
An Agent-Based Architecture for Dialogue
Systems�

Mark Buckley and Christoph Benzmüller

Dept. of Computer Science, Saarland University
{markb|chris}@ags.uni-sb.de

Abstract. Research in dialogue systems has been moving towards re-
usable and adaptable architectures for managing dialogue execution and
integrating heterogeneous subsystems. In this paper we present a formali-
sation of Admp, an agent-based architecture which supports the develop-
ment of dialogue applications. It features a central data structure shared
between software agents, it allows the integration of external systems,
and it includes a meta-level in which heuristic control can be embedded.

1 Introduction

Research in dialogue systems has been moving towards reusable and adaptable
architectures for managing dialogue execution and integrating heterogeneous
subsystems. In an architecture of this type, different theories of dialogue man-
agement can be formalised, compared and evaluated. In this paper we present a
formalisation of Admp

1, an architecture which uses software agents to support
the development of dialogue applications. It features a central data structure
shared between agents, it allows the integration of external systems, and it in-
cludes a meta-level in which heuristic control can be embedded.

We have instantiated the system to support dialogue management. Dialogue
management involves maintaining a representation of the state of a dialogue, co-
ordinating and controlling the interplay of subsystems such as domain processing
or linguistic analysis, and deciding what content should be expressed next by the
system. Admp applies the information state update (ISU) approach to dialogue
management [1]. This approach uses an information state as a representation of
the state of the dialogue, as well as update rules, which update the information
state as the dialogue progresses. The ISU approach supports the formalisation
of different theories of dialogue management.

The framework of our research is the Dialog project2, which investigates
flexible natural language dialogue in mathematics, with the final goal of natural
tutorial dialogue between a student and a mathematical assistance system. In
� This work was supported by the DAAD (German Academic Exchange Service),

grant number A/05/05081 and by the DFG (Deutsche Forschungsgemeinschaft),
Collaborative Research Centre 378 for Resource-adaptive Cognitive Processes.

1 The Agent-based Dialogue Management Platform.
2 http://www.ags.uni-sb.de/dialog/

I. Virbitskaite and A. Voronkov (Eds.): PSI 2006, LNCS 4378, pp. 135–147, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

136 M. Buckley and C. Benzmüller

the course of a tutorial session, a student builds a proof by performing utter-
ances which contain proof steps, thereby extending the current partial proof.
The student receives feedback from the Dialog system after each proof step.
This feedback is based on the computations and contribution of numerous sys-
tems, such as a domain reasoner or a natural language analysis module. The
integration of these modules and the orchestration of their interplay as well as
the selection of a next dialogue move which generates the feedback is the task
of the dialogue manager.

The work presented in this paper is motivated by an initial prototype dialogue
manager for the Dialog demonstrator [2]. After its development we were able
to pinpoint some features which we consider necessary for the Dialog system,
and which the platform presented here supports. The overall design of Admp is
influenced by the design of Ω-Ants [3], a suggestion mechanism which supports in-
teractive theorem proving and proof planning. It uses societies of software agents,
a blackboard architecture, and a hierarchical design to achieve concurrency, flex-
ibility and robust distributed search in a theorem proving environment.

Although Admp has been developed to support dialogue systems, it can be
seen as a more general architecture for collaborative tasks which utilise a cen-
tral data store. For example, we have used Admp to quickly implement a lean
prototype resolution prover for propositional logic.

Our work is related to other frameworks for dialogue management such as
TrindiKit, a platform on top of which ISU based dialogue applications can be
built. TrindiKit provides an information state, update rules and interfaces to
external modules. Another such framework is Dipper [4], which uses an agent
paradigm to integrate subsystems.

This paper is structured as follows. In Section 2 we give an overview of the
Dialog project and the role a dialogue manager plays in this scenario. Section
3 outlines the architecture of Admp. Section 4 presents the formalisation of the
system, and Section 5 concludes the paper.

2 The Dialog Project

The Dialog project is researching the issues involved in automating the tutoring
of mathematical proofs through the medium of flexible natural language. In or-
der to achieve this a number of subproblems must be tackled. An input analyser
[5] must perform linguistic analysis of utterances. These typically contain both
natural language and mathematical expressions and exhibit much ambiguity. In
addition to the linguistic analysis the input analyser delivers an underspecified
representation of the proof content of the utterance. Domain reasoning is en-
capsulated in a proof manager [6], which replays and stores the status of the
student’s partial proof. Based on the partial proof, it must analyse the correct-
ness, relevance and granularity of proof steps, and try to resolve ambiguous proof
steps. Pedagogical aspects are handled by a tutorial manager [7], which decides
when and how to give which hints.

An Agent-Based Architecture for Dialogue Systems 137

These three modules, along with several others such as a natural language gen-
erator, collaborate in order to fully analyse student utterances and to compute
system utterances. Their computation must be interleaved, since they work with
shared information, and this interplay is orchestrated by the dialogue manager.
Fig. 1 shows the modules involved in the Dialog system.

GUI
Tutorial

Manager

NL Generator

Proof
Manager

Dialogue Move
Recogniser

Domain Info
Manager

Input
Analyser

Dialogue Management
Platform

Dialogue Manager

Information
State

Update Rules

Fig. 1. The Dialog system

We illustrate how the system works with an example from the Dialog corpus
[8] in Fig. 2, where K stands for the complement operation and U is the universal
set. The student has made a correct step (Stud1) and thus has begun building
a partial proof of the theorem. Later in the proof he makes an irrelevant step
(Stud2). We now consider how the modules of the system interact to generate
the response in (Sys2).

The student’s utterance first goes to the input analyser, which calculates
its linguistic meaning and underspecified proof content. The proof content in
this case is a representation of the content of the formula which is given in the
utterance. This is then taken up by the proof manager. In the given proof context
it assigns the proof step category correct, since the formula holds under the
assumptions, but also irrelevant, because the step does not lead to a proof, or
at least does not appear in a proof of the theorem. Simultaneously the dialogue
move recogniser uses the linguistic meaning to determine the function of the
utterance in the dialogue, and encodes this function in a dialogue move [9]. A
dialogue move is a multi-dimensional abstraction of the functions of an utterance
in a dialogue, such as question or assertion. In the example the utterance is a
domain contribution , since it asserts a new piece of information in the theorem
proving task.

A domain information manager determines what domain information was ad-
dressed by the proof step by accessing static mathematical knowledge

138 M. Buckley and C. Benzmüller

Sys0: Bitte zeigen Sie: Wenn A ⊆ K(B), dann B ⊆ K(A)
Please show that: If A ⊆ K(B) then B ⊆ K(A)

Stud1: U/A = K(A)
U/A = K(A)

Sys1: Das ist richtig! Und weiter?
That’s correct! And now?
. . .

Stud2: also ist A �⊆ B
Therefore it holds that A �⊆ B

Sys2: Nein, das bringt nichts. Wissen Sie, was Sie mit der wenn-dann-Beziehung
anfangen müssen?
No, that doesn’t help. Do you know what to do with the if-then relation?

Fig. 2. Excerpt from the Dialog corpus, session soc20k

resources. The tutorial manager uses a combination of these results to add hint-
ing information to the dialogue moves. In this case it decides to explicitly indicate
the inappropriateness (“No”) and irrelevance (“that doesn’t help”) of the step.
Furthermore, a combination of a student and tutor model result in an explicit
hint, namely to draw the student’s attention to dissolving the if-then relation
which is the head of the theorem.

In general, the result of each module’s computation is a contribution of content
to some system dialogue move. The final step is that a natural language generator
generates the utterances constituting the system’s response in (Sys2) from these
dialogue moves. Since a module’s computations depend only on information
stored in a subset of the information state, their execution order is only partially
constrained. This means that many computations can and should take place in
parallel, as in the case of the proof manager and dialogue move recogniser in the
example above.

Dialog is an example of a complex system in which the interaction of many
non-trivial components takes place. This interaction requires in turn non-trivial
control to facilitate the distributed computation which results in the system
response. This control function resides in the dialogue manager. As shown in
Fig. 1, the dialogue manager forms the hub of the system and mediates all
communication between the modules. It furthermore controls the interplay of
the modules.

We realised a first Dialog demonstrator in 2003. It includes a dialogue man-
ager built on top of Rubin [10], a commercial platform for dialogue applications.
This dialogue manager integrates each of the modules mentioned above and con-
trols the dialogue. It provides an information state in which data shared between
modules is stored, input rules which can update the information state based on
input from modules, and interfaces to the system modules.

However, we identified some shortcomings of this first dialogue manager for the
demonstrator, and these have formed part of the motivation for the development
of Admp:

An Agent-Based Architecture for Dialogue Systems 139

– The modules in the system had no direct access to the information state,
meaning they could not autonomously take action based on the state of the
dialogue.

– The dialogue manager was static, and neither dialogue plans nor the inter-
faces to modules could be changed at runtime.

– There was also no way to reason about the flow of control in the system.

Admp solves these problems by using a software agent approach to information
state updates and by introducing a meta-level. The meta-level is used to reason
about what updates should be made, and provides a place where the execution
of the dialogue manager can be guided.

3 Architecture

The central concepts in the architecture of Admp are information states and
update rules, and these form the core of the system. An information state consists
of slots which store values, and can be seen as an attribute-value matrix. It is
a description of the state of the dialogue at a point in time, and can include
information such as a history of utterances and dialogue move, the results of
speech recognition or a representation of the beliefs of dialogue participants.
Update rules encode transitions between information states, and are defined by
a set of preconditions, a list of sideconditions, and a set of effects. Preconditions
constrain what information states satisfy the rule, sideconditions allow arbitrary
functions to be called within the rule, and effects describe the changes that
should be made to the information state in order to carry out the transition
that the rule encodes.

An update rule is embodied by an update rule agent, which carries out
the computation of the transition that the update rule encodes. These check
if the current information state satisfies the preconditions of the rule. When this
is the case, they compute an information state update representing the fully in-
stantiated transition. An information state update is a mapping from slotnames
in the information state to the new values they have after the update is executed.
We introduce information state updates as explicit objects in Admp in order to
be able to reason about their form and content at the meta-level.

As an example, we consider the information state in (1), a subset of the
information state of the Dialog system3. Here the user’s utterance is already
present in the slot user utterance, but the linguistic meaning in the slot lm has
not yet been computed. The slot lu stores a representation of the proof content
of the utterance, and eval lu stores its evaluated representation.

(1)

IS

⎡
⎢⎢⎢⎣

user utterance "also ist A �⊆ B"

lm ""

lu ""

eval lu ""

⎤
⎥⎥⎥⎦

3 In general an information state will contain richer data structures such as XML
objects, but for presentation we restrict ourselves here to strings.

140 M. Buckley and C. Benzmüller

The update rule in (2) represents transitions from information states with a
non-empty user utterance slot to information states in which the lm and lu
slots have been filled with the appropriate values.

(2) {non empty(user utterance)}
{lm → p , lu → q}

< r := input analyser(user utterance),
p := extract lm(r),
q := extract lu(r) >

In Admp’s update rule syntax this rule is defined as:

(3) (ur~define-update-rule
:name "Sentence Analyser"
:preconds ((user_utterance :test #’ne-string))
:sideconds ((r :function input_analyser

:slotargs (user_utterance))
(p :function extract-lm :varargs (r))
(q :function extract-lu :varargs (r))
)

:effects ((lm p) (lu q))
)

The precondition states that the slot user utterancemust contain a non-empty
string. When this is the case, the rule can fire. It carries out its sideconditions,
thereby calling the function input analyser, which performs the actual compu-
tation and calls the module responsible for the linguistic analysis of utterances.
Rule (2) thus represents the input analyser. The result of this computation is an
object containing both the linguistic meaning of the utterance and an underspec-
ified representation of the proof content. The functions extract lm and extract lu
access the two parts and store them in the variables p and q, respectively. The
information state update that the rule computes maps the slot name lm to the
linguistic meaning of the utterance and the slot name lu to its proof content.

Rule (4) represents the proof manager, and picks up the proof content of the
utterance in the slot lu.

(4) {non empty(lu)}
{eval lu → r} < r := pm analyse(lu) >

The proof manager augments the information in lu by attempting to resolve
underspecification and assign correctness and relevance categories, and the re-
sulting update maps eval lu to this evaluated proof step. A similar update
rule forms the interface to the dialogue move recogniser, which uses the linguis-
tic meaning of the utterance in lm to compute the dialogue move it represents.
Since these two computations are both made possible by the result of the update
from the input analyser, they can run in parallel.

Fig. 3 shows the architecture of Admp. On the left is the information state.
Update rules have in their preconditions constraints on some subset of the in-
formation state slots and are embodied by update rule agents, which are shown
here next to the information state. When an update rule agent sees that the
preconditions of its rule hold, the rule is applicable and can fire. The agent then
executes each of the sideconditions of the rule, and subsequently computes the

An Agent-Based Architecture for Dialogue Systems 141

information state update that is expressed by the rule’s effects. The resulting in-
formation state update is written to the update blackboard, shown in the middle
of the diagram.

Slot 1

Slot 2

Slot 3

Slot 4

IS Update 1

IS Update 2

IS Update 3

. . .

ISUs Chosen ISU

ISU execution

Information State Update Rule Agents Update Blackboard Update Agent

Fig. 3. The architecture of Admp

The update blackboard collects the proposed updates from the update rule
agents. These agents act in a concurrent fashion, so that many of them may
be simultaneously computing results; some may return results quickly and some
may perform expensive computations, e.g. those calling external modules. Thus
the set of entries on the update blackboard can grow continually. On the far
right of the diagram is the update agent, which surveys the update blackboard.
After a timeout or some stimulus it chooses the heuristically preferred update
(or a combination of updates) and executes it on the current information state.
This completes a transition from one information state to the next.

Finally the update agent resets the update rule agents. Agents for whom
the content of the slots in their preconditions has not changed can continue to
execute since they will then be computing under essentially the same conditions
(i.e. the information that is relevant to them is the same). Agents for whom
the slots in the preconditions have changed must be interrupted, even if their
preconditions still happen to hold. This is because they are no longer computing
within the correct current information state.

4 A Formal Specification of Admp

We now give a concise and mathematically rigorous specification of Admp.
We introduce the concepts and terminology necessary to guarantee the well-
definedness of information states and update rules, and we give an algorithmic
description of the update rule agents and the update agent.

Information States and Information State Updates. First, we fix some
data structures for the slot names and the slot values of an information state.
In our scenario it is sufficient to work with strings in both cases (alternatively
we could work with more complex data structures). Let A and B be alphabets.

142 M. Buckley and C. Benzmüller

We define the language for slot names as SlotId := A∗ and the language for slot
values as SlotVal := B∗. In our framework we want to support the checking of
certain properties for the values of single slots. Thus we introduce the notion
of a Boolean test function for slot values. A Boolean test function is a function
f ∈ BT := SlotVal → {�, ⊥}.

Next, we define information state slots as triples consisting of a slot name,
a slot value, and an associated Boolean test function. The set of all possible
information state slots is Slots := SlotId × BT × SlotVal . Given an information
state slot u = (s, b, v), the slot name, the test function, and the slot value can be
accessed by the following projection functions: slotname(u) := s, slotfunc(u) := b
and slotval (u) := v.

Information states are sets of information state slots which fulfil some addi-
tional conditions. Given r ⊆ Slots , we call r a valid information state if r �= ∅
and for all u1 , u2 ∈ r we have slotname(u1) = slotname(u2) ⇒ u1 = u2 . We
define IS ⊂ P(Slots) to be the set of all valid information states. The set of all
slot names of a given information state r ∈ IS can be accessed by a function
slotnames : IS → P(SlotId) which is defined as follows

slotnames(r) = {s ∈ SlotId | ∃ u ∈ r . slotname(u) = s}

We define a function read : IS × SlotId → SlotVal to access the value of a slot
in an information state where read(r, s) = slotval (u) for the unique u ∈ r with
slotname(u) = s.

In our framework information states are dynamically updated, i.e. the values
of information state slots are replaced by new values. Such an information state
update is a mapping from slots to their new values. The set of all valid information
state updates μ is denoted by ISU , the largest subset of P(SlotId × SlotVal)
for which the following restriction holds: ∀(s1 , v1), (s2 , v2) ∈ μ . s1 = s2 ⇒
v1 = v2 for all μ ∈ ISU . We define ISU⊥ := ISU ∪ {⊥}. An information state
update μ ∈ ISU is executable in an information state r ∈ IS if the slot names
addressed in μ actually occur in r and if the new slot values suggested in μ fulfil
the respective Boolean test functions, i.e.

executable(r, μ) iff ∀(s, v) ∈ μ . ∃ u ∈ r . slotname(u) = s ∧ slotfunc(u)(v) = �

We overload the function slotnames from above and analogously define it for
information state updates. Information state updates are executed by a function
execute update : IS × ISU → IS. Given an information state r ∈ IS and an
information state update μ ∈ ISU we define

execute update(r, μ) =

{
r if not executable(r, μ)
r− ∪ r+ otherwise

where

r− := (r \ {(s, b, v) ∈ r|s ∈ slotnames(μ)}
r+ := {(s′, b′, v′) | (s′, v′) ∈ μ ∧ ∃u ∈ r . s′ = slotname(u) ∧ b′ = slotfunc(u)}

An Agent-Based Architecture for Dialogue Systems 143

Update Rules. Update rules use the information provided in an information
state to compute potential information state updates. They consist of precondi-
tions, sideconditions and effects.

The preconditions of an update rule identify the information state slots that
the rule accesses information from. For each identified slot an additional test
function is provided which specifies an applicability criterion. Intermediate com-
putations based on information in the preconditions are performed by the side-
conditions of the update rules. For this, a sidecondition may call complex external
modules, such as the linguistic analyser or the domain reasoner. The results of
these side-computations are bound to variables in order for them to be accessible
to subsequent sideconditions and to pass them over from the sideconditions to
the effects of a rule. We now give a formal definition of each part in turn.

Let s ∈ SlotId and b ∈ BT . The tuple (s, b) is called an update rule precondi-
tion. The set of all update rule preconditions is denoted by C := SlotId ×BT . We
define projection functions pc slotname : C → SlotId and pc testfunc : C → BT
such that pc slotname(pc) = s and pc testfunc(pc) = b for all pc = (s, b). An
information state r ∈ IS satisfies an update rule precondition pc = (s, b)
if the function b applied to the value of the slot in r named s returns �,
i.e. satisfies(r, pc) iff ∃u ∈ r . pc testfunc(pc)(slotval (u)) = � ∧ slotname(u) =
pc slotname(pc). We overload the predicate satisfies and define it for sets of pre-
conditions C′ ⊆ C and information states r ∈ IS as follows: satisfies(r, C′) holds
if each precondition in C′ is satisfied by r.

Let v ∈ Var be a variable where Var is a set of variables distinct from
the languages A∗ and B∗, let (v1 . . . vm) ∈ Varm be an m-tuple of variables,
let (s1 . . . sn) ∈ SlotIdn be an n-tuple of slot names, and let f : SlotValn →
SlotValm → SlotVal be a function4 (n, m ≥ 0). A single sidecondition is thus
given by the quadruple (v, (s1 , . . . , sn), (v1 , . . . , vm), f). The set of all single side-
conditions is denoted by D := Var ×SlotIdn ×Varm × (SlotValn → SlotValm →
SlotVal).

Given the set D of single sideconditions sci , the sideconditions of an up-
date rule are now modelled as lists l := <sc1 , . . . , scn >, n ≥ 0. We further
provide projection functions sc var : D → Var , sc slottuple : D → SlotIdn ,
sc slotnames : D → P(SlotId), sc vartuple : D → Varm , sc varnames : D →
P(Var) and sc func : D → (SlotValn → SlotValm → SlotVal), such that for
all sc = (v, (s1 , . . . , sn), (v1 , . . . , vm), f) ∈ D it holds that sc var(sc) = v,
sc slottuple(sc) = (s1 , . . . , sn), sc slotnames(sc) = {s1 , . . . , sn}, sc vartuple
(sc) = (v1 , . . . , vm), sc varnames(sc) = {v1 , . . . , vm} and sc func(sc) = f .

A sidecondition list l is called valid if two conditions hold: for all sci , scj ∈ l
with i �= j we must have sc var(sci) �= sc var(scj) and for all sci ∈ l we must
have sc varnames(sci) ⊆ {v|∃ scj ∈ l . j < i ∧ v = sc var(scj)}. The set of all
valid sidecondition lists is denoted as Dl .

Let s ∈ SlotId and v ∈ Var be a variable. The tuple (s, v) is called an update
rule effect. The set of all update rule effects is denoted by E := SlotId × Var .

4 We assume the right-associativity of → .

144 M. Buckley and C. Benzmüller

We provide projection functions e slotname : E → SlotId and e var : E → Var
such that e slotname((s, v)) = s and e var((s, v)) = v.

Let U be a set of rule names (distinct from A∗, B∗, and Var). An update rule
is a quadruple ν ∈ UR := U ×P(C)×Dl ×P(E). An update rule ν = (n, c, d, e) ∈
UR is well-defined w.r.t. the information state r if

1. the slotnames mentioned in the preconditions actually occur in r, i.e, for all
pc ∈ c we have pc slotname(pc) ∈ slotnames(r),

2. each slot that is accessed by a sidecondition function has been mentioned
in the preconditions, i.e., (

⋃
di∈dsc slotnames(di)) ⊆ {s ∈ SlotId | ∃ pc ∈

c . pc slotnames(pc) = s},
3. the variables occurring in the effects have been initialised in the sidecon-

ditions, i.e., {v ∈ Var | ∃ ei ∈ e . e var(ei) = v} ⊆ {v ∈ Var | ∃ sc ∈
d . sc var(sc) = v}, and

4. the slotnames in the effects refer to existing slots in the information state r,
i.e., {s ∈ SlotId | ∃ei ∈ e . e slotname(ei) = s} ⊆ slotnames(r).

Let ν = (n, c, d, e) ∈ UR be an update rule and r ∈ IS be an information
state. ν is called applicable in r if ν is well-defined w.r.t. r and satisfies(r, c)
holds. This is denoted by applicable(r, ν).

Update Rule Agents. Update rule (software) agents encapsulate the update
rules, and their task is to compute potential information state updates. The
suggested updates are not immediately executed but rather they are passed to
an update blackboard for heuristic selection. Update rule agents may perform
their computations in a distributed fashion.

An update rule agent embodies a function execute ur agent : UR → (IS →
ISU⊥). The function execute ur agent(ν) takes an update rule ν and returns
a function (lambda term) representing the computation that that rule defines.
The new function can then be applied to a given information state in order to
compute a suggestion for how to update this information state. For each update
rule we obtain a different software agent.

We introduce a macro sc evaluate which abbreviates the retrieval of the
values in the variables and slotnames in the body of sidecondition and the com-
putation of the value which is to be stored in the sidecondition’s variable. We
use function call to apply a function to the arguments which follow it and
value of to retrieve the value stored in a variable.

sc evaluate(sc) =
let (s1 , . . . , sn) := sc slottuple(sc)
let (v1 , . . . , vm) := sc vartuple(sc)
let (t1 , . . . , tm) := (value of(v1), . . . , value of(vm))
function call(sc func(sc), (read(r, s1), . . . , read(r, sn)), (t1 , . . . , tm))

An Agent-Based Architecture for Dialogue Systems 145

We now define execute ur agent as

execute ur agent(ν = (n, c, d, e)) =
λr . if applicable(r, ν)

then
let <sc1 , . . . , scn> := d
let sc var(sc1) := sc evaluate(sc1)
let sc var(sc2) := sc evaluate(sc2)

...
let sc var(scn) := sc evaluate(scn)

{(s, v)|∃(s, sc var(sci)) ∈ e . v = value of(sc var(sci))}
else ⊥

Update Blackboard and Update Agent. An update blackboard is modelled
as a set of information state updates w ∈ UB := P(ISU), and stores pro-
posed updates to the current information state. The update agent investigates
the entries on the update blackboard, heuristically chooses one of the proposed
information state updates and executes it. We assume a user-definable function
choose : UB → ISU which realises the heuristic choice based on some heuristic
ordering criterion > UB : ISU × ISU . A simple example of a partial ordering
criterion >UB is

μ1 >UB μ2 iff slotnames(μ2) ⊆ slotnames(μ1)

In fact, choose may be composed of several such criteria, and clearly the overall
behaviour of the system is crucially influenced by them. The update agent now
embodies a function update agent : UB × (UB → ISU) × IS → IS which is
defined as

update agent(w, choose , r) = execute update(r, choose(w))

5 Conclusion

In this paper we have presented a formalisation of Admp, a platform for devel-
oping dialogue managers using the information state update approach. We were
motivated by the need to integrate many complex and heterogeneous modules
in a flexible way in a dialogue system for mathematical tutoring. These modules
must be able to communicate and share information with one another as well as
to perform computations in parallel.

Admp supports these features by using a hierarchical agent-based design. The
reactive nature of the update rule agents allows for the autonomous concurrent
execution of modules triggered by information in the information state. This
furthermore obviates the need for a strict pipeline-type control algorithm often
seen in dialogue systems, since agents can execute without being explicitly called.
Interfacing the dialogue manager with system modules is also simplified by using

146 M. Buckley and C. Benzmüller

the agent paradigm, because adding a new module involves only declaring a new
update rule. Finally, the meta-level provides a place where overall control can
take place if needed.

Admp thus allows the formalisation of theories of dialogue in the information
state update approach, offering the functionality of related systems like TrindiKit
and Dipper. However by introducing an explicit heuristic layer for overall control
it allows reasoning about the execution of the dialogue manager which these two
systems do not support.

An instantiation of Admp is achieved by declaring an information state, a set
of update rules which operate on the information state, and a choose function,
whereby a developer can fall back to a default function such as suggested in the
previous section. A user-defined choose function should compute valid ISUs,
also in the case where ISUs from the update blackboard are merged. As an
example, a conservative merge strategy would simply reject the merging of pairs
of ISUs whose slotname sets intersect. Update rule agents and the update agent
are automatically generated from the update rule declarations.

We have recently implemented Admp and given an instantiation for the Dialog

system which uses eleven update rules and requires no declaration of control struc-
ture. We have also shown that we can implement a propositional resolution prover
in Admp with four agents and five information state slots, which corresponds to
just 40 lines of code. Extensions such as a set of support strategy can be realised
simply by adding agents, possibly at runtime.

We foresee as future work the extension of our agent concept to include for
instance resource sensitivity, and the investigation of further default heuristics
for the dialogue scenario. Other interesting work is to turn the specification given
in this paper into a formalisation within a higher-order proof assistant such as
ISABELLE/HOL, HOL or OMEGA and to verify its properties.

References

1. Traum, D., Larsson, S.: The information state approach to dialogue management.
In van Kuppevelt, J., Smith, R., eds.: Current and new directions in discourse and
dialogue. Kluwer (2003)

2. Buckley, M., Benzmüller, C.: A Dialogue Manager supporting Natural Language
Tutorial Dialogue on Proofs. Electronic Notes in Theoretical Computer Science
(2006) To appear.

3. Benzmüller, C., Sorge, V.: Ω-Ants – An open approach at combining Interactive
and Automated Theorem Proving. In Kerber, M., Kohlhase, M., eds.: 8th Sym-
posium on the Integration of Symbolic Computation and Mechanized Reasoning
(Calculemus-2000), AK Peters (2000)

4. Bos, J., Klein, E., Lemon, O., Oka, T.: Dipper: Description and formalisation of
an information-state update dialogue system architecture. In: Proceedings of the
4th SIGdial Workshop on Discourse and Dialogue, Sapporo, Japan (2003)

5. Horacek, H., Wolska, M.: Interpreting Semi-Formal Utterances in Dialogs about
Mathematical Proofs. Data and Knowledge Engineering Journal 58(1) (2006)
90–106

An Agent-Based Architecture for Dialogue Systems 147

6. Benzmüller, C., Vo, Q.: Mathematical domain reasoning tasks in natural language
tutorial dialog on proofs. In Veloso, M., Kambhampati, S., eds.: Proceedings of the
Twentieth National Conference on Artificial Intelligence (AAAI-05), Pittsburgh,
Pennsylvania, USA, AAAI Press / The MIT Press (2005) 516–522

7. Tsovaltzi, D., Fiedler, A., Horacek, H.: A Multi-dimensional Taxonomy for Au-
tomating Hinting. In Lester, J.C., Vicari, R.M., Paraguaçu, F., eds.: Intelligent Tu-
toring Systems, 7th International Conference (ITS 2004). Number 3220 in LNCS,
Springer (2004) 772–781

8. Benzmüller, C., Fiedler, A., Gabsdil, M., Horacek, H., Kruijff-Korbayová, I., Pinkal,
M., Siekmann, J., Tsovaltzi, D., Vo, B.Q., Wolska, M.: A Wizard-of-Oz experiment
for tutorial dialogues in mathematics. In: Proceedings of the AIED Workshop
on Advanced Technologies for Mathematics Education, Sydney, Australia (2003)
471–481

9. Allen, J., Core, M.: Draft of DAMSL: Dialogue act markup in several layers. DRI:
Discourse Research Initiative, University of Pennsylvania (1997)

10. Fliedner, G., Bobbert, D.: A framework for information-state based dialogue (demo
abstract). In: Proceedings of the 7th workshop on the semantics and pragmatics
of dialogue (DiaBruck), Saarbrücken (2003)

	An Agent-Based Architecture for Dialogue Systems
	Introduction
	The $Dialog$ Project
	Architecture
	A Formal Specification of $Admp$
	Conclusion

