OMEGA: Towards a Mathematical Assistant

Christoph Benzmiiller, Lassaad Cheikhrouhou, Detlef Fehrer, Armin Fiedler,
Xiaorong Huang, Manfred Kerber, Michael Kohlhase, Karsten Konrad,
Andreas Meier, Erica Melis, Wolf Schaarschmidt, Jorg Siekmann, Volker Sorge*

Fachbereich Informatik, Universitdt des Saarlandes
D-66041 Saarbriicken, Germany. http://jswuw.cs.uni-sb.de/

Abstract. QMEGA is a mixed-initiative system with the ultimate pur-
pose of supporting theorem proving in main-stream mathematics and
mathematics education. The current system consists of a proof planner
and an integrated collection of tools for formulating problems, proving
subproblems, and proof presentation.

1 Introduction

The dream of machine assistance in mathematical problem solving by far pre-
dates the advent of electronic computers. Current classical automated theorem
provers can prove some non-trivial mathematical theorems. However, while hu-
mans can cope with long and complex proofs and possess strategies to avoid
less promising proof paths, automated theorem proving suffers from exponential
search spaces. Consequently, a combination of the power of automated tools with
human-like abilities and/or user interaction is necessary in order to be able to
prove main-stream mathematical problems.

Proof planning, introduced by Bundy for induction theorem proving [Bun8§],
seems to provide a promising framework for systems that truly assist mathemati-
cians. It offers a cognitively adequate model for integrating powerful domain-
specific methods with meta-level (automated and human) control.

In the following, we will describe the prototypical system (2MEGA that ex-
plores the use of proof planning together with tools that provide high-level proof
tools and user support to come closer to the vision of a mathematical assis-
tant system. Note that these tools are essential for the projected usefulness of a
mathematical assistant system as a whole.

2 The Architecture and Components of Q2MEGA

The entire process of theorem proving in QMEGA can be viewed as an interleaving
process of proof planning, plan execution and verification.

2.1 Hierarchical Plan Data Structure

The central data structure for the overall process is the Proof plan Data Structure
(PDS). This is a hierarchical data structure that represents a (partial) proof at
different levels of abstraction (called proof plans). It is represented as a directed
acyclic graph, where the nodes are justified by (LCF-style) tactic applications.

* This work was supported by the Deutsche Forschungsgemeinschaft, SFB 378



Conceptually, each such justification represents a proof plan (the expansion of the
justification) at a lower level of abstraction that is computed when the tactic is
executed!. In QMEGA, we explicitly keep the original proof plan in an expansion
hierarchy. Thus the PDS makes the hierarchical structure of proof plans explicit
and retains it for further applications such as proof explanation or analogical
transfer of plans.

Once a proof plan is completed, its justifications can successively be expanded
to verify the well-formedness of the ensuing PDS. This verification phase is
necessary, since the correctness of the different components (in particular, that of
the external ones) cannot be guaranteed. When the expansion process is carried
out down to the underlying ND-calculus, the soundness of the overall system
relies solely on the correctness of the verifier and of ND. This also provides
a basis for the controlled integration of external reasoning components if each
reasoner’s results can (on demand) be transformed into a sub-PDS.

A PDS can be constructed by automated or mixed-initiative planning, or
pure user interaction that can make use of the integrated tools. In particular, new
pieces of PDS can be added by directly calling tactics, by inserting facts from
a data base, or by calling some external reasoner (cf. 3.1) such as an automated
theorem prover or a computer algebra system. Automated proof planning is
only adequate for problem classes for which method- and control knowledge
have already been established.

2.2 Proof Planning

QOMEGA’s proof planner is based on an extension of the well-known STRIPS
algorithm that can be evoked to construct a proof plan for a node g (the goal
node) from a set I of supporting nodes (the initial state) using a set Ops of proof
planning operators, here called methods. A method is a (partial) specification of
a tactic in a meta-level language.

Proof planning starts with a null plan that consists of a finish-node containing
no postcondition and the (open) goal g as precondition and start-nodes, each
containing an assumption from I as postcondition and no precondition. The
finish-node belongs to the trailer of the plan and the start-nodes belong to the
header. The null plan’s head-state is I and its tail-state consists of g. Backward
proof planning starts with an open goal g. It searches for a method M applicable
to g and introduces a node with M into the trailer of the proof plan. g gets
status closed, if the subgoals g; produced by the application of M are not in
the head state, they become the new open subgoals. The planner continues to
search for a method applicable to one of the open subgoals and terminates if
there are no more open goals. Forward planning is possible too. It produces
new assumptions and enlarges the header of a plan. If an open subgoal agrees
with an assumption, it is closed. The planner can be used for stepwise as well
as for continued planning. Currently, QMEGA uses forward and backward state-
space search. Planning is combined with hierarchical expansion of methods and
precondition abstraction.

! This proof plan can be recursively expanded, until we have reached a proof plan,
which is in fact a fully explicit proof, since all nodes are justified by the inference
rules of a higher-order variant of Gentzen’s calculus of natural deduction (ND).



The plans found by this procedure are directly incorporated into the PDS
as a separate level of abstraction. Furthermore, the proof planner also stores the
reasons for its decisions for later use in proof explanation and analogy.

In this model, the actual reasoning competence of the planner and the user
builds upon the availability of appropriate methods together with meta-level
control knowledge that guides the planning. At the moment, (IMEGA provides
user-defined method ratings as a means of control and can use analogy as a
control strategy of the planner.

3 Support Systems

Several integrated tools support the user in interacting with the system. Some
of them are also available to the planner.

3.1 Integration of External Reasoners

A reasoner R can be integrated into {2MEGA in three different settings: In
e interactive calls, R is represented as a command call-RSys that in-
vokes the reasoner on a particular sub-problem and returns the result,
e proof planning, R is represented as a method whose specification con-
tains knowledge about the problem solving behavior and option settings

for R.

e methods, R can serve as a justification of a declaratively given subgoal

that is left to be proved by R.

In any case, the proof found by R must be transformed into a PDS eventually,
since this is the proof-theoretic basis of IMEGA.

The current IMEGA supports the automated theorem prover OTTER[McC94]
and an experimental computer algebra system as external reasoners. We have
described the integration of OTTER in [HKK*94] and the proof transformation
in [HF96], so we will concentrate on the computer algebra integration.

3.2 Integration of Computer Algebra

Traditional deduction systems are weak in computing with concrete mathemat-
ical objects, such as natural numbers. In contrast to that, computer algebra sys-
tems (CASs) manipulate highly optimized representations of the objects and are
therefore very useful for solving subgoals in mathematical deduction. Moreover,
a look into mathematical textbooks reveals that usually neither computation nor
purely logical deduction dominates proofs. {MEGA integrates an experimental
CAS that can manipulate polynomials over rational numbers.

CASs are very complex programs and only trustworthy to a limited extent.
Since IMEGA aims at correct proofs, it uses the mathematical knowledge im-
plicit in the CAS to extract proof plans that correspond to the mathematical
computation in the CAS. Note that this approach necessitates a data base of the
mathematics behind the algorithms to guarantee correctness and explanations
(for details cf. [KKS96]).

3.3 Theory Data Base

Since methods and control knowledge used in proof planning are mostly domain-
specific, IMEGA organizes the mathematical knowledge in a hierarchy of theories.



Theories represent signature extensions, axioms, definitions, theorems, lemmata,
and finally methods that make up typical established mathematical domains.
Each theorem has its home theory and therefore has access to the theory’s signa-
ture extensions, axioms, definitions, and lemmata without explicitly introducing
them.

A simple inheritance mechanism allows the user to incrementally build larger
theories from smaller parts. Currently, {IMEGA comes with a small hierarchy of
basic theories for didactic purposes.

3.4 Proof Explanation

Proof presentation is one important feature of a mathematical assistant that has
been neglected by traditional deduction systems. QMEGA employs an extension
of the PROVERB system [HF96] developed by our group that allows for presenting
proofs and proof plans in natural language. In order to produce coherent texts
that resemble those found in mathematical textbooks, PROVERB employs state-
of-the-art techniques of natural language processing.

Due to the possibly hierarchical nature of PDS proofs, these can be verbal-
ized at more than one level of abstraction, which can be selected by the user.
Since a user will normally want to vary the level of abstraction in the course of
a proof, the current verbalization facility will be extended to one that explains
proofs to users guided by their feedback in the future.

4 Progress and Availability

The (IMEGA system is an experiment in designing and integrating components
of mathematical assistant systems. It is still in an incomplete, prototypical state.
However, the integration of external reasoners, and some control strategies have
extended the capability of IMEGA to a level that is beyond the scope of mono-
lithic automated deduction systems, as has been demonstrated, e.g., in the case
of optimization questions in an economics masters exam.

OMEGA runs on Common Lisp together with it’s object system Clos and has
been tested on Allegro, and Gnu Common Lisp. The source code is available
from ftp://jswww.cs.uni-sb.de/pub/omega/omega.tgz.

References

[Bun88] A. Bundy. The use of explicit plans to guide inductive proofs. CADE 9,
LNCS 310, pages 111-120, 1988.

[HF96] X. Huang and A. Fiedler. Presenting machine-found proofs. In CADE 13,
LNCS 1104, pages 221-225, 1996.

[HKK*94] X. Huang, M. Kerber, M. Kohlhase, E. Melis, D. Nesmith, J. Richts, and
J. Siekmann. 2-MKRP a proof development environment. CADE12, LNAI
814, pages 788-792, 1994.

[KKS96] M. Kerber, M. Kohlhase, and V. Sorge. Integrating computer algebra with
proof planning. DISC0O’96, LNCS 1128, pages 204-215, 1996.

[McC94] W. W. McCune. Otter 3.0 reference manual and guide. Technical Report
ANL-94-6, Argonne National Laboratory, Argonne II, USA, 1994.



