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Abstract. Simple type theory is suited as framework for combining
classical and non-classical logics. This claim is based on the observation
that various prominent logics, including (quantified) multimodal logics
and intuitionistic logics, can be elegantly embedded in simple type the-
ory. Furthermore, simple type theory is sufficiently expressive to model
combinations of embedded logics and it has a well understood seman-
tics. Off-the-shelf reasoning systems for simple type theory exist that can
be uniformly employed for reasoning within and about combinations of
logics.

1 Introduction

Church’s simple type theory ST T [14], also known as classical higher-order logic,
is suited as a framework for combining classical and non-classical logics. This is
what this paper illustrates.

Evidently, STT has many prominent classical logic fragments, including
propositional and first-order logic, the guarded fragment, second-order logic,
monadic second-order logic, the basic fragment of ST T, etc. Interestingly, also
prominent non-classical logics — including quantified multi-modal logics and in-
tuitionistic logic — can be elegantly embedded in ST 7. It is thus not surprising
that also combinations of such logics can be flexibly modeled within ST7T. Our
claim is furthermore supported by the fact that the semantics of STT is well un-
derstood [1,2,7,22] and that powerful proof assistants and automated theorem
provers for ST T already exist. The automation of STT currently experiences a
renaissance that has been fostered by the recent extension of the successful TPTP
infrastructure for first-order logic [29] to higher-order logic, called TPTP THF
[11, 30]. Exploiting this new infrastructure we will demonstrate how higher-order
automated theorem provers and model generators can be employed for reasoning
within and about combinations of logics.

In Sect. 2 we outline our embedding of quantified multimodal logics in ST 7T .
Further logic embeddings in S7TT are discussed in Sect. 3; our examples com-
prise intuitionistic logic, access control logics and the region connection calculus.
In Sect. 4 we illustrate how the reasoning about logics and their combinations is
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facilitated in our approach, and in Sect. 5 we employ simple examples to demon-
strate the application of our approach for reasoning within combined logics. The
performance results of our experiments with off-the-shelf, TPTP THF compliant
higher-order automated reasoning systems are presented in Sect. 6.

2 (Normal) Quantified Multimodal Logics in ST T

STT [14] is based on the simply typed A-calculus. The set T of simple types
is usually freely generated from a set of basic types {o,t} (where o is the type
of Booleans and ¢ is the type of individuals) using the right-associative function
type constructor —. Instead of {0, ¢} we here consider a set of base types {o, ¢, u},
providing an additional base type p (the type of possible worlds).

The simple type theory language STT is defined by (where «, 8, 0 € T):

8,8 = pa | Xa | (AXar88)a-p | (Sa=pta)s | (om0 50)o |

(80 Vomooo to)o | (8a =ama—o ta)o | (H(a%o)ﬂo Sa—o)o

Do denotes typed constants and X, typed variables (distinct from p,, ). Complex
typed terms are constructed via abstraction and application. Our logical con-
nectives of choice are =4, Voromo; =asa—o and (4, (for each type a)t
From these connectives, other logical connectives can be defined in the usual way
(e.g., A and =). We often use binder notation VX a. s for IT(4-0)—~0(AXax5,). We
assume familiarity with a-conversion, - and n-reduction, and the existence of
B- and Bn-normal forms. Moreover, we obey the usual definitions of free variable
occurrences and substitutions.

The semantics of STT is well understood and thoroughly documented in the
literature [1,2,7,22]. The semantics of choice for our work is Henkin semantics.

Quantified modal logics have been studied by Fitting [15] (further related
work is available by Blackburn and Marx [12] and Bratiner [13]). In contrast to
Fitting we are here not interested only in S5 structures but in the more general
case of K from which more constrained structures (such as S5) can be easily
obtained. First-order quantification can be constant domain or varying domain.
Below we only consider the constant domain case: every possible world has the
same domain. Like Fitting, we keep our definitions simple by not having function
or constant symbols. While Fitting [15] studies quantified monomodal logic, we
are interested in quantified multimodal logic. Hence, we introduce multiple O,
operators for symbols r from an index set S. The grammar for our quantified
multimodal logic QML hence is

s,t =P k(X',...,X")|2s|sVt|VX.s|VP.s|O,.s

where P denotes propositional variables, X, X¢ denote first-order (individual)
variables, and k denotes predicate symbols of any arity. Further connectives,

! This choice is not minimal (from =q—a-o all other logical constants can already be
defined [3]). It useful though in the context of resolution based theorem proving.



quantifiers, and modal operators can be defined as usual. We also obey the
usual definitions of free variable occurrences and substitutions.

Fitting introduces three different notions of Kripke semantics for QML:
QS57~, QS57, and QS57". In our work [9] we study related notions QK7 ™,
QKr, and QK7 for a modal context K, and we support multiple modalities.

STT is an expressive logic and it is thus not surprising that QML can be
elegantly modeled and even automated as a fragment of ST T. The idea of the
encoding, called oOMLTT s simple. Choose type ¢ to denote the (non-empty)
set of individuals and we reserve a second base type p to denote the (non-
empty) set of possible worlds. The type o denotes the set of truth values. Certain
formulas of type p — o then correspond to multimodal logic expressions. The
multimodal connectives =, V, and O, become A-terms of types (i — 0) = (u = 0),
(1= 0) = (= 0) = (= 0), and (1 i = 0) ~ (11 0) ~ (1 — 0) respectively.

Quantification is handled as in STT by modeling VX.p as IT(AX..p) for
a suitably chosen connective II. Here we are interested in defining two par-
ticular modal IT-connectives: IT*, for quantification over individual variables,
and IT*7°, for quantification over modal propositional variables that depend on
worlds. They become terms of type (¢ = (u — 0)) - (- o) and ((u — 0) —
(= 0)) = (1 — o) respectively.

The OMLTT modal operators —, v, O, IT*, and IT*~° are now simply de-
fined as follows:

T (p0)=(pm0) = ADpmor AW 29 W
V (1=0)=(5=0)=(10) = Abpusor Aumsor AW e OW VO W
O (o) (ps0) o (0) = ARpcspiosr ABpuss AW,a WVia mRW V V $ V
(1 (um0)) = (n=0) = ADim (o) AW VX g X W
I, o) (umo)) (o) = APpamr0)=(um0) AW e VP on 6 P W

Note that our encoding actually only employs the second-order fragment of
STT enhanced with lambda-abstraction.

Further operators can be introduced as usual, for example, T = AW,. T, L =
AT, A =20, (0 V ), D=Ad, 0. V Y, = A, (p D ) A
W D ¢), O = AR, . (OR(709)), X' = Mg IT'(NX.m ¢ X), V7% =
A ITH7°(AP.— ¢ P).

For defining QM L5TT -propositions we fix a set ZVTT of individual variables
of typgTLT, a set PVITT of propositional variables? of type u — o, and a set
SYM of n-ary (curried) predicate constants of types ¢ — ... = ¢ — (u — 0).
Moreover, we fix a set S¥T7 of accessibility relation constants of type p — p — o.
OMLTT propositions are now defined as the smallest set of STT-terms for
which the following hold:

—if P e PV3TT then P € OML3TT

2 Note that the denotation of propositional variables depends on worlds.



—if X7 e V1T (j =1, ..., n) and k € SYMTT then (kX' ... X") €
QM[:STT

—if ¢, € QMLTT  then = ¢ € OMLYTT and ¢ V 3 € QMLITT

—ifre ST and ¢ € QMESTT, then Or ¢ € omcLSTT,

—if X € ZVITT and ¢ € QMLTT | then IT'(AX.¢) € QMLTT

—if P e PYTT and ¢ € OMLSTT | then ITH°(AP.¢) € QM LT

We write O, ¢ for O ¢, VX,u ¢ for IT*(AX,.¢), and VP,,_,oe ¢ for IT"7° (AP, 00 9).

Note that the defining equations for our QML modal operators are them-
selves formulas in S7T. Hence, we can express QML formulas in a higher-order
reasoner elegantly in the usual syntax. For example, O, 3P, _,. Pis a oMLSTT
proposition; it has type u — o.

Validity of QML3TT propositions is defined in the obvious way: a QML-
proposition ¢, is valid if and only if for all possible worlds w,, we have w €
$u—o, that is, if and only if ¢,_,w, holds. Hence, the notion of validity is
modeled via the following equation (alternatively we could define valid simply
as H(Mﬂo)qo):

valid = Appoon VIW o W

Now we can formulate proof problems in OM£TT, e.g., valid 0, 3P, .. P.
Using rewriting or definition expanding, we can reduce such proof problems to
corresponding statements containing only the basic connectives =, Vv, =, II*,
and IT#7° of STT. In contrast to the many other approaches no external trans-
formation mechanism is required. For our example formula valid O, 3P,_,. P
unfolding and fn-reduction leads to VIW,.VY,. ~r WY V (-VX,_o~(XY)). It
is easy to check that this formula is valid in Henkin semantics: put X = Y. T.

We have proved soundness and completeness for this embedding [9], that is,
for s € QML and the corresponding s, € OMLTT « STT we have:

Theorem 1. =577 (valid s,—,) if and only if QKT g

This result also illustrates the correspondence between QK7 models and
Henkin models; for more details see [9)].

Obviously, the reduction of our embedding to first-order multimodal log-
ics (which only allow quantification over individual variables), to propositional
quantified multimodal logics (which only allow quantification over propositional
variables) and to propositional multimodal logics (no quantifiers) is sound and
complete. Extending our embedding for hybrid logics is straightforward [23]; note
in particular that denomination of individual worlds using constant symbols of
type p is easily possible.

In the remainder we will often omit type information. It is sufficient to re-
member that worlds are of type u, multimodal propositions of type p — o, and
accessibility relations of type p — u — o. Individuals are of type .

3 Embeddings of Other Logics in ST T

We have studied several other logic embeddings in ST 7T, some of which will be
mentioned in this section.



Intuitionistic Logics Godels interpretation of propositional intuitionistic logic
in propositional modal logic S4 [19] can be combined with our results from
the previous section in order to provide a sound and complete embedding of
propositional intuitionistic logic into STT [9].

Godel studies the propositional intuitionistic logic ZPL defined by

s,tu=plas|sDt|sVi|pAt

He introduces the a mapping from ZPL into propositional modal logic S4
which maps ~s to =0, s, sDttod,s D O.t, sVt toO.s VvV O.t, and sAt
to s A t.2 By simply combining Gédel’s mapping with our mapping from before
we obtain the following embedding of ZPL in STT.

Let TPL be a propositional intuitionistic logic with atomic primitives p!,

., p™ (m > 1) . We define the set ZPLS77 of corresponding propositional
intuitionistic logic propositions in S7T7T as follows.

1. For the atomic TPL primitives p', ..., p™ we introduce corresponding

ZPLSTT predicate constants pllt_‘o7 -++s Ppto- Moreover, we provide the sin-
gle accessibility relation constant r,_ ..

2. Corresponding to Godel’s mapping we introduce the logical connectives of
IPLSTT as abbreviations for the following A-terms (we omit the types here):

S = AGAW NV WV VoV

S = AGAAW AWV WV VSV V (W WV VA V)
V = AN AWL (W WV VS V)V (W WV V) V)
A = A NLAW. (¢ W V —ap W)

3. We define the set of ZPLS7 T -propositions as the smallest set of simply typed
A-terms for which the following hold:

— p}L_)O, -y Pt define the atomic IPLSTT propositions.
— If ¢ and v are ZPLST T-propositions, then so are < ¢, ¢ D1, ¢V 1, and
PAY.

The notion of validity we adopt is the same as for oMLSTT, However, since
Godel connects ZPL with modal logic S4, we transform each proof problem
t € ZTPL into a corresponding proof problem ¢’ in ST T of the following form

t' = ((valid Vo Op ¢ D @) A(validVey o Op ¢ D O, 0, ¢)) = (validt,—,)

where t,,_, is the IPLSTT term for t according to our definition above. Alterna-
tively we may translate ¢ into ¢ := ((reflexiver) A (transitiver)) = (valid ¢,-,).

Combining soundness [19] and completeness [24] of Gédel’s embedding with
Theorem 1 we obtain the following soundness and completeness result: Let
t € ZPL and let ¢/ € STT as constructed above. ¢ is valid in propositional
intuitionistic logic if and only if ¢’ is valid in STT.

3 Alternative mappings have been proposed and studied in the literature which we
could employ here equally as well.



Example problems in intuitionistic logic have been encoded in THF syntax
[11] and added to the TPTP THF library* and are accessible under identifiers
SYO00584 — SYO07474.

Access Control Logics Garg and Abadi recently translated several prominent
access control logics into modal logic S4 and proved these translations sound
and complete [17]. We have combined this work with our above results in order
to obtain a sound and complete embedding of these access control logics in
STT and we have carried out experiments with the prover LEO-II [6]. Example
problems have been added to the TPTP THF library and are accessible under
identifiers SWV425"z — SWV436°z (for = € {1,...,4}).

Logics for Spatial Reasoning Evidently, the region connection calculus [26] is a
fragment of STT: choose a base type r ('region’) and a reflexive and symmetric
relation ¢ ("connected’) of type r — r — o and define (where XY, and Z are
variables of type r):

disconnected : de = AX,Y.=(c X Y)
partof : p =AX,Y.VZ.((cZX)= (¢ ZY))
identical with: eq =AX, Y. (p XY)A(pY X))
overlaps: o =X, Y.3Z((pZX)AN(pZY))
partially overlaps: po = AX, Y. (0 XY)A-(p XY)A-(pY X))

externally connected : ec =AX,Y.((c XY)A-(0o XY))
PXY)A-(pY X))
pp X Y)AN3IZ.((ec Z X)N(ec ZY)))
pp X Y)A—-3Z.((ec Z X) A (ec ZY)))

proper part : pp = AX,Y.
tangential proper part : tpp = AX,Y.

(
(
(
(

—~ ~ —~

nontang. proper part : ntpp = A X, Y.

An example problem for the region connection calculus will be discussed below.

4 Reasoning about Logics and Combinations of Logics

We illustrate how our approach supports reasoning about logics and their com-
binations. First, we focus on modal logics and their well known relationships
between properties of accessibility relations and corresponding modal axioms
(respectively axiom schemata) [21]. Such meta-theoretic insights can be elegantly
encoded (and, as we will later see, automatically proved) in our approach. First

4 TPTP THF problems for various problem categories are available at http://wuw.
cs.miami.edu/~tptp/cgi-bin/SeeTPTP?Category=Problems; all problem identifiers
with an ™ in their name refer to higher-order THF problems. The TPTP library
meanwhile contains more than 2700 example problems in THF syntax.



we encode various accessibility relation properties in ST 7T

reflexive = AR.VS. RS S (1)
symmetric = AR.VS, T.((RST) = (RT S)) (2)
serial = AR.VS.3T.(RST) (3)
transitive = AR.VS, T,U.(RST)N(RTU) = (RSU)) (4)
euclidean = AR.VS, T,U.((RST)AN (RSU) = (RTU)) (5)
partially_functional = AR.YS, T, U. (RST) A (RSU) = T = U) (6)
functional = AR.VS.3T.(RST) AVU.(RSU) = T =U)) (7)
weakly_dense = ARVS, T.((RST) = 3U.(RSU) A(RUT))) (8)
weakly_connected = ARVS, T,U.((RST)A (RSU)) =

(RTU)VT=UV(RUT))) 9)

weakly_directed = AR.VS, T, U.((RST)AN(RSU)) =
WV.(RTV)N(RUYV))) (10)

Remember, that R is of type p — 4 — o and S,T,U are of type u. The corre-
sponding axioms are given next.

Ve Org O Or 9 (16)
M:v¢.0,9 D ¢ (11) V- Or ¢ < B9 (17)
B: Vg9 D 0,0, ¢  (12) Vo0, 0.¢ D 0,9 (18)

D: V40,9 D Org (13) Ve, 10, ((0 A Br¢) DY) V
4: V¢.0,¢ D 0O,0,.¢ (14) O, (¥ AO.¢) D¢ (19)
5:Y4.0,¢ D 0,0, ¢ (15) Vo Or O ¢ D 0,0 9 (20)
Ezample 1. For k (k= (1),...,(10)) we can now easily formulate the well known

correspondence theorems (k) = (k + 10) and (k) < (k + 10). For example,

(1) = (11) :  VR.(reflexive R) = (valid V¢.Or ¢ D ¢)

Ezample 2. There are well known relationships between different modal logics
and there exist alternatives for their axiomatization (cf. the relationship map
n [18]). For example, for modal logic S5 we may choose axioms M and 5 as
standard axioms. Respectively for logic KB5 we may choose B and 5. We may

then want to investigate the following conjectures (the only one that does not
hold is (31)):



S5 = M5 < MB5 (21)
& M4B5 (22) KB5 < K4B5 (28)
o M45 (23) & K4B (29)
& M4B (24)
& gjg (25) M5 = D45 (30)
o 5 (26) D45 = M5 (31)
< DB5 (27)

Exploiting the correlations (k) < (k + 10) from before these problems can be
formulated as follows; we give the case for M5 < D4B:

VR. (((reflexive R)A(euclidean R)) < ((serial R)A(transitive R)A(symmetric R)))

Ezample 3. We can also encode the Barcan formula and its converse. (They are
theorems in our approach, which confirms that we are ’constant domain’.)
BF : wvalid VX,. O, (pLH(#HO) X) D 0O,VX,. (pbﬂ(’u%o) X) (32)
BF™': valid O, VX (P ooy X) D VXoe Oy (Do (po) X) (33)
Ezxample 4. An interesting meta property for combined logics with modalities
4,04, 0, and O is the correspondence between the following axiom and the
(4,7, k,l)-confluence property
(valid V¢. (¢;0;¢) D O, O 9)
< (VAVB.VC.(((1AB)AN (KAC)) = 3D.((j BD) A (1C D)))) (34)
Ezample 5. Segerberg [27] discusses a 2-dimensional logic providing two S5 modal-
ities O, and Op. He adds further axioms stating that these modalities are com-
mutative and orthogonal. It actually turns out that orthogonality is already
implied in this context. This statement can be encoded in our framework as
follows:
(reflexive a), (transitive a), (euclid. a), (reflexive b), (transitive b), (euclid. b),
(valid V¢« 0,0, ¢ < 0,0, ¢)
=577 (valid ¥, 4. Og (Ba ¢V 0y ) D (Oa ¢V Be 1)) A
(valid Ve, Oy (O, ¢ V Oy 9p) D (O ¢V Op¢))) (35)
Ezxample 6. Suppose we want to work with a 2-dimensional logic combining a
modality Oy of knowledge with a modality O, of belief. Moreover, suppose we
model Oy as an S5 modality and O, as an D45 modality and let us furthermore
add two axioms characterizing their relationship. We may then want to check
whether or not Oy and O, coincide, i.e., whether O includes O:
(reflexive k), (transitive k), (euclid. k), (serial b), (transitive b), (euclid. b),
(valid V¢. Dk (b D) Db (b), (’l}alld V(b. Db (b D) Db Dk ¢)
=TT (valid Ve, Oy ¢ D O @) (36)



5 Reasoning within Combined Logics

We illustrate how our approach supports reasoning within combined logics. First
we present two examples in epistemic reasoning. Our formulation in both cases
adapts Baldoni’s modeling [5].

Ezample 7 (Epistemic reasoning: The friends puzzle). (i) Peter is a friend of
John, so if Peter knows that John knows something then John knows that Peter
knows the same thing. (ii) Peter is married, so if Peter’s wife knows something,
then Peter knows the same thing. John and Peter have an appointment, let us
consider the following situation: (a) Peter knows the time of their appointment.
(b) Peter also knows that John knows the place of their appointment. Moreover,
(c) Peter’s wife knows that if Peter knows the time of their appointment, then
John knows that too (since John and Peter are friends). Finally, (d) Peter knows
that if John knows the place and the time of their appointment, then John knows
that he has an appointment. From this situation we want to prove (e) that each
of the two friends knows that the other one knows that he has an appointment.

For modeling the knowledge of Peter, Peter’s wife, and John we consider
a 3-dimensional logic combining the modalities Oy, Oy ), and Oj. Actually
modeling them as S4 modalities turns out to be sufficient for this example.
Hence, we introduce three corresponding accessibility relations j, p, and (wp).
The S4 axioms for « € {j,p, (wp)} are

valid Ve O, 6 D ¢ (37) valid V. O, ¢ D O, 0,6 (38)

As done before, we could alternatively postulate that the accessibility relations
are reflexive and transitive.

Next, we encode the facts from the puzzle. For (i) we provide a persistence
axiom and for (ii) an inclusion axiom:

valid V. O, 0;¢ D 0;0,¢ (39) valid V. O py ¢ D Oy ¢ (40)
Finally, the facts (a)-(d) and the conclusion (e) are encoded as follows (time,

place, and appointment are propositional constants, that is, constants of type
i — o in our framework):

valid O, time (41)
valid O, Oj place (42)
valid Oy ) (Op time D Oj time) (43)
valid O, Oj (place A time D appointment) (44)
valid O; O, appointment A O, O; appointment (45)

The combined proof problem for Example 8 is

(37),.... (44) 57 (45) (46)



Ezample 8 (Wise men puzzle). Once upon a time, a king wanted to find the
wisest out of his three wisest men. He arranged them in a circle and told them
that he would put a white or a black spot on their foreheads and that one of
the three spots would certainly be white. The three wise men could see and hear
each other but, of course, they could not see their faces reflected anywhere. The
king, then, asked to each of them to find out the color of his own spot. After a
while, the wisest correctly answered that his spot was white.

We employ a 4-dimensional logic combining the modalities O,, Oy, and O,
for encoding the individual knowledge of the three wise men, and a box operator
Ofoo1, for encoding the knowledge that is common to all of them. The entire
encoding consists now of the following axioms for X,Y,Z € {a,b,c} and X #
Y # Z:

valid Ogoo1 ((Ws a) V (ws b) V (ws c)) (47)
valid Oge) ((ws X) D Oy (ws X)) (48)
valid Oy (0 (ws X) D Oy = (ws X)) (49)
valid Vo Dot ¢ D ¢ (50)
valid Y¢x Ogool ¢ D Dol Diool ¢ (51)
valid Vo Ooo1 ¢ D O, ¢ (52)
valid Véh Ogoo1 ¢ D Op ¢ (53)
valid V. Ogoo1 ¢ D e (54)
valid Vo = 0Ox ¢ D Oy - 0Ox ¢ (55)
valid V. Ox ¢ D Oy Ox ¢ (56)
valid = 0, (ws a) (57)
valid = Oy, (ws b) (58)
From these assumptions we want to conclude that
valid O, (ws ¢) (59)

Axiom (47) says that a, b, or ¢ must have a white spot and that this infor-
mation is known to everybody. Axioms (48) and (49) express that it is generally
known that if someone has a white spot (or not) then the others know this. Qg
is axiomatized as an S4 modality in axioms (50) and (51). For O,, Oy, and O, it
is sufficient to consider K modalities. The relation between those and common
knowledge (O, modality) is axiomatized in inclusion axioms (52)—(55). Axioms
(55) and (56) encode that whenever a wise man does (not) know something the
others know that he does not know this. Axioms (57) and (58) say that a and b
do not know whether they have a white spot. Finally, conjecture (59) states that
that ¢ knows he has a white spot. The combined proof problem for Example 7
is

(47),....(58) E°T (59) (60)



Ezample 9. A trivial example problem for the region connection calculus is
(adapted from [16], p. 80):

(tpp catalunya spain),

(ec spain france),

(ntpp paris france),

=STT (de catalunya paris) A (de spain paris) (61)

The assumptions express that (i) Catalunya is a border region of Spain, (ii)
Spain and France are two different countries sharing a common border, and (iii)
Paris is a proper part of France. The conjecture is that (iv) Catalunya and Paris
are disconnected as well as Spain and Paris.

Ezxample 10. Within our §7T framework we can easily put such spatial reason-
ing examples in an epistemic context; similar to before we distinguish between
common knowledge (fool) and the knowledge of person bob and we lift the above
propositions to modal propositions of type p — o:

valid V(b‘ Ijfool (725 D Ijbob ¢a
valid Opop, (AW. (tpp catalunya spain)),
valid Ogoe) (AW. (ec spain france)),

valid Oyt (AW. (ntpp paris france))
I:STT

valid Opp (AW. ((de catalunya paris) A (dc spain paris))) (62)

We here express that (ii) from above is commonly known, while (i) and (ii) are
not. (i) and (ii) are known to the educated person bob though. In this situation,
conjecture (iv) still follows for bob. However, it does not follow when replacing
bob by common knowledge (hence, the following problem is not provable):

.. ESTT valid Ogoo1 (AW ((de catalunya paris) A (de spain paris))) (63)

6 Experiments

In our case studies, we have employed the STT automated reasoners LEO-
IT—v1.1 [10], TPS—3.080227G1d [4], IsabelleP—2009-1, IsabelleM—2009-1, and
IsabelleN-—2009-1.% These systems are available online via the SystemOnTPTP
tool [28] and they support the new TPTP THF infrastructure for typed higher-
order logic [11].

® IsabelleM and TsabelleN are model finder in the Isabelle proof assistant [25] that
have been made available in batch mode, while IsabelleP applies a series of Isabelle
proof tactics in batch mode.



The axiomatizations of QMLTT and ZPLSTT are available as LCL013"0.ax
and LCL010°0.ax in the TPTP library.® The example problems LCL698"1.p and
LCL695"1.p ask about the satisfiability of these axiomatizations. Both questions
are answered positively by IsabelleM and IsabelleN; IsabelleM needs 3.8 resp.
3.6 seconds and IsabelleN 3.8 resp. 3.6 seconds.

Table 1 presents the results of our experiments; the timeout was set to 120
seconds and the entries in the table are reported in seconds. Those examples
which have already entered the new higher-order TPTP library are presented
with their respective TPTP identifiers in the second column and the others will
soon be submitted.

As expected, (31) and (63) cannot be proved by any prover and IsabelleN
reports a counterexample for (31) in 34.4 seconds and for (63) in 39.7 seconds.

In summary, all but one of our example problems can be solved effectively
by at least one of the reasoners. In fact, most of our example problems require
only milliseconds. LEO-II solves most problems and it is the fastest prover.

7 Conclusion

The work presented in this paper has its roots in the LEO-II project (in 2006/2007
at University of Cambridge, UK) in which we first studied and employed the pre-
sented embedding of quantified multimodal logics in STT [8].

Our overall goal is to show that various interesting classical and non-classical
logics and their combinations can be elegantly mechanized and partly automated
in modern higher-order reasoning systems with the help of our logic embeddings.

Our experiments are encouraging and they provide first evidence for our claim
that STT is suited as a framework for combining classical and non-classical log-
ics. It is obvious, however, that ST T reasoners should be significantly improved
for fruitful application to more challenge problems in practice. The author is
convinced that significant improvements — in particular for fragments of STT
as illustrated in this paper — are possible and that they will be fostered by the
new TPTP infrastructure and the new yearly higher-order CASC competitions.

Moreover, when working with our reasoners from within a proof assistant
such as Isabelle/HOL the user may provide interactive help, for example, by
formulating some lemmas or by splitting proof tasks in simpler subtasks.

An advantage of our approach also is that provers such as our LEO-II are
generally capable of producing verifiable proof output, though much further
work is needed to make these proof protocols exchangeable between systems or
to explain them to humans. Finally note that it may be possible to formally
verify the entire theory of our embedding(s) within a proof assistant.

Acknowledgment: The author is indebted to Geoff Sutcliffe, who, in collaboration
with the author and supported by several further contributors, developed the

5 Note that the types p and ¢ are unfortunately switched in the encodings available in
the TPTP: the former is used for individuals and the latter for worlds. This syntactic
switch is completely unproblematic.



[Problem  [TPTP id  [LEO-II |TPS [IsabelleP

Reasoning about Logics and Combined Logics
(1) = (11) |LCL699"1.p |0.0 0.3 3.6
(2) = (12) |LCL700"1.p |0.0 0.3 13.9
(3) = (13) |LCL701"1.p |0.0 0.3 4.0
(4) = (14) |LCL702"1.p |0.0 0.3 15.9
(5) = (15) |LCL703"1.p (0.1 0.3 16.0
(6) = (16) |LCL704"1.p |0.0 0.3 3.6
(7) = (17) |LCL705"1.p |0.1 51.2 3.9
(8) = (18) |LCL706"1.p (0.1 0.3 3.9
(9) = (19) |LCL707"1.p |0.1 0.3 3.6
(10) = (20) |LCL708"1.p |0.1 0.3 4.1
(1) < (11) |LCL709"1.p |0.0 0.3 3.7
(2) < (12) |LCL710"1.p |— 0.3 53.8
(3) <« (13) |LCL711"1.p |0.0 0.3 3.7
(4) < (14) |LCL712"1.p |0.0 0.3 3.8
(5) < (15) |LCL713"1.p |— 0.8 67.0
(6) < (16) |LCL714"1.p |1.6 0.3 29.3
(7) < (17) |LCL715"1.p [37.9 — —
(8) « (18) |LCL716"1.p |— 6.6 —
(9) < (19) |LCL717"1.p |— — —
(10) < (20) |[LCL718"1.p |0.1 0.4 8.1
(21) 0.1 0.4 4.3
(22) 0.2 274 4.0
(23) 0.1 8.9 4.0
(24) 0.1 1.2 3.7
(25) 0.1 1.7 4.2
(26) 0.2 14.8 5.4
(27) 0.1 0.6 3.7
(28) 0.2 2.3 4.0
(29) 0.1 0.9 3.9
(30) 0.1 12.8 16.5
(31)Countersatisﬁable o o o
(32) 0.0 0.3 3.6
(33) 0.0 0.3 3.6
(34) 0.1 0.4 3.6
(35) 0.2 35.5 —
(36) 0.4 — —

Reasoning within Combined Logics

(46) PUZ086"1.p |0.1 — 102.4
(60) PUZ087"1.p |0.3 — —
(61) 2.3 — 112.7
(62) 20.4 — —
(63)Countcrsatisﬁablc o o o

Table 1. Performance results of ST T provers for problems in paper.



new higher-order TPTP THF infrastructure in the EU FP7 Project THFTPTP
(grant PITF-GA-2008-219982).
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