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Abstract. Prominent logics, including quantified multimodal logics, can
be elegantly embedded in simple type theory (classical higher-order logic).
Furthermore, off-the-shelf reasoning systems for simple type type theory
exist that can be uniformly employed for reasoning within and about
embedded logics. In this paper we focus on reasoning about modal logics
and exploit our framework for the automated verification of inclusion and
equivalence relations between them. Related work has applied first-order
automated theorem provers for the task. Our solution achieves signifi-
cant improvements, most notably, with respect to elegance and simplicity
of the problem encodings as well as with respect to automation perfor-
mance.

1 Introduction

Church’s simple type theory ST T [15], also known as classical higher-order logic,
has many prominent classical logic fragments, including propositional logic, first-
order logic, and second-order logic. Interestingly, also well known non-classical
logics, including propositional and quantified multimodal logics, can be elegantly
embedded in ST T [9, 6].

In this paper we exploit our embedding of quantified multimodal logic in
ST T [6] for the automated verification of inclusion relations between prominent
propositional modal logics, including the logics K, M (also known as T), D, S4,
and S5. Concretely, we analyze inclusion and equivalence relations for modal
logics that can be defined from normal modal logic K by adding (combinations
of) the axioms M, B, D, 4, and 5. In our problem encodings we exploit the well
known correspondences of these axioms to semantic properties of accessibility
relations. These correspondences can itself be elegantly formalized and effectively
automated in our approach.

The automation of ST T currently experiences a renaissance that has been
fostered by the recent extension of the successful TPTP infrastructure for first-
order logic [26] to higher-order logic, called TPTP THF [27, 11]. In our verifica-
tion study we exploit this new infrastructure and work with different TPTP THF
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compliant automated higher-order reasoning systems: TPS [1], LEO-II1 [10], Sa-
tallax [5], IsabelleP2, Refute [28] and Nitpick [13].3 TPS, LEO-II and IsabelleP
are automated theorem provers, and Refute and Nitpick are countermodel gen-
erators. Satallax is an automated theorem prover with additional capabilities for
finding countermodels.

Related work [23] has applied first-order automated theorem provers for the
verification of inclusion relations between modal logics. Our solution achieves
significant improvements, most notably, with respect to elegance and simplicity
of the problem encodings as well as with respect to automation performance.

In Sect. 2 we outline our embedding of quantified multimodal logics in ST T
(this part is reproduced from [6]). In Sect. 3 we describe how reasoning about

propositional modal logics and their inclusion relations is facilitated in our ap-
proach. The results of our experiments are presented in Sect. 4, and Sect. 5
concludes the paper.

2 (Normal) Quantified Multimodal Logics in ST T

ST T [15] is based on the simply typed λ-calculus. The set T of simple types
is usually freely generated from a set of basic types {o, ι} (where o is the type
of Booleans and ι is the type of individuals) using the right-associative function
type constructor �. Instead of {o, ι} we here consider a set of base types {o, ι, µ},
providing an additional base type µ (the type of possible worlds).

The simple type theory language ST T is defined by (where α, β, o ∈ T ):

s, t ::= pα | Xα | (λXα sβ)α�β | (sα�β tα)β | (¬o�o so)o |

(so ∨o�o�o to)o | (sα =α�α�o tα)o | (Π(α�o)�o sα�o)o

pα denotes typed constants and Xα typed variables (distinct from pα). Complex
typed terms are constructed via abstraction and application. Our logical con-
nectives of choice are ¬o�o, ∨o�o�o, =α�α�o and Π(α�o)�o (for each type α).4

From these connectives, other logical connectives can be defined in the usual way
(e.g., ∧ and ⇒). We often use binder notation ∀Xα s for Π(α�o)�o(λXα so). We
assume familiarity with α-conversion, β- and η-reduction, and the existence of
β- and βη-normal forms. Moreover, we obey the usual definitions of free variable
occurrences and substitutions.

The semantics of ST T is well understood and thoroughly documented in the
literature [2, 3, 7, 20]. The semantics of choice for our work is Henkin semantics.

1 LEO-II integrates the first-order automated theorem prover E [24].
2 IsabelleP applies a series of Isabelle/HOL [22] proof tactics in batch mode.
3 Refute and Nitpick, which also belong to the Isabelle/HOL proof assistant, are some-

times called IsabelleM and IsabelleN; this is the case, for example, in the System-
OnTPTP tool http://www.cs.miami.edu/~tptp/cgi-bin/SystemOnTPTP, where all
reasoning systems mentioned here are available online.

4 This choice is not minimal (from =α�α�o all other logical constants can already be
defined [4]). It useful though in the context of resolution based theorem proving.



Quantified modal logics have been studied by Fitting [16] (further related
work is available by Blackburn and Marx [12] and Braüner [14]). In contrast to
Fitting we are here not interested only in S5 structures but in the more general
case of K from which more constrained structures (such as S5) can be easily
obtained. First-order quantification can be constant domain or varying domain.
Below we only consider the constant domain case, in which every possible world
has the same domain. Like Fitting, we keep our definitions simple by not having
function or constant symbols. While Fitting [16] studies quantified monomodal
logic, we are interested in quantified multimodal logic. Hence, we introduce mul-
tiple 2r operators for symbols r from an index set S. The grammar for our
quantified multimodal logic QML is

s, t ::= P | k(X1, . . . , Xn) | ¬ s | s ∨ t | ∀X s | ∀P s | 2r s

where P ∈ PV denotes propositional variables, X,X i ∈ IV denote first-order
(individual) variables, and k ∈ SYM denotes predicate symbols of any arity.
Further connectives, quantifiers, and modal operators can be defined as usual.

Fitting introduces three different notions of Kripke semantics for QML:
QS5π−, QS5π, and QS5π+. In our work [8] we study related notions QKπ−,
QKπ, and QKπ+ for a modal context K, and we support multiple modalities.

ST T is an expressive logic and it is thus not surprising that QML can be
elegantly modeled and even automated as a fragment of ST T . The idea of the
encoding, called QMLSTT , is simple. Choose type ι to denote the (non-empty)
set of individuals and choose the second base type µ to denote the (non-empty)
set of possible worlds. As usual, the type o denotes the set of truth values. Certain
formulas of type µ � o then correspond to multimodal logic expressions. The
multimodal connectives ¬, ∨, and 2, become λ-terms of types (µ � o) � (µ � o),
(µ � o) � (µ � o) � (µ � o), and (µ � µ � o) � (µ � o) � (µ � o), respectively.

Quantification is handled as in ST T by modeling ∀X p as Π(λX p) for
a suitably chosen connective Π . Here we are interested in defining two par-
ticular modal Π-connectives: Π

ι, for quantification over individual variables,
and Π

µ�o, for quantification over modal propositional variables that depend on
worlds. They become terms of type (ι � (µ � o)) � (µ � o) and ((µ � o) �

(µ � o)) � (µ � o) respectively.
The QMLSTT modal operators ¬,∨,2,Πι, and Π

µ�o are now simply de-
fined as follows:

¬ (µ�o)�(µ�o) = λφµ�o λWµ ¬φW

∨ (µ�o)�(µ�o)�(µ�o) = λφµ�o λψµ�o λWµ φW ∨ ψW

2 (µ�µ�o)�(µ�o)�(µ�o) = λRµ�µ�o λφµ�o λWµ ∀Vµ ¬RW V ∨ φV

Π
ι
(ι�(µ�o))�(µ�o) = λφι�(µ�o) λWµ ∀Xι φXW

Π
µ�o

((µ�o)�(µ�o))�(µ�o) = λφ(µ�o)�(µ�o) λWµ ∀Pµ�o φP W

Note that our encoding actually only employs the second-order fragment of
ST T enhanced with lambda-abstraction.



Further operators can be introduced as usual, for example, ⊤ = λWµ ⊤,⊥ =
¬ ⊤, ∧ = λφ, ψ ¬ (¬φ ∨ ¬ψ), ⊃= λφ, ψ ¬φ ∨ ψ, ⇔= λφ, ψ (φ ⊃ ψ) ∧
(ψ ⊃ φ), 3 = λR, φ ¬ (2R (¬φ)), Σ

ι = λφ ¬Π
ι(λX ¬φX), Σ

µ�o =
λφ ¬ Π

µ�o(λP ¬φP ).
For defining QMLSTT -propositions we fix a set IVSTT of individual variables

of type ι, a set PVSTT of propositional variables5 of type µ � o, and a set
SYMSTT of n-ary (curried) predicate symbols of types ι � . . . � ι

︸ ︷︷ ︸

n

� (µ � o).

Moreover, we fix a set SSTT of accessibility relation constants of type µ � µ � o.
QMLSTT -propositions are now defined as the smallest set of ST T -terms for
which the following hold:

– if P ∈ PVSTT , then P ∈ QMLSTT

– if Xj ∈ IVSTT (j = 1, . . . , n) and k ∈ SYMSTT , then (kX1 . . . Xn) ∈
QMLSTT

– if φ, ψ ∈ QMLSTT , then ¬ φ ∈ QMLSTT and φ ∨ ψ ∈ QMLSTT

– if r ∈ SSTT and φ ∈ QMLSTT , then 2 r φ ∈ QMLSTT

– if X ∈ IVSTT and φ ∈ QMLSTT , then Π
ι(λX φ) ∈ QMLSTT

– if P ∈ PVSTT and φ ∈ QMLSTT , then Π
µ�o(λP φ) ∈ QMLSTT

We write 2r φ for 2 r φ, ∀Xι φ for Π
ι(λXι φ), and ∀Pµ�o φ for Π

µ�o(λPµ�o φ).
Note that the defining equations for our QML modal operators are them-

selves formulas in ST T . Hence, we can express QML formulas in a higher-order
reasoner elegantly in the usual syntax. For example, 2r ∃Pµ�o P is a QMLSTT

proposition; it has type µ � o.
Validity of QMLSTT propositions is defined in the obvious way: a QML-

proposition φµ�o is valid if and only if for all possible worlds wµ we have
w ∈ φµ�o, that is, if and only if φµ�o wµ holds. Hence, the notion of valid-
ity is modeled via the following equation (alternatively, validity could be defined
simply as Π(µ�o)�o):

valid = λφµ�o ∀Wµ φW

Now we can formulate proof problems in QMLSTT , e.g., valid2r ∃Pµ�o P .
Using rewriting or definition expanding, we can reduce such proof problems to
corresponding statements containing only the basic connectives ¬, ∨, =, Πι,
and Πµ�o of ST T . In contrast to the many other approaches no external trans-
formation mechanism is required. For our example formula valid2r ∃Pµ�o P
unfolding and βη-reduction leads to ∀Wµ ∀Yµ ¬rW Y ∨ (¬∀Xµ�o ¬(X Y )). It
is easy to check that this formula is valid in Henkin semantics: put X = λYµ ⊤.

We have proved soundness and completeness for this embedding [8], that is,
for s ∈ QML and the corresponding sµ�o ∈ QMLSTT ⊂ ST T we have:

Theorem 1. |=ST T (valid sµ�o) if and only if |=QKπ s.

This result also illustrates the correspondence between QKπ models and
Henkin models; for more details see [8].

5 Note that the denotation of propositional variables depends on worlds.



Obviously, the reduction of our embedding to first-order multimodal log-
ics (which only allow quantification over individual variables), to propositional
quantified multimodal logics (which only allow quantification over propositional
variables) and to propositional multimodal logics (no quantifiers) is sound and
complete. Extending our embedding for hybrid logics is straightforward [21]; note
in particular that denomination of individual worlds using constant symbols of
type µ is easily possible.

In the remainder we will often omit type information. It is sufficient to re-
member that worlds are of type µ, multimodal propositions of type µ � o, and
accessibility relations of type µ � µ � o. Individuals are of type ι.

3 Reasoning about Modal Logics

3.1 Accessibility Relation Properties and Modal Logic Axioms

There are well known relationships between properties of accessibility relations
and corresponding modal logic axioms (or axiom schemata) [18]. Such meta-
theoretic insights can be elegantly encoded in our approach. First we encode
various accessibility relation properties in ST T :

reflexive = λR ∀S RS S

symmetric = λR ∀S, T ((RS T ) ⇒ (RT S))

serial = λR ∀S ∃T (RS T )

transitive = λR ∀S, T, U ((RS T ) ∧ (RT U) ⇒ (RS U))

euclidean = λR ∀S, T, U ((RS T ) ∧ (RS U) ⇒ (RT U))

The corresponding axioms are given next.

M(or T ) : ∀φ 2r φ ⊃ φ

B : ∀φ φ ⊃ 2r 3r φ

D : ∀φ 2r φ ⊃ 3r φ

4 : ∀φ 2r φ ⊃ 2r 2r φ

5 : ∀φ 3r φ ⊃ 2r 3r φ

Exploiting our embedding QMLSTT we can now elegantly formalize well
known correspondence theorems in ST T :

∀R (reflexive R) ⇔ (valid ∀φ 2R φ ⊃ φ) (1)

∀R (symmetric R) ⇔ (valid ∀φ φ ⊃ 2R 3R φ) (2)

∀R (serial R) ⇔ (valid ∀φ 2R φ ⊃ 3R φ) (3)

∀R (transitive R) ⇔ (valid ∀φ 2R φ ⊃ 2R 2R φ) (4)

∀R (euclidean R) ⇔ (valid ∀φ 3R φ ⊃ 2R 3R φ) (5)
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Fig. 1. The Modal Logic Cube; reproduced from [17].

3.2 Alternative Axiomatizations of Modal Logics

The cube in Figure 1 depicts the different modal logics that can be defined from
normal modal logic K (lower left corner) by adding (combinations of) the axioms
M, B, D, 4, and 5. A conjecture implicitly contained in this cube is that there
are modal logics that can be axiomatized in alternative ways using these axioms.

For example, for modal logic S5 we may choose axioms M and 5 as standard
axioms. Respectively for logic KB5 we may choose B and 5. We may then want
to investigate the following conjectures about equivalent axiomatizations for S5,
respectively, for KB5:

S5 = M5 ⇔ MB5

⇔ M4B5

⇔ M45

⇔ M4B

⇔ D4B

⇔ D4B5

⇔ DB5

KB5 ⇔ K4B5

⇔ K4B



Exploiting the correspondence theorems from Sect. 3.1 these problems can
be formulated as follows; we give the case for M5 ⇔ D4B:

∀R (((reflexive R)∧(euclidean R)) ⇔ ((serial R)∧(transitive R)∧(symmetric R)))

3.3 Inclusion Relations between Different Modal Logics

The links in the modal logic cube in Fig. 1 describe unidirectional inclusion
relations between modal logics. For example, the link between D45 and S5

expresses that modal logic D45 is included in logic S5 (we write D45 ⋐ S5)
but not vice versa. That is, all formulas that are valid in D45 are also valid in
S5. On the other hand, there are formulas that are valid in S5 but not in D45

(S5 6⋐ D45).
Exploiting the equivalence (bidirectional inclusion) of S5 and D4B5 and

monotonicity of entailment the inclusion of D45 in S5 is obvious: we simply add
axiom B when moving in this direction. These trivial directions of the inclusion
links in our modal logic cube are not further addressed in this paper.

The backward directions, however, are more interesting. It are these non-
inclusion aspects of the links that we need to verify. The general task in each
case is to find a countermodel to the respective inclusion statement. For example,
in order to show that logic M is not included in logic D we may want to find a
countermodel to the inclusion statement

(valid∀φ 2r φ ⊃ 3r φ) ⇒ (valid ∀φ 2r φ ⊃ φ)

Again, by exploiting the correspondence theorems from Sect. 3.1 we may
instead search for a countermodel to

M ⋐ D : ∀R (serial R) ⇒ (reflexive R)

The systems that are applicable to these inclusion statements are the coun-
termodel finders Refute, Nitpick, and Satallax.

Alternatively, we may try to find a countermodel to M ⋐ D by tackling the
negated inclusion statement with a theorem prover

M 6⋐ D : ¬∀R (serial R) ⇒ (reflexive R)

In the particular case of M and D the negated statement is clearly not a
theorem though: in a model consisting of only one possible world, seriality in
fact implies reflexivity. However, since we are in fact interested only in finding
a countermodel to the statement M ⋐ D we may simply provide some help to
the provers by adding an axiom expressing that there are at least two different
worlds:

w1 6= w2

When adding such an axiom the statement M 6⋐ D becomes a theorem (now
there is an accessibility relation which is serial but not reflexive: simply choose
6=). The systems that are applicable to the negated inclusion statements are the
provers TPS, LEO-II, IsabelleP and Satallax.

In the experiment reported below we have actually added axioms stating
there are at least three different possible worlds to all negated statements.
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Fig. 2. Verification of the Modal Logic Cube: fastest proofs/countermodels reported.

4 Verification Results

In our experiments, we have employed the following system versions: TPS—
3.080227G1d, LEO-II—v1.2, Satallax—1.4, IsabelleP—2009-2, IsabelleM—2009-
2 (Refute), and IsabelleN—2009-2 (Nitpick). These systems are all available on-
line via the SystemOnTPTP tool [25] and they support the new TPTP THF
infrastructure for typed higher-order logic [11]. Exploiting the SystemOnTPTP
tool all the experiment runs were done on 2.80GHz computers with 1GB memory
and running the Linux operating system, with a 300s CPU limit.

The axiomatizations of QMLSTT and IPLST T are available as LCL013ˆ0.ax
and LCL010ˆ0.ax in the TPTP library.6 The example problems LCL698ˆ1.p and
LCL695ˆ1.p ask about the satisfiability of these axiomatizations. Both questions
are answered positively by the Satallax model finder in less than a second.

The correspondence theorems (1)–(5) from Sect. 3.1 are trivial: LEO-II solves
problems (1),(3), and (4) in .1 seconds each, and it solves problem (2) in .3
seconds. TPS is the fastest prover to solve statement (5), for which it needs .4
seconds.

Figure 2 depicts the further results of our experiments. The timings presented
for each link are given in seconds. For each link we present the fastest successful

6 Note that the types µ and ι are unfortunately switched in the encodings available in
the TPTP: the former is used for individuals and the latter for worlds. This syntactic
switch is completely unproblematic.
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Fig. 3. Verification of the Modal Logic Cube: number of different successful results.

attempt reported by one of our reasoners. Moreover, we indicate with the suffixes
-T, -L, -N, -M, and -S which system contributed this result. T stands for TPS,
L for LEO-II, N for Nitpick, M for Refute, and S for Satallax as countermodel
finder. IsabelleP and Satallax as prover never contributed a fastest result. As
mentioned before, for each link the inclusion statement and the negated inclusion
statement as described in Sect. 3.3 were presented to the provers.

Figure 3 presents how many different successful results were reported for
each link. For example, the proper subset relation between K4 and D4 has been
confirmed five times: the link annotation 3/2 says that we received 3 counter-
models for D4 ⋐ K4 and 2 proofs for the negated statement D4 6⋐ K4. In the
equivalence statements the annotations express the number of successful proof
attempts, for example, the statement M5 ≡ MB5 was confirmed by each of our
four provers.

In summary, all links in the modal logic cube can be verified effectively by at
least one of the reasoners and most steps take only milliseconds. Furthermore,
all equivalence statements in the cube can be solved in a few milliseconds. In all
but one case different certificates are provided by the reasoners, raising the level
of trust in the results significantly. Summing up all fastest times in our entire
experiments results in a sum of less than 40 seconds.



5 Conclusion

The automated analysis and verification of bidirectional and unidirectional in-
clusions between propositional modal logics has originally been posed as a chal-
lenge problem for automated theorem provers by John Halleck and Geoff Sut-
cliffe. John Halleck was in need for a program as an aid to maintaining his logic
systems overview [19].

Subsequently the challenge has been addressed with first-order automated
theorem provers [23]. However, the solution presented there employs technically
complex and hard to follow problem encodings in first-order logic, and even the
fastest automated analysis of a subset relation in this study already requires
more than 11 minutes of total reasoning time with state-of-the-art first-order
automated theorem provers (if the pre-processing times required in this approach
are also taken into account).

In our framework the automated analysis of bidirectional and unidirectional
inclusion relations between well known modal logics becomes an easy task for
higher-order automated theorem reasoning systems. Most notably, our problem
encodings are elegant, simple and straightforward and the verification of the
entire modal logic cube takes less than 40 seconds.

Future work includes the application of our framework for the exploration
of inclusion relations between further modal logics. Note in particular, that our
embedding of modal logics in simple type theory is not restricted to propositional
logics: it also supports quantifiers and multiple box operators (cf. the Examples
4–6 in [6]). This calls for the development of a workbench for the automated
analysis of propositional and quantified multimodal logics based on the approach
presented in this paper.

Acknowledgment: I thank Jasmin Blanchette for proof reading this paper and
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ings which initially prevented his Nitpick system in finding a counterexample to
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tion with the author and supported by several further contributors, developed the
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