
A Structured Set of Higher-Order Problems

Christoph E. Benzmüller and Chad E. Brown

Fachbereich Informatik, Universität des Saarlandes, Saarbrücken, Germany
www.ags.uni-sb.de/{˜chris, ˜cebrown}

Abstract. We present a set of problems that may support the development of cal-
culi and theorem provers for classical higher-order logic. We propose to employ
these test problems as quick and easy criteria preceding the formal soundness and
completeness analysis of proof systems under development. Our set of problems
is structured according to different technical issues and along different notions of
semantics (including Henkin semantics) for higher-order logic. Many examples
are either theorems or non-theorems depending on the choice of semantics. The
examples can thus indicate the deductive strength of a proof system.

1 Motivation: Test Problems for Higher-Order Reasoning Systems

Test problems are important for the practical implementation of theorem provers as well
as for the preceding theoretical development of calculi, strategies and heuristics. If the
test theorems can be proven (resp. the non-theorems cannot) then they ideally provide
a strong indication for completeness (resp. soundness). Examples for early publications
providing first-order test problems are [21,29,23]. For more than decade now the TPTP
library [28] has been developed as a systematically structured electronic repository of
first-order test problems. This repository together with the yearly CASC theorem prover
competitions [24] significantly supported the improvement of first-order and proposi-
tional reasoning systems. Unfortunately, a respective library of higher-order test prob-
lems is not yet available.

This paper presents a small set of significant test problems for classical higher-
order logic that may guide the development of higher-order proof systems. These test
problems are relevant for both automated and interactive higher-order theorem proving.
Even some of our simpler theorems may be difficult to prove interactively. Examples are
our problems 15(a): po→o (ao∧bo) ⇒ p (b∧a) and 16: (po→o ao)∧(p bo) ⇒ (p (a∧b)).

Most of the examples presented here are chosen to be a simple representative of
some particular technical or semantical point. We also include examples illustrating
real challenges for higher-order theorem provers. Our work is relevant in the first place
for theorem proving in classical higher-order logic. However, many of our examples
also carry over to other logics such as intuitionistic higher-order logic. Most of the
presented test problems evolved from experience gained in the development of the
higher-order theorem provers TPS [5] and LEO [10,7]. Some of the examples and (many
others) have been also discussed in other publications on classical higher-order logic,
e.g. [15,17,6,1,4]. The novel contribution of this paper is not the test problems per se,
but the connection of these examples with the particular model classes in which they
are valid (resp. invalid) and their assemblage into a comprehensive set.

J. Hurd and T.F. Melham (Eds.): 2005, LNCS 3603, pp. 66–81, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

TPHOLs

A Structured Set of Higher-Order Problems 67

We structure many of our examples along two dimensions. The examples are theo-
rems or non-theorems depending on these dimensions.

Extensionality provides one dimension in which we can vary semantics. Assuming
Henkin semantics, for instance, most of our examples denote theorems. If we choose
a weaker semantics, for instance, by omitting Boolean extensionality, then some test
problems become non-theorems providing a test case for soundness with respect to this
more general notion of semantics (in which fewer propositions are valid). By varying
extensionality, we have defined a landscape of eight higher-order model classes and
developed abstract consistency methods and model existence results in [8,9]. This land-
scape of higher-order model classes and the corresponding abstract consistency frame-
work provides much needed support for the theoretical analysis of the deductive power
of calculi for higher-order logic. The test problems we introduce in this paper provide
quick and easy test criteria for the soundness and completeness of proof systems with
respect to these model classes. Testing a proof system with our examples should thus
precede a formal, theoretical soundness and completeness analysis with the abstract
consistency methodology introduced in [8,9].

Set comprehension provides another dimension along which one can vary seman-
tics. In [14] different model classes are defined depending on the logical constants
which occur in the signature. Since many sets are only definable in the presence of
certain logical constants, this provides a way of varying the sets which exist in a model.
In this paper, we provide examples of theorems which are only provable if one can use
certain logical constants for instantiations. In implementations of the automated theo-
rem provers TPS and LEO the problem of instantiating set variables corresponds to the
use of primitive substitutions described in [14,2,3].

Section 2 introduces the syntax of classical higher-order logic following Church
[15]. Section 3 presents some first test problems for pre-unification and quantifier de-
pendencies. In Section 4 we review a landscape of higher-order semantics that distin-
guishes higher-order models with respect to various combinations of Boolean exten-
sionality, three forms of functional extensionality and different signatures of logical
constants. Section 5 provides test problems that are structured according to the intro-
duced landscape of model classes. Section 6 presents some more complex test problems.

2 Classical Higher-Order Logic

As in [15], we formulate higher-order logic (HOL) based on the simply typed λ-calculus.
The set of simple types T is freely generated from basic types o and ι using the function
type constructor →.

For formulae we start with a set V of (typed) variables (denoted by Xα, Y, Z, . . .)
and a signature Σ of (typed) constants (denoted by cα, fα→β , . . .). We let Vα (Σα)
denote the set of variables (constants) of type α. A signature Σ of constants may include
logical constants from the set Σ defined by

{�o, ⊥o, ¬o→o, ∧o→o→o, ∨o→o→o, ⇒o→o→o, ⇔o→o→o}

∪ {Πα
(α→o)→o

∣
∣ α ∈ T } ∪ {Σα

(α→o)→o

∣
∣ α ∈ T } ∪ {=α

α→α→o

∣
∣ α ∈ T }.

68 C.E. Benzmüller and C.E. Brown

Other constants in a signature are called parameters. The constants Πα and Σα are used
to define ∀ and ∃ (see below) without introducing a binding mechanism other than λ.
The set of HOL-formulae (or terms) over Σ are constructed from typed variables and
constants using application and λ-abstraction. We let wffα(Σ) be the set of all terms of
type α and wff(Σ) be the set of all terms. We use A,B, . . . to denote terms in wffα(Σ).

We use vector notation to abbreviate k-fold applications and abstractions as AUk

and λXk A, respectively. We also use Church’s dot notation so that stands for a (miss-
ing) left bracket whose mate is as far to the right as possible (consistent with given
brackets). We use infix notation A ∨ B for ((∨A)B) and binder notation ∀Xα A for
(Πα(λXα Ao)). While one can consider ∧, ⇒ and ⇔ to be defined (as in [8]), we con-
sider these members of the signature Σ. We also use binder notation ∃X A as shorthand
for Σα(λX A) if Σα is a constant in Σ. We let (Aα=̇αBα) denote the Leibniz equation
∀Pα→o (PA) ⇒ PB.

Each occurrence of a variable in a term is either free or bound by a λ. We use
free(A) to denote the set of free variables of A (i.e., variables with a free occurrence
in A). We consider two terms to be equal (written A ≡ B) if the terms are the same up
to the names of bound variables (i.e., we consider α-conversion implicitly). A term A
is closed if free(A) is empty. We let cwffα(Σ) denote the set of closed terms of type
α and cwff(Σ) denote the set of all closed terms. Each term A ∈ wffo(Σ) is called a
proposition and each term A ∈ cwffo(Σ) is called a sentence.

We denote substitution of a term Aα for a variable Xα in a term Bβ by [A/X]B.
Since we consider α-conversion implicitly, we assume the bound variables of B avoid
variable capture.

Two common relations on terms are given by β-reduction and η-reduction. A β-
redex (λX A)B β-reduces to [B/X]A. An η-redex (λX CX) (where X /∈ free(C))
η-reduces to C. For A,B ∈ wffα(Σ), we write A≡βB to mean A can be converted
to B by a series of β-reductions and expansions. Similarly, A≡βηB means A can be
converted to B using both β and η. For each A ∈ wff(Σ) there is a unique β-normal
form (denoted A↓β) and a unique βη-normal form (denoted A↓βη). From this fact we
know A≡βB (A≡βηB) iff A↓β ≡ B↓β (A↓βη ≡ B↓βη).

A non-atomic formula in wffo(Σ) is any formula whose β-normal form is (cAn)
where c is a logical constant. An atomic formula is any other formula in wffo(Σ).

Many of the example problems in this paper employ equality, e.g. ¬(a = ¬a). We
have different options for the encoding of equality. We can either use primitive equality
(i.e., equality as a logical constant) or use some definition of equality in terms of other
logical constants. A common definition is Leibniz equality (∀Pα→o (PA) ⇒ PB),
but others are possible (see Exercise X5303 in [4]). In many examples we will denote
equality by

∗= (e.g., ¬(a ∗= ¬a)). For each different interpretation of equality, we obtain
a different example. We will discuss conditions under which different choices lead to
theorems and which choices lead to non-theorems.

For some types, one can also define equality extensionally. For example, one can use

equivalence instead of equality at type o. Similarly, at any type α → o, we introduce
set=

to denote set equality, i.e.,
set= is an abbreviation for

λUα→oλVα→o∀Xα UX ⇔ V X.

A Structured Set of Higher-Order Problems 69

In some cases, the use of an extensional definition of equality yields a theorem which
can be proven without assuming extensionality. We will not use the notation

∗= to refer
to any extensional definition of equality. Interpreting

∗= extensionally would signifi-
cantly change some of the discussion below.

3 Test Problems for Pre-unification and Quantifier Dependencies

Higher-order pre-unification (see [26]) and higher-order Skolemization (see [22]) are
important basic ingredients for building an automated higher-order theorem prover.
They are largely independent of the chosen semantics for higher-order logic with one
exception:β versus βη. As noted in [18] the unification problem relative to β-conversion
is different from the unification problem relative to βη-conversion.

3.1 Pre-unification

Implementing a sound, complete and efficient pre-unification algorithm for the simply
typed λ-calculus is a highly non-trivial task. Since higher-order pre-unification extends
standard first-order unification all first-order test problems in the literature also apply to
the higher-order case.

Some specific higher-order test problems can be obtained from the literature on
higher-order unification and pre-unification, for example [26,25]. We will now illustrate
how further challenging test examples can be easily created using Church numerals.

Church numerals are usually employed in the context of the untyped λ-calculus to
encode the natural numbers. This encoding can be partly transformed in a simply typed
or polymorphic typed λ-calculus. This includes the definition of successor, addition and
multiplication which we employ in or test problems.

Iteration is the key concept to encode natural numbers as Church numerals. For each
type α, we can define the Church numeral nα by (λFα→αλYα (FnY))(α→α)→(α→α)
where (FnY) is shorthand for (F (F . . . (F

︸ ︷︷ ︸

n−times

Y))). We will often write n instead of nα,

leaving the dependence on the type implicit. Omitting types1, the successor function s
can be defined as λNλFλY F (NFY), addition + as λMλNλFλY MF (NFY) and
multiplication × as λMλNλFλZ N(MF)Z . To ease notation, we write + and × in
infix.

Arithmetic equations on Church numerals such as 3×4 ∗= 5+7 or (((1̄0×1̄0)×1̄0) ∗=
((1̄0×5̄)+(5̄×1̄0))×1̄0)) provide highly suited test problems for the efficiency of
β-conversion or βη-conversion in the proof system. Of course, in order to correctly
implement β- and η-conversion, one must first properly implement α-conversion.

We obtain more challenging test problems if we employ pre-unification for synthe-
sizing Church numerals and arithmetical operations.

Example 1. (Solving arithmetical equations using pre-unification) The following ex-
amples are provable using pre-unification for β-conversion.

1 N, M are of type (α → α) → (α → α), F is of type α → α, and Y, Z are of type α.

70 C.E. Benzmüller and C.E. Brown

(a) ∃N(ι→ι)→ι→ι ((N×1) ∗= 1) (There are two solutions, 1 and (λFι ι F), if one only
assumes β-conversion. There is one solution assuming βη-conversion.)

(b) ∃N (N×4) ∗= 5+7
(c) ∃H (((H 2̄)3̄) ∗= 6̄) ∧ (((H 1̄)2̄) ∗= 2̄))
(d) ∃N, M (N×4) ∗= 5+M (There are infinitely many solutions to this problem.)

3.2 Quantifier Dependencies

In proof search with tableaux and expansion proofs, variable conditions can be used
to encode quantifier dependencies. Of course, one must be careful to obtain a sound
framework. For instance, the variable conditions added with each eliminated existential
quantifier in the framework used in [20] allow (incorrect) proofs of the following first-
order non-theorems:

Example 2. (First-order non-theorems)

(a) (Example 2.9 in [30]) (∃Xι∀Yι qι→ι→oXY) ∨ (∃Uι∀Vι ¬qV U)
(b) (Example 2.50 in [30]) ∃Yι∀Xι ((∀Zι qι→ι→oXZ) ∨ (¬qXY))

In [19] an attempt was made to use variable conditions in the context of resolution
theorem proving (for a sorted extension of higher-order logic) instead of introducing
Skolem terms. However, the system was unsound as it allowed a resolution refutation
proving the following non-theorem:

Example 3. (Non-Theorem: Every function has a fixed point) ∀Fα→α ∃Xα F X=̇X .
The idea is that one obtains two single-literal clauses (Pι→o(FX)) and ¬(PY) using
clause normalization and variable renaming (where X and Y can be instantiated). One
then obtains the empty clause by unifying Y with (FX).

Skolem terms avoid incorrect proofs of such theorems since the Skolem terms will
preserve the relationship between renamed variables in different clauses. In particular,
if S is a Skolem function, we would obtain single-literal clauses (Sι→ι→oX(FX)) and
¬(Sι→ι→oY Y) which cannot be resolved and unified.

There is a relationship between Skolemization and the axiom of choice in the first-
order case which becomes more delicate in the higher-order case. Consider formulas
∀xι∃yιϕ(x, y) and ∀xιϕ(x, (fι→ιx)). In first-order logic, the two formulas are equiva-
lent with respect to satisfiability whenever f does not occur in ϕ. The equivalence fol-
lows from the fact that any first-order model (with domain Dι) satisfying ∀x∃yϕ(x, y)
can be extended to interpret f as a function g : Dι −→ Dι such that ∀xϕ(x, (fx))
holds. In general, the axiom of choice (at the meta-level) is required to conclude the
function g exists. The situation is different in the higher-order case. As we shall see
when we consider higher-order models, we would need to interpret f not simply as a
function from Dι to Dι, but as a member of a domain Dι→ι. Existence of an appropri-
ate function from Dι to Dι follows from the axiom of choice at the meta-level, but the
existence of an appropriate element of Dι→ι would only follow from a choice property
internal to the higher-order model.

Dale Miller has shown that a naive adaptation of standard first-order Skolemization
to higher-order logic allows one to prove particular instances of the axiom of choice.

A Structured Set of Higher-Order Problems 71

For example, naive Skolemization permits an easy proof of the following version of the
axiom of choice:

Example 4. (Choice) (∀X∃Y rXY) ⇒ (∃F∀X rX(FX))

However, naive Skolemization does not provide a complete method for reasoning with
choice. The following example is equivalent to the axiom of choice (essentially Axiom
11 in [15]) but is not provable using naive Skolemization.

Example 5. (Choice) ∃E(ι→o)→ι∀P (∃Y PY) ⇒ P (EP)

Thus standard first-order Skolemization is unsound in higher-order logic as it partly
introduces choice into the proof system. Dale Miller has fixed the problem by adding
further conditions (see [22]): any Skolem function symbol fn with dependency arity n
(the existentially bound variable to be eliminated by a new Skolem term headed by f is
depending on n universial variables) may only occur in formulas fnAn, where none of
the Ai contains a variable that is bound outside of the term fnAn.

4 Semantics for HOL

In [8] we have re-examined the semantics of classical higher-order logic with the pur-
pose of clarifying the role of extensionality. For this we have defined eight classes of
higher-order models with respect to various combinations of Boolean extensionality
and three forms of functional extensionality. One can further refine these eight model
classes by varying the logical constants in the signature Σ as in [14].

A model of HOL is given by four objects: a typed collection of nonempty sets
(Dα)α∈T , an application operator @: Dα→β ×Dα −→ Dβ , an evaluation function E for
terms and a valuation function υ: Do −→ {T, F}. A pair (D, @) is called a Σ-applicative
structure (see [8](3.1)). If E is an evaluation function for (D, @) (see [8](3.18)), then
we call the triple (D, @, E) a Σ-evaluation. If υ satisfies appropriate properties, then we
call the tuple (D, @, E , υ) a Σ-model (see [8](3.40 and 3.41)).

Given an applicative structure (D, @), an assignment ϕ is a (typed) function from
V to D. An evaluation function E maps an assignment ϕ and a term Aα ∈ wffα(Σ) to
an element Eϕ(A) ∈ Dα. Evaluation functions E are required to satisfy four properties
given in [8](3.18)). If A is closed and E is an evaluation function, then Eϕ(A) cannot
depend on ϕ and we write E(A).

A valuation υ: Do −→ {T, F} is required to satisfy a property Lc(E(c)) for every
logical constant c ∈ Σ (see [8](3.40)). For each logical constant c, Lc(a) is defined to
hold if a is an object of a domain Dα satisfying the characterizing property of the logical
constant c. For example, L¬(n) holds for n ∈ Do→o iff for every a ∈ Do, υ(n@a) is T iff
υ(a) is F. Likewise, L=α(q) holds for q ∈ Dα→α→o if for every a, b ∈ Dα, υ(q@a@b)
is T iff a equals b.

Given a model M := (D, @, E , υ), an assignment ϕ and a proposition A (or set of
propositions Φ), we say M satisfies A (or Φ) and write M |=ϕ A (or M |=ϕ Φ) if
υ(Eϕ(A)) ≡ T (or υ(Eϕ(A)) ≡ T for each A ∈ Φ). If A is closed (or every member of
Φ is closed), then we simply write M |= A (or M |= Φ) and say M is a model of A
(or Φ). We also consider classes M of Σ-models and say a proposition A is valid in M
if M |=ϕ A for every M ∈ M and assignment ϕ.

72 C.E. Benzmüller and C.E. Brown

In order to define model classes which correspond to different notions of exten-
sionality, we define five properties of models (see [8](3.46, 3.21 and 3.5)). For each
Σ-model M := (D, @, E , υ), we say M satisfies property

q iff for all α ∈ T there is a qα ∈ Dα→α→o with L=α(qα).
η iff (D, @, E) is η-functional (i.e., for each A ∈ wffα(Σ) and assignment ϕ, Eϕ(A) ≡

Eϕ(A↓βη)).
ξ iff (D, @, E) is ξ-functional (i.e., for each M,N ∈ wffβ(Σ), X ∈ Vα and assignment

ϕ, Eϕ(λXα Mβ) ≡ Eϕ(λXα Nβ) whenever Eϕ,[a/X](M) ≡ Eϕ,[a/X](N) for every
a ∈ Dα).

f iff (D, @) is functional (i.e., for each f, g ∈ Dα→β , f ≡ g whenever f@a ≡ g@a for
every a ∈ Dα).

b iff υ is injective.

For each ∗ ∈ {β,βη,βξ,βf,βb,βηb, βξb,βfb} and each signature Σ we define M∗(Σ)
to be the class of all Σ-models M such that M satisfies property q and each of the
additional properties {η, ξ, f, b} indicated in the subscript ∗ (see [8](3.49)). We always
include β in the subscript to indicate that β-equal terms are always interpreted as iden-
tical elements. We do not include property q as an explicit subscript; q is treated as a
basic, implicit requirement for all model classes. See [8](3.52) for a discussion on why
we require property q. (We also briefly explore models which do not satisfy property
q in the context of Example 8 and again in Subsection 5.3.) Since we are varying four
properties, one would expect to obtain 16 model classes. However, we showed in [8]
that f is equivalent to the conjunction of ξ and η. Note that, for example, Mβf(Σ) is
a larger class of models than Mβfb(Σ), hence fewer propositions are valid in Mβf(Σ)
than are valid in Mβfb(Σ). In our examples we try to indicate the largest of our model
classes in which the proposition is valid. Implicitly, this means the proposition is also
valid in smaller (more restricted) model classes and may not be valid in larger (less
restricted) ones.

5 Test Problems for Higher-Order Theories

Unless stated otherwise, we assume the signature includes Σ (see p. 67) and write
M∗ for M∗(Σ). Many of the examples could be considered in the context of smaller
signatures. In the following discussion, we only consider smaller signatures in order to
make particular points. (Note that if the signature becomes too small, Leibniz equality,
for example, is no longer expressible.)

5.1 Properties of Equality

There are many useful first-order test problems on equality reasoning in the literature.
For instance, in [12] the following clause set is given to illustrate the incompleteness of
the RUE-NRF resolution approach as introduced in [16]:

{g(f(a)) = a, f(g(X)) �= X}

A Structured Set of Higher-Order Problems 73

Here, X is a free variable (i.e., implicitly universially quantified) and f, g are unary
function symbols. In [12] it is shown that this inconsistent clause set cannot be refuted
in the first-order RUE-NRF approach.

We now present some higher-order test problems addressing properties of equality.
Some of them apply to many possible notions of equality while others describe specific
properties of individual notions or relate different notions to each other.

Example 6. Equality is an equivalence relation in Mβ . These particular examples should
be theorems even if one replaces

∗= with an extensional definition of equality (e.g., ⇔
at type o or

set= at any type α → o).

(a) ∀Xα X
∗= X

(b) ∀Xα∀Yα X
∗= Y ⇒ Y

∗= X
(c) ∀Xα∀Yα∀Zα (X ∗= Y ∧ Y

∗= Z) ⇒ X
∗= Z

Example 7. Equality obeys the congruence property (substitutivity property) in Mβ .

(a) ∀Xα∀Yα∀Fα→α X
∗= Y ⇒ (FX) ∗= (FY)

(b) ∀Xα∀Yα∀Pα→o (X ∗= Y) ∧ (PX) ⇒ (PY)

Example 8 relates the Leibniz definition of equality to primitive equality.

Example 8. (aα=̇αbα) ⇒ (a =α b).

One could legitimately debate whether Example 8 should be a theorem. On the one
hand, if Example 8 is not a theorem, then one should not consider Leibniz equality to
be a definition of real equality. Semantically, Henkin’s first (quite natural) definitions
of models allowed models in which Leibniz equality (e.g., at type ι) does not evaluate
to equality of objects in the model. Such a model M is constructed in [1]. This model
M is a Σ-model in the sense of this paper (if one assumes =α /∈ Σ for every type α),
but is not in any model class M∗(Σ) since property q fails. There is a slight technical
problem with saying M provides a counter-model for Example 8 since one cannot
express Example 8 without =ι∈ Σ. As in [14], one can distinguish between internal
and external uses of equality (as well as ⇒ and ∀) and determine that M is (in a sense
that can be made precise) a countermodel for Example 8.

If a model satisfies property q, then Example 8 is valid for any type α. If a logical
system is intended to be complete for one of our model classes M∗(Σ), then Exam-
ple 8 should be a theorem. For the complete natural deduction calculi in [8], there is
an explicit rule which derives primitive equality from Leibniz equality. In some sense,
requiring property q semantically corresponds to explicitly requiring that Example 8 be
provable.

Also, if =α∈ Σ, then Example 8 (for this particular type α) is valid in any Σ-
model. A proof using primitive equality could instantiate the Leibniz variable Pα→o

with (λZα a = Z). The important point is that = must be available for instantiations
during proofs (not simply for expressing the original sentence).

Extensionality is the distinguishing property motivating our different model classes.
For both, functional and Boolean extensionality, we distinguish between a trivial and a
non-trivial direction.

74 C.E. Benzmüller and C.E. Brown

Example 9. The trivial directions of functional and Boolean extensionality are valid
in Mβ .

(a) ∀Fα→β∀Gα→β F
∗= G ⇒ (∀Xα (FX) ∗= (GX))

(b) ∀Ao∀Bo A
∗= B ⇒ (A ⇔ B)

The other directions are not valid in Mβ . They become theorems only relative to
more restricted model classes in our landscape.

Example 10. (discussed in [15]; Axiom 10 in [17]) ∀Ao∀Bo (A ⇔ B) ⇒ A
∗= B is

valid in Mβb. This is the non-trivial direction of Boolean extensionality.

Example 11. ([15,17], Axiom 10βα) ∀Fα→β∀Gα→β (∀Xα (FX) ∗= (GX)) ⇒ F
∗=

G is valid in Mβf. This is the non-trivial direction of functional extensionality. (Property
q is also relevant to this example as is discussed in [8].)

5.2 Extensionality

We next present examples that illustrate distinguishing properties of the different model
classes with respect to extensionality. In the preceding sections we have already men-
tioned several test problems that are independent of the “amount of extensionality” and
which are theorems in Mβ . We additionally refer to all first-order test problems as, for
instance, provided in the TPTP library.

η-equality is usually realized as part of the pre-unification algorithm in a higher-
order reasoning system. It is important to note that η-equality should not be confused
with full extensionality. In literature on higher-order rewriting, for instance [25], the
notion of extensionality is usually only associated with η-conversion which is far less
than full extensionality.

Example 12. (p(ι→ι)→o(λXι fι→ιX))⇒(p(ι→ι)→of) is essentially 21 from [15] which
expresses η-equality using Leibniz equality. It is valid in Mβη but not in Mβ .

Property ξ together with η gives us full functional extensionality.

Example 13. Validity of (∀Xι (fι→ιX) ∗= X) ∧ p(λXιX) ⇒ p(λXι fX) only de-
pends on ξ, not on η. It is thus valid in Mβξ (but not in model classes which do not
require either ξ or f).

Example 14. (∀Xι (fι→ιX) ∗= X)∧ p(λXιX) ⇒ pf is valid in Mβf, but not in model
classes which do not require f.

As in Example 11, property q is important for validity of Example 13 in Mβξ and
validity of Example 14 in Mβf.

Example 15. ([7]) (a) po→o (ao ∧ bo) ⇒ p (b ∧ a) and (b) ao ∧ bo ∧ (po→oa) ⇒ (pb)
are valid iff we require Boolean extensionality as in Mβb.

Example 16. (po→o ao) ∧ (p bo) ⇒ (p (a ∧ b)) is a theorem of Mβb which is slightly
more complicated to mechanize in some calculi; see [7] for more details.

A Structured Set of Higher-Order Problems 75

Example 17. ¬(a = ¬a) is valid in Mβb. As discussed in [7] this example motivates
specific inference rules for the mechanization of primitive equality.

The following is a tricky example introduced in [14].

Example 18. (ho→ι((h�) ∗= (h⊥))) ∗= (h⊥) is valid in Mβb, but not in model classes
which do not require property b.

Many people do not immediately accept that Example 18 is a theorem. A simple
informal argument is helpful. Either (h�) ∗= (h⊥) is true or false. If the equation
holds, then Example 18 reduces to (h�) ∗= (h⊥) which we have just assumed. If the
equation is false, then Example 18 reduces to (h⊥) ∗= (h⊥), an instance of reflexivity.

Example 19 combines Boolean extensionality with η-equality.

Example 19. p(ι→ι)→o(λXι fo→ι→ι(a(ι→ι)→o(λXι fboX)∧b)X) ⇒ p(f(b∧ a(fb)))
is valid in Mβηb, but is not valid if properties b and η are not assumed.

By DeMorgan’s Law, we know X ∧Y is the same as ¬(¬X ∨¬Y). In Example 20,
we vary the notion of “is the same as” to obtain several examples which are only prov-
able with some amount of extensionality. Note that if we only assume property ξ, we
can only conclude the η-expanded form of ∧ is equal to (λXλY ¬(¬X ∨ ¬Y)).

Example 20. Consider the following examples.

(a) ∀X∀Y X ∧ Y ⇔ ¬(¬X ∨ ¬Y) is valid in Mβ .
(b) ∀X∀Y X ∧ Y

∗= ¬(¬X ∨ ¬Y) is valid in Mβb.
(c) (λUλV U ∧ V) ∗= (λXλY ¬(¬X ∨ ¬Y)) is valid in Mβξb.
(d) ∧ ∗= (λXλY ¬(¬X ∨ ¬Y)) is valid in Mβfb.

Finally we reach Henkin semantics which is characterized by full extensionality,
i.e. the combination of Boolean and functional extensionality. Example 20(d) already
provided one example valid only in Mβfb.

Example 21. The following theorem in Mβfb characterizes the fact that in all Henkin
models we have exactly four functions mapping truth values to truth values.

((p λXo Xo) ∧ (p λXo ¬Xo) ∧ (p λXo ⊥) ∧ (p λXo �)) ⇒ ∀Yo→o (p Y)

Example 22. As exploited in [11], set theory problems can be concisely and elegantly
formulated in higher-order logic when using λ-abstraction to encode sets as character-
istic functions. For instance, given a predicate pα→o the set of all objects of type α that
have property p is denoted as λXα (pX). We then define set operations as follows (we
give only some examples):

set operation defined by
∈α→(α→o)→o λZαλXα→o(XZ)
{.}α→(α→o) λUα(λZα Z

∗= U)
∅α→o (λZα⊥)
∩(α→o)→(α→o)→(α→o) λXα→oλYα→o(λZα Z ∈ X ∧ Y ∈ Y)
∪(α→o)→(α→o)→(α→o) λXα→oλYα→o(λZα Z ∈ X ∨ Y ∈ Y)
⊆(α→o)→(α→o)→o λXα→oλYα→o(∀Zα Z ∈ X ⇒ Y ∈ Y)
℘(α→o)→((α→o)→o) λXα→o(λYα→o Y ⊆ X)

76 C.E. Benzmüller and C.E. Brown

We can now formulate some test problems on sets:

(a) aα→o ∪ (bα→o ∩ cα→o)
set= (a ∪ b) ∩ (a ∪ c) is valid in Mβ .

(b) aα→o ∪(bα→o ∩cα→o)
∗= (a∪b)∩(a∪c) is valid in Mβξb but not in model classes

without ξ and b.
(c) ℘(∅α→o)

set= {∅α→o} is valid in Mβfb but not in model classes without f and b.
The example is not valid in Mβ due to the embedded equation introduced by the
definition of a singleton set {.}.

(d) and ℘(∅α→o)
∗= {∅α→o} is valid in Mβfb but not in model classes without f and b.

These examples motivate pre-processing in higher-order theorem proving in which
the definitions are fully expanded and in which the extensionality principles are em-
ployed es early as possible. After pre-processing, many problems of this kind can be
automatically translated from their concise and human readable higher-order represen-
tation into first-order or even propositional logic representations to be easily checked
by respective specialist systems.

5.3 Set Comprehension

One of the advantages of Church’s type theory is that instead of assuming compre-
hension axioms one can simply use terms defining sets for set instantiations. Such set
instantiations make use of logical constants in the signature Σ. As in [14] one can vary
the signature of logical constants in order to vary the set comprehension assumed in
Σ-models. With different amounts of set comprehension, different examples will be
valid.

Generating set instantiations is one of the toughest challenges for the automation of
higher-order logic. (In fact set instantiations can be employed to simulate the cut-rule
as soon as one of the following prominent axioms of higher-order logic is available
in the search space: comprehension, induction, extensionality, choice, description.) Set
instantiations are often generated during automated search using an enumeration tech-
nique involving primitive substitutions.

For each example below, we note restrictions on the signature Σ under which the
example is either valid or not valid. Since we would like to distinguish between sig-
natures which contain primitive equality (at various types) and those which do not, we
consider classes of models which do not necessarily satisfy property q. In particular,
let M−q

β (Σ) be the set of all Σ-models and let M−q
βfb(Σ) be the set of all Σ-models

satisfying properties f and b (without requiring property q).
As in Example 8 one can focus on the use of logical constants in Σ for instantia-

tions and ignore certain uses of logical constants to express the formula. For example,
suppose A ∈ cwffo(Σ), M is a Σ-model and ¬ /∈ Σ. While (¬A) /∈ wffo(Σ), we can
consider (¬A) to be a Σ-external proposition and define M |= ¬A to mean M �|= A.
Intuitively, the negation is used externally in (¬A). We can inductively define the set
of Σ-external propositions M and the meaning of M |= M for Σ-models M. After
doing so, most of the examples below are Σ-external propositions even if Σ contains
no logical constants. Only Examples 30 and 33 in this section make nontrivial uses of
certain logical constants to express the propositions. Due to space considerations, we
refer the reader to [14] for details.

A Structured Set of Higher-Order Problems 77

If Σ is sufficiently small, then one can construct two trivial models in M−q
βfb(Σ)

where Do is either simply {T} or {F}. (This possibility was ruled out in [8] since we
assumed ¬ ∈ Σ.)

Example 23. ∃PP is valid in M−q
β (Σ) if either � ∈ Σ or ¬ ∈ Σ. The example is not

valid in M−q
βfb(Σ) if Σ ⊆ {⊥, ∧, ∨} ∪ {Πα, Σα|α ∈ T }. (Any proof must use a set

instantiation involving either �, ¬, ⇒, ⇔ or some primitive equality.)

Example 24. ¬∀PP is valid in M−q
β (Σ) if either ⊥ ∈ Σ or ¬ ∈ Σ. The example is

not valid in M−q
βfb(Σ) if Σ ⊆ (Σ \ {⊥, ¬}). (Any proof must use a set instantiation

involving either ⊥ or ¬.)

Example 25 characterizes when an instantiation satisfying the property of nega-
tion is possible. This can be either because the signature supplies negation or supplies
enough constants to define negation.

Example 25. ∃No→o∀Po NP ⇔ ¬P is valid in M−q
β (Σ) if ¬ ∈ Σ. The example is

also valid in M−q
β (Σ) if ⊥ ∈ Σ and {⇒, ⇔} ∩ Σ �= ∅ since one can consider either

the term λXo X ⇒ ⊥ or the term λXo X ⇔ ⊥. The example is not valid in M−q
βfb(Σ)

if Σ ⊆ {�, ⊥, ∧, ∨} ∪ {Πα, Σα|α ∈ T }.

One possibility we did not cover in Example 25 is if Σ is {⊥, =o}. Consider the
term (λXo X =o ⊥). This only defines negation if we assume Boolean extensionality.
Hence we obtain the interesting fact that Example 25 is valid in M−q

βfb({⊥, =o}), but is

not valid in M−q
β ({⊥, =o}).

One can modify Example 25 in a way that requires not only a set instantiation for
negation, but also extensionality.

Example 26. ¬∀Fo→o∃X (FX) ∗= X is valid in M−q
βfb(Σ) if ¬ ∈ Σ. The example is

not valid in M−q
β (Σ) regardless of the signature Σ. Also, the example is not valid in

M−q
βfb(Σ) if Σ ⊆ {�, ⊥, ∧, ∨} ∪ {Πα, Σα|α ∈ T }.

Example 27 characterizes when an instantiation can essentially define disjunction
and Example 28 characterizes when an instantiation can essentially define the univer-
sal quantifier at type α. Clearly one can modify these examples for any other logical
constant.

Example 27. ∃Do→o→o∀Po∀Qo DPQ ⇔ (P ∨ Q) is valid in M−q
β (Σ) if ∨ ∈ Σ. The

example is also valid in M−q
β (Σ) if {¬, ∧} ⊆ Σ.

Example 28. ∃Q(α→o)→o)∀Pα→o QP ⇔ ∀Xα PX is valid in M−q
β (Σ) if Πα ∈ Σ.

Recall that Example 8 already provided an example in which one might require a
set instantiation involving primitive equality (depending on how the calculus relates
Leibniz equality to primitive equality).

A few interesting set instantiations involve no logical constants, but do make use of
projections (see [18]). Sometimes such projections can be obtained from higher-order
unification, as in Example 29.

78 C.E. Benzmüller and C.E. Brown

Example 29. ∃No→o∀Po NP ⇔ P is valid in M−q
β (∅).

However, one cannot expect higher-order unification to always provide projection
terms when they are needed. Example 30 was studied extensively in [2] (see THM104)
in order to demonstrate this fact. In this example, we make use of the abbreviation
{.} which was defined in Example 22. If the definition of {.} makes use of primitive
equality, one must assume =ι∈ Σ to express the proposition. If {.} is defined using
Leibniz equality, then one must assume ¬, Πι→o ∈ Σ to express the proposition.

Example 30. ∀Xι∀Zι {X}=̇{Z} ⇒ X=̇Z is valid in M−q
β (Σ) so long as Σ is suffi-

cient to express the proposition.

The examples above are straightforward examples designed to ensure completeness
of theorem provers with respect to set comprehension. A more natural theorem which
requires set instantiations is Cantor’s Theorem. Two forms of Cantor’s Theorem were
studied with respect to set comprehension in [14]. Example 31 is the surjective form of
Cantor’s Theorem discussed in [4].

Example 31. (Surjective Cantor Theorem) ¬∃Gα→α→o∀Fα→o∃Jα GJ =α→o F is
valid in M−q

βfb(Σ) if ¬ ∈ Σ. The example is not valid in M−q
βfb(Σ) if Σ ⊆ {�, ⊥, ∧, ∨}∪

{Πα, Σα|α ∈ T } (see Theorem 6.7.8 in [14]).

An alternative formulation of Cantor’s Theorem (see [5,14]) is the injective form
shown in Example 32. Almost any higher-order theorem prover complete for the cor-
responding model class should be capable of proving the previous examples in this
subsection. Example 32 is far more challenging. At the present time, no theorem prover
has found a proof of Example 32 automatically.

Example 32. (Injective Cantor Theorem) ¬∃H(ι→o)→ι∀Pι→o∀Qι→o HP =ι HQ ⇒
P =ι→o Q is valid in M−q

βfb(Σ) if {¬, ∧, =ι, Πι→o} ⊆ Σ (see Lemma 6.7.2 in [14]).

The example is not valid in M−q
βfb(Σ) if Σ ⊆ {�, ⊥, ¬, ∧, ∨, ⇒, ⇔, Πι, Σι, =ι→o}.

(This fact follows from the results in Section 6.7 of [14].)

One of the difficulties of proving Example 32 is that certain set instantiations seem
to be needed beneath other set instantiations (see [5]). The next family of examples
illustrates that nontrivial set instantiations can occur within set instantiations with an
arbitrary number of iterations.

Example 33. Assume Σ contains ¬ and Πα for every type α. Fix a constant cι. We will
define a theorem Dn

o for each natural number n. By induction on n, define simple types
τn and abbreviations An

τn→o as follows.

(a) Let τ0 be the type ι and τn+1 be τn → o for each natural number n.
(b) Let A0

ι→o be λZ (Z=̇cι) ∧ � and An+1 be λZτn+1 (Z=̇An) ∧ ∃Tτn ZT for each
natural number n.

Finally, for each n, let Dn
o be ∃SτnAnS. Each Dn is a valid in M−q

β (Σ). The constant
cι is the obvious witness for D0. For each n, An is the witness for Dn+1. Note that
a subgoal of showing An is the witness for Dn+1 involves showing An is nonempty
(which was Dn). Hence this proof of Dn+1 involves all the previous instantiations
A0, . . . ,An.

A Structured Set of Higher-Order Problems 79

6 More Complex Examples

Here we present technically or proof theoretically challenging examples. First we con-
sider a class of hard problems simply involving β-reduction.

Example 34. Let α0 be ι and αn+1 be (αn → αn) for each n. Note that the Church

numeral 2αn

has type αn+2. For any n we can form the term (2αn

2αn−1

· · · 2α0

) of type
(ι → ι) → ι → ι. The size of the β-normal form of this term is approximately of size

2(2···
2)

containing n + 1 ‘2s’. (This is a well-known example, mentioned in [27].) For

n ≥ 4 it becomes infeasible to β-normalize such a term (since 2222
2

is 265536, a number
much larger than google). One can express relatively simple theorems using this term
such as

(2αn

2αn−1

· · · 2α0

)(λXιX) ∗= (λXιX).

If one avoids eager β-normalization and allows lemmas, then there is a reasonably short
proof using higher-order logic. We first define the set Cα

2 of Church numerals (over α)
greater than or equal to 2:

λN(α→α)→α→α∀P (P2α ∧ (∀M PM ⇒ P (sM))) ⇒ PN.

(Technically, (0 2) is β-equal to (λFι→ιF), which is not equal to 1. We work with the
set of Church numerals greater than or equal to 2 to avoid this problem.) One can prove
two results with little trouble (where the lengths of the proofs do not depend on the
type α):

(a) ∀N((α→α)→α→α)→(α→α)→α→α Cα→α
2 N ⇒ Cα

2 (N2α)
(b) ∀N(α→α)→α→α Cα

2 N ⇒ (N(λXα X)) = (λXαX)

Using (a) at several types and (b) at type ι, we can prove, e.g.,

(2α4

2α3

2α2

2α1

2α0

)(λXιX) ∗= (λXιX)

in higher-order logic without β-normalizing.

In [13, Chapter 25, p. 376–382] Boolos presents a related example of a first-order
problem which has only a very long (practically infeasible) derivation in first-order
logic, but which has a short derivation in a second-order logic, by making use of com-
prehension axioms.

Example 35. (Boolos’ Curious Inference)

(∀n f(n, 1) = s(1) ∧ ∀x f(1, s(x)) = s(s(f(1, x)))
∧ ∀n ∀x f(s(n), s(x)) = f(n, f(s(n), x))
∧ D(1) ∧ ∀x (D(x) ⇒ D(s(x))))

⇒ D(f(s(s(s(s(1)))), s(s(s(s(1))))))

If there were an appropriate (first-order) induction principle available, then there
should be a short proof of this example. Note that the example specifies f to be the Ack-
ermann function which grows extremely fast and hence f(s(s(s(s(1)))), s(s(s(s(1)))))

80 C.E. Benzmüller and C.E. Brown

is a very big number. Actually, there is long first-order proof which is relatively easy

to describe. Boolos argues that any first-order proof must be of size at least 2(2···
2)

containing 64K ‘2s’ in all (far more enormous than the number 264K in Example 34).
There is no chance of formally representing such a proof with all computation power
ever. Boolos presents a short alternative proof in second-order logic that makes use of
higher-order lemmas obtained from comprehension axioms. Formulating the appropri-
ate lemmas (as with the lemmas in Example 34) requires human ingenuity that goes
beyond the capabilities of what can be supported with primitive substitution and lemma
speculation techniques in current theorem proving approaches.

As discussed in [3], there is a family of theorems A1,A2, . . . which are all of the
same low order such that An is not provable unless one uses set instantiations involving
nth-order quantifiers. To obtain concrete examples from the argument, one must use
Gödel numbering. A family of simpler examples displaying this phenomenon would
likely be enlightening.

7 Conclusion

We have presented a first set of higher-order test examples that may support the develop-
ment of higher-order proof systems. This set of examples has been structured according
to technical aspects and the semantic properties of extensionality and set comprehen-
sion. Future work is to add examples and include them in either the TPTP library or
an appropriate higher-order variant. Many more examples are particularly needed to
illustrate properties of different forms of equality.

References

1. P. B. Andrews. General models and extensionality. J. of Symbolic Logic, 37(2):395–397,
1972.

2. P. B. Andrews. On Connections and Higher Order Logic. J. of Automated Reasoning, 5:257–
291, 1989.

3. P. B. Andrews. Classical type theory. In A. Robinson and A. Voronkov, editors, Handbook
of Automated Reasoning, volume 2, chapter 15, pages 965–1007. Elsevier Science, 2001.

4. P. B. Andrews. An Introduction to Mathematical Logic and Type Theory: To Truth Through
Proof. Kluwer Academic Publishers, second edition, 2002.

5. P. B. Andrews, M. Bishop, and C. E. Brown. TPS: A theorem proving system for type
theory. In D. McAllester, editor, Proc. of CADE-17, number 1831 in LNAI, pages 164–169,
Pittsburgh, USA, 2000. Springer.

6. Peter B. Andrews. Resolution in type theory. J. of Symbolic Logic, 36(3):414–432, 1971.
7. C. Benzmüller. Equality and Extensionality in Automated Higher-Order Theorem Proving.

PhD thesis, Saarland University, 1999.
8. C. Benzmüller, C. Brown, and M. Kohlhase. Higher-order semantics and extensionality. J.

of Symbolic Logic, 69(4):1027–1088, 2004.
9. C. Benzmüller, C. E. Brown, and M. Kohlhase. Semantic techniques for higher-

order cut-elimination. SEKI Technical Report SR-2004-07, Saarland University,
Saarbrücken, Germany, 2004. Available at: http://www.ags.uni-sb.de/∼chris/
papers/R37.pdf.

http://www.ags.uni-sb.de/~chris/
papers/R37.pdf

A Structured Set of Higher-Order Problems 81

10. C. Benzmüller and M. Kohlhase. LEO – a higher order theorem prover. In C. Kirchner
and H. Kirchner, editors, Proc. of CADE-15, number 1421 in LNAI, pages 139–144, Lindau,
Germany, 1998. Springer.

11. C. Benzmüller, V. Sorge, M. Jamnik, and M. Kerber. Can a higher-order and a first-order
theorem prover cooperate? In F. Baader and A. Voronkov, editors, Proc. of LPAR 2004,
volume 3452 of LNAI, pages 415–431. Springer, 2005.

12. M. P. Bonacina and J. Hsiang. Incompleteness of the RUE/NRF inference systems. Newslet-
ter of the Association for Automated Reasoning, No. 20, pages 9–12, 1992.

13. G. Boolos. Logic, Logic, Logic. Harvard University Press, 1998.
14. C. E. Brown. Set Comprehension in Church’s Type Theory. PhD thesis, Department of

Mathematical Sciences, Carnegie Mellon University, 2004.
15. A. Church. A formulation of the simple theory of types. J. of Symbolic Logic, 5:56–68, 1940.
16. V. J. Digricoli. Resolution by unification and equality. In W. H. Joyner, editor, Proc. of

CADE-4, Austin, Texas, USA, 1979.
17. Leon Henkin. Completeness in the theory of types. J. of Symbolic Logic, 15(2):81–91, 1950.
18. G. P. Huet. A unification algorithm for typed λ-calculus. Theoretical Computer Science,

1:27–57, 1975.
19. M. Kohlhase. A Mechanization of Sorted Higher-Order Logic Based on the Resolution Prin-

ciple. PhD thesis, Saarland University, 1994.
20. M. Kohlhase. Higher-order tableaux. In Proc. of TABLEAUX 95, number 918 in LNAI, pages

294–309. Springer, 1995.
21. J.D. McCharen, R.A. Overbeek, and L.A. Wos. Problems and Experiments for and with

Automated Theorem-Proving Programs. IEEE Transactions on Computers, C-25(8):773–
782, 1976.

22. D. Miller. Proofs in Higher-Order Logic. PhD thesis, Carnegie-Mellon Univ., 1983.
23. F.J. Pelletier. Seventy-five Problems for Testing Automatic Theorem Provers. J. of Automated

Reasoning, 2(2):191–216, 1986.
24. F.J. Pelletier, G. Sutcliffe, and C.B. Suttner. The Development of CASC. AI Communica-

tions, 15(2-3):79–90, 2002.
25. C. Prehofer. Solving Higher-Order Equations: From Logic to Programming. Progress in

Theoretical Computer Science. Birkhäuser, 1998.
26. W. Snyder and J. Gallier. Higher-Order Unification Revisited: Complete Sets of Transforma-

tions. J. of Symbolic Computation, 8:101–140, 1989.
27. R. Statman. The typed λ-calculus is not elementary recursive. Theoretical Computer Science,

9:73–81, 1979.
28. G. Sutcliffe and C. Suttner. The TPTP Problem Library: CNF Release v1.2.1. J. of Automated

Reasoning, 21(2):177–203, 1998.
29. G.A. Wilson and J. Minker. Resolution, Refinements, and Search Strategies: A Comparative

Study. IEEE Transactions on Computers, C-25(8):782–801, 1976.
30. C.-P. Wirth. Descente infinie + Deduction. Logic J. of the IGPL, 12(1):1–96, 2004.

www.ags.uni-sb.de/∼cp/p/d/welcome.html.

www.ags.uni-sb.de/~cp/p/d/welcome.html

	Motivation: Test Problems for Higher-Order Reasoning Systems
	Classical Higher-Order Logic
	Test Problems for Pre-unification and Quantifier Dependencies
	Pre-unification
	Quantifier Dependencies

	Semantics for HOL
	Test Problems for Higher-Order Theories
	Properties of Equality
	Extensionality
	Set Comprehension

	More Complex Examples
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

