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1. Introduction

Granularity matters in mathematics. For example, in introductory textbooks in-
termediate proof steps are often skipped, when this seems appropriate. Such a sit-
uation is given in the elementary proof in basic set theory reproduced in Figure 1.
Whereas most of the proof steps consist of the application of exactly one mathe-
matical fact (a definition or a lemma), the step from assertion 9 to assertion 10
applies several inference steps at once, namely the application of the definition of
∩ twice, and the distributivity of and over or. Similar observations were made in
the empirical studies within the Dialog project (cf. [8]).

Systems like Ωmega [1] and HiProofs [4] are capable of structuring proofs
hierarchically, the problem remains though how to identify a suitable level of
granularity. Autexier and Fiedler have proposed one particular level of granular-
ity [2], which they call what-you-need-is-what-you-stated granularity. Their rigid
solution, however, fails to fully model the proof in Figure 1.

We present a flexible approach to proof presentation that dynamically adapts
to specific levels of granularity in context. Different models for granularity can be
learned in our framework from samples using machine learning techniques. More
information on the work sketched here is available in a technical report [8].

1This work was supported by a grant from Studienstiftung des Deutschen Volkes e.V.

1 Let x be an element of A ∩ (B ∪ C), 2 then x ∈ A and x ∈ B ∪ C. 3 This
means that x ∈ A, and either x ∈ B or x ∈ C. 4 Hence we either have (i) x ∈ A

and x ∈ B, or we have (ii) x ∈ A and x ∈ C. 5 Therefore, either x ∈ A ∩ B or
x ∈ A∩C, so 6 x ∈ (A∩B)∪ (A∩C). 7 This shows that A∩ (B ∪C) is a subset
of (A ∩ B) ∪ (A ∩C). 8 Conversely, let y be an element of (A ∩ B) ∪ (A ∩ C). 9
Then, either (iii) y ∈ A∩B, or (iv) y ∈ A∩C. 10 It follows that y ∈ A, and either
y ∈ B or y ∈ C. 11 Therefore, y ∈ A and y ∈ B ∪ C so that y ∈ A ∩ (B ∪ C).
12 Hence (A ∩B)∪ (A ∩C) is a subset of A ∩ (B ∪C). 13 In view of Definition
1.1.1, we conclude that the sets A ∩ (B ∪ C) and (A ∩ B) ∪ (A ∩ C) are equal.

Figure 1. Proof of the statement A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C), reproduced from [3].



8. We assume y ∈ (A ∩ B) ∪ (A ∩ C)
and show y ∈ A ∩ (B ∪ C)

9. Therefore, y ∈ A ∩ B ∨ y ∈ A ∩ C

10.(a) Therefore, y ∈ A ∧ B ∨ y ∈ A ∩ C

10.(b) Therefore, y ∈ A ∧ B ∨ y ∈ A ∧ C

10.(c) Therefore, y ∈ A ∧ (y ∈ B ∨ y ∈ C)
11. Therefore, y ∈ A ∧ y ∈ B ∪ C

(a)

8. We assume y ∈ (A ∩ B) ∪ (A ∩ C)
and show y ∈ A ∩ (B ∪ C)

9. Therefore, y ∈ A ∩ B ∨ y ∈ A ∩ C

10. Therefore, y ∈ A ∧ (y ∈ B ∨ y ∈ C)
11. Therefore, y ∈ A ∧ y ∈ B ∪ C

(b)

⇒ step-appropriate

(c)

1) conceptsunique∈{0, 1} ∧ equality-
defn=0 ∧ verb=true ⇒ step-too-small

2) hypintro=0 ∧ equalitydefn=0 ∧ ∪-
Defn=0 ∧ verb=true ⇒ step-too-small

3) conceptsunique ∈{2, 3, 4} ∧ ∪-Defn
∈{1, 2, 3} ⇒ step-too-big

...
⇒ step-appropriate

(d)

Figure 2. Proof fragment (a) is obtained with rule set (c) and fragment (b) with rule set (d).

2. An Adaptive Model for Granularity

In our approach proofs are initially represented at Ωmega’s assertion level2, and
we treat the granularity problem as a classification task: given a proof step, rep-
resenting one or several assertion applications, we judge it as either appropriate,
too big or too small. As our feature space we employ several mathematical and
logical aspects of proof steps as well as cognitive aspects. For example, we keep
track of the background knowledge of the user in a student model.

We express our models for classifying granularity as rule sets, which asso-
ciate specific combinations of feature values to a corresponding granularity verdict
(“appropriate”, “too big” or “too small”). These rule sets may be hand-authored
by an expert or they may be learned from empirical data. Our algorithm for
granularity-adapted proof presentation takes two arguments, a granularity rule
set and an Ωmega assertion level proof tree, and it then incrementally catego-
rizes the to-be-presented proof steps in the proof tree using the rules. We thereby
obtain a proof tree with labeled proof nodes: the nodes are either categorized as
appropriate or too fine-grained. Entire proof presentations are then generated by
walking through the tree, skipping the too fine-grained steps.3

Case Study We exemplarily model the step size of the textbook proof in Fig-
ure 1, starting with an assertion-level proof presentation consisting of 15 steps
in Ωmega, and skipping intermediate proof steps according to our feature-based
granularity model. Figure 2 (a) shows a proof fragment which corresponds to
steps 8 – 11 in Figure 1 and which was generated from our initial Ωmega as-
sertion level proof with the trivial rule set in Figure 2 (c). Using the alternative
rule set presented in extracts in Figure 2 (d) (with nine rules altogether) we can
generate the proof as presented in Figure 2 (b). This more appropriate rule set
was learned4. NL output is produced here via simple patterns and more exciting

2Assertion level proofs justify their steps by application of axioms, definitions, or theorems.
3Even though too fine-grained intermediate are withheld, we make sure that the presentation

of the output step sufficiently reflects all intermittent assertion applications.
4The sample proof was used to fit the rule set to it. All steps in the sample proof were provided

as appropriate, all intermediate assertion level steps were labeled as too-small, and always the
next bigger step to each step in the original proof was provided as an example for a too big step.



NL output is easily possible. The resulting proof presentation fits the step size of
the original proof in Figure 1.

Learning from Empirical Data We employ off-the-shelf machine learning tools
to learn classifiers for granularity (like our rule sets) from annotated examples
(supervised learning). In our case, an expert annotates proof steps with the la-
bels appropriate, too small or too big. We initially represent these proof steps in
Ωmega which has the advantage that relevant proof step features are computed
in the background, and combined automatically with the expert’s judgments as
training instances for the learning algorithm. Currently, our algorithm calls the
C5.0 data mining tools [7] – which support the learning of decision trees and of
rule sets – to obtain classifiers for granularity. As part of an ongoing evaluation,
we have conducted a study where a mathematician (with tutoring experience)
judged the granularity of 135 proof steps, presented to him via an Ωmega-assisted
environment with intermediate assertion-level steps skipped at random.

3. Conclusion

Granularity has been a challenge in AI for decades [5]. Here we have focused on
adaptive proof granularity, which we treat as a classification problem, taking into
account changeable information such as the user’s familiarity with mathematical
concepts. Using assertion level proofs as the basis for our approach has the ad-
vantage that the relevant information for the classification task is easily read off
the proofs. Moreover, it eases the generation of NL proof output.

Future work consists in empirical evaluations of the learning approach. In-
teresting questions are: (i) what are the most useful features for judging granu-
larity, and are they different among distinct experts and mathematical domains,
(ii) what is the inter-rater reliability among different experts and the correspond-
ing classifiers generated by learning in our framework? The resulting corpora of
annotated proof steps and generated classifiers can then be used to evaluate the
appropriateness of the proof presentations generated by our system.
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