propositionalization. Secondly, guided by an ad-
missible heuristic, the search is restricted to those states that are reachable from
the initial state. We demonstrate the usefulness of the above techniques for solv-
ing first-order Markov decision processes within a domain dependent system called
FluCaP which participated in the probabilistic track of the 2004 International
Planning Competition. Working toward a domain independent implementation we
present novel approaches to θ-subsumption involving literal and object contexts.

1 Introduction

We are interested in solving probabilistic planning problems, i. e. planning problems,
where the execution of an action leads to the desired effects only with a certain proba-
bility. For such problems, Markov decision processes have been adopted as a representa-
tional and computational model in much recent work, e.g., by [BBS95]. They are usually
solved using the so-called dynamic programming principle [BDH99] employing a value
iteration algorithm. Classical dynamic programming algorithms explicitly enumerate
the state space and are thus exponenetial. In recent years several methods have been
developed which avoid an explicit enuration of the state space. The most prominent are
state abstraction [BDH99], heuristic search (e. g. [BBS95, DKKN95]) and a combination
of both as used, for example, in symbolic LAO∗ [FH02].

A common feature of these approaches is that a Markov decision process is proposi-
tionalized before state abstraction techniques and heuristic search algorithms are applied
within a value iteration algorithm. Unfortunately, the propositionalization step itself
may increase the problem significantly. To overcome this problem, it was first proposed
in [BRP01] to solve first-order Markov decision processes by applying a first-order value
iteration algorithm and first-order state abstraction techniques. Whereas this sym-
bolic dynamic programming approach was rooted in a version of the Situation Calculus
[Rei91], we have reformulated and extended these ideas in a variant of the fluent cal-
culus [HS04]. In this system, which is now called LIFT-UP, lifted first-order planning
under uncertainty can be performed.
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In the LIFT-UP system, states and actions are expressed in the language of the
fluent calculus [HS90], which is slightly extended to handle probabilities. In addition,
value functions and policies are represented by constructing first-order formulas which
partition the state space into clusters, referred to as abstract states. Then, value iter-
ation can be performed on top of these clusters, obviating the need for explicit state
enumeration. This allows the solution of first-order Markov decision processes without
requiring explicit state enumeration or propositionalization. In addition, heuristics are
used to guide the search and normalization techniques are applied to eliminate redun-
dant states. The LIFT-UP approach can thus be viewed as a first-order generalization
of symbolic LAO∗ or, alternatively, as symbolic dynamic programming enhanced by
heuristic search and state space normalization.

To evaluate the LIFT-UP system we have developed a domain-dependent implemen-
tation called FluCaP. It can solve probabilistic blocksword problems as they appeared,
for example, in the colored blocksworld domain of the 2004 International Planning
Competition. FluCaP is quite successful and outperforming other systems on truly
first-order problems. On the other hand and working towards a domain-independent
implementation we have studied θ-subsumption algorithms. θ-subsumption problems
arise at various places in the LIFT-UP system: The normalization process requires to
check whether one abstract state subsumes another one; the check whether an action is
applicable to some abstract state and the computation of set of the successor or prede-
cessor states also requires subsumption. One should observe that the latter application
requires to compute a complete set of substitutions.

In this paper we give an overview of the LIFT-UP approach.

2 First-order Markov Decision Processes

A Markov decision process, is a tuple (Z,A,P,R, C), where Z is a finite set of states,
A is a finite set of actions, and P : Z × Z × A → [0, 1], written P(z′|z, a), specifies
transition probabilities. In particular, P(z′|z, a) denotes the probability of ending up at
state z′ given that the agent was in state z and action a was executed. R : Z → R is
a real-valued reward function associating with each state z its immediate utility R(z).
C : A → R is a real-valued cost function associating a cost C(a) with each action a. A
sequential decision problem consists of a Markov decision process and is the problem
of finding a policy π : Z → A that maximizes the total expected discounted reward
received when executing the policy π over an infinite (or indefinite) horizon. A Markov
decision process is said to be first-order if the expressions used to define Z, A and P
are first-order.

The value Vπ(z) of a state z with respect to the policy π is defined as

Vπ(z) = R(z) + C(π(z)) + γ
∑

z′∈Z
P(z′|z, π(z))Vπ(z′),

where 0 ≤ γ ≤ 1 is a discount factor. We take γ equal to 1 for indefinite-horizon
problems only, i. e. when a goal is reached the system enters an absorbing state in which
no further rewards or costs are accrued. A value function V is set to be optimal if it
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satisfies
R(z) + max

a∈A
{C(a) + γ

∑

z′∈Z
P(z′|z, a)V ∗(z′)} ,

for each z ∈ Z; in this case the value function is usually denoted by V ∗(z). The optimal
policy is extracted from the optimal value function.

We assume that planning problems meet the following requirements:

1. Each problem has a goal statement, identifying a set of absorbing goal states.

2. A positive reward is associated with each action ending in a goal state; otherwise
it is 0.

3. A cost is associated with each action.

4. A “done” action is available in all states.

The “done” action can be used to end any further accumulation of reward. Together,
these conditions ensure that an MDP model of a planning problem is a positive bounded
model as described by [Put94]. Such planning problems are also often called stochastic
shortest path problems.

3 Probabilistic Fluent Calculus

States, actions, transition probabilities, cost and reward function are specified in a
probabilistic and sorted extension of the fluent calculus [HS90, Thi98].

Fluents and States Let Σ denote a set of function symbols containing the binary
function symbol ◦ and the nullary function symbol 1. ◦ is an AC1-symbol with 1 as
unit element. Let Σ− = Σ \ {◦, 1}. Non-variable Σ−-terms are called fluents. Let
f(t1, . . . , tn) be a fluent. The terms ti, 1 ≤ i ≤ n are called objects. A state is a finite
set of ground fluents. Let D be the set of all states.

Fluent Terms and Abstract States Fluent terms are defined inductively as follows:
1 is a fluent term; each fluent is a fluent term; if G1 and G2 are fluent terms, then so is
G1 ◦ G2. Let F be the set of all fluent terms. We assume that each fluent term obeys
the singularity condition: each fluent may occur at most once in a fluent term. Because
of the latter, there is a bijection ·M between ground fluent terms and states. Some
care must be taken when instantiating a non-ground fluent term F by a substitution θ
because Fθ may violate the singularity condition. A substitution θ is allowed for fluent
term F if Fθ meets the singularity condition.

Abstract states are expressions of the form F or F ◦X, where F is a fluent term and
X is a variable of sort fluent term. Let S denote the set of abstract states. Abstract
states denote sets of states as defined by the mapping ·I : S → 2D: Let Z be an abstract
state. Then

[Z]I = {[Zθ]M | θ is an allowed grounding substitution for Z}.
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(c)
(d)

(b)

(a)

Figure 1: The interpretations of the abstract states (a) Z1 = on(X1, a) ◦ on(a, table),
(b) Z2 = on(X2, a) ◦ on(a, table) ◦ Y2, (c) Z3 = on(X3, a) ◦ on(a, table) ◦ clear(X3) and
(d) Z4 = on(X4, a) ◦ on(a, table) ◦ clear(X4) ◦Y4, where a is an object denoting a block,
table is an object denoting a table, X1, X2, X3 and X4 are variables of sort object, Y2

and Y4 are variables of sort fluent term, on(Xi, a), i = 1 . . . 4, is a fluent denoting that
some block Xi is on a and clear(Xi), i = 3, 4, is a fluent denoting that block Xi is clear.

This is illustrated in Figure 1. In other words, abstract states are characterized by
means of positive conditions that must hold in each ground instance thereof and, thus,
they represent clusters of states. In this way, abstract states embody a form of state
space abstraction, which is called first-order state abstraction.

As a running example, we consider problems taken from the colored Blocksworld
scenario, which is an extension of the classical Blocksworld scenario in the sense that
along with the unique identifier, each block is now assigned a specific color. Thus, a
state description provides an arrangement of colors instead of an arrangement of blocks.
For example, a state Z defined as a fluent term:

Z = red(X0) ◦ green(X1) ◦ blue(X2) ◦ red(X3) ◦ red(X4)◦
red(X5) ◦ green(X6) ◦ green(X7) ◦ Tower(X0, . . . , X7) ,

specifies a tower that is comprised of eigth colored blocks.

Subsumption Let Z1 and Z2 be abstract states. Then Z1 is subsumed by Z2, in
symbols Z1 & Z2, if there exists an allowed substitution θ such that Z2θ =AC1 Z1.
Intuitively, Z1 is subsumed by Z2 iff ZI

1 ⊆ ZI
2 . In the LIFT-UP system we are often

concerned with the problem of finding a complete set of allowed substitutions solving
the AC1-matching problem Z2θ =AC1 Z1.

For example, consider the abstract states mentioned in Figure 1. Then, Z1 & Z2

with θ = {X2 (→ X1, Y2 (→ 1}, Z3 & Z2 with θ = {X2 (→ X3, Y2 (→ clear(X3)}. However,
Z1 )& Z3 and Z3 )& Z1.

Actions Let Σa denote a set of action names, where Σa∩Σ = ∅. An action space A is
a set of expressions of the form (a(X1, . . . , Xn), C, E), where a ∈ Σa, Xi, 1 ≤ i ≤ n, are
variables or constants, C ∈ F called precondition and E ∈ F called effect of the action
a(X1, . . . , Xn). E.g., a pickup-action in the blockworld can be specified by

(pickup (X, Y ), on(X, Y ) ◦ clear(X) ◦ empty, holding(X) ◦ clear(Y )),

where empty denotes that the robot arm is empty and holding(X) that the block X
is in the gripper. For simplicity, we will often supress parameters, preconditions and
effects of an action (a(X1, . . . , Xn), C, E) and refer to it as a instead.
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Nature’s Choice and Probabilities In analogy to the approach in [BRP01] stochas-
tic actions are decomposed into deterministic primitives under nature’s control, referred
to as nature’s choices. It can be modelled with the help of a binary relation symbol
choice as follows: Consider the action pickup (X, Y ):

choice (pickup (X, Y ), a) ↔ (a = pickupS (X, Y ) ∨ a = pickupF (X, Y )),

where pickupS and pickupF define two nature’s choices for action pickup , viz., that it
succeeds or fails. For simplicity, we denote the set of nature’s choices of an action a as
Ch (a) := {aj |choice (a, aj)}.

For each of nature’s choices aj associated with an action a we define the probability
prob (aj , a, Z) denoting the probability with which one of nature’s choices aj is chosen
in a state Z. For example,

prob (pickupS (X, Y ), pickup (X, Y ), Z) = .75

states that the probability for the successful execution of the pickup action in state Z
is .75. We require that for each action the probabilities of all its nature’s choices sum
up to 1.

Rewards and Costs Reward and cost functions are defined for abstract states using
the unary relation symbols reward and cost. For example, we might want to give a
reward of 500 to all states in which some block X is on block a and 0, otherwise:

reward (Z) = 500 ↔ Z & (on(X, a), ∅),
reward (Z) = 0 ↔ Z )& (on(X, a), ∅).

In other words, the state space is divided into two abstract states depending on whether
or not, a block X is on block a. Likewise, value functions can be specified with respect
to the abstract states only. Action costs can be analogously defined. E. g., with

cost(pickup (X, Y )) = 3

the execution of the pickup -action is penalized with 3.

Forward and Backward Application of Actions An action (a(X1, . . . , Xn), C, E)
is forward applicable with θ to an abstract state Z ∈ S, denoted as forward (Z, a, θ), if
(C ◦ U)θ =AC1 Z, where U is a new variable of sort fluent term and θ is an allowed
substitution. If applicable, then the action progresses to or yields the state (E ◦U)θ. In
this case, (E ◦ U)θ is called successor state of Z and denoted as succ(Z, a, θ).

An action (a(X1, . . . , Xn), C, E) is backward applicable with θ to an abstract state
Z ∈ S, denoted as backward (Z, a, θ), if (E ◦ U)θ =AC1 Z, where U is a new variable of
sort fluent term and θ is an allowed substitution. If applicable, then the action regresses
to the state (C ◦U)θ. In this case, (C ◦U)θ is called predecessor state of Z and denoted
as pred(Z, a, θ).

One should observe that the AC1-matching problems involved in the application of
actions are subsumption problems, viz. Z & (C ◦ U) and Z & (E ◦ U). Moreover, in
order to determine all possible successor or predecessor states of some state with respect
to some action we have to compute complete sets of allowed substitutions solving the
corresponding subsumption problems.
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policyExpansion(π,S0, G)
E := F := ∅
from := S0

repeat
to :=

S

Z∈from

S

aj∈Ch(a)
{succ(Z, aj , θ)},

where (a, θ) := π(Z)
F := F ∪ (to − G)
E := E ∪ from
from := to ∩ G − E
until (from = ∅)
E := E ∪ F
G := G ∪ F
return (E, F, G)

FOVI(E,A, prob, reward, cost, γ, V )
repeat
V ′ := V
loop for each Z ∈ E
loop for each a ∈ A
loop for each θ such that forward (Z, a, θ)
Q(Z, a, θ) := reward(Z) + cost(a)+

γ
P

aj∈Ch(a)
prob(aj , a, Z) · V ′(succ(Z, aj , θ))

end loop
end loop
V (Z) := max

(a,θ)
Q(Z, a, θ)

end loop
V := normalize(V )
r := ‖V − V ′‖
until stopping criterion
π := extractPolicy(V )
return (V, π, r)

FOLAO∗(A, prob, reward, cost, γ,S0, h, ε)
V := h
G := ∅
For each Z ∈ S0, initialize π with an arbitrary action
repeat

(E, F, G) := policyExpansion(π,S0, G)
(V, π, r) := FOVI(E,A, prob, reward, cost, γ, V )

until (F = ∅) and r ≤ ε
return (π, V )

Figure 2: LIFT-UP algorithm.

4 LIFT-UP Algorithm

In order to solve first-order MDPs, we have developed a new algorithm that combines
heuristic search and first-order state abstraction techniques.

Our algorithm, referred to as LIFT-UP, can be seen as a generalization of the sym-
bolic LAO∗ algorithm by [FH02]. Given an initial state, LIFT-UP uses an admissible
heuristic to focus computation on the parts of the state space that are reachable from
the initial state. Moreover, it specifies MDP components, value functions, policies, and
admissible heuristics using a first-order language of the Probabilistic Fluent Calculus.
This allows LIFT-UP to manipulate abstract states instead of individual states. The
algorithm itself is presented in Figure 2.

As symbolic LAO∗, LIFT-UP has two phases that alternate until a complete solution
is found, which is guaranteed to be optimal. First, it expands the best partial policy and
evaluates the states on its fringe using an admissible heuristic function. Then it performs
dynamic programming on the states visited by the best partial policy, to update their
values and possibly revise the current best partial policy. We note that we focus on
partial policies that map a subcollection of states into actions.

In the policy expansion step, we perform reachability analysis to find the set F of
states that have not yet been expanded, but are reachable from the set S0 of initial
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states by following the partial policy π. The set of states G contains states that have
been expanded so far. By expanding a partial policy we mean that it will be defined for
a larger set of states in the dynamic programming step.

In symbolic LAO∗, reachability analysis is performed on propositional algebraic de-
cision diagrams (ADDs). Therefore, an additional preprocessing of a first-order MDP
is required at the outset of any solution attempt. This preprocessing involves propo-
sitionalization of the first-order structure of an MDP, viz., instantiation of the MDP
components with all possible combinations of domain objects. Whereas, LIFT-UP re-
lies on the lifted first-order reasoning, that is, computations are kept on the first-order
level avoiding propositionalization. In particular, action applicability check and compu-
tation of successors as well as predecessors are accomplished on abstract states directly.

In the dynamic programming step of LIFT-UP, we employ a modified first-order
value iteration algorithm (FOVI) that computes the value only on those states which
are reachable from the initial states. More precisely, we call FOVI on the set E of states
that are visited by the best current partial policy. In this way, we improve the efficiency
of the original FOVI algorithm by [HS04] by using symbolic dynamic programming
together with reachability analysis.

Given a FOMDP and a value function represented in PFC, FOVI returns the best
partial value function V , the best partial policy π and the residual r. In order to update
the values of the states Z in E, we assign the values from the current value function
to the successors of Z. We compute successors with respect to all nature’s choices aj .
The residual r is computed as the absolute value of the largest difference between the
current and the newly computed value functions V ′ and V , respectively. We note that
the newly computed value function V is taken in its normalized form, i.e., as a result of
the normalize procedure that will be described in Section 4.2.1. Extraction of a best
partial policy π is straightforward: One simply needs to extract the maximizing actions
from the best partial value function V .

As with symbolic LAO∗, LIFT-UP converges to an ε-optimal policy when three
conditions are met: (1) its current policy does not have any unexpanded states, (2) the
residual r is less than the predefined threshold ε, and (3) the value function is initialized
with an admissible heuristic. The original convergence proofs for LAO∗ and symbolic
LAO∗ by [HZ01] carry over in a straightforward way to LIFT-UP.

When calling LIFT-UP, we initialize the value function with an admissible heuristic
function h that focuses the search on a subset of reachable states. A simple way to create
an admissible heuristic is to use dynamic programming to compute an approximate
value function. Therefore, in order to obtain an admissible heuristic h in LIFT-UP, we
perform several iterations of the original FOVI. We start the algorithm on an initial
value function that is admissible. Since each step of FOVI preserves admissibility, the
resulting value function is admissible as well. The initial value function assigns the goal
reward to each state thereby overestimating the optimal value, since the goal reward is
the maximal possible reward.

Since all computations in LIFT-UP are performed on abstract states instead of
individual states, FOMDPs are solved avoiding explicit state and action enumeration
and propositionalization. Lifted first-order reasoning leads to better performance of
LIFT-UP in comparison to symbolic LAO∗, as shown in Section 5.2.
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Figure 3: Policy Expansion.

4.1 Policy Expansion

We illustrate the policy expansion procedure in LIFT-UP by means of an example.
Assume that we start from the initial state Z0 and two nondeterministic actions a1

and a2 are applicable in Z0, each having two outcomes a1
1, a1

2 and a2
1, a2

2, respectively.
Without loss of generality, we assume that the current best policy π chooses a1 as an
optimal action at state Z0. We construct the successors Z1 and Z2 of Z0 with respect
to both outcomes a1

1 and a1
2 of the action a1. The fringe set F as well as the set G of

states expanded so far contain the states Z1 and Z2 only, whereas, the set E of states
visited by the best current partial policy gets the state Z0 in addition. See Figure 3a.
In the next step, FOVI is performed on the set E. We assume that the values have been
updated in such a way that a2 becomes an optimal action in Z0. Thus, the successors
of Z0 have to be recomputed with respect to the optimal action a2. See Figure 3b.

One should observe that one of the a2-successors of Z0, namely Z2, is an element of
the set G and thus, it has been contained already in the fringe F during the previous
expansion step. Hence, the state Z2 should be expanded and its value recomputed. This
is shown in Figure 3c, where states Z4 and Z5 are a1-successors of Z2, under assumption
that a1 is an optimal action in Z2. As a result, the fringe set F contains the newly
discovered states Z3, Z4 and Z5 and we perform FOVI on E = {Z0, Z2, Z3, Z4, Z5}. The
state Z1 is not contained in E, because it does not belong to the best current partial
policy, and the dynamic programming step is performed only on the states that were
visited by the best current partial policy.
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N Number of states Time, msec Runtime, msec Runtime w/o norm, msec
Supdate Snorm Update Norm

0 9 6 144 1 145 144
1 24 14 393 3 396 593
2 94 23 884 12 896 2219
3 129 33 1377 16 1393 13293
4 328 39 2079 46 2125 77514
5 361 48 2519 51 2570 805753
6 604 52 3268 107 3375 n/a
7 627 54 3534 110 3644 n/a
8 795 56 3873 157 4030 n/a
9 811 59 4131 154 4285 n/a

Table 1: Representative timing results for the first ten iterations of the first-order value
iteration with the normalization procedure switched on or off.

4.2 First-order Value Iteration

The first-order value iteration algorithm (FOVI) produces a first-order representation of
the optimal value function and policy by exploiting the logical structure of a first-order
MDP. Thus, FOVI can be seen as a first-order counterpart of the classical value iteration
algorithm by [Bel57].

In LIFT-UP, the first-order value iteration algorithm serves two purposes: First,
we perform several iterations of FOVI in order to create an admissible heuristic h in
LIFT-UP. Second, in the dynamic programming step of LIFT-UP, we apply FOVI on
the states visited by the best partial policy in order to update their values and possibly
revise the current best partial policy.

4.2.1 Normalization

It was already mentioned by several authors that value iteration adds a dramatic compu-
tational overhead to a solution technique for first-order MDPs if no care about redundant
computations is taken [BRP01, HS04].

Recently, there have been proposed an automated normalization procedure that,
given a state space, delivers an equivalent one that contains no redundancy [HS04].
This procedure, referred to as normalize in the LIFT-UP algorithm, is always called
before the value function is transmitted to the next iteration step, thereby preventing the
propagation of redundancy to the next computation steps. The technique employs the
notion of the subsumption relation defined in Section 3. Informally, given two abstract
states Z1 and Z2 such that Z1 & Z2 and the values associated to states are identical, Z1

can be easily removed from the state space because it contains redundant information.
Table 1 illustrates the importance of the normalization algorithm by providing some

representative timing results for the first ten iterations of the first-order value iteration.
The experiments were carried out on the problem taken from the colored Blocksworld
scenario consisting of ten blocks. Even on such a relatively simple problem FOVI with
the normalization switched off does not scale beyond the sixth iteration.

The results in Table 1 demonstrate that the normalization during some iteration
of FOVI dramatically shrinks the computational effort during the next iterations. The
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columns labelled Supdate and Snorm show the size of the state space after performing
the value updates and the normalization, respectively. For example, the normalization
factor, i.e., the ratio between the number Supdate of states obtained after performing one
update step and the number Snorm of states obtained after performing the normalization
step, at the seventh iteration is 11.6. This means that more than ninety percent of
the state space contained redundant information. The fourth and fifth columns in
Table 1 contain the time Update and Norm spent on performing value updates and on
the normalization, respectively. The total runtime Runtime, when the normalization is
switched on, is given in the sixth column. The seventh column labelled Runtime w/o
norm depicts the total runtime of FOVI when the normalization is switched off. If we
would sum up all values in the seventh column and the values in the sixth column
up to the sixth iteration inclusively, subtract the latter from the former and divide
the result by the total time Norm needed for performing normalization during the first
six iterations, then we would obtain the normalization gain of about three orders of
magnitude.

5 The Planning System FluCaP

To evaluate the LIFT-UP approach we have developed a domain-dependent implementa-
tion called FluCaP. It can solve probabilistic Blocksworld problems as they appeared,
for example, in the colored Blocksworld domain of the 2004 International Planning
Competition.

5.1 Domain-dependent Optimizations

So far, we have presented a general theory of LIFT-UP for finding solutions in uncertain
planning environments which are represented as first-order MDPs. However, several
domain-driven optimizations or relaxations have been posed on the general theory. As
a result, FluCaP has demonstrated a competitive computational behaviour.

Action Applicability Since in the Blocksworld domain, all states were fully specified,
abstract states were described as fluent terms only. This allows to relax the forward
and backward action applicability conditions. Since the cases are symmetric, we will
concentrate on the forward action applicability condition that was initially defined as:
An action (a(X1, . . . , Xn), C, E) is forward applicable with θ to an abstract state Z ∈ S,
denoted as forward (Z, a, θ), if (C ◦ U)θ =AC1 Z, where U is a new variable of sort
fluent term and θ is an allowed substitution. Since C and Z are fluent terms under the
singularity condition, the aforementioned AC1-matching problem can be transformed
into the θ-subsumption problem [Rob65].

Moreover, we optimize the obtained θ-subsumption problem further. Since a state
description in a colored Blocksworld represents a number of towers, we compare towers
of blocks and their color distributions instead of matching respective fluent terms. The
experiments have shown that it is much faster to manipulate with towers rather than
with fluent terms. For example, assume that an action precondition contains a fluent
clear(X). Let a state describe three towers of blocks. By inspecting the uppermost
blocks in the towers, we conclude that there are only three blocks, which satisfy the
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precondition. It would be interesting to check whether this optimization technique can
be successfully applied in other planning domains as well.

Meanwhile, in Section 6, we present some results towards efficient domain-independent
solution methods for the θ-subsumption problem.

Normalization The similar situation occurs in the case of normalization which relies
on the subsumption relation defined in Section 3. The AC1-matching problem underly-
ing the subsumption relation reduces to the θ-subsumption problem.

Again, it is much faster to operate on towers rather than on fluent terms. For exam-
ple, assume that one state describes two towers of four and three blocks, respectively.
Another state also describes two towers but of five and two blocks, respectively. In order
to decide, whether one state subsumes another one we try to match the corresponding
towers and their color distributions. As experiments have shown, this optimization
speeds up the normalization immensely.

5.2 Experimental Evaluation

We demonstrate the advantages of combining the heuristic search together with first-
order state abstraction on a FluCaP system, that has successfully entered the domain-
dependent track of the probabilistic part of the 2004 International Planning Competition
(IPC’2004). The experimental results were all obtained using RedHat Linux running on
a 3.4GHz Pentium IV machine with 3GB of RAM.

In Table 2, we present the performance comparison of FluCaP together with sym-
bolic LAO∗ on examples taken from the colored Blocksworld (BW) scenario. Our main
objective was to investigate whether first-order state abstraction using logic could im-
prove the computational behaviour of a planning system for solving FOMDPs. The
colored BW problems were our main interest since they were the only ones represented
in first-order terms and hence the only ones that allowed us to make use of the first-order
state abstraction.

At the outset of solving a colored BW problem, symbolic LAO∗ starts by proposi-
tionalizing its components, namely, the goal statement and actions. Only after that,
the abstraction using propositional ADDs is applied. In contrast, FluCaP performs
first-order abstraction on a colored BW problem directly, avoiding unnecessary ground-
ing. In the following, we show how an abstraction technique affects the computation of
a heuristic function. To create an admissible heuristic, FluCaP performs twenty itera-
tions of FOVI and symbolic LAO∗ performs twenty iterations of an approximate value
iteration algorithm similar to APRICODD by [SAHB00]. The columns labelled H.time
and NAS show the time needed for computing a heuristic function and the number of
abstract states it covers, respectively. In comparison to FluCaP, symbolic LAO∗ needs
to evaluate fewer abstract states in the heuristic function but takes considerably more
time. One can conclude that abstract states in symbolic LAO∗ enjoy more complex
structure than those in FluCaP.

We note that, in comparison to FOVI, FluCaP restricts the value iteration to a
smaller state space. Intuitively, the value function, which is delivered by FOVI, covers a
larger state space, because the time that is allocated for the heuristic search in FluCaP
is now used for performing additional iterations in FOVI. The results in the column
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Problem Total av. reward Total time, sec. H.time, sec. NAS NGS, ×103 %
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4 494 494 494 494 22.3 22.0 23.4 31.1 8.7 4.2 35 410 1077 0.86 0.82 2.7
5 3 496 495 495 496 23.1 17.8 22.7 25.1 9.5 1.3 34 172 687 0.86 0.68 2.1

2 496 495 495 495 27.3 11.7 15.7 16.5 12.7 0.3 32 55 278 0.86 0.66 1.9

4 493 493 493 493 137.6 78.5 261.6 285.4 76.7 21.0 68 1061 3847 7.05 4.24 3.1
6 3 493 492 493 492 150.5 33.0 119.1 128.5 85.0 9.3 82 539 1738 7.05 6.50 2.3

2 495 494 495 496 221.3 16.6 56.4 63.3 135.0 1.2 46 130 902 7.05 6.24 2.0

4 492 491 491 491 1644 198.1 2776 n/a 757.0 171.3 143 2953 12014 65.9 23.6 3.5
7 3 494 494 494 494 1265 161.6 1809 2813 718.3 143.6 112 2133 7591 65.9 51.2 2.4

2 494 494 494 494 2210 27.3 317.7 443.6 1241 12.3 101 425 2109 65.9 61.2 2.0

4 n/a 490 n/a n/a n/a 1212 n/a n/a n/a 804.1 n/a 8328 n/a n/a 66.6 4.1
8 3 n/a 490 n/a n/a n/a 598.5 n/a n/a n/a 301.2 n/a 3956 n/a n/a 379.7 3.0

2 n/a 492 n/a n/a n/a 215.3 1908 n/a n/a 153.2 n/a 2019 7251 n/a 1121 2.3

15 3 n/a 486 n/a n/a n/a 1809 n/a n/a n/a 1733 n/a 7276 n/a n/a 1.2 · 107 5.7

17 4 n/a 481 n/a n/a n/a 3548 n/a n/a n/a 1751 n/a 15225 n/a n/a 2.5 · 107 6.1

Table 2: Performance comparison of FluCaP (denoted as FluCaP) and symbolic LAO∗

(denoted as LAO*), where the cells n/a denote the fact that a planner did not deliver a
solution within the time limit of one hour. NAS and NGS are number of abstract and
ground states, respectively.

labelled % justify that the harder the problem is (that is, the more colors it contains), the
higher the percentage of runtime spent on normalization. Almost on all test problems,
the effort spent on normalization takes three percent of the total runtime on average.

In order to compare the heuristic accuracy, we present in the column labelled NGS
the number of ground states which the heuristic assigns non-zero values to. One can
see that the heuristics returned by FluCaP and symbolic LAO∗ have similar accuracy,
but FluCaP takes much less time to compute them. This reflects the advantage of
the plain first-order abstraction in comparison to the marriage of propositionalization
with abstraction using propositional ADDs. In some examples, we gain several orders
of magnitude in H.time.

The column labelled Total time presents the time needed to solve a problem. During
this time, a planner must execute 30 runs from an initial state to a goal state. A one-hour
block is allocated for each problem. We note that, in comparison to FluCaP, the time
required by heuristic search in symbolic LAO∗ (i.e., difference between Total time and
H.time) grows considerably faster in the size of the problem. This reflects the potential
of employing first-order abstraction instead of abstraction based on propositional ADDs
during heuristic search.

The average reward obtained over 30 runs, shown in column Total av. reward, is
the planner’s evaluation score. The reward value close to 500 (which is the maximum
possible reward) simply indicates that a planner found a reasonably good policy. Each
time the number of blocks B increases by 1, the running time for symbolic LAO∗ increases
roughly 10 times. Thus, it could not scale to problems having more than seven blocks.
This is in contrast to FluCaP which could solve problems of seventeen blocks. We
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B Total av. reward, ≤500 Total time, sec. H.time, sec. NAS NGS × 1021

20 489.0 137.5 56.8 711 1.7
22 487.4 293.8 110.2 976 1.1 × 103

24 492.0 757.3 409.8 1676 1.0 × 106

26 482.8 817.0 117.2 1141 4.6 × 108

28 493.0 2511.3 823.3 2832 8.6 × 1011

30 491.2 3580.4 1174.0 4290 1.1 × 1015

32 476.0 3953.8 781.8 2811 7.4 × 1017

34 475.6 3954.1 939.4 3248 9.6× 1020

36 n/a n/a n/a n/a n/a

Table 3: Performance of FluCaP on larger instances of one-color Blocksworld problems,
where the cells n/a denote the fact that a planner did not deliver a solution within the
time limit.

note that the number of colors C in a problem affects the efficiency of an abstraction
technique. In FluCaP, as C decreases, the abstraction rate increases which, in turn, is
reflected by the dramatic decrease in runtime. The opposite holds for symbolic LAO∗.

In addition, we compare FluCaP with two variants. The first one, denoted as
FOVI, performs no heuristic search at all, but rather, employs FOVI to compute the ε-
optimal total value function from which a policy is extracted. The second one, denoted
as FluCaP–, performs ‘trivial’ heuristic search starting with an initial value function
as an admissible heuristic. As expected, FluCaP that combines heuristic search and
FOVI demonstrates an advantage over plain FOVI and trivial heuristic search. These
results illustrate the significance of heuristic search in general (FluCaP vs. FOVI) and the
importance of heuristic accuracy, in particular (FluCaP vs. FluCaP–). FOVI and FluCaP–

do not scale to problems with more than seven blocks.
Table 3 presents the performance results of FluCaP on larger instances of one-color

BW problems with the number of blocks varying from twenty to thirty four. We believe
that FluCaP does not scale to problems of larger size because the implementation is
not yet well optimized. In general, we believe that the FluCaP system should not be
as sensitive to the size of a problem as propositional planners are.

Our experiments were targeted at the one-color problems only because they are,
on the one hand, the simplest ones for us and, on the other hand, the bottleneck for
propositional planners. The structure of one-color problems allows us to apply first-
order state abstraction in its full power. For example, for a 34-blocks problem FluCaP
operates on about 3.3 thousand abstract states that explode to 9.6 × 1041 individual
states after propositionalization. A propositional planner must be highly optimized in
order to cope with this non-trivial state space.

We note that additional colors in larger instances (more than 20 blocks) of BW
problems cause dramatic increase in computational time, so we consider these prob-
lems as being unsolved. One should also observe that the number of abstract states
NAS increases with the number of blocks non-monotonically because the problems are
generated randomly. For example, the 30-blocks problem happens to be harder than
the 34-blocks one. Finally, we note that all results that appear in Tables 2 and 3 were
obtained by using the new version of the evaluation software that does not rely on propo-
sitionalization in contrast to the initial version that was used during the competition.
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The competition domains and results are available in [YLWA05].

6 Domain-independent Methods for θ-subsumption

Given two fluent terms Z1 and Z2 under singularity condition, Z1 θ-subsumes Z2, written
Z1 .AC1

θ Z2, iff there exists an allowed substitution θ such that (Z1 ◦ U)θ =AC1 Z2.
Initially, θ-subsumption was defined on clauses. Given two clauses C and D, C

θ-subsumes D iff there exists a substitution θ such that Cθ ⊆ D [Rob65]. In general,
θ-subsumption is np-complete [KN86]. In the domain-dependent implementation of
the LIFT-UP approach, that was described in the previous section, we have employed
domain-driven optimization techniques that have allowed to reduce the complexity of
θ-subsumption. This section is devoted to the efficient domain-independent solution
methods for θ-subsumption which cope with its np-completeness.

One approach to cope with the np-completeness of θ-subsumption is deterministic
subsumption. A state is said to be determinate if there is an ordering of fluents, such
that in each step there is a fluent which has exactly one match that is consistent with
the previously matched fluents [KL94]. However, in practice, there may be only few
fluents, or none at all, that can be matched deterministically. Recently, in [SHW96],
it was developed another approach, which we refer to as literal context, LitCon, for
short, to cope with the complexity of θ-subsumption. The authors propose to reduce
the number of matching candidates for each fluent by using the contextual information.
The method is based on the idea that fluents may only be matched to those fluents that
possess the same relations up to an arbitrary depth in a clause. As a result, a certain
superset of determinate states can be tested for subsumption in polynomial time.

Unfortunately, as it was shown in [KRS06], LitCon does not scale very well up to
large depth. Because in some planning problems, the size of state descriptions can be
relatively large, it might be necessary to compute the contextual information for large
values of the depth parameter. Therefore, we are strongly interested in a technique that
scales better than LitCon. In this section, we present an approach, referred to as object
context, ObjCon, for short, which demonstrates better computational behaviour than
LitCon. Based on the idea of ObjCon, we develop a new θ-subsumption algorithm
and compare it with the LitCon-based approach.

6.1 Object Context

In general, a fluent f in a state Z1 can be matched with several fluents in a state Z2, that
are referred to as matching candidates of f . LitCon is based on the idea that fluents
in Z1 can be only matched to those fluents in Z2, the context of which include the
context of the fluents in Z1 [SHW96]. The context is given by occurrences of identical
objects (variables Vars (Z) and constants Const (Z)) or chains of such occurrences and
is defined up to some fixed depth. In effect, matching candidates that do not meet
the above context condition can be effortlessly pruned. In most cases, such pruning
results in deterministic subsumption, thereby considerably extending the tractable class
of states.

The computation of the context itself is dramatically affected by the depth parame-
ter: The larger the depth is, the longer the chains of objects’ occurrences are, and thus,
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more effort should be devoted to build them. Unfortunately, LitCon does not scale
very well up to large depth [KRS06]. For example, consider a state

Z = on(X, Y ) ◦ on(Y, table) ◦ r(X) ◦ b(Y ) ◦ h(X) ◦ h(Y ) ◦ w(X) ◦ l(Y )

that can be informally read as: A block X is on the block Y which is on the table,
and both blocks enjoy various properties, like color (red r or blue b) or weight (heavy
h or light l), they can be wet w. Z contains eight fluents and only three objects. In
LitCon, the context should be computed for each of eight fluents in order to keep track
of all occurrences of identical objects. What if we were to compute the context for each
object instead? In our running example, we would need to perform computations only
three times, in this case.

Herein, we propose a more efficient approach, referred to as ObjCon, for computing
the contextual information and incorporate it into a new context-based θ-subsumption
algorithm. More formally, we build the object occurrence graph GZ = (V,E, %) for a state
Z, where vertices are objects of Z, denoted as Obj (Z), and edges E = {(o1,π1, f, π2, o2)|
Z contains f(t1, . . . , tn) and o1 = tπ1 and o2 = tπ2} with o1, o2 ∈ Obj (Z), f(t1, . . . , tn)
being a fluent and π1,π2 being positions of objects o1, o2 in f . The labeling function
%(o) = {f |Z contains f(o)} associates each object o with a unary fluent name f this
object belongs to. The object occurrence graph for the state Z from our running example
will contain three vertices X, Y and table with labels {r, h, w}, {b, h, l} and {}, resp.,
and two edges (X, 1, on, 2, Y ) and (Y, 1, on, 2, table).

The object context ObjCon(o, Z, d) of depth d > 0 is defined for each object o of a

state Z as a chain of labels: %(o)
π1
1 ·f1·π1

2−→ %(o1)
π2
1 ·f2·π2

2−→ . . .
πd
1 ·fd·πd

2−→ %(od) ∈ObjCon(o, Z, d)

iff o
π1
1 ·f1·π1

2−→ o1
π2
1 ·f2·π2

2−→ . . .
πd
1 ·fd·πd

2−→ od is a path in GZ of length d starting at o. In our
running example, ObjCon(X, Z, 1) of depth 1 of the variable X in Z contains one chain
{{r, h, w} 1·on·2−→ {b, h, l}}.

Following the ideas of [SHW96], we define the embedding of object contexts for states
Z1 and Z2, which serves as a pruning condition for reducing the space of matching can-
didates for Z1 and Z2. Briefly, let OC1 =ObjCon(o1, Z1, d), OC2 =ObjCon(o2, Z2, d).
Then OC1 is embedded in OC2, written OC1 ! OC2, iff for every chain of labels in OC1

there exists a chain of labels in OC2 which preserves the positions of objects in fluents
and the labels for each object in OC1 are included in the respective labels in OC2 up
to the depth d. Finally, if ObjCon(X, Z1, d) )! ObjCon(o, Z2, d) then there exists no
θ such that (Z1 ◦ U)µθ =AC1 Z2, where µ = {X (→ o} and U is a new variable of sort
fluent term. In other words, a variable X in Z1 cannot be matched against an object o
in Z2 within a globally consistent match, if the variable’s context cannot be embedded
in the object’s context. Therefore, the substitutions that meet the above condition can
be effortlessly pruned from the search space. For any context depth d > 0, the context
inclusion is an additional condition that reduces the number of candidates, and hence
there exists more often at most one remaining matching candidate.

Based on the idea of the object context, we describe a new θ-subsumption algorithm
in Algorithm 1. Please note that this algorithm provides a complete set of all allowed
substitutions which is used later on for determining the set of all possible successors or
predecessors of some state with respect to some action. Due to the lack of space, we
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Input: Two fluent terms Z1, Z2.
Output: A complete set of substitutitons θ such that Z1 #AC1

θ Z2.

1. Deterministically match as many fluents of Z1 as possible to fluents of Z2. Substitute Z1 with
the substitution found. If some fluent of Z1 does not match any fluent of Z2, decide Z1 !AC1

θ Z2.

2. ObjCon-based deterministically match as many fluents of Z1 as possible to fluents of Z2.
Substitute Z1 with the substitution found. If some fluent of Z1 does not match any fluent of Z2,
decide Z1 !AC1

θ Z2.

3. Build the substitution graph (V, E) for Z1 and Z2 with nodes v = (µ, i) ∈ V , where µ is a
matching candidate for Z1 and Z2, i.e., matches some fluent at position i in Z1 to some fluent in
Z2 and i ≥ 1 is referred to as a layer of v. Two nodes (µ1, i1) and (µ2, i2) are connected with an
edge iff µ1µ2 = µ2µ1 and i1

&
= i2. Delete all nodes (µ, i) with Xµ = o, for some X ∈ Vars (Z1)

and o ∈ Obj (Z2), and ObjCon(X, Z1, d)
&
! ObjCon(o, Z2, d) for some d. Find all cliques of size

|Z1| in (V, E).

Algorithm 1: ObjCon-alltheta.

omit the algorithm for computing all cliques in a substitution graph. However, it can
be found in [KRS06].

6.2 Experimental Evaluation

Figure 4 depicts the comparison timing results between the LitCon-based subsumption
reasoner, referred to as AllTheta, and its ObjCon-based opponent, referred to as
FluCaP. The results were obtained using RedHat Linux running on a 2.4GHz Pentium
IV machine with 2GB of RAM.

We demonstrate the advantages of exploiting the object-based context information
on problems that stem from the colored Blocksworld and Pipesworld planning scenar-
ios. The Pipesworld domain models the flow of oil-derivative liquids through pipeline
segments connecting areas, and is inspired by applications in the oil industry. Liquids
are modeled as batches of a certain unit size. A segment must always contain a certain
number of batches (i.e., it must always be full). Batches can be pushed into pipelines
from either side, leading to the batch at the opposite end “falling” into the incident
area. Batches have associated product types, and batches of certain types may never
be adjacent to each other in a pipeline. Moreover, areas may never have constraints on
how many batches of a certain product type they can hold.

For each problem, there have been done 1000 subsumption tests. The time limit
of 100 minutes has been allocated. The results show that FluCaP scales better than
AllTheta. It is best to observe on the problems of forteen-, twenty-, and thirty-
blocks. As empirical results demonstrate, the optimal value of the depth parameter for
Blocksworld and Pipesworld is four.

The main reason for the computational gain of FluCaP is that it is less sensitive
to the growth of the depth parameter. Under the condition that the number of objects
in a state is strictly less than the number of fluents and other parameters are fixed,
the amount of object-based context information is strictly less than the amount of the
literal-based context information. Moreover, on the Pipesworld problems, FluCaP
requires two orders of magnitude less time than AllTheta.
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Figure 4: Comparison timing results for FluCaP and AllTheta. The results present
the average time needed for one subsumption test. Please note that the plots for
Pipesworld are shown in logscale. Therefore small differences in the plot may indicate
a substantial difference on runtimes.

7 Related Work

We follow the symbolic dynamic programming (SDP) approach within Situation Calcu-
lus (SC) of [BRP01] in using first-order state abstraction for FOMDPs. In the course
of first-order value iteration, a state space may contain redundant abstract states that
dramatically affect the algorithm’s efficiency. In order to achieve computational savings,
normalization must be performed to remove this redundancy. However, in the original
work by [BRP01] this was done by hand. To the best of our knowledge, the preliminary
implementation of the SDP approach within SC uses human-provided rewrite rules for
logical simplification. In contrast, [HS04] have developed an automated normalization
procedure for FOVI brings the computational gain of several orders of magnitude. An-
other crucial difference is that our algorithm uses heuristic search to limit the number
of states for which a policy is computed.

The ReBel algorithm by [KvOdR04] relates to LIFT-UP in that it also uses a rep-
resentation language that is simpler than Situation Calculus. This feature makes the
state space normalization computationally feasible.

All the above algorithms can be classified as deductive approaches to solving FOMDPs.
They can be characterized by the following features: (1) they are model-based, (2) they
aim at exact solutions, and (3) logical reasoning methods are used to compute ab-
stractions. We should note that FOVI aims at exact solution for a FOMDP, whereas
LIFT-UP, due to the heuristic search that avoids evaluating all states, seeks for an ap-
proximate solution. Therefore, it would be more appropriate to classify LIFT-UP as an
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approximate deductive approach to FOMDPs.
In another vein, there is some research on developing inductive approaches to solving

FOMDPs, e.g., by [FYG03]. The authors propose the approximate policy iteration
(API) algorithm, where they replace the use of cost-function approximations as policy
representations in API with direct, compact state-action mappings, and use a standard
relational learner to learn these mappings. A recent approach by [GT04] proposes an
inductive policy construction algorithm that strikes a middle-ground between deductive
and inductive techniques.

8 Conclusions

We have proposed a new approach that combines heuristic search and first-order state
abstraction for solving first-order MDPs more efficiently. In contrast to existing systems,
which start with propositionalizing the decision problem at the outset of any solution
attempt, we perform lifted reasoning on the first-order structure of an MDP directly.
However, there is plenty remaining to be done. For example, we are interested in the
question of to what extent the optimization techniques applied in modern propositional
planners can be combined with first-order state abstraction.
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Abstract

High-performance SAT solvers based on systematic search generally use either
conflict driven clause learning (CDCL) or lookahead techniques to gain efficiency.
Both styles of reasoning can gain from a preprocessing phase in which some form
of deduction is used to simplify the problem. In this paper we undertake an empir-
ical examination of the effects of several recently proposed preprocessors on both
CDCL and lookahead-based SAT solvers. One finding is that the use of multiple
preprocessors one after the other can be much more effective than using any one of
them alone, but that the order in which they are applied is significant. We intend
our results to be particularly useful to those implementing new preprocessors and
solvers.

1 Introduction

In the last decade, the propositional satisfiability (SAT) has become one of the most
interesting research problems within artificial intelligence (AI). This tendency can be
seen through the development of a number of powerful SAT solvers, based on either
systematic search or stochastic local search (SLS), for solving various hard combinato-
rial search problems such as automatic deduction, hardware and software verification,
planning, scheduling, and FPGA routing.

The power of contemporary systematic SAT solvers derives not only from the un-
derlying Davis-Putnam-Logemann-Loveland (DPLL) algorithm but also from enhance-
ments aimed at increasing the amount of unit propagation, improving the choices of
variables for splitting or making backtracking more intelligent. Two of the most impor-
tant such enhancements are conflict driven clause learning (CDCL), made practicable on
a large scale by the watched literal technique, and one-step lookahead. These two tend
to exclude each other: the most successful solvers generally incorporate one or the other
but not both. The benefits they bring are rather different too, as is clear from the results
of recent SAT competitions. For problems in the “industrial” category, CDCL, as im-
plemented in MINISAT [ES03, SE05], siege [Rya04] and zChaff [MMZ+01, ZMMM01] is
currently the method of choice. On random problems, however, lookahead-based solvers
such as Dew Satz [AS05], Kcnfs [DD01] and March dl [HvM06] perform better.

Lookahead, of course, is expensive at every choice node, while clause learning is
expensive only at backtrack points. Since half of the nodes (plus one) in any binary
tree are leaves, this difference is significant for lookahead-based solvers which process
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nodes relatively slowly and gain, if at all, by reducing the search tree size. Looking
ahead is an investment in at-node processing which can pay off only if it results in more
informed choices with an impact on the total number of nodes visited. Where learnt
clauses prune the tree at least as effectively as complex choice heuristics, CDCL must
win. This seems to be the case in many classes of highly structured problems such as the
“industrial” ones in the SAT competitions. We have no clearer definition than anyone
else of “structure”, but are interested to find ways in which lookahead-based solvers
might detect and exploit it as well as the clause learners do.

A noteworthy feature of many recent systems is a preprocessing phase, often using
inference by some variant of resolution, to transform problems prior to the search.
One suggestion we wish to make and explore is that such transformations may help
lookahead-based solvers to discover useful structure. That is, much of the reasoning done
by nogood inference might be done cheaply “up-front”, provided that the subsequent
variable choice heuristics are good enough to exploit it. In what follows, we are therefore
concerned mainly with the effects of preprocessing, including those of using multiple
preprocessors in series, on the performance of a lookahead-based solver Dew Satz on
problems where it does poorly in comparison with a clause learning solver (MINISAT). We
also include some results and remarks on benefits to be gained in the opposite direction,
where MINISAT is helped by preprocessing to attack problems to which Dew Satz is more
suited.

In this paper we propose a multiple preprocessing technique to boost the performance
of systematic SAT solvers. The motivation for applying multiple preprocessors prior to
the systematic search process is clear: each preprocessor uses a different strategy in
objective to simplify clause sets derived from real-world problems that exhibit a great
deal structure such as symmetries, variable dependencies, clustering, and the like. Our
initial observation showed that each strategy works well for simplifying the structure
of some problems, at most of the time, from hard to easy. When a problem exhibits
different kinds of structure, then a single preprocessor has difficulty to simplify the
structures. In this case, we need to run multiple preprocessors one after the other.

We report performance statistics for the two solvers, Dew Satz and MINISAT, with
and without combinations of five (and for one problem set, six) of the best contemporary
SAT preprocessors when solving parity, planning, bounded model checking and FPGA
routing benchmark problems from SATLIB and the recent SAT competitions. One
finding is that the use of multiple preprocessors one after the other can be much more
effective than using any one of them alone, but that the order in which they are applied
is significant. We intend our results to be particularly useful to those implementing new
preprocessors and solvers.

The rest of the paper is organized as follows: section 2 addresses the related work.
In sections 3 and 4, we briefly describe the preprocessors and solvers examined in our
study. The main part of the paper consists of experimental results, and we conclude
with a few remarks and suggestions.
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2 Related Work

Resolution-based SAT preprocessors for CNF formula simplification have a dramatic
impact on the performance of even the most efficient SAT solvers on many benchmark
problems [LMS01]. The simplest preprocessor consists of just computing length-bounded
resolvents and deleting duplicate and subsumed clauses, as well as tautologies and any
duplicate literals in a clause.

There are two most directly related works. The first one is that of Anbulagan
et al. [APSS06] which examined the integration of five resolution-based preprocessors
alone or the combination of them with stochastic local search (SLS) solvers. Their
experimental results show that SLS solvers benefit the present of resolution-based pre-
processing and multiple preprocessing techniques. And the second one is that of Lynce
and Marques-Silva [LMS01]. They only evaluated empirically the impact of some pre-
processors developed before 2001 including 3-Resolution, without considering multiple
preprocessing, on the performance of systematic SAT solvers. In recent years, many
other preprocessors, which are sophisticated, have been applied to modern propositional
reasoners. Among them are 2-SIMPLIFY [Bra01], the preprocessor in Lsat [OGMS02]
for recovering and exploiting Boolean gates, HyPre [Bac02, BW04], Shatter [ASM03]
for dealing with symmetry structure, NiVER [SP05] and SatELite [EB05]. We consider
some of these preprocessors plus 3-Resolution in our study.

3 SAT Preprocessors

We describe briefly the six SAT preprocessors used in the experiments. The first
five are all based on resolution and its variants such as hyper-resolution. Resolu-
tion [Qui55, DP60, Rob65] itself is widely used as a rule of inference in first order
automated deduction, where the clauses tend to be few in number and contain few lit-
erals, and where the reasoning is primarily driven by unification. As a procedure for
propositional reasoning, however, resolution is rarely used on its own because in prac-
tice it has not been found to lead to efficient algorithms. The sixth preprocessor is a
special-purpose tool for symmetry detection, which is important for one problem class
in the experiments.

3.1 3-Resolution

k-Resolution is just saturation under resolution with the restriction that the parent
clauses are of length at most k. The special cases of 2-Resolution and 3-Resolution
are of most interest. 3-Resolution has been used in a number of SAT solvers, notably
Satz [LA97] and the SLS solver R+AdaptNovelty+ [APSS05] which won the satisfiable
random problem category in the SAT2005 competition. Since it is the preprocessor
already used by Satz, we expect it to work well with Dew Satz.

3.2 2-SIMPLIFY

2-SIMPLIFY [Bra01] constructs an implication graph from all binary clauses in the
problem. Where there is an implication chain from a literal X to X, X can be deduced
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as a unit which can be propagated. The method also collapses strongly connected
components, propagates shared implications, or literals implied in the graph by every
literal in a clause, and removes some redundant binary clauses. Experimental results
[Bra01, Bra04] show that systematic search benefits markedly from 2-SIMPLIFY on a
wide range of problems.

3.3 HyPre

HyPre [BW04] also reasons with binary clauses, but incorporates full hyper-resolution,
making it more powerful than 2-SIMPLIFY. In addition, unit reduction and equality
reduction are incrementally applied to infer more binary clauses. It can be costly in
terms of time, but since it is based explicitly on hyper-resolution it avoids the space
explosion of computing a full transitive closure. HyPre has been used in the SAT solver,
2CLS+EQ [Bac02], and we consider it a very promising addition to many other solvers.
It is generally useful for exploiting implicational structure in large problems.

3.4 NiVER

Variable Elimination Resolution (VER) is an ancient inference method consisting of
performing all resolutions on a chosen variable and then deleting all clauses in which
that variable occurs, leaving just the resolvents. It is easy to see that this is a complete
decision procedure for SAT problems, and almost as easy to see that it is not practicable
because of exponential space complexity. Recently, Subbarayan and Pradhan [SP05]
proposed NiVER (Non increasing VER) which restricts the variable elimination to the
case in which there is no increase in the number of literals after elimination. This shows
promise as a SAT preprocessor, improving the performance of a number of solvers [SP05].

3.5 SatELite

Eén and Biere [EB05] proposed the SatELite preprocessor, which extends NiVER with
a rule of Variable Elimination by Substitution. Several additions including subsumption
detection and improved data structures further improved performance in both space and
time. SatELite was combined with MINISAT to form SatELiteGTI, the system which
dominated the SAT2005 competition on the crafted and industrial problem categories.
Since we use MINISAT for our experiments, it is obvious that SatELite should be one of
the preprocessors we consider.

3.6 Shatter

It is clear that eliminating symmetries is essential to solving realistic instances of many
problems. None of the resolution-based preprocessors does this, so for problems that
involve a high degree of symmetry we added Shatter [AMS03] which detects symmetries
and adds symmetry-breaking clauses. These always increase the size of the clause set
and for satisfiable problems they remove some of the solutions, but they typically make
the problem easier by pruning away isomorphic copies of parts of the search space.
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4 SAT Solvers

As noted in Section 1, we concentrate on just two solvers: MINISAT, which relies on
clause learning, and Dew Satz, which uses lookahead.

4.1 MINISAT

Sörensson and Eén [ES03, SE05] released the MINISAT solver in 2005. Its design is based
on Chaff, particularly in that it learns nogoods or “conflict clauses” and accesses them
during the search by means of two watched literals in each clause. MINISAT is quite
small (a few hundred lines of code) and easy to use either alone or as a module of a
larger system. Its speed in comparison with similar solvers such as zChaff comes from a
series of innovations of which the most important are an activity-decay schedule which
proceeds by frequent small reductions rather than occasional large ones, and an inference
rule for reducing the size of conflict clauses by introducing a restricted subsumption test.
The cited paper contains a brief but informative description of these ideas.

4.2 Dew Satz

The solver Dew Satz [AS05] is a recent version of the Satz solver [LA97]. Like its parent
Satz, it gains efficiency by a restricted one-step lookahead scheme which rates some of
the neighbouring variables every time a choice must be made for branching purposes. Its
lookahead is more sophisticated than the original one of Satz, adding a DEW (dynamic
equality weighting) heuristic to deal with equalities. This enables the variable selection
process to avoid duplicating the work of weighting variables detected to be equivalent
to those already examined. Thus, while the solver has no special inference mechanism
for propositional equalities, it does deal tolerably well with problems containing them.

5 Experimental Results

We present results on four benchmark problem sets chosen to present challenges for one
or other or both of the SAT solvers. The experiments were conducted on a cluster of 16
AMD Athlon 64 processors running at 2 GHz with 2 GB of RAM. Ptime in the tables
represents preprocessing time, while Stime represents solvers runtime without including
Ptime. The timebound of Stime is 15,000 seconds per problem instance. It is worth
noting that in our study the results of SatELiteGTI, the solver which dominated the
SAT2005 competition on the crafted and industrial problem categories, are represented
by the results of SatELite+MINISAT.

5.1 The 32-bit Parity Problem

The 32-bit parity problem was listed by Selman et al. [SKM97] as one of ten challenges
for research on satisfiability testing. The ten instances of the problem are satisfiable.
The first response to this challenge was by Warners and van Maaren [WvM98] who
solved the par32-*-c problem (5 instances) using a special-purpose preprocessor to
deal with equivalency conditions. Two years later, Li [Li00] solved the ten par32*
instances by enhancing Satz’s search process with equivalency reasoning. Ostrowski et
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Instance Prep. #Vars/#Cls/#Lits Ptime Dew Satz MINISAT

Stime #BackT Stime #Conflict

par32-1 Orig 3176/10227/27501 n/a >15,000 n/a >15,000 n/a
3Res 2418/7463/19750 0.08 12,873 17,335,530 >15,000 n/a
Hyp+3Res 1313/6193/17203 0.50 9,513 17,391,333 >15,000 n/a
Niv+3Res 1315/5948/16707 0.46 6,858 13,476,105 >15,000 n/a
3Res+Hyp 1313/5495/15810 0.11 9,655 17,335,492 >15,000 n/a
Sat+3Res 849/5245/18660 0.37 14,729 34,569,968 >15,000 n/a

par32-2 Orig 3176/10253/27405 n/a >15,000 n/a 5,364 9,125,821
3Res 2392/7387/19550 0.08 5,171 9,341,185 6,205 10,492,612
Hyp+3Res 1301/5975/16719 0.36 3,831 8,186,883 >15,000 n/a
Niv+3Res 1303/5730/16223 0.29 1,518 3,889,345 >15,000 n/a

par32-3 Orig 3176/10297/27581 n/a >15,000 n/a >15,000 n/a
3Res 2395/7437/19738 0.07 6,124 9,711,576 >15,000 n/a
Hyp+3Res 1323/5961/16779 0.23 3,673 9,708,520 >15,000 n/a
Niv+3Res 1325/5716/16283 0.22 4,470 9,710,552 >15,000 n/a
Sat+3Res 848/5284/18878 0.37 3,647 2,206,369 >15,000 n/a

par32-4 Orig 3176/10313/27645 n/a >15,000 n/a >15,000 n/a
3Res 2385/7433/19762 0.08 10,425 10,036,154 >15,000 n/a
Sat 849/5160/18581 0.21 12,820 18,230,746 >15,000 n/a
Hyp+3Res 1331/6055/16999 0.36 9,001 17,712,997 >15,000 n/a
3Res+Hyp 1331/5567/16026 0.11 5,741 10,036,146 >15,000 n/a
Niv+3Res 1333/5810/16503 0.34 6,099 10,036,154 >15,000 n/a
3Res+Niv 1290/5297/15481 0.10 14,003 25,092,756 >15,000 n/a
3Res+Sat 850/5286/18958 0.35 3,552 7,744,986 >15,000 n/a
Sat+3Res 849/5333/19052 0.38 3,563 7,744,986 >15,000 n/a
Sat+2Sim 848/5154/18565 0.26 12,862 18,230,746 >15,000 n/a

par32-5 Orig 3176/10325/27693 n/a >15,000 n/a >15,000 n/a
Niv 1978/7864/22535 0.03 10,651 27,165,469 >15,000 n/a

par32-1-c Orig 1315/5254/15390 n/a >15,000 n/a >15,000 n/a
3Res 1315/5957/16738 0.35 11,068 25,920,943 >15,000 n/a
Hyp+3Res 1313/6193/17203 0.48 7,419 8,931,149 >15,000 n/a

par32-2-c Orig 1303/5206/15246 n/a >15,000 n/a >15,000 n/a
3Res 1303/5739/16254 0.23 428 345,680 >15,000 n/a
Hyp+3Res 1301/5975/16719 0.32 7,402 8,166,758 >15,000 n/a

par32-3-c Orig 1325/5294/15510 n/a >15,000 n/a >15,000 n/a
3Res 1325/5725/16314 0.15 4,482 9,462,205 >15,000 n/a
Hyp 1323/5589/16094 0.04 11,745 19,947,965 >15,000 n/a
Hyp+3Res 1323/5961/16779 0.22 4,375 9,462,245 >15,000 n/a
Niv+3Res 1321/5708/16266 0.24 7,361 16,265,438 >15,000 n/a
Sat+3Res 802/5335/19335 0.33 5,407 7,280,963 >15,000 n/a

par32-4-c Orig 1333/5326/15606 n/a >15,000 n/a >15,000 n/a
3Res 1333/5819/16534 0.24 7,097 8,440,212 >15,000 n/a
Hyp+3Res 1331/6055/16999 0.32 5,175 9,669,012 >15,000 n/a
Niv+3Res 1329/5802/16486 0.55 10,495 21,738,376 >15,000 n/a
Sat+3Res 806/5357/19443 0.32 10,110 8,013,977 >15,000 n/a

par32-5-c Orig 1339/5350/15678 n/a 10,949 22,878,571 >15,000 n/a
Niv+3Res 1335/5728/16362 0.28 >15,000 n/a 7,363 16,189,524

Table 1: Dew Satz and MINISAT performance, before and after preprocessing, on par32
problem.
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al. [OGMS02], solved the problems with Lsat, which performs a preprocessing step to
recover and exploit the logical gates of a given CNF formula and then applies DPLL
with a Jeroslow-Wang branching rule. The challenge has now been met convincingly by
Heule et al. [HvM04] with their March eq solver, which combines equivalency reasoning
in a preprocessor with a lookahead-based DPLL and which solves all of the par32*
instances in seconds. Dew Satz is one of the few solvers to have solved any instances of
the 32-bit parity problem without special-purpose equivalency reasoning [AS05].

Table 1 shows the results of running the lookahead-based solver Dew Satz and the
CDCL-based solver MINISAT on the ten par32 instances, with and without preprocess-
ing. As preprocessors we used 3-Resolution, HyPre, NiVER and SatELite alone and
followed by 3-Resolution for the last three. We eliminated 2-SIMPLIFY from this test
as it aborted the resolution process of the first five par32* instances presented in the
Table 1. We experimented also with all combination of two preprocessors for the prob-
lems par32-1 and par32-4. Where lines are omitted from the table (e.g. there is no
line for HyPre on par32-1 and for SatELite+3-Resolution on par32-2), this is because
no single solver produced a solution for those simplified instances.

It is evident from the table that these problems are seriously hard for both solvers.
Even with preprocessing, MINISAT times out on all of them except for par32-2 and
par32-5-c. Curiously, on par32-2 instance, preprocessing with 3-Resolution makes its
performance degrade a little. This is not a uniform effect: Table 4 below shows ex-
amples in which MINISAT benefits markedly from 3-Resolution. Without preprocessing,
Dew Satz times out on nine of ten par32 instances, but in every case except par32-5
and par32-5-c 3-Resolution suffices to help it find a solution, and running multiple
preprocessors improves its performance.

In general, Table 1 shows that multiple preprocessing contributes significantly to
enhance the performance of Dew Satz and the preprocessor 3-Resolution dominates the
contribution through either single or multiple preprocessing.

5.2 A Planning Benchmark Problem

The ferry planning benchmark problems, taken from SAT2005 competition, are all easy
for MINISAT, which solves all of them in about one second without needing preprocessors.
Dew Satz, however, is challenged by them. The problems are satisfiable. We show the
Dew Satz and MINISAT results on the problems in Table 2. Clearly the original problems
contain some structure that CDCL is able to exploit but which is uncovered by one-step
lookahead. It is therefore interesting to see which kinds of reasoning carried out in a
preprocessing phase are able to make that same structure available to Dew Satz. Most
strikingly, reasoning with binary clauses in the manner of the 2-SIMPLIFY preprocessor
reduces runtimes by upwards of four orders of magnitude in some cases. HyPre, NiVER
and SatELite, especially HyPre, are also effective on these planning problems. In most
cases the number of backtracks reduces from million to less than 100 or even zero for
ferry8 v01a, ferry9 v01a, and ferry10 ks99a instances which means that the input
formula is solved at the root node of the search tree.

106



Instance Prep. #Vars/#Cls/#Lits Ptime Dew Satz MINISAT

Stime #BackT Stime #Conflict

ferry7 ks99i Orig 1946/22336/45706 n/a 2,828 10,764,261 0.13 4,266
3Res 1930/22289/45621 0.09 >15,000 n/a 0.11 3,707
Hyp 1881/32855/66732 0.21 1,672 1,204,321 0.03 417
Niv 1543/21904/45243 0.01 >15,000 n/a 0.10 3,469
Sat 1286/21601/50644 0.33 >15,000 n/a 0.07 2,763
Sat+2Sim 1279/56597/120318 0.49 0.41 28 0.05 1,096

ferry7 v01i Orig 1329/21688/50617 n/a >15,000 n/a 0.05 1,858
3Res 1329/21681/50505 0.14 >15,000 n/a 0.05 1,858
Sat 1286/21609/50803 0.17 >15,000 n/a 0.18 6,309
Sat+2Sim+3Res 1286/64472/136299 0.95 4.28 824 0.05 1,018
Sat+2Sim+Hyp+3Res 1272/62208/131357 1.26 3.30 580 0.10 2,398

ferry8 ks99a Orig 1259/15259/31167 n/a 574 1,869,995 0.01 0
3Res 1241/15206/31071 0.08 654 2,074,794 0.01 0
Sat 813/14720/34687 0.24 810 1,040,528 0.01 381
Sat+2Sim 813/35008/75263 0.35 0.11 4 0.02 295

ferry8 ks99i Orig 2547/32525/66425 n/a >15,000 n/a 0.22 6,615
3Res 2529/32472/66329 0.12 >15,000 n/a 0.14 3,495
Hyp 2473/48120/97601 0.32 >15,000 n/a 0.07 1,030
Sat 1696/31589/74007 0.49 >15,000 n/a 0.41 10,551
Sat+2Sim 1683/83930/178217 0.76 9.38 3,255 0.20 5,105

ferry8 v01a Orig 854/14819/34624 n/a 13,162 39,153,348 0.01 277
3Res 854/14811/34480 0.11 >15,000 n/a 0.01 277
Hyp 846/38141/81268 0.18 6.11 570 0.02 226
Hyp+Sat 813/38044/81364 0.36 29.66 2,749 0.02 277
Hyp+Sat+3Res 813/38028/81196 0.70 0.71 15 0.02 277
Hyp+Sat+2Sim 813/36583/78442 0.50 0.17 0 0.02 233

ferry8 v01i Orig 1745/31688/73934 n/a >15,000 n/a 0.55 12,935
3Res 1745/31680/73790 0.20 >15,000 n/a 0.55 12,935
Sat 1696/31598/74202 0.25 >15,000 n/a 0.25 7,869
Sat+2Sim+3Res 1696/96092/202904 1.50 268 68,681 4.06 28,690

ferry9 ks99a Orig 1598/21427/43693 n/a >15,000 n/a 0.01 0
3Res 1578/21368/43586 0.10 >15,000 n/a 0.01 0
Hyp 1542/29836/60522 0.21 >15,000 n/a 0.02 278
Niv 1244/21046/43264 0.01 >15,000 n/a 0.01 29
Sat 1042/20765/48878 0.33 >15,000 n/a 0.02 350
2Sim 1569/20563/41976 0.02 >15,000 n/a 0.04 1,359
Hyp+Sat 1056/26902/72553 0.88 33.73 22,929 0.03 609
Sat+2Sim 1042/50487/108322 0.50 0.18 5 0.03 261

ferry9 v01a Orig 1088/20878/48771 n/a >15,000 n/a 0.01 181
3Res 1088/20869/48591 0.16 >15,000 n/a 0.01 181
Hyp 1079/55371/117757 0.28 0.42 0 0.03 187
Hyp+Sat 1042/55256/117861 0.49 70.83 5,080 0.03 181
Hyp+Sat+2Sim 1042/53394/114135 0.72 0.39 2 0.03 234

ferry10 ks99a Orig 1977/29041/59135 n/a >15,000 n/a 0.03 710
3Res 1955/28976/59017 0.13 >15,000 n/a 0.03 827
Hyp 1915/40743/82551 0.29 >15,000 n/a 0.04 563
Niv 1544/28578/58619 0.02 >15,000 n/a 0.01 0
Sat 1299/28246/66432 0.44 >15,000 n/a 0.03 909
2Sim 1945/27992/57049 0.05 >15,000 n/a 0.05 1,565
Sat+2Sim 1299/69894/149728 0.69 0.28 1 0.04 419
3Res+2Sim+Niv 1793/21099/43369 0.43 0.08 0 0.06 1,278
Niv+Hyp+2Sim+3Res 1532/24524/50463 0.54 5.19 3,949 0.02 454

ferry10 v01a Orig 1350/28371/66258 n/a >15,000 n/a 0.02 191
3Res 1350/28361/66038 0.23 >15,000 n/a 0.02 191
Hyp 1340/77030/163576 0.40 4.90 550 0.04 401
Hyp+Sat+3Res 1299/76874/163442 1.56 1,643 118,635 0.04 343
Hyp+Sat+2Sim 1299/74615/159134 1.00 1.78 61 0.04 459

Table 2: Dew Satz and MINISAT performance, before and after preprocessing, on ferry
planning problem.
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Instance Prep. #Vars/#Cls/#Lits Ptime Dew Satz MINISAT

Stime #BackT Stime #Conflict

bmc-ibm-3 Orig 14930/72106/189182 n/a >15,000 n/a 0.39 1,738
Hyp 5429/32038/89471 3.72 113 2,327 0.06 379
Niv 10591/62966/176261 0.47 >15,000 n/a 0.36 2,088
3Res 11940/56736/148383 0.41 >15,000 n/a 0.37 2,374
Sat 6486/44239/137653 1.32 >15,000 n/a 0.21 1,744
Hyp+3Res 5429/30517/79041 3.98 19.67 68 0.04 206

bmc-galileo-8 Orig 58073/294821/767187 n/a >15,000 n/a 0.37 462
Hyp 9613/85311/202625 416 67.92 0 0.06 2
Niv 30788/240141/685499 1.06 >15,000 n/a 0.42 1,148
3Res 43962/182261/456906 5.91 >15,000 n/a 0.46 1,182
Sat 20593/135076/414093 6.46 >15,000 n/a 0.19 762
Hyp+3Res 9613/82572/188966 417 120 0 0.05 2
Sat+3Res 20561/134793/413048 10.12 19.00 1 0.18 799

bmc-galileo-9 Orig 63623/326999/852078 n/a >15,000 n/a 0.54 1,186
Hyp 8802/70198/170970 407 90.50 0 0.06 2
Niv 33872/267378/763037 1.17 >15,000 n/a 0.42 1,148
3Res 49400/208310/523628 6.56 >15,000 n/a 0.46 1,060
Sat 23381/155837/477951 7.47 >15,000 n/a 0.24 1,009
Hyp+3Res 8802/67042/155884 408 57.57 0 0.04 2

bmc-ibm-10 Orig 59056/323700/854093 n/a >15,000 n/a 1.77 4,277
Hyp 2259/10831/29155 47.28 0.30 0 0.01 0
Niv 40530/285198/797443 1.19 >15,000 n/a 0.90 3,532
3Res 32377/154730/400447 4.70 >15,000 n/a 1.32 3,276
Sat 14956/116772/404199 5.53 >15,000 n/a 0.49 2,502

bmc-ibm-11 Orig 32109/150027/394770 n/a >15,000 n/a 2.01 6,422
Hyp 7342/40802/106327 13.84 4.73 1 0.05 160
Niv 22927/130058/365568 0.96 >15,000 n/a 1.33 5,607
3Res 22709/98066/252495 1.46 >15,000 n/a 2.44 7,875
Sat 10071/62668/200137 2.58 >15,000 n/a 0.77 5,481

bmc-ibm-12 Orig 39598/194778/515536 n/a >15,000 n/a 8.41 11,887
Hyp 12205/87082/228241 91.61 >15,000 n/a 0.74 1,513
Niv 27813/168440/476976 0.69 >15,000 n/a 4.46 8,702
3Res 32606/160555/419341 2.77 >15,000 n/a 6.77 10,243
Sat 15176/109121/364968 4.50 >15,000 n/a 2.37 6,219
Niv+Hyp+
3Res 12001/100114/253071 85.81 106 6 0.76 1,937

bmc-ibm-13 Orig 13215/65728/174164 n/a >15,000 n/a 1.84 8,088
Hyp 5010/27248/78059 3.16 >15,000 n/a 0.13 1,018
Niv 9226/57332/161962 0.35 >15,000 n/a 1.72 9,181
3Res 10426/49594/129998 0.49 >15,000 n/a 13.17 30,687
Sat 4549/34273/110676 1.27 >15,000 n/a 1.25 9,324
3Res+Niv+
Hyp+3Res 3529/22589/62633 2.90 1,575 4,662,067 0.03 150

bmc-alpha- Orig 663443/3065529/7845396 n/a >15,000 n/a 6.64 502
25449 Sat 12408/76025/247622 129 6.94 7 0.06 1

Sat+Hyp 9091/61789/203593 566 7.82 2 0.10 109
Sat+Niv 12356/75709/246367 130 4.48 2 0.06 1
Sat+3Res 12404/77805/249192 130 8.84 1 0.06 1
Sat+2Sim 10457/71128/229499 131 6.37 10 0.10 133

bmc-alpha- Orig 1080015/3054591/7395935 n/a >15,000 n/a 5,409 587,755
4408 Sat 23657/112343/364874 47.22 >15,000 n/a 1,266 820,043

Sat+Hyp 13235/88976/263053 56.13 >15,000 n/a 8,753 4,916,981
Sat+Niv 22983/108603/351369 49.34 >15,000 n/a 2,137 1,294,590
Sat+3Res 23657/117795/380389 48.18 >15,000 n/a 946 618,853
Sat+2Sim 17470/129245/375444 51.55 >15,000 n/a 804 561,529
Sat+2Sim+
3Res 16837/98726/305057 52.89 >15,000 n/a 571 510,705

Table 3: Dew Satz and MINISAT performance, before and after preprocessing, on hard
BMC instances.
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Instance Prep. #Vars/#Cls/#Lits Ptime Dew Satz MINISAT

Stime #BackT Stime #Conflict

01-k10 Orig 9275/38802/98468 n/a 18.96 1,472 0.08 313
Hyp n/a 1.27 n/a n/a n/a n/a
Niv 6662/33394/90715 0.16 4.12 366 0.07 327
3Res 6498/27318/70158 0.24 26.38 2,860 0.07 282
Sat 3418/19648/62925 0.84 3.46 140 0.03 262
2Sim 4379/59765/133585 3.41 0.24 1 0.05 135

01-k15 Orig 11524/48585/123966 n/a >15,000 n/a 0.49 3,743
3Res+Sat+
Niv+Hyp 3382/25936/79364 4.65 1,420 130,013 0.06 682
3Res+Hyp+
Niv+3Res 4203/23731/60639 4.33 190 13,449 0.06 430
3Res+Hyp+
3Res 4732/24972/63133 4.17 262 19,701 0.04 243
Hyp 4889/27056/71819 3.94 2,937 178,245 0.06 603
Niv 8068/41368/113317 0.19 >15,000 n/a 0.49 3,548
3Res 9403/40059/103137 0.27 >15,000 n/a 0.66 3,783
Sat 5198/30697/97961 1.13 >15,000 n/a 0.32 3,655

01-k20 Orig 15069/63760/163081 n/a >15,000 n/a 4.95 16,658
3Res+Hyp+
Niv+3Res 6382/34846/89807 6.94 513 29,629 0.20 1,261
Hyp 7323/39150/104635 6.40 >15,000 n/a 0.95 5,182
Niv 10533/54293/149192 0.25 >15,000 n/a 0.28 2,069
3Res 12948/55490/142966 0.37 >15,000 n/a 1.58 9,341
Sat 7179/42837/136537 1.52 >15,000 n/a 1.11 8,705
2Sim 9370/93921/217635 1.91 >15,000 n/a 0.35 1,977

26-k70 Orig 346561/1752741/4579945 n/a >15,000 n/a 8,382 2,654,614
3Res 346561/1756001/4588705 150 21.32 1 1.02 10
Hyp 243461/1569549/4182061 338 >15,000 n/a 1.22 642
Niv 155221/1354556/4075072 479 >15,000 n/a 1.07 492
Sat 132670/1300914/4980854 109 >15,000 n/a 2,325 1,503,271

26-k75 Orig 371091/1877066/4904440 n/a >15,000 n/a 8,540 2,880,376
3Res 371091/1880536/4913780 161 22.81 1 1.06 11
Hyp 260621/1680704/4477966 364 >15,000 n/a 1.20 654
Niv 166195/1450679/4364543 4.95 >15,000 n/a 1.41 474
Sat 141870/1392526/5327557 117 >15,000 n/a 3,896 2,067,948

26-k85 Orig 420151/2125716/5553430 n/a >15,000 n/a >15,000 n/a
3Res 420151/2129606/5563930 183 25.43 1 1.21 10
Hyp 294941/1903014/5069776 417 >15,000 n/a 1.55 747
Niv 187631/1641901/4941437 5.69 >15,000 n/a 1.37 535
Sat 160270/1576770/6039510 132 >15,000 n/a 4,472 2,308,225

26-k90 Orig 444681/2250041/5877925 n/a >15,000 n/a >15,000 n/a
Niv+3Res 198605/2208074/6624608 121 13.21 1 1.77 5
Hyp+3Res 312101/1979389/5187311 600 46.53 1 1.39 5
3Res 444681/2254141/5889005 195 26.99 1 1.26 10
Hyp 312101/2014169/5365681 446 >15,000 n/a 1.55 583
Niv 198605/1738024/5230908 5.91 >15,000 n/a 1.38 429
Sat 169470/1669436/6402318 140 >15,000 n/a 8,240 3,311,629

Table 4: Dew Satz and MINISAT performance, before and after preprocessing, on
SAT2005 IBM-FV-* instances.
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5.3 Bounded Model Checking Problems

Another domain providing benchmark problem sets which appear to be easy for MINISAT

but sometimes hard for Dew Satz is bounded model checking. In Table 3 we report
results on five of eleven BMC-IBM problems, two BMC-galileo problems and two of four
BMC-alpha problems. All other benchmark problems in the BMC-IBM class are easy for
both solvers and so are omitted from the table. The other two BMC-alpha instances
are harder than the two reported even for MINISAT before and after preprocessing. The
problems presented in Table 3 are satisfiable.

Each of these bounded model checking problems is brought within the range of
Dew Satz by some form of preprocessing. In general, HyPre and 3-Resolution are the
best for this purpose, especially when used together, though on problem BMC-IBM-13
they are ineffective without the additional use of NiVER. The column showing the
number of times Dew Satz backtracks is worthy of note. In many cases, preprocessing
reduces the problem to one that can be solved without backtracking. Solving “with-
out backtracking” has to be interpreted with care here, of course, since a nontrivial
amount of lookahead may be required in a “backtrack-free” search. The results for
BMC-galileo-9 furnish a good example of this: HyPre takes 407 seconds to refine the
problem, following which Dew Satz spends 90 seconds on lookahead reasoning while
constructing the first (heuristic) branch of its search tree, but then that branch leads
directly to a solution. Adding 3-Resolution to the preprocessing step does not change
the number of variables, and only slightly reduces the number of clauses, but it roughly
halves the time subsequently spent on lookahead.

The instance BMC-alpha-4408 is hard for Dew Satz even after preprocessing. While
MINISAT with multiple preprocessing solves the problem instance with an order of mag-
nitude faster. We can also observe that HyPre brings more benefit than SatELite,

Table 4 shows results for both solvers on a related problem set consisting of formal
verification problems taken from the SAT2005 competition. The IBM-FV-01 problems
are satisfiable except for the problem IBM-FV-01-k10; the IBM-FV-26 problems are
unsatisfiable. Most of these satisfiable problems are easy for MINISAT, but the unsatisfi-
able cases show that the SatELite preprocessor (with which MINISAT was paired in the
competition) is by far the least effective of the four we consider for MINISAT on these
problems. The preprocessor HyPre proved the unsatisfiability of IBM-FV-01-k10 in 1.27
seconds. 2-SIMPLIFY was not used to simplify the IBM-FV-26 problems, because it is
limited for input formula with maximum 100,000 variables. Again there are cases in
which Dew Satz is improved from a 15,000 second timeout to a one-branch proof of un-
satisfiability. Note that the numbers of clauses in these cases are actually increased by
the preprocessor 3-Resolution, confirming that the point of such reasoning is to expose
structure rather than to reduce problem size.

5.4 A Highly Symmetrical Problem

FPGA routing problem is a higly symmetrical problem that model the routing of wires in
the channels of field-programmable integrated circuits [AMS03]. The problem instances
used in the experiment, which were artificially designed by Fadi Aloul, are taken from
SAT2002 competition.
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Without preprocessing to break symmetries, many of the FPGA routing problems
are hard—harder for CDCL solvers than for lookahead-based ones. Not only do they
have many symmetries, but the clause graphs are also disconnected. Lookahead tech-
niques with neighbourhood variables ordering heuristic seem able to choose inferences
within one graph component before moving to another, whereas MINISAT jumps fre-
quently between components. Table 5 shows performances of both solvers on FPGA
routing problem set. Of 21 selected satisfiable (bart) problems, MINISAT solves 8 in
some 2 hours. It manages better with the unsatisfiable (homer) instances, solving 14 of
15 in a total time of around 6 hours. Dew Satz solves all of the bart problems in 17.5
seconds and the homer ones in 45 minutes.

The detailed results for two of the satisfiable problems and two unsatisfiable ones
(Table 6) are interesting. The resolution-based preprocessors do not give any mod-
ification to the size of the input formula except when using SatELite. The Shatter
preprocessor, which removes certain symmetries, is tried on its own and in combination
with the five resolution-based preprocessors. It should be noted that the addition of
symmetry-breaking clauses increases the sizes of the problems, but of course it greatly
reduces the search spaces in most cases.

The performance of Dew Satz after preprocessing is often worse in terms of time
than it was before, though there is always a decreases in the size of its search tree. This
is because of the increase in the problem size which increases the amount of lookahead
process. MINISAT, by contrast, sometimes speeds up by several orders of magnitude
after preprocessing.

Instance Dew Satz MINISAT

#Solved Stime #BackT #Solved Stime #Conflict
bart (21 SAT) 21 17.52 1,536,966 8 7,203 119,782,466
homer (15 UNSAT) 15 2,662 109,771,200 14 22,183 143,719,166

Table 5: Dew Satz and MINISAT performance, without preprocessing, on FPGA routing
problems.

5.5 Order of Preprocessors

Table 7 illustrates the difficulty of selecting the order in which to apply multiple prepro-
cessors. It shows results on just two sample problems. The first is the bounded model
checking problem BMC-IBM-12, which Dew Satz attempted with the three preprocessors
HyPre, NiVER and 3-Resolution in different orders. Only one order, NiVER followed by
HyPre followed by 3-Resolution, renders the problem feasible for Dew Satz. With the
preprocessors in that order, it is solved in less than 2 minutes; with any other order it
cannot be solved in more than four hours. The second problem, ferry10 ks99a, shows
the range of different outcomes produced by varying the order of four preprocessors. If
we get it right, we get a solution in 5 seconds, but we know of no simple rule for getting
it right in such a case. Neither running NiVER first nor running 3-Resolution last is
sufficient. Even with NiVER, HyPre and 3-Resolution in the right order, putting 2-
SIMPLIFY first rather than third changes the runtime from 5 seconds to several hours.
The third experiment illustrates the efffect of alternating two preprocessors. Simplifying
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Instance Prep. #Vars/#Cls/#Lits Ptime Dew Satz MINISAT

Stime #BackT Stime #Conflict

bart28 Orig 428/2907/7929 n/a 0.00 0 >15,000 n/a
Sat 413/2892/11469 0.06 0.02 0 >15,000 n/a
Sha 1825/8407/27003 0.37 0.06 9 198 775,639
Sha+3Res 1764/7702/24400 0.46 0.04 1 2,458 7,676,459
Sha+Hyp 1764/8349/26138 0.41 0.05 20 >15,000 n/a
Sha+Niv 1781/8358/26759 0.38 0.05 6 5.46 53,683
Sha+Sat 1728/8254/30422 0.53 0.10 0 115 684,272
Sha+2Sim 1750/7892/24682 0.39 0.05 17 19.12 150,838

bart30 Orig 485/3617/9954 n/a 0.31 20,160 >15,000 n/a
Sat 468/3600/14544 0.08 0.03 0 >15,000 n/a
Sha 2017/9649/30874 0.49 0.11 96 >15,000 n/a
Sha+3Res 1945/8686/27492 0.60 0.12 224 4,149 7,594,231
Sha+Hyp 1945/9348/29218 0.54 11,729 28,270,212 >15,000 n/a
Sha+Niv 1969/9599/30625 0.50 0.06 1 >15,000 n/a
Sha+Sat 1776/8830/33533 0.77 0.12 1 >15,000 n/a
Sha+2Sim 1919/8758/27287 0.51 0.05 9 >15,000 n/a

homer19 Orig 330/2340/4950 n/a 473 19,958,400 10,233 51,960,410
Sat 300/2310/8400 0.04 >15,000 n/a 5,621 54,469,568
Sha 1460/6764/20242 0.16 2,345 4,828,639 2.26 33,492
Sha+3Res 1388/5748/16914 0.23 3,231 7,189,966 1.14 21,669
Sha+Hyp 1387/6547/18865 0.20 4,179 9,611,768 1.90 30,418
Sha+Niv 1412/6715/19993 0.17 2,570 5,202,084 3.15 45,484
Sha+Sat 1201/5846/19288 0.34 4,071 6,236,966 1.48 26,517
Sha+2Sim 1348/5639/16110 0.17 307 678,425 0.70 14,682

homer20 Orig 440/4220/8800 n/a 941 19,958,400 >15,000 n/a
Sat 400/4180/15200 0.08 1,443 6,982,425 11,448 57,302,582
Sha 1999/10340/29988 0.28 369 350,610 1.83 22,950
Sha+3Res 1907/8793/25027 0.37 362 405,059 1.41 18,273
Sha+Hyp 1905/10527/29129 0.34 1,306 1,451,567 1.10 13,927
Sha+Niv 1941/10276/29671 0.29 379 349,842 0.91 13,543
Sha+Sat 1723/9420/30986 0.54 822 300,605 1.00 13,831
Sha+2Sim 1879/9419/26188 0.31 114 120,297 0.40 6,612

Table 6: Dew Satz and MINISAT performance, before and after preprocessing, on selected
FPGA routing instances.

Instance Prep. #Vars/#Cls/#Lits Ptime Stime #BackT

bmc-ibm-12 Hyp+3Res+Niv 10805/83643/204679 96.11 >15,000 n/a
Niv+Hyp+3Res 12001/100114/253071 85.81 106 6
3Res+Hyp+Niv 10038/82632/221890 89.56 >15,000 n/a
3Res+Niv+Hyp 11107/99673/269405 58.38 >15,000 n/a

ferry10 ks99a 2Sim+Niv+Hyp+3Res 1518/32206/65806 0.43 >15,000 n/a
Niv+3Res+2Sim+Hyp 1532/25229/51873 0.49 11,345 17,778,483
3Res+2Sim+Niv+Hyp 1793/20597/42365 0.56 907 1,172,964
Niv+Hyp+2Sim+3Res 1532/24524/50463 0.54 5.19 3,949

ferry10 ks99a 2Sim+Niv 1518/27554/56565 0.08 >15,000 n/a
2Sim+Niv+2Sim 1518/18988/39433 0.27 3,197 6,066,241
2Sim+Niv+2Sim+Niv 1486/18956/39429 0.29 129 290,871
2Sim+Niv+2Sim+Niv+2Sim 1486/23258/48033 0.48 7,355 8,216,100

Table 7: Dew Satz’s performance on instances with preprocessor ordering.
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with 2-SIMPLIFY followed by NiVER is insufficient to allow solution before the timeout.
Simplifying again with 2-SIMPLIFY brings the runtime down to under an hour; adding
NiVER again brings it down again to a couple of minutes; repeating 2-SIMPLIFY, far
from improving matters, causes the time to blow out to two hours.

6 Conclusions

We performed an empirical study of the effects of several recently proposed SAT prepro-
cessors on both CDCL and lookahead-based SAT solvers. We describe several outcomes
from this study as follow.

1. High-performance SAT solvers, whether they depend on clause learning or on
lookahead, benefit greatly from preprocessing. Improvements of four orders of
magnitude in runtimes are not uncommon.

2. It is unlikely to equip a SAT solver with just one preprocessor of the kind con-
sidered in this paper. Very different preprocessing techniques are appropriate to
different problem classes.

3. There are frequently benefits to be gained from running two or more preprocessors
in series on the same problem instance.

4. Both clause learning and lookahead need to be enhanced with techniques specific
to reasoning with binary clauses, in order to exploit dependency chains, and with
techniques for equality reasoning.

5. Lookahead-based solvers also benefit greatly from resolution between longer clauses,
as in the 3-Resolution preprocessor. This seems to capture ahead of the search
some of the inferences which would be achieved during it by learning clauses.
CDCL solvers can also benefit from 3-Resolution preprocessor—dramatically in
certain instances—but the effects are far from uniform.

6.1 Future work

The following lines of research are open:

1. It would, of course, be easy if tedious to extend the experiments to more problem
sets, more preprocessors and especially to more solvers. We shall probably look
at some more DPLL solvers, but do not expect the results to add much more
than detail to what is reported in the present paper. One of the more important
additions to the class of solvers will be a non-clausal (Boolean circuit) reasoner.
We have not yet experimented with such a solver. We have already investigated
preprocessing for several state of the art SLS (stochastic local search) solvers, but
that is such a different game that we regard it as a different experiment and do
not report it here.

2. The more important line of research is to investigate methods for automatically
choosing among the available preprocessors for a given problem instance, and
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for automaticallly choosing the order in which to apply successive preprocessors.
Machine learning may help here, though it would be better, or at least more
insightful, to be able to base decisions on a decent theory about the interaction of
reasoning methods.

3. Another interesting project is to combine preprocessors not as a series of separate
modules but as a single reasoner. For example, it would be possible to satu-
rate under 3-Resolution and hyper-resolution together, in the manner found in
resolution-based theorem provers. Whether this would be cost-effective in terms
of time, and whether the results would differ in any worthwhile way from those
obtained by ordering separate preprocessors, are unknown at this stage.

As SAT solvers are increasingly applied to real-world problems, we expect deductive
reasoning by preprocessors to become increasingly important to them.
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