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Abstract. The year 2004 marks the fiftieth birthday of the first com-
puter generated proof of a mathematical theorem: “the sum of two even
numbers is again an even number” (with Martin Davis’ implementation
of Presburger Arithmetic in 1954).

While Martin Davis and later the research community of automated
deduction used machine oriented calculi to find the proof for a theorem
by automatic means, the Automath project of N.G. de Bruijn1 – more
modest in its aims with respect to automation – showed in the late 1960s
and early 70s that a complete mathematical textbook could be coded and
proof-checked by a computer.

Classical theorem proving procedures of today are based on ingenious
search techniques to find a proof for a given theorem in very large search
spaces – often in the range of several billion clauses. But in spite of
many successful attempts to prove even open mathematical problems
automatically, their use in everyday mathematical practice is still limited.

The shift from search based methods to more abstract planning tech-
niques however opened up a new paradigm for mathematical reasoning
on a computer and several systems of the new kind now employ a mix
of interactive, search based as well as proof planning techniques.

The Ωmega system is at the core of several related and well-integrated
research projects of the Ωmega research group, whose aim is to de-
velop system support for the working mathematician, in particular it
supports proof development at a human oriented level of abstraction.
It is a modular system with a central proof data structure and several
supplementary subsystems including automated deduction and computer
algebra systems. Ωmega has many characteristics in common with sys-
tems like NuPrL [ACE+00], CoQ [Coq03], Hol [GM93], Pvs [ORR+96],
and Isabelle [Pau94,NPW02]. However, it differs from these systems
with respect to its focus on proof planning and in that respect it is
more similar to the proof planning systems Clam and λClam at Edin-
burgh [RSG98,BvHHS90].

1 http://www.win.tue.nl/automath/
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1 Introduction

The vision of computer-supported mathematics and a system which provides
integrated support for all work phases of a mathematician (see Fig. 1) has fasci-
nated researchers in artificial intelligence, particularly in the deduction systems
area, and in mathematics for a long time. The dream of mechanizing (mathemat-
ical) reasoning dates back to Gottfried Wilhelm Leibniz in the 17th century with
the touching vision that two philosophers engaged in a dispute would one day
simply code their arguments into an appropriate formalism and then calculate
(Calculemus!) who is right. At the end of the 19th century modern mathemat-
ical logic was born with Frege’s Begriffsschrift and an important milestone in
the formalization of mathematics was Hilbert’s program and the 20th century
Bourbakism.

Fig. 1. Calculemus illustration of different challenges for a mathematical assistance
system.

With the logical formalism for the representation and calculation of math-
ematical arguments emerging in the first part of the twentieth century it was
but a small step to implement these techniques now on a computer as soon as it
was widely available. In 1954 Martin Davis’ Presburger Arithmetic Program was
reported to the US Army Ordnance and the Dartmouth Conference in 1956 is
not only known for giving birth to artificial intelligence in general but also more
specifically for the demonstration of the first automated reasoning programs for
mathematics by Herb Simon and Alan Newell.
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However, after the early enthusiasm of the 1960s, in particular the publication
of the resolution principle in 1965 [Rob65], and the developments in the 70s a
more sober realization of the actual difficulties involved in automating everyday
mathematics set in and the field increasingly fragmented into many subareas
which all developed their specific techniques and systems2. It is only very recently
that this trend is reversed, with the Calculemus

3 and Mkm
4 communities as

driving forces of this movement. In Calculemus the viewpoint is bottom-up,
starting from existing techniques and tools developed in the community. Mkm

approaches the goal of computer-based mathematics in the new millennium by a
complementary top-down approach starting from existing, mainly pen and paper
based mathematical practice down to system support.

We shall provide an overview and the main developments of the Ωmega

project in the following and then point to current research and some future
goals.

2 Ωmega

The Ωmega project represents one of the major attempts to build an all en-
compassing assistant tool for the working mathematician. It is a representative
of systems in the new paradigm of proof planning and combines interactive and
automated proof construction for domains with rich and well-structured math-
ematical knowledge. The inference mechanism at the lowest level of abstraction
is an interactive theorem prover based on a higher order natural deduction (ND)
variant of a soft-sorted version of Church’s simply typed λ-calculus [Chu40].
The logical language, which also supports partial functions, is called POST ,
for partial functions and order sorted type theory. While this represents the
“machine code” of the system the user will seldom want to see, the search for
a proof is usually conducted at a higher level of abstraction defined by tactics
and methods. Automated proof search at this abstract level is called proof plan-
ning (see Section 2.3). Proof construction is also supported by already proven
assertions and theorems and by calls to external systems to simplify or solve
subproblems.

2.1 System Overview

At the core of Ωmega is the proof plan data structure PDS [CS00], in which
proofs and proof plans are represented at various levels of granularity and ab-
straction (see Fig. 2). The PDS is a directed acyclic graph, where open nodes
represent unjustified propositions that still need to be proved and closed nodes
represent propositions that are already proved. The proof plans are developed
2 The history of the field is presented in a classical paper by Martin Davis [Dav83] and

also in [Dav01] and more generally in his history of the making of the first computers
[Dav65]. Another source is Jörg Siekmann [Sie92] and more recently [Sie04].

3 www.calculemus.org
4 monet.nag.co.uk/mkm/index.html
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and classified with respect to a taxonomy of mathematical theories in the mathe-
matical knowledge base MBase [FK00a,KF01]. The user of Ωmega, or the proof
planner Multi [MM00], or else the suggestion mechanism ΩAnts [BS00] modify
the PDS during proof development until a complete proof plan has been found.
They can also invoke external reasoning systems, whose results are included in
the PDS after appropriate transformation. Once a complete proof plan at an
appropriate level of abstraction has been found, this plan must be expanded
by sub-methods and sub-tactics into lower levels of abstraction until finally a
proof at the level of the logical calculus is established. After expansion of these
high-level proofs to the underlying ND calculus, the PDS can be checked by
Ωmega’s proof checker.
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Fig. 2. The proof plan datastructure PDS is at the core of the Ωmega system. Proof
construction is facilitated by knowledge-based proof planning (deliberative), agent-
oriented theorem proving (reactive), or by user interaction.

Hence, there are two main tasks supported by this system, namely (i) to
find a proof plan, and (ii) to expand this proof plan into a calculus-level proof;
and both jobs can be equally difficult and time consuming. Task (ii) employs an
LCF-style tactic expansion mechanism, proof search or a combination of both
in order to generate a lower-level proof object. It is a design objective of the
PDS that various proof levels coexist with their respective relationships being
dynamically maintained.

The graphical user interface LΩUI [SHB+99] (see Fig. 4) provides both a
graphical and a tabular view of the proof under consideration, and the interac-
tive proof explanation system P.rex [Fie01b,Fie01a,Fie01c] generates a natural-
language presentation of the proof.

The previously monolithic system has been split up and separated into sev-
eral independent modules, which are connected via the mathematical software
bus MathWeb-SB [ZK02]. An important benefit is that MathWeb-SB mod-
ules can be distributed over the Internet and are then remotely accessible by
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other research groups as well. There is now a very active MathWeb user commu-
nity with sometimes several thousand theorems and lemmata being proven per
day. Most theorems are generated automatically as (currently non-reusable and
non-indexed) subproblems in natural language processing (see the Doris system
[Dor01]), proof planning and verification tasks.

Expansion

A
bs

tr
ac

tio
n

Abstract Proof Plan

Higher Order Natural Deduction
Proof Object

Verbalization
ProofComputation

Transformation

K
n

o
w

le
d

g
e−

b
as

ed
P

ro
o

f 
P

la
n

n
in

g
T

h
eo

rem
 P

ro
vin

g
A

g
en

t−o
rien

ted
 

deliberative reactive

D
ata

Proof

Stru
ct

ur
e

MATHW
EB

LEARNOMATIC

SAPPER
LEO

TRAMP

P.R
EX

LOUI

OANTS

OANTS−R

OMDOC

MAYA

MBASE

MULTI

ATPs &
 C

ASs

COSIE

External
Systems Transformation

Proof

Learning GUI

Mathematical
Services

Maths
Repositories

Maths
Documents

Assertion
Retrieval

Fig. 3. The vision of an all encompassing mathematical assistance environment: we
have now modularized and out-sourced many of the support tools such that they can
also be used by other systems via the MathWeb-SB software bus.

2.2 External Systems

Proof problems require many different skills for their solution. Therefore, it is
desirable to have access to several systems with complementary capabilities, to
orchestrate their use, and to integrate their results. Ωmega interfaces hetero-
geneous external systems such as computer algebra systems (CASs), higher and
first order automated theorem proving systems (ATPs), constraint solvers (CSs),
and model generation systems (MGs).

Their use is twofold: they may provide a solution to a subproblem, or they
may give hints for the control of the search for a proof. In the former case, the
output of an incorporated reasoning system is translated and inserted as a sub-
proof into the PDS. This is beneficial for interfacing systems that operate at
different levels of abstraction, and also for a human-oriented display and inspec-
tion of a partial proof. Importantly, it also enables us to check the soundness of
each contribution by expanding the inserted subproof to a logic-level proof and
then verify it by Ωmega’s proof checker.
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Currently, the following external systems are integrated in Ωmega:
CASs provide symbolic computation, which can be used in two ways: first,

to compute hints to guide the proof search (e.g., witnesses for existential
variables), and, second, to perform some complex algebraic computation such
as to normalize or simplify terms. In the latter case the symbolic computation
is directly translated into proof steps in Ωmega. CASs are integrated via the
transformation and translation module Sapper [Sor00]. Currently, Ωmega

uses the systems Maple [CGG+92] and GAP [S+95].
ATPs are employed to solve subgoals. Currently Ωmega uses the first order

provers Bliksem [dN99], EQP [McC97], Otter [McC94], Protein [BF94],
Spass [WAB+99], WaldMeister [HJL99], the higher order systems Tps

[ABI+96], and LEO [BK98,Ben99], and we plan to incorporate Vampire

[RV01]. The first order ATPs are connected via Tramp [Mei00], which is
a proof transformation system that transforms resolution-style proofs into
assertion-level ND proofs to be integrated into Ωmega’s PDS. Tps already
provides ND proofs, which can be further processed and checked with little
transformational effort [BBS99].

MGs provide either witnesses for free (existential) variables, or counter-models,
which show that some subgoal is not a theorem. Hence, they help to guide the
proof search. Currently, Ωmega uses the model generators Satchmo [MB88]
and Sem [ZZ95].

CSs construct mathematical objects with theory-specific properties as witnesses
for free (existential) variables. Moreover, a constraint solver can help to re-
duce the proof search by checking for inconsistencies of constraints. Cur-
rently, Ωmega employs CoSIE [MZM00], a constraint solver for inequalities
and equations over the field of real numbers.

2.3 Proof Planning

Ωmega’s main focus is on knowledge-based proof planning [Bun88,Bun91],
[MS99], where proofs are not conceived in terms of low-level calculus rules,
but at a much higher level of abstraction that highlights the main ideas and
de-emphasizes minor logical or mathematical manipulations on formulae.

Knowledge-based proof planning is a new paradigm in automated theorem
proving, which swings the motivational pendulum back to its AI origins in that it
employs and further develops many AI principles and techniques such as hierar-
chical planning, knowledge representation in frames and control rules, constraint
solving, tactical theorem proving, and meta-level reasoning. It differs from tradi-
tional search-based techniques in automated theorem proving not least in its level
of abstraction: the proof of a theorem is planned at an abstract level where an
outline of the proof is found. This outline, that is, the abstract proof plan, can be
recursively expanded to construct a proof within a logical calculus provided the
proof plan does not fail. The plan operators represent mathematical techniques
familiar to a working mathematician. While the knowledge of such a mathemat-
ical domain as represented within methods and control rules is specific to the
mathematical field, the representational techniques and reasoning procedures
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are general-purpose. For example, one of our first case studies [MS99] used the
limit theorems proposed by Woody Bledsoe [Ble90] as a challenge to automated
reasoning systems. The general-purpose planner makes use of this mathematical
domain knowledge and of the guidance provided by declaratively represented
control rules, which correspond to mathematical intuition about how to prove
a theorem in a particular situation. These rules provide a basis for meta-level
reasoning and goal-directed behavior.

Domain knowledge is encoded into methods, control rules, and strategies.
Moreover, methods and control rules can employ external systems (e.g., a com-
puter algebra system) and make use of the knowledge in these systems. Ωmega’s
multi-strategy proof planner Multi [MM00] searches then for a plan using the
acquired methods and strategies guided by the control knowledge in the control
rules.

2.3.1 AI Principles in Proof Planning. A planning problem is a formal
description of an initial state, a goal, and some operators that can be used to
transform the initial state via some intermediate states to a state that satisfies
the goal. Applied to a planning problem, a planner returns a sequence of actions,
that is, instantiated operators, which reach a goal state from the initial state
when executed. Such a sequence of actions is also called a solution plan.

Proof planning considers mathematical theorems as planning problems
[Bun88]. The initial state of a proof planning problem consists of the proof as-
sumptions of the theorem, whereas the goal is the theorem itself. The operators
in proof planning are the methods.

In Ωmega, proof planning is the process that computes actions, that is,
instantiations of methods, and assembles them in order to derive a theorem from
a set of assumptions. The effects and the preconditions of an action in proof
planning are proof nodes with formulae in the higher order language POST ,
where the effects are considered as logically inferable from the preconditions. A
proof plan under construction is represented in the proof plan data structure
PDS (see Section 2.5). Initially, the PDS consists of an open node containing
the statement to be proved, and closed, that is, justified, nodes for the proof
assumptions. The introduction of an action changes the PDS by adding new
proof nodes and justifying the effects of the action by applications of the method
of the action to its premises. The aim of the proof planning process is to reach
a closed PDS, that is, a PDS without open nodes. The solution proof plan
produced is then a record of the sequence of actions that lead to a closed PDS.

By allowing for forward and backward actions Ωmega’s proof planning com-
bines forward and backward state-space planning. Thus, a planning state is a
pair of the current world state and the current goal state. The initial world state
consists of the given proof assumptions and is transfered by forward actions into
a new world state. The goal state consists of the initial open node and is trans-
fered by backward actions into a new goal state containing new open nodes.
From this point of view the aim of proof planning is to compute a sequence of
actions that derives a current world state in which all the goals in the current
goal state are satisfied.
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As opposed to precondition achievement planning (e.g., see [Wel94]), effects
of methods in proof planning do not cancel each other. For instance, an action
with effect ¬F introduced for the open node L1 does not threaten the effect
F introduced by another action for the open node L2. Dependencies among
open nodes result from shared variables for witness terms and their constraints.
Constraints can be, for instance, instantiations for the variables but they can
also be mathematical constraints such as x < c, which states that, whatever
the instantiation for x is, it has to be smaller than c. The constraints created
during the proof planning process are collected in a constraint store. An action
introducing new constraints is applicable only if its constraints are consistent
with the constraints collected so far. Dependencies among goals with shared
variables are difficult to analyze and can cause various kinds of failures in a
proof planning attempt. First results about how to analyze and deal with such
failures are discussed in [Mei03].

Methods, Control Rules, and Strategies. Methods are traditionally per-
ceived as tactics in tactical theorem proving augmented with preconditions and
effects, called premises and conclusions, respectively. A method represents the
inference of the conclusion from the premises. For instance, NotI-M is a method
whose purpose is to prove a goal Γ � ¬P by contradiction. If NotI-M is
applied to a goal Γ � ¬P then it closes this goal and introduces the new
goal to prove falsity, ⊥, under the assumption P , that is, Γ, P �⊥. Thereby,
Γ � ¬P is the conclusion of the method, whereas Γ, P �⊥ is the premise of the
method. NotI-M is a backward method, which reduces a goal (the conclusion)
to new goals (the premises). Forward methods, in contrast, derive new conclu-
sions from given premises. For instance, =Subst-m performs equality substitu-
tions by deriving from two premises Γ � P [a] and Γ � a = b the conclusion
Γ � P [b] where an occurrence of a is replaced by an occurrence of b. Note that

NotI-M and =Subst-m are simple examples of domain-independent, logic-related
methods, which are needed in addition to domain-specific, mathematically mo-
tivated methods. Knowledge base proof planning expands on these ideas and
allows for more general mathematical methods to be encapsulated into methods.

Control rules represent mathematical knowledge about how to proceed in
the proof planning process. They can influence the planner’s behavior at choice
points (e.g., which goal to tackle next or which method to apply next) by prefer-
ring members of the corresponding list of alternatives (e.g., the list of possible
goals or the list of possible methods). This way promising search paths are pre-
ferred and the search space can be pruned.

Strategies employ different sets of methods and control rules and, thus, tackle
the same problem in different ways. The reasoning as to which strategy to employ
on a problem is an explicit choice point in Multi. In particular, Multi can
backtrack from chosen strategies and search at the level of strategies.

Detailed discussions of Ωmega’s method and control rule language can be
found in [Mei03,MMP02]. A detailed introduction to proof planning with mul-
tiple strategies is given in [MM00].
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2.4 Interface and System Support

Ωmega’s graphical user interface LΩUI [SHB+99] displays the current proof
state in multiple modalities: a graphical map of the proof tree, a linearized
presentation of the proof nodes with their formulae and justifications, a term
browser, and a natural language presentation of the proof via P.rex (see Fig. 4
and 5).

Fig. 4. Multi-modal proof presentation in the graphical user interface LΩUI.

When inspecting a part a proof, the user can switch between alternative levels
of abstraction, for example, by expanding a node in the graphical map of the
proof tree, which causes appropriate changes in the other presentation modes.
Moreover, an interactive natural language explanation of the proof is provided by
the system P.rex [Fie01b,Fie01a,Fie01c], which is adaptive in the following sense:
it explains a proof step at the most abstract level (which the user is assumed
to know) and then reacts flexibly to questions and requests, possibly at a lower
level of abstraction, for example, by detailing some ill-understood subproof.

Another system support is the guidance mechanism provided by the sugges-
tion module ΩAnts [BS98,BS99,BS00,Sor01], which searches pro-actively for
possible actions that may be helpful in finding a proof and orders them in a
preference list. Examples for such actions are an application of a particular cal-
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Fig. 5. Natural language proof presentation by P.rex in LΩUI.

culus rule, the call of a tactic or a proof method as well as a call of an external
reasoning system, or the search for and insertion of facts from the knowledge base
MBase. The general idea is the following: every inference rule, tactic, method or
external system is “agentified” in the sense that every possible action searches
concurrently for the fulfillment of its application conditions and once these are
satisfied it suggests its execution. User-definable heuristics select and display
the suggestions to the user. ΩAnts is based on a hierarchical blackboard, which
collects the data about the current proof state.

2.5 Proof Objects

The central data structure for the overall search is the proof plan data structure
PDS in Fig. 2. This is a hierarchical data structure that represents a (partial)
proof at different levels of abstraction (called partial proof plans). Technically,
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it is an acyclic graph, where the nodes are justified by tactic applications. Con-
ceptually, each such justification represents a proof plan (the expansion of the
justification) at a lower level of abstraction, which is computed when the tactic
is executed. In Ωmega, we explicitly keep the original proof plan as well as inter-
mediate expansion layers in an expansion hierarchy. The coexistence of several
abstraction levels and the dynamical maintenance of their relationship is a cen-
tral design objective of Ωmega’s PDS. Thus the PDS makes the hierarchical
structure of proof plans explicit and retains it for further applications such as
proof explanation with P.rex or an analogical transfer of plans. The lowest level
of abstraction of a PDS is the ND calculus.

The proof object generated by Ωmega for example for the “irrationality of√
2” theorem is recorded in a technical report [BFMP02], where the unexpanded

and the expanded proof objects are presented in great detail, that is in a little
less than a thousand proof steps. A general presentation of this interesting case
study is [SBF+03].

2.6 Case Studies

Early developments of proof planning in Alan Bundy’s group at Edinburgh used
proofs by induction as their favorite case studies [Bun88]. The Ωmega system
has been used in several other case studies, which illustrate in particular the
interplay of the various components, such as proof planning supported by het-
erogeneous external reasoning systems.

A typical example for a class of problems that cannot be solved by traditional
automated theorem provers is the class of ε–δ–proofs [MS99,Mel98a]. This class
was originally proposed by Woody Bledsoe [Ble90] and it comprises theorems
such as LIM+ and LIM*, where LIM+ states that the limit of the sum of two
functions equals the sum of their limits and LIM* makes the corresponding
statement for multiplication. The difficulty of this domain arises from the need
for arithmetic computation in order to find a suitable instantiation of free (ex-
istential) variables (such as a δ depending on an ε). Crucial for the success of
Ωmega’s proof planning is the integration of suitable experts for these tasks: the
arithmetic computation is done by the computer algebra system Maple, and
an appropriate instantiation for δ is computed by the constraint solver CoSIE .
We have been able to solve all challenge problems suggested by Bledsoe and
many more theorems in this class taken from a standard textbook on real anal-
ysis [BS82].

Another class of problems we tackled with proof planning is concerned with
residue classes [MPS02,MPS01]. In this domain we show theorems such as:
“the residue class structure (Z5, +̄) is associative”, “it has a unit element”,
and similar properties, where Z5 is the set of all congruence classes modulo 5
{0̄5, 1̄5, 2̄5, 3̄5, 4̄5} and +̄ is the addition on residue classes. We have also inves-
tigated whether two given structures are isomorphic or not and altogether we
have proved more than 10,000 theorems of this kind (see [Sor01]). Although the
problems in this domain are still within the range of difficulty a traditional auto-
mated theorem prover can handle, it was nevertheless an interesting case study
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for proof planning, since multi-strategy proof planning generated substantially
different proofs based on entirely different proof ideas.

Another important proof technique is Cantor’s diagonalization technique and
we also developed methods and strategies for this class [CS98]. Important theo-
rems we have been able to prove are the undecidability of the halting problem
and Cantor’s theorem (cardinality of the set of subsets), the non-countability
of the reals in the interval [0, 1] and of the set of total functions, and similar
theorems.

Finally, a good candidate for a standard proof technique are completeness
proofs for refinements of resolution, where the theorem is usually first shown
at the ground level using the excess-literal-number technique and then ground
completeness is lifted to the predicate calculus. We have done this for many
refinements of resolution with Ωmega [Geb99].

However, Ωmega’s main aim is to become a proof assistant tool for the
working mathematician. Hence, it should support interactive proof development
at a user-friendly level of abstraction. The mathematical theorem that

√
2 is

not rational, and its well-known proof dating back to the School of Pythagoras,
provides an excellent challenge to evaluate whether this ambitious goal has been
reached. In [Wie02] fifteen systems that have solved the

√
2-problem show their

results. The protocols of their respective sessions have been compared on a multi-
dimensional scale in order to assess the “naturalness” by which real mathematical
problems of this kind can be proved within the respective system.

This represents an important shift of emphasis in the field of automated
deduction away from the somehow artificial problems of the past – as repre-
sented, for example, in the test set of the TPTP library [SSY94] – back to real
mathematical challenges.

We participated in this case study essentially with three different contri-
butions. Our initial contribution was an interactive proof in Ωmega without
adding special domain knowledge to the system. For further details on this case
study, which particularly demonstrates the use of Ωmega as a tactical theorem
prover, we refer to [BFMP02]. The most important albeit not entirely new les-
son to be learned from this experiment is that the level of abstraction common
in most automated and tactical theorem proving environments is far too low.
While our proof representation is already an abstraction (called the assertion
level in [Hua94]) from the calculus level typical for most ATPs, it is nevertheless
clear that as long as a system does not hide all these excruciating details, no
working mathematician will feel inclined to use such a system. In fact, this is in
our opinion one of the critical impediments for using first order ATPs and one,
albeit not the only one, of the reasons why they are not used as widely as, say,
computer algebra systems.

This is the crucial issue of the Ωmega project and our main motivation
for departing from the classical paradigm of automated theorem proving about
fifteen years ago.

Our second contribution to the case study of the
√

2-problem is based on
interactive island planning [Mel96], a technique that expects an outline of the
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proof, i.e. the user provides main subgoals, called islands, together with their
assumptions. The details of the proof, eventually down to the logic level, are
postponed. Hence, the user can write down his proof idea in a natural way with
as many gaps as there are open at this first stage of the proof. Closing the gaps
is ideally fully automatic, in particular, by exploiting external systems. However,
for difficult theorems it is necessary more often than not that the user provides
additional information and applies the island approach recursively.

In comparison to our first tactic-based solution the island style supports a
much more abstract and user-friendly interaction level. The proofs are now at a
level of abstraction similar to proofs in mathematical textbooks.

Our third contribution to the case study of the
√

2-problem is a fully auto-
matically planned and expanded proof of the theorem. The details of this very
important case study, that shows best what (and what cannot) be achieved with
current technology are presented in [SBF+03], [SBF+02], and [BFMP02].

The most important question to ask is: Can we find the essential and creative
steps automatically? The answer is yes, as we have shown in [SBF+03]. However,
while we can answer the question in the affirmative, not every reader may be
convinced, as our solution touches upon a subtle point, which opens the Pandora
Box of critical issues in the paradigm of proof planning [Bun02]: It is always easy
to write some specific methods, which perform just the steps in the interactively
found proof and then call the proof planner Multi to fit the methods together
into a proof plan for the given problem. This, of course, shows nothing of sub-
stance: Just as we could write down all the definitions and theorems required for
the problem in first order predicate logic and hand them to a first order prover5,
we would just hand-code the final solution into appropriate methods.

Instead, the goal of the game is to find general methods for a whole class of
theorems within some theory that can solve not only this particular problem,
but also all the other theorems in that class. While our approach essentially
follows the proof idea of the interactively constructed proof for the

√
2-problem,

it relies essentially on more general concepts such that we can solve, for example,
j
√

l-problems for arbitrary natural numbers j and l.
However, this is certainly not the end of the story; in order to evaluate the

appropriateness of a proof planning approach we suggest the following three
criteria:

(1) How general and how rich in mathematical content are the methods and
control rules?

(2) How much search is involved in the proof planning process?
(3) What kind of proof plans, that is, what kind of proofs, can we find?

These criteria should allow us to judge how general and how robust our
solution is. The art of proof planning is to acquire domain knowledge that,
on the one hand, comprises meaningful mathematical techniques and powerful
heuristic guidance, and, on the other hand, is general enough to tackle a broad
5 This was done when Otter tackled the

√
2-problem; see [Wie02] for the original

Otter case study and [BFMP02] for its replay with Ωmega.
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class of problems. For instance, as one extreme, we could have methods that
encode Ωmega’s ND calculus and we could run Multi without any control.
This approach would certainly be very general, but Multi would fail to prove
any interesting problems. As the other extreme case, we could cut a known proof
into pieces, and code the pieces as methods. Guided by control rules that always
pick the next right piece of the proof, Multi would assemble the methods again
to the original proof without performing any search.

The amount of search and the variety of potential proof plans for a given
problem are measures for the generality of the methods and also for the appro-
priateness for tackling the class of problems by planning. If tight control rules or
highly specific methods restrict the search to just one branch in the search tree,
then the resulting proof plans will merely instantiate a pattern. In this case, a
single tactic or method that realizes the proof steps of the underlying pattern is
more suitable than planning. The possibility of creating a variety of proof plans
with the given methods and control rules is thus an important feature.

What general lessons can we learn from small, albeit typical mathematical
challenges of this kind?

1. The devil is in the detail, that is, it is always possible to hide the crucial
creative step (represented as method or represented in the object language
by an appropriate lemma) and to pretend a level of generality that has not
actually been achieved. To evaluate a solution all tactics, methods, theorems,
lemmata and definitions have to be made explicit.

2. The enormous distance between the well-known (top-level) proof of the
Pythagorean School, which consists of about a dozen single proof steps in
comparison to the final (non-optimized) proof at the ND level with 753
inference steps is striking. This is, of course, not a new insight. While math-
ematics can in principle be reduced to purely formal logic-level reasoning
as demonstrated by Russell and Whitehead as well as the Hilbert School,
nobody would actually want to do so in practice as the influential Bourbaki
group showed: only the first quarter of the first volume in the several dozen
volume set on the foundation of mathematics starts with elementary, logic-
level reasoning and then proceeds with the crucial sentence [Bou68]: “No
great experience is necessary to perceive that such a project [of complete
formalization] is absolutely unrealizable: the tiniest proof at the beginning
of the theory of sets would already require several hundreds of signs for its
complete formalization.”

3. Finally and more to the general point of interest in mathematical support
systems: Now that we can prove theorems in the j

√
l-problem class, the skep-

tical reader may still ask: So what? Will this ever lead to a general system
for mathematical assistance?
We have shown that the class of ε-δ-proofs for limit theorems can indeed
be solved with a few dozen mathematically meaningful methods and control
rules (see [MS99,Mel98b,Mei03]). Similarly, the domain of group theory with
its class of residue theorems can be formalized with even fewer methods
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(see [MS00,MPS01,MPS02])6. An interesting observation is also that these
methods by and large correspond to the kind of mathematical knowledge a
freshman would have to learn to master this level of professionalism.

Do the above observations now hold for our j
√

l-problems? The unfortunate
answer is probably No! Imagine the subcommittee of the United Nations in
charge of the maintenance of the global mathematical knowledge base in a hun-
dred years from now. Would they accept the entry of our methods, tactics and
control rules for the j

√
l-problems? Probably not!

Factual mathematical knowledge is preserved in books and monographs, but
the art of doing mathematics [Pol73,Had44] is passed on by word of mouth from
generation to generation. The methods and control rules of the proof planner cor-
respond to important mathematical techniques and “ways to solve it”, and they
make this implicit and informal mathematical knowledge explicit and formal.

The theorems about j
√

l-problems are shown by contradiction, that is, the
planner derives a contradiction from the equation l ·nj = mj , where n and m are
integers with no common divisor. However, these problems belong to the more
general class to determine whether two complex mathematical objects X and
Y are equal. A general mathematical principle for comparison of two complex
objects is to look at their characteristic properties, for example, their normal
forms or some other uniform notation in the respective theory.

And this is the crux of the matter: to find general mathematical principles
and encode them into appropriate methods, control rules and strategies such
that an appropriately large class of problems can be solved with these methods.

We are now working on formalizing these methods in more general terms and
then instantiate them with appropriate parameters to the domain in question
(number theory, set theory, or polynomial rings) – and the crucial creative step
of the system Multi is then to find the instantiation by some general heuristics.

3 The Future: What Next?

The vision of a powerful mathematical assistance environment which provides
computer-based support for most tasks of a mathematician has stimulated new
projects and international research networks across the disciplinary and systems
boundaries. Examples are the European Calculemus

7 (Integration of Symbolic
Reasoning and Symbolic Computation) and Mkm

8 (Mathematical Knowledge
Management, [BGH03]) initiatives, the EU projects Monet

9, Openmath and
Mowgli

10, and the American Qpq
11 repository of deductive software tools.

6 The generally important observation is not, of course, whether we need a dozen or a
hundred methods, but that we don’t need a few thousand or a million. A few dozen
methods seem to be generally enough for a restricted mathematical domain.

7 www.calculemus.org
8 monet.nag.co.uk/mkm/index.html
9 monet.nag.co.uk/cocoon/monet/index.html

10 www.mowgli.cs.unibo.it/
11 www.qpq.org
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Furthermore there are now numerous national projects in the US and Europe,
which cover partial aspects of this vision, such as knowledge representation,
deductive system support, user interfaces, mathematical publishing tools, etc.

The longterm goal of the Ωmega project is the all-embracing integration of
symbolic reasoning, i.e. computer algebra and deduction systems, into mathe-
matical research, mathematics education, and formal methods in computer sci-
ence. We anticipate that in the long run these systems will change mathematical
practice and they will have a strong societal impact, not least in the sense that
a powerful infrastructure for mathematical research and education will become
commercially available. Computer supported mathematical reasoning tools and
integrated assistance systems will be further specialized to have a strong impact
also in many other theoretical fields such as safety and security verification of
computer software and hardware, theoretical physics and chemistry and other
related subjects.

Fig. 6. Mathematical Creativity Spiral; [Buchberger, 1995].

Our current approach is strictly bottom-up: Starting with existing techniques
and tools of our partners for symbolic reasoning (deduction) and symbolic com-
putation (computer algebra), we will step by step improve their interoperability
up to the realization of an integrated systems via the mathematical software
bus MathWeb-SB. The envisaged system will support the full life-cycle of the
evolutionary nature of mathematical research (see Fig. 6) helping an engineer
or mathematician who works on a mathematical problem in the improvement,
the exploration, the distributed maintenance, the retrieval and the proving and
calculation tasks and finally the publication of mathematical theories.

So what does this vision entail in the immediate future?
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3.1 Formalization and Proving at a Higher Level of Abstraction

Mathematical reasoning with the Ωmega system is at the comparatively high
level of abstraction of the proof planning methods. However, as these meth-
ods have to be expanded eventually to the concrete syntax of our higher order
ND-calculus, the system still suffers from the effect and influence this logical rep-
resentation has. In contrast, the proofs developed by a mathematician, say for
a mathematical publication, and the proofs developed by a student in a mathe-
matical tutoring system are typically developed at an argumentative level. This
level has been formally categorized as proofs at the assertion level [Hua94] with
different types of under-specification [ABF+03]12. The CoRe system [Aut03]
has been designed to achieve this and the goal is now to completely exchange
the current natural deduction calculus by the CoRe calculus.

The proposed exchange of the logic layer in Ωmega requires the adaptation
of all reasoning procedures that are currently tailored to it, including proof
planning and the integration of external systems.

3.2 ΩAnts: Agent-Oriented Theorem Proving

Our agent-based suggestion and reasoning mechanism is called ΩAnts [BS00],
whose initial motivation is to turn the hitherto passive Ωmega system into a
pro-active counter-player of the user which autonomously exploits available re-
sources. It provides societies of pro-active agents organized via an hierarchical
blackboard architecture that dynamically and concurrently generate suggestions
on applicable proof operators. These ΩAnts agents may also call external sys-
tems or perform search for data in mathematical knowledge bases (see [BMS04]).

We will now provide improved higher order theorem proving agents based
on the provers LEO [BK98] and Tps [ABB00], which analyze the proof context
and determine promising “control settings”. These higher order proof agents will
work in competition with traditional first order proof agents and other “agenti-
fied” reasoning systems.

3.3 Mathematical Knowledge Representation

A mathematical proof assistant relies upon different kinds of knowledge: first, of
course, the formalized mathematical domain as organized in structured theories
of definitions, lemmata, and theorems. Secondly, there is mathematical knowl-
edge on how to prove a theorem, which is encoded in tactics and methods, in
ΩAnts agents, in control knowledge and in strategies. This type of knowledge
can be general, theory specific or even problem specific.

The integration of a mathematical proof assistant into the typical and ev-
eryday activities of a mathematician requires however other types of knowledge

12 “Under-specification” is a technical term borrowed from research on the semantics of
natural language. Illustrating examples and a discussion of our notion can be found
in [ABF+03,BFG+03].
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as well. For example, a mathematical tutoring system for students relies upon a
database with different samples of proofs and proof plans linked by meta-data
in order to advise the student. Another example is the support for mathemati-
cal publications: the documents containing both formalized and non-formalized
parts need to be related to specific theories, lemmas, theorems, and proofs.
This raises the research challenge on how the usual structuring mechanisms
for mathematical theories (such as theory hierarchies or the import of theories
via renaming or general morphisms) can be extended to tactics and methods
as well as to proofs, proof plans and mathematical documents. Furthermore,
changing any of these elements requires maintenance support as any change in
one part may have consequences in other parts. For example, the validity of
a proof needs to be checked again after changing parts of a theory, which in
turn may affect the validity of the mathematical documents. This management
of change [AHMS02,AM02,AH02,Hut00,MAH01], originally developed for evo-
lutionary formal software engineering at the DFKI, will now be integrated into
the Ωmega system as well.

Hierarchically structured mathematical knowledge, i.e. an ontology of math-
ematical theories and assertions has initially been stored in Ωmegas hardwired
mathematical knowledge base. This mathematical knowledge base was later (end
of the 90s) out-sourced and linked to the development of MBase [FK00b]. We
now assume that a mathematical knowledge base also maintains domain specific
control rules, strategies, and linguistic knowledge. While this is not directly a
subject of research in the Ωmega project, relying here on other groups of the
MKM community and hence on the general development of a worldwide math-
ematical knowledge base (“the Semantic Web for Mathematicians”), we shall
nevertheless concentrate on one aspect, namely how to find the appropriate in-
formation.

Semantic Mediators for Mathematical Knowledge Bases. Knowledge
acquisition and retrieval in the currently emerging large repositories of formalized
mathematical knowledge should not be based purely on syntactic matching,
but it needs to be supported by semantic mediators, which suggest applicable
theorems and lemmata in a given proof context.

We are working on appropriately limited HOL reasoning agents for domain-
and context-specific retrieval of mathematical knowledge from mathematical
knowledge bases. For this we shall adapt a two stage approach as in [BMS04],
which combines syntactically oriented pre-filtering with semantic analysis. The
pre-filter employ efficiently processable criteria based on meta-data and ontolo-
gies that identify sets of candidate theorems of a mathematical knowledge bases
that are potentially applicable to a focused proof context. The HOL agents act
as post-filters to exactly determine the applicable theorems of this set. Exact
semantic retrieval includes the following aspects: (i) logical transformations to
see the connection between a theorem in a mathematical knowledge base and
a focused subgoal. Consider, e.g., a theorem of the form A ⇔ B in the math-
ematical knowledge base and a subgoal of the form (A ⇒ B) ∧ (¬A ⇒ ¬B);
they are not equal in any syntactical sense, but they denote the same assertion.
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(ii) The variables of a theorem in a mathematical knowledge base may have
to be instantiated with terms occurring in a focused subgoal; consider, e.g., a
theorem ∀X is−square(X × X) and the subgoal is−square(2 × 2). (iii) Free
variables (meta-variables) may occur in a focused subgoal and they may have to
be instantiated with terms occurring in a theorem of the mathematical knowl-
edge base; consider, e.g., a subgoal irrational(X) with metavariable X and a
theorem irrational(

√
2).

We are investigating whether this approach can be successfully coupled with
state-of-the-art search engines such as Google.

3.4 VerMath: A Global Web for Mathematical Services

The Internet provides a vast collection of data and computational resources. For
example, a travel booking system combines different information sources, such
as the search engines, price computation schemes, and the travel information in
distributed very large databases, in order to answer complex booking requests.
The access to such specialized travel information sources has to be planned, the
obtained results combined and, in addition the consistency of time constraints
has to be guaranteed.

We want to transfer and apply this methodology to mathematical problem
solving and develop a system that plans the combination of several mathematical
information sources (such as mathematical databases), computer algebra sys-
tems, and reasoning processes (such as theorem provers or constraint solvers).
Based on the well-developed MathWeb-SB network of mathematical services,
the existing client-server architecture will be extended by advanced problem
solving capabilities and semantic brokering of mathematical services.

The reasoning systems currently integrated in MathWeb-SB have to be
accessed directly via their API, thus the interface to MathWeb-SB is system-
oriented. However, these reasoning systems are used also in applications that
are not necessarily theorem provers, e.g. for the semantical analysis of natural
language, small verification tasks, etc. The main goal of this project13 is therefore
twofold:

Problem-Oriented Interface: to develop a more abstract communication
level for MathWeb-SB, such that general mathematical problem descrip-
tions can be sent to the MathWeb-SB which in turn returns a solution to
that problem. Essentially, this goal is to move from a service oriented inter-
face to a problem oriented interface for the MathWeb-SB. This is a very old
idea in the development of AI programming languages (early work included
Planner and other languages driven by matching of general descriptions).

Advanced Problem Solving Capabilities: Typically, a given problem can-
not be solved by a single service but only by a combination of several services.
In order to support the automatic selection and combination of existing ser-
vices, the key idea is as follows: an ontology will be used for the qualitative de-

13 This is a joint project between the University of Saarbrücken (Jörg Siekmann) and
the International University Bremen (Michael Kohlhase).
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scription of MathWeb-SB services and these descriptions will then be used
as AI planning operators, in analogy to todays proof planning approach. We
can then use planning techniques [CBE+92,EHN94] to automatically gener-
ate a plan that describes how existing services must be combined to solve a
given mathematical problem.

3.5 Publishing Tools for Mathematics

Proof construction is an important but only a small part of a much wider range of
mathematical activities an ideal mathematical assistant system should support
(see Fig. 1). Therefore the Ωmega system is currently extended to support
the writing of mathematical publications and advising students during proof
construction.

With respect to the former we envision that a mathematician writes a new
paper in some specific mathematical domain using a LaTeX-like environment.
The definitions, lemmas, theorems and especially their proofs give rise to exten-
sions of the original theory and the writing of some proof goes along with an
interactive proof construction in Ωmega. As a result this allows the development
of mathematical documents in a publishable style which in addition are formally
validated by Ωmega, hence obtaining certified mathematical documents. A first
step in that direction is currently under development by linking the WYSIWYG
mathematical editor TeXmacs [vdH01] with the Ωmega proof assistant and
other mathematical support services (see Fig. 7)

Retrieval from
Repositories

Knowledge

     ...

MAPLE
GAP
BLIKSEM
EQP
OTTER
PROTEIN
SPASS
WALDMEISTE
TPS
LEO
TRAMP
SATCHMO
SEM
VAMPIRE
...

ΩMEGA

MathWeb

Fig. 7. Semantical documents in TeXmacs: The user will be supported in by different
dynamic mathematical reasoning services that “understand” the document content.

The TeXmacs-system provides LaTeX-like editing and macro-definition fea-
tures, and we are defining macros for theory-specific knowledge such as types,
constants, axioms, and lemmata. This allows us to translate new textual defini-
tions and lemmas into the formal representation, as well as to translate (partial)
textbook proofs into (partial) proof plans.
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As a second activity we are involved in the DFKI project ActiveMath, which
develops an e-learning tool for tutoring students, in particular in advising a
student to develop a proof. Thereby the interaction with the student should be
conducted via a textual dialog. This scenario is currently under investigation in
the Dialog project [BFG+03] and, aside from all linguistic analysis problems,
gives rise to the problem of under-specification in proofs.

References

[ABB00] P.B. Andrews, M. Bishop, and C.E. Brown. System description: TPS:
A theorem proving system for type theory. In Conference on Automated
Deduction, pages 164–169, 2000.

[ABF+03] S. Autexier, C. Benzmüller, A. Fiedler, H. Horacek, and Q. Bao Vo.
Assertion-level proof representation with under-specification. Electronic
in Theoretical Computer Science, 93:5–23, 2003.

[ABI+96] P.B. Andrews, M. Bishop, S. Issar, D. Nesmith, F. Pfenning, and H. Xi.
TPS: A theorem proving system for classical type theory. Journal of Au-
tomated Reasoning, 16(3):321–353, 1996.

[ACE+00] S. Allen, R. Constable, R. Eaton, C. Kreitz, and L. Lorigo. The Nuprl open
logical environment. In McAllester [McA00].

[AH02] S. Autexier and D. Hutter. Maintenance of formal software development
by stratified verification. In M. Baaz and A. Voronkov, editors, Proceedings
of LPAR’02, LNCS, Tbilissi, Georgia, September 2002. Springer.

[AHMS02] S. Autexier, D. Hutter, T. Mossakowski, and A. Schairer. The development
graph manager MAYA. In H. Kirchner and C. Ringeissen, editors, Proceed-
ings 9th International Conference on Algebraic Methodology And Software
Technology (AMAST’02), volume 2422 of LNCS. Springer, September 2002.

[AM02] S. Autexier and T. Mossakowski. Integrating HOL-CASL into the devel-
opment graph manager MAYA. In A. Armando, editor, Proceedings of
FROCOS’02, volume 2309 of LNAI, pages 2–17. Springer, April 2002.

[Aut03] S. Autexier. Hierarchical Contextual Reasoning. PhD thesis, Computer Sci-
ence Department, Saarland University, Saarbrücken, Germany, 2003. forth-
coming.

[BBS99] C. Benzmüller, M. Bishop, and V. Sorge. Integrating TPS and Ωmega.
Journal of Universal Computer Science, 5:188–207, 1999.

[Ben99] C. Benzmüller. Equality and Extensionality in Higher-Order Theorem Prov-
ing. PhD thesis, Department of Computer Science, Saarland University,
Saarbrücken, Germany, 1999.

[BF94] P. Baumgartner and U. Furbach. PROTEIN, a PROver with a Theory
INterface. In Bundy [Bun94], pages 769–773.

[BFG+03] C. Benzmüller, A. Fiedler, M. Gabsdil, H. Horacek, I. Kruijff-Korbayova,
M. Pinkal, J. Siekmann, D. Tsovaltzi, B. Quoc Vo, and M. Wolska. Tutorial
dialogs on mathematical proofs. In Proceedings of IJCAI-03 Workshop
on Knowledge Representation and Automated Reasoning for E-Learning
Systems, pages 12–22, Acapulco, Mexico, 2003.

[BFMP02] C. Benzmüller, A. Fiedler, A. Meier, and M. Pollet. Irrationality of
√

2 –
a case study in Ωmega. Seki-Report SR-02-03, Department of Computer
Science, Saarland University, Saarbrücken, Germany, 2002.



24 Jörg Siekmann and Christoph Benzmüller

[BGH03] B. Buchberger, G. Gonnet, and M. Hazewinkel. Special issue on math-
ematical knowledge management. Annals of Mathematics and Artificial
Intelligence, 38(1-3):3–232, May 2003.

[BK98] C. Benzmüller and M. Kohlhase. LEO – a higher-order theorem prover. In
Kirchner and Kirchner [KK98].

[Ble90] W. Bledsoe. Challenge problems in elementary calculus. Journal of Auto-
mated Reasoning, 6:341–359, 1990.

[BMS04] C. Benzmüller, A. Meier, and V. Sorge. Bridging theorem proving and
mathematical knowledge retrieval. In Hutter and Stephan [HS04]. To
appear.

[Bou68] N. Bourbaki. Theory of sets. In Elements of Mathematics, volume 1.
Addison-Wesley, 1968.

[BS82] R. Bartle and D. Sherbert. Introduction to Real Analysis. Wiley, 2nd
edition, 1982.

[BS98] C. Benzmüller and V. Sorge. A blackboard architecture for guiding inter-
active proofs. In Giunchiglia [Giu98].

[BS99] Christoph Benzmüller and Volker Sorge. Critical agents supporting in-
teractive theorem proving. In Pedro Borahona and Jose J. Alferes, edi-
tors, Proceedings of the 9th Portuguese Conference on Artificial Intelligence
(EPIA’99), number 1695 in LNAI, pages 208–221, Evora, Portugal, 1999.
Springer.

[BS00] C. Benzmüller and V. Sorge. Ωants – An open approach at combining
Interactive and Automated Theorem Proving. In Kerber and Kohlhase
[KK00].

[Bun88] A. Bundy. The use of explicit plans to guide inductive proofs. In Lusk and
Overbeek [LO88], pages 111–120.

[Bun91] A. Bundy. A science of reasoning. In G. Plotkin J.-L. Lasser, editor,
Computational Logic: Essays in Honor of Alan Robinson, pages 178–199.
MIT Press, 1991.

[Bun94] A. Bundy, editor. Proceedings of the 12th Conference on Automated De-
duction, number 814 in LNAI. Springer, 1994.

[Bun02] A. Bundy. A critique of proof planning. In Computational Logic: Logic
Programming and Beyond, number 2408 in LNCS, pages 160–177. Springer,
2002.

[BvHHS90] A. Bundy, F. van Harmelen, C. Horn, and A. Smaill. The Oyster-Clam
System. In M. Stickel, editor, Proceedings of the 10th Conference on Au-
tomated Deduction, number 449 in LNCS, pages 647–648, Kaiserslautern,
Germany, 1990. Springer.

[CBE+92] J. Carbonell, J. Blythe, O. Etzioni, Y. Gil, R. Joseph, D. Kahn, Craig.
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et al. [GLN01].

[S+95] M. Schönert et al. GAP – Groups, Algorithms, and Programming. Lehrstuhl
D für Mathematik, Rheinisch Westfälische Technische Hochschule, Aachen,
Germany, 1995.

[SBF+02] J. Siekmann, C. Benzmüller, A. Fiedler, A. Meier, and M. Pollet. Proof
development with OMEGA: Sqrt(2) is irrational. In M. Baaz and
A. Voronkov, editors, Logic for Programming, Artificial Intelligence, and
Reasoning, 9th International Conference, LPAR 2002, number 2514 in
LNAI, pages 367–387. Springer, 2002.



28 Jörg Siekmann and Christoph Benzmüller

[SBF+03] J. Siekmann, C. Benzmüller, A. Fiedler, A. Meier, I. Normann, and M. Pol-
let. Proof development in OMEGA: The irrationality of square root of 2.
In F. Kamareddine, editor, Thirty Five Years of Automating Mathemat-
ics, Kluwer Applied Logic series (28), pages 271–314. Kluwer Academic
Publishers, 2003. ISBN 1-4020-1656-5.

[SHB+99] J. Siekmann, S. Hess, C. Benzmüller, L. Cheikhrouhou, A. Fiedler, H. Ho-
racek, M. Kohlhase, K. Konrad, A. Meier, E. Melis, M. Pollet, and V. Sorge.
LOUI: Lovely Ωmega User Interface. Formal Aspects of Computing,
11:326–342, 1999.

[Sie92] J. Siekmann. Geschichte des automatischen beweisens (history of auto-
mated deduction). In Deduktionssysteme, Automatisierung des Logischen
Denkens. R. Oldenbourg Verlag, 2nd edition, 1992. Also in English with
Elsewood.

[Sie04] J. Siekmann. History of computational logic. In D. Gabbay and J. Woods,
editors, The Handbook of the History of Logic, volume I-IX. Elsevier, 2004.
To appear.

[Sor00] V. Sorge. Non-Trivial Computations in Proof Planning. In Kirchner and
Ringeissen [KR00].

[Sor01] V. Sorge. ΩANTS – A Blackboard Architecture for the Integration of Rea-
soning Techniques into Proof Planning. PhD thesis, Department of Com-
puter Science, Saarland University, Saarbrücken, Germany, 2001.

[SSY94] G. Sutcliffe, C. Suttner, and T. Yemenis. The TPTP problem library. In
Bundy [Bun94].

[vdH01] J. van der Hoeven. GNU TeXmacs: A free, structured, wysiwyg and tech-
nical text editor. In Actes du congrès Gutenberg, number 39-40 in Actes
du congrès Gutenberg, pages 39–50, Metz, May 2001.

[Vor02] A. Voronkov, editor. Proceedings of the 18th International Conference on
Automated Deduction, number 2392 in LNAI. Springer, 2002.

[WAB+99] C. Weidenbach, B. Afshordel, U. Brahm, C. Cohrs, Th. Engel, E. Keen,
C. Theobalt, and D. Topic. System description: SPASS version 1.0.0. In
Ganzinger [Gan99], pages 378–382.

[Wel94] D. Weld. An introduction to least commitment planning. AI Magazine,
15(4):27–61, 1994.

[Wie02] F. Wiedijk. The fifteen provers of the world. Unpublished Draft, 2002.
[ZK02] J. Zimmer and M. Kohlhase. System description: The Mathweb Software

Bus for distributed mathematical reasoning. In Voronkov [Vor02], pages
138–142.

[ZZ95] J. Zhang and H. Zhang. SEM: A system for enumerating models. In C. S.
Mellish, editor, Proceedings of the 14th International Joint Conference on
Artificial Intelligence (IJCAI), pages 298–303, Montreal, Canada, 1995.
Morgan Kaufmann, San Mateo, California, USA.


	1 Introduction
	2 $\Omega${\sc mega}
	2.1 System Overview
	2.2 External Systems
	2.3 Proof Planning
	2.4 Interface and System Support
	2.5 Proof Objects
	2.6 Case Studies

	3 The Future: What Next?
	3.1 Formalization and Proving at a Higher Level of Abstraction
	3.2 $\Omage${\sc Ants}: Agent-Oriented Theorem Proving
	3.3 Mathematical Knowledge Representation
	3.4 VerMath: A Global Web for Mathematical Services
	3.5 Publishing Tools for Mathematics

	References

