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Abstract. Classical higher-order logic is suited as a meta-logic in which
a range of other logics can be elegantly embedded. Interactive and au-
tomated theorem provers for higher-order logic are therefore readily ap-
plicable. By employing the approach the automation of a variety of am-
bitious logics has recently been pioneered, including variants of first-
order and higher-order quantified multimodal logics and conditional log-
ics. Moreover, the approach supports the automation of meta-level rea-
soning, and it sheds some new light on meta-theoretical results such
as cut-elimination. Most importantly, however, the approach is relevant
for practice: it has recently been successfully applied in a series of ex-
periments in metaphysics in which higher-order theorem provers have
actually contributed some new knowledge.

In 2008, in a collaboration with Larry Paulson, I have started to study em-
beddings of first-order and higher-order quantified multimodal logics in classical
higher-order logic (HOL) [15,17]. Key motivation has been the automation of
non-classical logics for which no automated theorem provers (ATPs) were avail-
able till then. Together with colleagues and students the approach has since been
further developed and adapted for a range of other non-classical logics [16, 3, 10,
19,2,12,6,4,20,22,9,8,40]. A recent highlight has been the application of the
approach to a prominent and widely discussed argument in metaphysics: Kurt
Godel’s ontological argument for the existence of God [14,13]. This work, con-
ducted jointly with Bruno Woltzenlogel Paleo (TU Vienna, Austria; now ANU
Canberra, Australia), received a media repercussion on a global scale. The logic
embedding approach has been central to this success.

Section 1 outlines the main advantages of the approach, and Section 2 dis-
cusses some key results from our application studies in metaphysics.

1 Advantages of the logic embedding approach

Pragmatics and convenience. ’Implementing’ an interactive or automated theo-
rem prover is made very simple, even for very challenging quantified non-classical
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logics. The core idea is to introduce the connectives (and meta-level predicates
such as ‘validity’) of the embedded logic as abbreviations of certain lambda terms
in HOL, for example, by encoding Kripke style semantics. Exemplary embed-
dings for various challenging logics have been discussed in the papers referenced
above. Amongst these logics are variants of conditional logic, multimodal logic,
intuitionistic logic, hybrid logic, tense logic, paraconsistent logic, etc. For the
mentioned application in metaphysics it is has been particularly important to
mechanise variants of higher-order modal logics (HOML).

Flexibility. The approach is flexible and supports rapid experimentations with
logic variations. For example, quantifiers for constant, varying and cumulative
domains may be introduced, rigid or non-rigid terms may be considered. More-
over, in order to arrive at particular modal logics such as S4 or S5 from base logic
K, respective Sahlqvist axioms may be postulated. Alternatively (and prefer-
ably), one may simply state the corresponding conditions (like symmetry, reflex-
ivity and transitivity) of the accessibility relation directly in HOL. Analogous
logic axiomatisations are possible for e.g. conditional logics. Moreover, to sup-
port multiple modalities, indexed box operators (the indices being accessibility
relations) can be formalised and different combination schemes are possible. Fur-
thermore, prominent connections between logics can be formalised and exploited.
For example, Fig. 2 in [18] shows how the modal O-operator can be defined in
terms of conditional implication.

Avwailability. The embedding approach is readily available. Option one is to reuse
and adapt the TPTP THFO [39] encodings of the various logic embeddings as
provided in our papers (see e.g. Fig.1 in [22]). This turns any THF0-compliant
prover, such as LEO-II [18], Satallax[27] or Nitpick [26], into a reasoner for the
embedded logic. Note that a range of prominent THFO0 provers can even be ac-
cessed remotely via Geoff Sutcliffe’s SystemOnTPTP infrastructure [38]. Options
two and three are to reuse and adapt our Isabelle [32] and Coq [24] encodings
(see e.g. Sections 4.2 and 4.3 in [22]). This turns these prominent systems into
proof assistants for the embedded logics, and tools like Sledgehammer [25] can
be employed to call external HOL ATPs. In many experiments we have even
employed these three options simultaneously.

Relation to labelled deductive systems. The embedding approach is related to
labelled deductive systems [29], which employ meta-level (world-)labelling tech-
niques for the modeling and implementation of non-classical proof systems. In
the embedding approach such labels are instead encoded directly in the HOL
logic; no extra-logical annotations are required.

Relation to the standard translation. The embedding of modal logics in our ap-
proach is related to the standard relational translation [33]. In fact, (for proposi-
tional modal logics) the approach can be seen as intra-logical formalisation and
implementation of the standard translation in terms of a set of (equational) ax-
ioms or definitions in HOL. However, in our work we have extended the approach



to various other logics, and, in particular, to support first-order and higher-order
quantification including different domain conditions. Future work could investi-
gate whether the functional translation [34] could provide a suitable alternative
to the current relational core of the approach.

Soundness and completeness. The embedding approach has been shown sound
and complete for a range of different logics, see e.g. [17,4,14]. The reference
semantics for HOL has been Henkin semantics, that is, the semantics that is
also supported by THF0 compliant higher-order provers [11].

Meta-reasoning. Reasoning about logics and about logic relationships is sup-
ported in the embedding approach. For example, a systematic verification of the
modal logic cube in Isabelle is presented in [9] and Fig. 10 in [22] illustrates the
verification of some meta-level results on description logic ALC (soundness of
the usual ALC tableaux rules and correspondence between ALC and base modal
logic K). Some meta-level results for conditional logics are presented in [22].

Cut-elimination. At a proof-theoretic level, the approach gives rise to a very
generic (but indirect) cut-elimination result for the embedded logics [5]. This
work combines the soundness and completeness results mentioned above with
the fact that HOL already enjoys cut-elimination for Henkin semantics [7].

Direct calculi and user intuition. The approach supports the additional imple-
mentation of ‘direct’ proof calculi on top of the respective logic embeddings.
For example, in [23] the implementation of a natural deduction style calculus for
HOML in Coq is presented; the rules of this calculus are modeled as abstract-level
tactics on top of the underlying embedding of HOML in Coq. Human intuitive
proofs are thereby enabled at the interaction layer, and proofs developed at that
level are directly verified by expanding the embedding in HOL. Automation at-
tempts with HOL ATPs can be handled as before. The combination of the direct
approach and the embedding approach thus provides an interesting perspective
for mixed proof developments. Future work could also investigate whether proof
planning [31, 28] can be employed to additionally automate the abstract-level
direct proof calculi. Proof assistants in the style of 2mega [36] could eventually
be adapted for this, and f2mega’s support for 3-dimensional proof objects might
turn out particularly useful in this context.

2 Results from recent applications in metaphysics

In recent work [14,13] we have applied the embedding approach to investigate
a philosophical argument that has fascinated philosophers and theologians for
about 1000 years: the ontological argument for the existence of God [37].

Our initial focus was on Godel’s [30] modern version of this argument (which
is in the tradition of the work of Anselm of Canterbury) and on Scott’s [35] mod-
ification. Both employ a second-order modal logic (S5) for which, until now, no
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% S5Z5 output end CNFRefutation

%iciciex End of derivation protocol seikk
%k no. of clauses in derivation: 97 sesex
%ok clause counter: 113 seess

Fig. 1. Excerpt of LEO-IT’s inconsistency proof (for Gédel’s variant of the ontological

argument).

theorem provers were available. In our computer-assisted study of the argument,
the HOL ATPs LEO-II, Satallax and Nitpick have made some interesting obser-
vations [14]; the respective TPTP THFO0 formalisation and further information
is available online at http://github.com/FormalTheology/GoedelGod// .

In particular LEO-II was extensively used during the formalisation, and it

was the first prover to fully automate the four steps as described in the notes on

Godel’s proof by Dana Scott [35]. LEO-II’s result was subsequently confirmed
by Satallax. Interestingly, LEO-II can prove that Godel’s original axioms [30]

are inconsistent: in these notes definition D2 (An essence of an individual is a

property possessed by it and necessarily implying any of its properties: ¢ ess. x <>
d(z) ANYY[Y(x) — OVy(o(y) — ¥ (y))]) is lacking conjunct ¢(x), which has been

added by Scott. Godel’s axioms are consistent only with this conjunct present.
LEO-II’s inconsistency result is new; it has not been reported in philosophy

publications.
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Fig. 2. Reconstruction and verification of LEO-II’s inconsistency argument (for Godel’s
variant of the ontological argument) in Isabelle.

Unfortunately, I have for a long time not been able to extract the key ideas of
LEO-IT’s inconsistency proof. This has been due to a combination of aspects, in-
cluding LEO-IT’s machine oriented (extensional) resolution calculus, the prover’s
human-unfriendly presentation of the generated proof object (cf. Fig. 1), and
LEQ’s complex collaboration with external first-order ATPs, which could not
easily be made fully transparent in the given case.

However, inspired by a discussion with Chad Brown on LEO-II’s proof, we
have recently been able to extract the core argument and reformulated and
verified it as a human friendly, three step inconsistency argument in Isabelle.
This reconstructed, intuitive argument can now even be automated with Metis;
see Fig. 2. There are two core lemmata introduced, which, once they are revealed
and experienced, appear very plausible (“the empty property is an essence of
every individual” and “exemplification of necessary existence is not possible”).

In the meantime, the HOL-ATPs have been successfully employed in further
related experiments in metaphysics [21]. This includes the study and verification
resp. falsification of follow-up papers on Goédel’s work, which try to remedy a
fundamental critique on the argument known as the modal collapse (this was
brought up by Anderson [1]; the HOL ATPs reconfirmed it in our experiments):



both, Godel’s and Scott’s formalisations, imply that V¢(¢ — [¢) holds, i.e.
contigent truth implies necessary truth.

3

Summary

The embedding approach has many interesting advantages and it provides the
probably most universal theorem proving approach to date that has actually
been implemented and employed.

A key observation from our experiments in metaphysics is that the granularity

levels of the philosophical arguments in the various papers we looked at is already
well matched by today’s automation capabilities of HOL ATPs. In nearly all
cases the HOL ATPs either quickly confirmed the single argumentation steps
or they presented a countermodel. This provides a good motivation for further
application studies (not only) in metaphysics.

References

1.

2.

10.

11.

C. Anderson. Some emendations of Godel’s ontological proof. Faith and Philosophy,
7(3), 1990.

C. Benzmiiller. Automating access control logic in simple type theory with LEO-
II. In D. Gritzalis and J. Lépez, editors, SEC' 2009, volume 297 of IFIP, pages
387-398. Springer, 2009.

C. Benzmiiller. Combining and automating classical and non-classical logics in
classical higher-order logic. Annals of Mathematics and Artificial Intelligence, 62(1-
2):103-128, 2011.

C. Benzmiiller. Automating quantified conditional logics in HOL. In F. Rossi,
editor, IJCAI 2013, pages 746-753, Beijing, China, 2013.

C. Benzmiiller. Cut-free calculi for challenge logics in a lazy way. In C. N. Clint van
Alten, Petr Cintula, editor, Proceedings of the International Workshop on Algebraic
Logic in Computer Science, 2013.

C. Benzmiiller. A top-down approach to combining logics. In ICAART 20183, pages
346-351, Barcelona, Spain, 2013. SciTePress Digital Library.

C. Benzmiiller. Higher-order automated theorem provers. In D. Delahaye and
B. Woltzenlogel Paleo, editors, All about Proofs, Proof for All, Mathematical Logic
and Foundations, pages 171-214. College Publications, London, UK, 2015.

C. Benzmiiller. HOL provers for first-order modal logics — experiments. In
C. Benzmuiiller and J. Otten, editors, ARQNL@IJCAR 201/, EPiC Series. Easy-
Chair, 2015. To appear.

C. Benzmiiller, M. Claus, and N. Sultana. Systematic verification of the modal
logic cube in Isabelle/HOL. In C. Kaliszyk and A. Paskevich, editors, PzTP 2015,
Berlin, Germany, 2015. EPTCS. To appear.

C. Benzmiiller, D. Gabbay, V. Genovese, and D. Rispoli. Embedding and automat-
ing conditional logics in classical higher-order logic. Annals of Mathematics and
Artificial Intelligence, 66(1-4):257-271, 2012.

C. Benzmiiller and D. Miller. Automation of higher-order logic. In D. M. Gabbay,
J. H. Siekmann, , and J. Woods, editors, Handbook of the History of Logic, Volume
9 — Computational Logic, pages 215-254. North Holland, Elsevier, 2014.



12

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

C. Benzmiiller, J. Otten, and T. Raths. Implementing and evaluating provers
for first-order modal logics. In L. D. Raedt, C. Bessiere, D. Dubois, P. Doherty,
P. Frasconi, F. Heintz, and P. Lucas, editors, ECAI 2012, volume 242 of Frontiers in
Artificial Intelligence and Applications, pages 163-168, Montpellier, France, 2012.
IOS Press.

C. Benzmiiller and B. W. Paleo. Gédel’s God in Isabelle/HOL. Archive of Formal
Proofs, 2013, 2013.

C. Benzmiiller and B. W. Paleo. Automating Gédel’s ontological proof of God’s ex-
istence with higher-order automated theorem provers. In T. Schaub, G. Friedrich,
and B. O’Sullivan, editors, FCAI 201}, volume 263 of Frontiers in Artificial Intel-
ligence and Applications, pages 93 — 98. IOS Press, 2014.

C. Benzmiiller and L. Paulson. Exploring properties of normal multimodal logics
in simple type theory with LEO-II. In C. Benzmiiller, C. Brown, J. Siekmann, and
R. Statman, editors, Reasoning in Simple Type Theory — Festschrift in Honor of
Peter B. Andrews on His 70th Birthday, Studies in Logic, Mathematical Logic and
Foundations, pages 386-406. College Publications, 2008.

C. Benzmiiller and L. Paulson. Multimodal and intuitionistic logics in simple type
theory. The Logic Journal of the IGPL, 18(6):881-892, 2010.

C. Benzmiiller and L. Paulson. Quantified multimodal logics in simple type theory.
Logica Universalis (Special Issue on Multimodal Logics), 7(1):7-20, 2013.

C. Benzmiiller, L. C. Paulson, N. Sultana, and F. Theif. The higher-order prover
LEO-II. Journal of Automated Reasoning, 2015. To appear.

C. Benzmiiller and A. Pease. Higher-order aspects and context in SUMO. Journal
of Web Semantics (Special Issue on Reasoning with context in the Semantic Web),
12-13:104-117, 2012.

C. Benzmiiller and T. Raths. HOL based first-order modal logic provers. In K. L.
McMillan, A. Middeldorp, and A. Voronkov, editors, LPAR 2013, volume 8312 of
LNCS, pages 127-136, Stellenbosch, South Africa, 2013. Springer.

C. Benzmiiller, L. Weber, and B. Woltzenlogel Paleo. Computer-assisted analysis
of the Anderson-Héjek ontological controversy. In R. S. Silvestre and J.-Y. Béziau,
editors, Handbook of the 1st World Congress on Logic and Religion, Joao Pessoa,
Brasil, pages 53-54, 2015.

C. Benzmiiller and B. Woltzenlogel Paleo. Higher-order modal logics: Automation
and applications. In A. Paschke and W. Faber, editors, Reasoning Web 2015,
number 9203 in LNCS, pages 1-43, Berlin, Germany, 2015. Springer. To appear.
C. Benzmiiller and B. Woltzenlogel Paleo. Interacting with modal logics in the
coq proof assistant. In CSR 2015, volume 9139 of LNCS, pages 398-411. Springer,
2015. To appear.

Y. Bertot and P. Casteran. Interactive Theorem Proving and Program Develop-
ment. Springer, 2004.

J. Blanchette, S. Bohme, and L. Paulson. Extending Sledgehammer with SMT
solvers. Journal of Automated Reasoning, 51(1):109-128, 2013.

J. C. Blanchette and T. Nipkow. Nitpick: A counterexample generator for higher-
order logic based on a relational model finder. In M. Kaufmann and L. C. Paulson,
editors, ITP 2010, volume 6172 of LNCS, pages 131-146. Springer, 2010.

C. E. Brown. Satallax: An automated higher-order prover. In B. Gramlich,
D. Miller, and U. Sattler, editors, JCAR 2012, volume 7364 of LNCS, pages 111 —
117. Springer, 2012.

A. Bundy. The use of explicit plans to guide inductive proofs. In E. L. Lusk
and R. A. Overbeek, editors, CADE 1988, volume 310 of LNCS, pages 111-120.
Springer, 1988.



29. D. M. Gabbay. Labelled Deductive Systems. Clarendon Press, 1996.

30. K. Godel. Appz.A: Notes in Kurt Gédel’s Hand, pages 144-145. In [37], 2004.

31. E. Melis, A. Meier, and J. H. Siekmann. Proof planning with multiple strategies.
Artif. Intell., 172(6-7):656-684, 2008.

32. T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL - A Proof Assistant for
Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

33. H. J. Ohlbach. Semantics-based translation methods for modal logics. Journal of
Logic and Computation, 1(5):691-746, 1991.

34. H. J. Ohlbach and R. A. Schmidt. Functional translation and second-order frame
properties of modal logics. Journal of Logic and Computation, 7(5):581-603, 1997.

35. D. Scott. Appz.B: Notes in Dana Scott’s Hand, pages 145-146. In [37], 2004.

36. J. H. Siekmann, C. Benzmiiller, and S. Autexier. Computer supported mathematics
with omega. J. Applied Logic, 4(4):533-559, 2006.

37. J. Sobel. Logic and Theism: Arquments for and Against Beliefs in God. Cambridge
U. Press, 2004.

38. G. Sutcliffe. The TPTP problem library and associated infrastructure. Journal of
Automated Reasoning, 43(4):337-362, 2009.

39. G. Sutcliffe and C. Benzmiiller. Automated reasoning in higher-order logic using
the TPTP THF infrastructure. Journal of Formalized Reasoning, 3(1):1-27, 2010.

40. M. Wisnieski and A. Steen. Embedding of quantified higher-order nominal modal
logic into classical higher-order logic. In C. Benzmuiiller and J. Otten, editors, Pro-
ceedings on the 1st International Workshop on Automated Reasoning in Quantified
Non-Classical Logics (ARQNL), 2014.



