Critical Agents Supporting Interactive Theorem
Proving

Christoph Benzmiiller and Volker Sorge

Fachbereich Informatik, Universitit des Saarlandes,
D-66123 Saarbriicken, Germany
{chris|sorge}@ags.uni-sb.de

http://www.ags.uni-sb.de/ chris|sorge

Abstract. We introduce a resource adaptive agent mechanism which
supports the user of an interactive theorem proving system. The mecha-
nism, an extension of [4], uses a two layered architecture of agent societies
to suggest applicable commands together with appropriate command ar-
gument instantiations. Experiments with this approach show that its
effectiveness can be further improved by introducing a resource concept.
In this paper we provide an abstract view on the overall mechanism,
motivate the necessity of an appropriate resource concept and discuss its
realization within the agent architecture.

1 Introduction

Interactive theorem provers have been developed to overcome the shortcomings
of purely automatic systems and are typically applied in demanding domains
where fully automated techniques usually fail. Interaction is needed, for example,
to speculate lemmata or to guide and control the reasoning, for instance, by
providing the crucial steps in a complicated proof attempt.

Typical tactic-based interactive theorem proving systems such as HoL [14],
TPs [2], or our own IMEGA [3] offer expressive problem formulation and com-
munication languages and employ human oriented calculi (e.g., a higher-order
natural deduction or sequent calculus) in order to keep both proof and proof
construction comprehensible.

Initially, problems are given as a theorem together with a set of axioms.
Proofs are then constructed by successive application of tactics which are either
rules from the given calculus or little procedures that apply sequences of such
rules (cf. [13]). Generally, the user can employ a tactic by invoking an associ-
ated command. Tactics can be applied forward to axioms and derived facts or
backward to open problems which may result in one or several new open prob-
lems. A proof is complete when no open subgoal remains, i.e. when the originally
given theorem is successfully justified by a derivation from the given axioms. In
most systems the user can easily combine existing tactics in order to build new,
possibly more abstract ones. Moreover, some systems offer the use of external
reasoning components such as automated theorem provers or computer algebra
systems in order to enhance their reasoning power.



The number of tactics (and therefore the nurmber of commands) offered to the
user by an interactive theoremn prover is often quite large. Thus, it is important to
support the user (especially the non-expert user) in selecting the right command
together with appropriate instantiations for its parameters (e.g., proof lines,
terms, or sub-term positions) in each proof step.

Although suggestion mechanisms are already provided in state of the art
interactive theorem provers, they are still rather limited in their functionality as
they usually

(i) use inflexible sequential computation strategies,

(ii) do not have anytime character,
(iii) do not work steadily and autonomously in the background of a system, and
(iv) do not exhaustively use available computation resources.

In order to overcome these limitations we proposed in [4] a new, flexible
support mechanism with anytime character. It suggests commands, applicable
in the current proof state — more precisely commands that invoke applicable
tactics — together with suitable argument instantiations'. It is based on two
layers of societies of autonomous, concurrent agents which steadily work in the
background of the system and dynamically update their computational behavior
to the state of the proof and/or specific user queries to the suggestion mecha-
nism. By exchanging relevant results via blackboards the agents cooperatively
accumulate useful command suggestions which can then be heuristically sorted
and presented to the user.

A first implementation of the support mechanism in the (MECA-system
yielded promising results. However, experience showed that the number of agents
can become quite large and that some agents perform very costly computations,
such that the initial gain of the distributed architecture and the use of concur-
rency is easily outweighed by the mechanism’s computational costs. In a first
step to overcome this dilemma we developed a resource adapted concept for the
agents in order to allow for efficient suggestions even in large examples. However,
the concurrent nature of the mechanism provides a good basis to switch from a
static to a dynamic, resource adaptive control of the mechanism’s computational
behavior?. Thereby, we can exploit both knowledge on the prior performance of
the mechanism as well as knowledge on classifying the current proof state and
single agents in order to distribute resources.

After giving an example in the next section, to which we will refer throughout
this paper, we review in Sec. 3 our two layered agent mechanism as introduced

! Whereas in [4] and in this paper the suggestion mechanism is described with respect
to tactical theorem proving based on a ND-calculus [11], we want to point out that
our mechanism is in no way restricted to a specific logic or calculus, and can easily
be adapted to other interactive theorem proving contexts as well.

? In this paper we adopt the notions of resource adapted and resource adaptive as
defined in [20], where the former notion means that agents behave with respect to
some initially set resource distribution. According to the latter concept agents have
an explicit notion of resources themselves,; enabling them to actively participate in
the dynamic allocation of resources.



in [4]. In Sec. 4 we present a static resource concept to enhance the mechanism.
This concept is then extended in Sec. 5 into a resource adaptive one, where the
resource allocations are dynarmic and based on the following criteria:

1. The lower layer agents monitor their own contributions and performance in
the past in order to estimate the fruitfulness of their future computations.

2. The resource allocations of the societies of lower layer agents is dynamically
monitored and adjusted on the upper layer.

3. A classification agent gathers explicit knowledge about the current proof
state (e.g., which theory or which logic the current subgoal belongs to) and
passes this information to the lower layer agents.

Hence, the agents in our mechanism have a means to decide whether or not
they should pursue their own intentions in a given proof state. Their decision is
based on sub-symbolic (1 and 2) as well as on on symbolic information (3). We
finally conclude by discussing what a state of the art interactive theorem prover
can gain from employing the proposed suggestion mechanism and by hinting at
possible future work.

2 Reference Example

In the remainder of this paper we will frequently refer to the proof of the higher
order (HQ) theorem (po—o (o Abs)) = (p (bA a)), where o denotes the type of
truth values. Informally this example states: If the truth value of a A b is element
of the set p of truth values, then the value of bA a is also in p. Alternatively one
can read the problem as follows: Whenever a unary logical operater p maps the
value of a, A b, to true, then this also holds for the value of b A a. Although,
the theorem looks quite simple at a first glance this little higher-order (HO)
problem cannot be solved by most automatic HO theorem provers known to the
authors, since it requires the application of the extensionality principles which
are generally not built-in in HO theorem proving systems. However, within the
QOMECA-system [3] this problem can easily be proven partially interactively and
automatically.

QMEGA employs a variant of Gentzen’s natural deduction calculus (ND) [11]
enriched by more powerful proof tactics and the possibility to delegate reasonably
simple sub-problems to automated theorem provers. Thus, the following proof
for the example theorem can be constructed®:

L1 @b (p(aAb)) Hyp

Ly ik (bAa)< (aAb) OTTER

Ly @bk (bAa)=(aAb) <2=:(L4)

L, bk (p(Aa)) =eubet! ({1))(L1L3)
C OF (p(anb)=(p (bAra)) =71 (L2)

% Linearized ND proofs are presented as described in [1]. Each proof line consists of a
label, a set of hypotheses, the formula and a justification.



The idea of the proof is to show that the truth value of a A b equals that of
bAa (lines Ly and Ly) and then to employ equality substitution (line Ls). The
equation (b A a) = (a Ab) is derived by application of boolean extensionality
from the equivalence (b A a) < (a Ab) in line L3, whereas the rewriting step in
line L, is indicated in the line’s justification which reads as ‘substitute the sub-
term at position (1) in line L, according to the equation stated in line L3’ where
position (1) corresponds to the first argument of the predicate p. The equivalence
(bAa) & (aAb) in line Ls, can either be proven interactively or, as in the given
proof, justified by the application of the first-order prover OTTER [16] which
hides the more detailed subproof.

Our agent mechanism is able to suggest all the single proof steps together
with the respective parameter instantiations to the user. In particular, for the
proof of line Ly it suggests the choice between the application of OTTER or
the next interactive prove step to the user. In case of the latter choice, the
mechanism’s further suggestions can be used to finish the proof completely in-
teractively.

In the remainder of this paper we use the proof of the presented example
in this section to demonstrate the working scheme of the suggestion mechanism
and to motivate the incorporation of resource concepts.

3 Suggesting Commands

The general suggestion mechanism is based on a two layered agent architecture
displayed in Fig. 1 which shows the actual situation after the first proof step in
the example, where the backward application of = introduces the line L; as new
hypothesis and the line Lo as the new open goal. The task of the bottom layer
of agents (cf. the lower part of Fig. 1) is to compute possible argument instan-
tiations for the provers commands in dependence of the dynamically changing
partial proof tree. The task of the top layer (cf. the upper part of Fig. 1) is to
collect the most appropriate suggestions from the bottom layer, to heuristically
sort them and to present them to the user.

The bottom layer consists of societies of argument agents where each so-
ciety belongs to exactly one command associated with a proof tactic (a more
formal notion of proof tactic is introduced in Sec. 3.1). On the one hand each
argument agent has its own intention, namely to search in the partial proof for
a proof line that suits a particular specification. On the other hand argument
agents belonging to the same society also pursue a common goal, e.g.. to cooper-
atively compute most complete argument suggestions (cf. the concept of partial
argument instantiations in Sec. 3.1) for their associated command. Therefore
the single agents of a society exchange their particular results via a suggestion
blackboard and try to complete each others suggestions.

The top layer consists of a single society of command agents which steadily
monitor the particular suggestion blackboards on the bottom layer. For each
suggestion blackboard there exists one command agent whose intention is to



[Commands|
Command =gubst (:L2,u:L1,pL:(1))
Blackboard Lio(conc: Lo ,,prems:(L1)) | - Interface —»
message: goal is HO
3 \
/ \ Classif. Agent
Command
AgthS Q::subs[, Q:VE Q:LEO
: LEO
—subst Vg
Suggestion Esfiz)ufill )
Blackboards IRE et oo B8l is HO
goal is HO &
Societies of / \ \ \
Argument Q[(‘Z=“ Q[gq R
eents 2t o gn 0
{su} T {su} “p,c}

Fig. 1. The two layered suggestion mechanism.

determine the most complete suggestions and to put them on the command
blackboard.

The whole distributed agent mechanism runs always in the background of
the interactive theorem proving environment thereby constantly producing com-
mand suggestions that are dynamically adjusted to the current proof state. At
any time the suggestions on the command blackboard are monitored by an in-
terface component which presents them heuristically sorted to the user via a
graphical user interface. As soon as the user executes a command the partial
proof is updated and simultaneously the suggestion and command blackboards
are reinitialized.

3.1 Partial Argument Instantiations

The data that is exchanged within the blackboard architecture heavily depends
on a concept called a partial argument instantiation of a command. In order to
clarify our mechanism we need to introduce this concept in detail.

In an interactive theorem prover such as IMEGA one has generally one com-
mand associated with each proof tactic that invokes the application of this tactic
to a set of proof lines. In IMEGA these tactics have a fixed outline, i.e. a set
of premise lines, conclusion lines and additional parameters, such as terms or
term-positions. Thus the general instance of a tactic 7 can be formalized in the

following way:
J Ry



where we call the P;, C;, @y the formal arguments of the tactic T (we give an
example below).

We can now denote the command ¢ invoking tactic 7 formally in a sirnilar
fashion as

Pir - Piy
GG, HQhy - Q)

where the formal arguments p;, ¢;, gx of ¢ correspond to a subset of the formal
arguments of the tactic. To successfully execute the command some, not neces-
sarily all, formal arguments have to be instantiated with actual arguments, e.g.,
proof lines. A set of pairs relating each formal argument of the command to
an (possibly empty) actual argument is called a partial argument instantiation
(PAT).

We illustrate the idea of a PAT using the tactic for equality substitution =gy ps
and its corresponding command =Subst as an example.

Plz] z=y . u eq
— T =gupst (P*) — 5 —Subst(pl)

Here @[x] is an arbitrary higher order formula with at least one occurrence of
the term «, P* is a list of term-positions representing one or several occurrences
of z in &, and H'[y] represents the term resulting from replacing « by y at all
positions P* in &. u, eq, s and pl are the corresponding formal arguments of
the command associated with the respective formal arguments of the tactic. We
observe the application of this tactic to line Lo of our example:

Li bk (p(anbd)) Hyp

L, auk (p(Aa)) Open

One possible PAI for =Subst is the set of pairs (u:L1, eq:€, s: Lo, pl:€), where
€ denotes the empty or unspecified actual argument. We omit writing pairs
containing e and, for instance, write the second possible PAI of the above example
as (u:Ly, s:La, pl:({1))). To execute =Subst with the former PAI the user would
have to at least provide the position list, whereas using the latter PAT results in
the line Lz of the example containing the equation.

3.2 Argument Agents

The idea underlying our mechanism to suggest commands is to compute PAIs
as complete as possible for each command, thereby gaining knowledge on which
tactics can be applied combined with which argument instantiations in a given
proof state.

The main work is done by the societies of cooperating Argument Agents
at the bottom layer (cf. Fig. 1). Their job is to retrieve information from the
current proof state either by searching for proof lines which comply with the
agents specification or by computing some additional parameter (e.g., a list of
sub-term positions) with already given information. Sticking to our example we



can informally specify the agents 2%, g7, AL . and Qlflu s for the =Subst
command (cf. [4] for a formal specification):

Qs — {ﬁnd an open line # and a support line s that differ}
@ ~ lonly wrt. occurrences of a single proper sub-term

ngq = {ﬁnd a support line eq which is an equation}
Qe — {ﬁnd a support line eq which is an equation}
{w,s} 7 \suitable for rewriting u into s

Ql?i’s} = {compute the positions where s and u differ}

The attached superscripts specify the formal arguments of the command for
which actual arguments are computed, whereas the indices denote sets of formal
arguments that necessarily have to be already present in some PAI so that the
agent can carry out its own computations. For example agent Ql?i,s} only starts
working when it detects a PAI on the blackboard where actual arguments for u
and s have been instantiated. On the contrary ngq does not need any additional
knowledge in order to pursue its task to retrieve an open line containing an
equation as formula.

The agents themselves are realized as autonomous processes that concur-
rently compute their suggestions and are triggered by the PAIs on the black-
board, i.e. the results of other agents of their society. For instance both agents.
Q[f{“ft’s} and Qlﬁ,s}, would simultaneously start their search as soon as 23" has
returned a result. The agents of one society cooperate in the sense that they
activate each other (by writing new PAIs to the blackboard) and furthermore
complete each others suggestions.

Conflicts between agents do not arise, as agents that add actual parameters
to some PAI always write a new copy of the particular PAI on the blackboard,
thereby keeping the original less complete PAI intact. The agents themselves
watch their suggestion blackboard (both PAI entries and additional messages)
and running agents terminate as soon as the associated suggestion blackboard
is reinitialized, e.g., when a command has been executed by the user.

The left hand side of Fig. 1 illustrates our above example: The topmost
suggestion blackboard contains the two PAIs: (u:Ly, s:Ls) computed by agent
Ay® and (u:Ly, 5:La,pl:((1))) completed by agent Ql?‘i,s}.

In the current implementation argument agents are declaratively specified.
This strongly eases modification and enhancement of already given argument
agents as well as the addition of new ones, even at run time.

3.3 Command Agents

In the society of command agents every agent is linked to a command and its task
is to initialize and monitor the associated suggestion blackboards. Its intention is
to select among the entries of the associated blackboard the most complete and
appropriate PAT and to pass it, enriched with the corresponding command name
to the command blackboard. That is, as soon as a PAI is written to the related



blackboard that has at least one actual argument instantiated, the comrmand
agent suggests the command as applicable in the current proof state, providing
also the PAT as possible argument instantiations. It then updates this suggestion,
whenever a better PAI has been computed. In this context better generally means
a PAI containing more actual arguments. In the case of our example the current
PAT suggested by command agent €_gypst 1S (u: Ly, 8:La, pl:({1))).

These suggestions are accumulated on a command blackboard, that simply
stores all suggested commands together with the proposed PAI continuously
handles updates of the latter, sorts and resorts the single suggestions and pro-
vides a means to propose them to the user. In the case of the QMEGA-system
this is achieved in a special command suggestion window within the graphical
user interface LOUZ [18]. The sorting of the suggestions is done according to
several heuristic criteria, one of which is that commands with fully instantiated
PAIs are always preferred as their application may conclude a whole subproof.

3.4 Experiences

Unfortunately, computations of single agents themselves can be very costly. Re-
consider the agents of command =Subst: In QMEGA we have currently 25 differ-
ent argument agents defined for =Subst where some are computationally highly
expensive. For example, while the agent 2;? only tests head symbols of formu-
las during its search for lines containing an equation and is therefore relatively
inexpensive, the agent 2;"* performs computationally expensive matching oper-
ations. In large proofs agents of the latter type might not only take a long time
before returning any useful result, but also will absorb a fair amount of system
resources, thereby slowing down the computations of other argument agents.

[4] already tackles this problem partially by introducing a focusing technigue
that explicitly partitions a partial proof into subproblems in order to guide the
search of the agents. This focusing technique takes two important aspects into
account:

(i) A partial proof often contains several open subgoals and humans usually
focus on one such subgoal before switching to the next.

(ii) Hypotheses and derived lines belonging to an open subgoal are chronologi-
cally sorted where the interest focuses on the more recently introduced lines.

Hence, the agents restrict their search to the actual subgoal (actual focus) and
guide their search according to the chronological order of the proof lines.

4 Resource Adapted Approach

Since agents are implemented as independent threads a user can interrupt the
suggestion process by choosing a command at any time without waiting for all
possible suggestions to be made. An agent then either quits its computations
regularly or as soon as it detects that the blackboard it works for has been



reinitialized, when the user has executed a command. It then performs all fur-
ther computations with respect to the reinitialized blackboard. However, with
increasing size of proofs sorne agents never have the chance to write meaningful
suggestions to a blackboard. Therefore, these agents should be excluded from
the suggestion process altogether, especially if their computations are very costly
and deprives other agents of resources.

For this purpose we developed a concept of static complexity ratings where
a rating is attached to each argument and each command agent, that roughly
reflects the computational complexity involved for its suggestions. A global com-
plexity value can then be adjusted by the user permitting to suppress computa-
tions of agents, whose ratings are larger than the specified value. Furthermore,
commands can be completely excluded from the suggestion process. For exam-
ple, the agent A;* has a higher complexity rating than 23* from the =Subst
examnple, since recursively matching terms is generally a harder task than re-
trieving a line containing an equation. The overall rating of a command agent is
set to the average rating of its single argument agents.

Although this rating system increased the effectiveness of the command sug-
gestions, it is very inflexible as ratings are assigned by the programmer of a
particular agent only. It is neither designed nor intended for being adjusted
by the user at runtime as steadily controlling, e.g., more than 500 agents (this
amount is easily reached by an interactive prover with only 50 tactics and an
average of 10 agents per associated command) would rather divert the users
attention from his main intention, namely interactively proving theorems. Any-
way, since choosing an appropriate complexity rating depends on run-time and
computational performance, i.e. it is on a sub-symbolic level, the user should be
as far as possible spared from this kind of fine-tuning of the mechanism.

5 Resource Adaptive Approach

In this section we extend the resource adapted approach into a resource adap-
tive one. While we retain the principle of activation/deactivation by comparing
the particular complexity ratings of the argument agents with the overall deac-
tivation threshold, we now allow the individual complexity ratings of argument
agents to be dynamically adjusted by the system itself. Furthermore, we intro-
duce a special classification agent which analyzes and classifies the current proof
goal in order to deactivate those agents which are not appropriate with respect
to the current goal.

5.1 Dynamic Adjustment of Ratings

The dynamic adjustment takes place on both layers: On the bottom layer we
allow the argument agents to adjust their own ratings by reflecting their perfor-
mance and contributions in the past. On the other hand the command agents
on the top layer adjust the ratings of their associated argument agents. This is



motivated by the fact that on this layer it is possible to compare the performance
and contribution of agent societies of the bottomn layer.

Therefore, agents need an explicit concept of resources enabling them to
communicate and reason about their performance. The communication is a-
chieved by propagating resource informations from the bottom to the top layer
and vice versa via the blackboards. The actual information is gathered by the
agents on the bottom layer of the architecture. Currently the argument agents
evaluate their effectiveness with respect to the following two measures:

1. the absolute cpu time the agents consume, and
2. ‘the patience of the user’, before executing the next command.

(1.) is an objective measure that is computed by each agent at runtime. Agents
then use these values to compute the average cpu time for the last n runs and
convert the result into a corresponding complexity rating.

Measure (2.) is rather subjective which expresses formally the ability of an
agent to judge whether it ever makes contributions for the command suggesting
process in the current proof state. Whenever an agent returns from a computa-
tion without any new contribution to the suggestion blackboard, or even worse,
whenever an agent does not return before the user executes another command
(which reinitializes the blackboards), the agent receives a penalty that increases
its complexity rating. Consequently, when an agent fails to contribute several
times in a row, its complexity rating quickly exceeds the deactivation threshold
and the agent retires.

Whenever an argument agent updates its complexity rating this adjustment
is reported to the corresponding command agent via a blackboard entry. The
command agent collects all these entries, computes the average complexity rat-
ing of his argument agents, and reports the complete resource information on his
society of argument agents to the command blackboard. The command black-
board therefore steadily provides information on the effectiveness of all active
argument agents, as well as information on the retired agents and an estimation
of the overall effectiveness every argument agent society.

An additional resource agent uses this resource information in order to reason
about a possibly optimal resource adjustment for the overall system, taking the
following, criteria into account:

— Assessment of absolute cpu times.

— A minimum number of argument agents should always be active. If the
number of active agents drops below this value the global complexity value
is readjusted in order to reactivate some of the retired agents.

— Agent societies with a very high average complexity rating and many retired
argument agents should get a new chance to improve their effectiveness.
Therefore the complexity ratings of the retired agents is lowered beneath
the deactivation threshold.

— In special proof states some command agent (together with their argument
agents) are excluded. For example, if a focused subproblem is a proposi-
tional logic problem, commands invoking tactics dealing with quantifiers are
needless.



Results from the resource agent are propagated down in the agent society
and gain precedence over the local resource adjustments of the single agents.

5.2 Informed Activation & Deactivation

Most tactics in an interactive theorem prover are implicitly associated with a
specific logic (e.g., propositional, first-order, or higher -order logic) or even with
a specific mathematical theory (e.g., natural numbers, set theory). This obvi-
ously also holds for the proof problems examined in a mathematical context.
Some systems — for instance the IMEGA-System — do even explicitly maintain
respective knowledge by administering all rules, tactics, etc., as well as all proof
problems within a hierarchically structured theory database. This kind of classifi-
cation knowledge can fruitfully be employed by our agent mechanism to activate
appropriate agents and especially to deactivate non-appropriate ones. Even if
a given proof problem cannot be associated with a very restrictive class (e.g.,
propositional logic) from the start, some of the subproblems subsequently gen-
erated during the proof probably can. This can be nicely illustrated with our
example: The original proof problem belonging to higher-order logic gets trans-
formed by the backward application of =7, =g bt and =2= into a very simple
propositional logic problem (cf. line Ly). In this situation agents associated with
a command from first- or higher-order logic (like =Subst, VE, or LEO*) should be
disabled, whereas other agents could use this information in order to suggest the
application of an automatic theorem prover that can efficiently deal with propo-
sitional logic. In the case of our example the mechanism would subsequently
suggest to apply OTTER on the remaining problem.

Therefore, we add a classification agent to our suggestion mechanism whose
only task is to investigate each new subgoal in order to classify it with respect to
the known theories or logics. As soon as this agent is able to associate the current
goal with a known class or theory it places an appropriate entry on the command
blackboard (cf. ”HO” entry in Fig. 1). This entry is then broadcasted to the
lower layer suggestion blackboards by the command agents where it becomes
available to all argument agents. Each argument agent can now compare its own
classification knowledge with the particular entry on the suggestion blackboard
and decide whether it should perform further computations within the current
system state or not.

The motivation for designing the subgoal classifying component as an agent
itself is clear: It can be very costly to examine whether a given subgoal belongs
to a specific theory or logic. Therefore this task should be performed concur-
rently by the suggestion mechanism and not within each initialization phase of
the blackboard mechanism. Whereas our current architecture provides one sin-
gle classification agent only, the single algorithms and tests employed by this
component can generally be further distributed by using a whole society of clas-
sification agents.

4 A higher-order theorem prover integrated in QMEGA.



By appropriately extending the message passing and comrmunication facilities
of the agents, respectively the blackboards, it will even be possible to pass control
knowledge (e.g., abstract knowledge on the recent proof atternpt as a whole)
from (MEGA’s conceptual proof planning layer successively to the parameter and
command agent layer. This extension of our mechanism may then be employed
by QMEGA’s proof planner itself to concurrently compute all applicable proof
methods (with all possible instantiations) with respect to the available control
knowledge instead of using traditional sequential techniques for this purpose.

6 Conclusion and Future Work

In this paper we reported on the extension of the concurrent command suggestion
mechanism [4] to a resource adaptive approach. The resources that influence the
performance of our system are:

(i) The available computation time and memory space.
(ii) Classification knowledge on the single agents and the agent societies.
(iii) Criteria and algorithms available to the classification agent.

Our approach can be considered as an instance of a boundedly rational sys-
tem [20,19]. The work is also related to [12] which presents an abstract resource
concept for multi-layered agent architectures. [15] describes a successful applica-
tion of this framework within the Robocup simulation. Consequently some future
work should include a closer comparison of our mechanism with this work.

The idea to use parallel processing within automated deduction dates back to
the seventies [17]. Recent work is mainly on frameworks for concurrent or coop-
erating automated theorem provers [9, 8, 7]. These frameworks generally involve
only a very limited number of single reasoning agents. However, there are al-
ready some attempts to introduce full-scale multi-agent technology within proof
planning [10].

In contrast, our work is, at least initially, not designed for realizing agent-
based automated theorem proving but for assisting the user in interactive theo-
rem proving. Our suggestion mechanism enhances traditional user support with
the following features:

Flexibility The user can choose freely among several given suggestions and
can even communicate with the system about parameter instantiations (by
pre-specifying particular instantiations as constraints for the mechanism).

Anytime character At any given point the command blackboard contains the
heuristically best-rated suggestions with respect to state of the parameter
agents’ computations.

Robustness Single faulty agent specifications have only a minor influence on
the quality of the overall suggestion mechanism and in contrast to a tra-
ditional sequential mechanisms semi-decidable specification criteria can be
employed.



Expandability The sketched mechanism is not restricted to rules and tactics
and can be applied to arbitrary commands (e.g., to support an intelligent
flag-setting for external/internal reasoners with respect to the current proof
state).

User adaptability Expert-users may define their own suggestions agents. It
should be possible to extend the approach such that it takes particular user
preferences for certain commands (types of proofs) into account.

The presented extensions are currently implemented and analyzed in QMEGA.
This might yield further possible refinements of the resource concepts to improve
the performance of the mechanism. Another question in this context is, whether
learning techniques can support our resource adjustments on the top layer, as
it seems to be reasonable that there even exist appropriate resource patterns
for the argument agents in dependence of the focused subproblem. We speculate
that the presented mechanism can be further extended to form an intelligent,
resource- and user-adaptive partner for the user in an interactive theorem prover.

Another application we are currently investigating is the use of the agent
mechanism within a proof planning scenario as introduced in [6]. Since the ap-
proach is not restricted to specify applicability conditions for rules and tactics
only, it can analogously be employed for proof methods as well. So far the specifi-
cation of the argument agents for rules and tactics describes structural properties
of single arguments as well as structural dependencies between the different argu-
ments. Similarly we can specify agents which check, probably guided by available
control knowledge, the particular pre-conditions of a proof method, i.e. check for
proof lines matching with those required for a method to be applicable or verify
additional application conditions of the method. Thus the hope is that we can at
least to some extend exploit concurrency even within a traditional proof planner
when computing the applicable methods with respect to the given proof goal by
cooperating argument agents in each proof step [3].

Acknowledgments We would like to thank Serge Autexier and Christoph Jung
for stimulating discussions.

References

1. P. B. Andrews. An Introduction To Mathematical Logic and Type Theory: To
Truth Through Proof. Academic Press, San Diego, CA, USA, 1986.

2. Peter B. Andrews, Matthew Bishop, Sunil Issar, Dan Nesmith, Frank Pfenning,
and Hongwei Xi. TpS: A Theorem Proving System for Classical Type Theory.
Journal of Automated Reasoning, 16(3):321-353, 1996.

3. C. Benzmiiller, L. Cheikhrouhou, D. Fehrer, A. Fiedler, X. Huang, M. Kerber,
M. Kohlhase, K. Konrad, E. Melis, A. Meier, W. Schaarschmidt, J. Siekmann, and
V. Sorge. QMega: Towards a Mathematical Assistant. In W. McCune, editor,
Proceedings of the 14th Conference on Automated Deduction (CADE-14), LNAI,
Townsville, Australia, 1997. Springer Verlag, Berlin, Germany.



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

Christoph Benzmiiller and Volker Sorge. A Blackboard Architecture for Guiding
Interactive Proofs. In F. Giunchiglia, editor, Artificial Intelligence: Methodology,
Systems and Applications, Proceedings of the of the 8th International Conference
AIMSA’98, number 1480 in LNAI, pages 102-114, Sozopol, Bulgaria, October 1998.
Springer Verlag, Berlin, Germany.

Christoph Benzmiiller and Volker Sorge. Towards Fine-Grained Proof Planning
with Critical Agents. In Manfred Kerber, editor, Informal Proceedings of the Sizth
Workshop on Automated Reasoning Bridging the Gap between Theory and Practice
in congunction with AISB’99 Convention, pages 20-22; Edinburgh, Scotland, 8-9
April 1999. extended abstract.

A. Bundy. The Use of Explicit Plans to Guide Inductive Proofs. In E. Lusk
and R. Overbeek, editors, Proceedings of the 9th International Conference on Au-
tomated Deduction (CADE-9), volume 310 of LNCS, Argonne, IL, USA, 1988.
Springer Verlag, Berlin, Germany.

Jorg Denzinger and Ingo Dahn. Cooperating theorem provers. In Wolfgang Bibel
and Peter Schmitt, editors, Automated Deduction — A Basis for Applications, vol-
ume 2, pages 483-416. Kluwer, 1998.

Jorg Denzinger Dirk Fuchs. Knowledge-Based Cooperation between Theorem
Provers by TECHS. SEKI REPORT SR-97-11, Fachbereich Informatik, Universitét
Kaiserslautern, 1997.

Michael Fisher. An Open Approach to Concurrent Theorem Proving. In J. Geller,
H. Kitano, and C. Suttner, editors, Parallel Processing for Artificial Intelligence,
volume 3. Elsevier/North Holland, 1997.

Michael Fisher and Andrew Ireland. Multi-agent proof-planning. In Workshop on
Using AI Methods in Deduction at CADE-15, July 6-9 1998.

G. Gentzen. Untersuchungen iiber das Logische Schlieflen I und II. Mathematische
Zestschrift, 39:176-210, 405431, 1935.

C. Gerber and C. G. Jung. Resource management for boundedly optimal agent
societies. In Proceedings of the ECAI’98 Workshop on Monitoring and Control of
Real-Time Intelligent Systems, pages 23-28, 1998.

M. J. Gordon, R. Milner, and Ch. P. Wadsworth. Edinburgh LCF: A Mechanized
Logic of Computation, volume 78 of LNCS. Springer Verlag, Berlin, Germany,
1979.

M. J. C. Gordon and T. F. Melham. Introduction to HOL. Cambridge University
Press, Cambridge, United Kingdom, 1993.

C. G. Jung. Experimenting with layered, resource-adapting agents in the robocup
simulation. In Proc. of the ROBOCUP’38 Workshop, 1998.

William McCune and Larry Wos. Otter CADE-13 competition incarnations. Jour-
nal of Automated Reasoning, 18(2):211-220, 1997. Special Issue on the CADE-13
Automated Theorem Proving System Competition.

Stuart C. Shapiro. Compiling Deduction Rules from a Semantic Network into a
Set of Process. In Abstracts of Workshop on Automated Deduction, Cambridge,
MA, USA, 1977. MIT. Abstract only.

J. Siekmann, S. M. Hess, C. Benzmiiller, L. Cheikhrouhou, D. Fehrer, A. Fiedler,
M. Kohlhase, K. Konrad, E. Melis, A. Meier, and V. Sorge. LQUZ: A Distributed
Graphical User Interface for the Interactive Proof System (QMEGA. Submitted to
the International Workshop on User Interfaces for Theorem Provers, 1998.

H. A. Simon. Models of Bounded Rationality. MIT Press, Cambridge, 1982.

S. Zilberstein. Models of Bounded Rationality. In AAAI Fall Symposium on
Rational Agency, Cambridge, Massachusetts, November 1995.



