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Abstract This paper summarises and gives an overview of the developof¢he
WMEGA system during the 12 years of funding by the SFB 378.

1 Motivation

The research objective of tMMEGA project has been to lay the foundation com-
plex, heterogenous, but well integrated assistance sgdienmathematics, which
support the wide range of typical research, publicationlarmiviedge management
activities of a working mathematician. Examples are conmguffor instance alge-
braic and numeric problems), proving (lemmas or theorersslving (for instance
equations), modelling (by axiomatic de nitions), verifig (typically a proof), struc-
turing (for instance the new theory and knowledge base)ntaiming (the knowl-
edge base), searching (in a very large mathematical kngelédse), inventing
(your new theorems), paper writing, explaining and illairg in natural language
and diagrams. Clearly, some of them require a high amountiofam ingenuity
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while others do not and they are thus open to computer supjithrcurrent Al and
Computer Science technology.

Our research is based in particular on the combination bftigeies from several
sub elds of Al including knowledge representation and m@@eg, cognitive archi-
tectures and multi-agent systems, human computer intenaahd user interfaces,
as well as machine learning, intelligent tutor systems aradly dialog systems with
natural language processing capabilities.

The central notion for the integration of these techniqaesat of aesourceand
the adaptation of the system to a wide range of resourcesctnd mathematical
assistant system can be considered as a performance amj@sciurce for human
usersas well as aesource for other software systemnsing it. Furthermore, a user
friendly mathematical assistance system has to solve adagk withinlimited
time and space resource#/hile executing a task, let's say, automatically planning
a proof for a theorem, the systems performance may signilgalepend on further
knowledge resourcesuch as proof methods, theorems and lemmas. Furthermore,
the assistant system may explsfiecialised computing and reasoning resouyces
for example, an external computer algebra system, an attdndaduction system
or a model generator.

Considering a mathematical assistance system itself asoanee requires the
development of different interfaces—for a human user oofber software systems.
This in turn poses the problem how the system adapts itsedfith conceptually
very different means of interaction.

The article is organised as follows: Section 2 presentsfpepyesentation and
proof search techniques that utilise knowledge and spsethtomputing resources.
We discuss the representation, authoring, access to amdenance of knowledge
resources in Section 3 and specialised computing resour&sestion 4. Section 5
develops the infrastructures and internal architectuakghables the assistance sys-
tem to adapt to the different means of interaction.

2 Resource-Adaptive Proof Search

This section presents the proof search techniques thabiexiifferent resources
to prove a given conjecture. The proof procedures all worla @entral, elaborate
proof objectwhich supports the simultaneous representation of thef ptalifferent
levels of granularity and records also alternative protarapts.

2.1 Human-oriented high-level Proofs

The central component of our computer-based proof cortsirum WMEGA is the
TASKLAVYER. Itis based on the GRE-calculus (Autexier, 2005) that supports proof
development directly at thassertion leve(Huang, 1996), where proof steps are
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justi ed not only by basic logic inference rules but also g/ mitions, axioms, the-
orems or hypotheses (collectively callassertionk

Subgoals to be shown are stored within theskL AYER astasks which are
represented as Gentzen-style multi-conclusion sequémastgen, 1969). In addi-
tion there are means to de ne multiple foci of attention omfsumulas that are
maintained within the actual proof. Each task is reducedgpossibly empty set of
subtasks by one of the following proof construction stef¥tlfe introduction of a
proof sketch (Wiedijk, 2004), (2) deep structural rulesif@akening and decompo-
sition of subformulas, (3) the application of a lemma thatloa postulated on the y
(and proved later), (4) the substitution into meta-vagabbnd (5) the application
of aninference Inferences are the basic reasoning steps of #k&T AYER, and
comprise assertion applications, proof planning methodsilis to external special
systems such as a computer-algebra system, an automatectidedsystem or a
numerical calculation package (see (Dietrich, 2006; Agteand Dietrich, 2006)
for more details about theABKL AYER).

2.1.1 Inferences

Intuitively, aninferences a proof step with multiple premises and conclusions aug-
mented by (1) a possibly empty set of hypotheses for eachigeerf?) a set of
application conditionghat must be ful lled upon inference application, (3) a set
of completion functioristhat compute the values of premises and conclusions from
values of other premises and conclusions, and (£xpansion functiothat re nes
the abstract inference step. Each premise and conclusiist® of a unique name
and a formula scheme. Note that we employ the t@fi@rencein its more general
psychological meaning: taken in that sense, an inferengetana out to be invalid
actually, in contrast to the formal logical notion of exference rule

Additional information needed in the application condioor the completion
functions, such as, for instance, the position of a subtarth@instance of some
non-boolean meta-variable, can be speci ed by additipmahmetergo the infer-
ence.

Application conditions are predicates on the values ofreriee variables and
completion functions compute values for speci c inferemadables from values of
other inference variables.

An example of an inference is given in Fig. 1. The inferesabst-mhas two
premisesp1,p2 with formula scheme& andU = V respectively, one conclusion
¢ with formula schemé&s, and one parameter. It represents the inference that if
we are given a formul& with subtermU at position and the equatiot) = V,
then we can infer the formula which equald=except that is replaced byw. The
completion functions are used to compute the concrete asiael formulac, given
P1, P2, and . They can also be used for the “backward” direction of theriafice to
compute the formula,, givenc,p», and , or to compute the position at which a

1 The completion functions replace the “outline functions’previous work.
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pi:F p2:U=
c:G
Appl.Cond.: (Ffj = U~ Gj v=F)_(Gj =UMF yv=0G)
Completions: hc,compute-subst-m  (p1,p2, )i
hp 1,compute-subst-m  (p2,c, )i
h ,compute-pos (p1,p2)i
h ,compute-pos (p2,C)i

\%
subst-nf )

Fig. 1: Inferencesubst-m

replacement can be done. Note that there are two completianibéns for comput-
ing . Furthermore, for a given formukafor p; and equatiotJ = V for p», there
are in general more than one possible value foFherefore, the completion func-
tions actually computstreamsof values, each value giving rise to a new instance
of the inference.

Inferences can also encode the operational behaviour o&itospeci ¢ asser-
tions. Consider for instance the domain of set theory and¢heition of

8U,V.U V, (8xx2U) x2V)

That assertion gives rise to two inferences:

[x2 U]

:x2:V U Vv x2U
p7Def- P1 P2 Def-
c:U Vv c:x2V

Appl. Cond.: x new forU andV Appl. Cond.: x new forU andV

As a result, we obtain proofs where each inference step tisgddy a mathe-
matical fact, such as a de nition, a theorem or a lemma.

To illustrate the difference between a typical proof stegnfra textbook and
its formal counterpart in natural deduction consider theegon step that derives
a;2 VifromU; Vianda;2 U;. The corresponding natural deduction proof is:

8U,V.U V,8 xx2U) x2V

8
8V.U; V,8 x2U;) x2V ©
U Vi,8 xx2Up) x2V; &
Uq V1)8 X.X2U1) X2V1 EU1 V1

8xx2U1) x2V;
a2 Ul) a2V, a;2U;
a;2Vy )

E
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Even though natural deduction proofs are far better reathbh proofs in machine
oriented formalisms such as resolution, we see that thegtaadevel of detail we
hardly ndin a proof of a typical mathematical textbook ordmesearch publication:
In the example above, a single assertion step correspor@staps in the natural
deduction calculus.

Similarly, the lemm&U,V,W.(U V2~V W)) U W stating the transi-
tivity of  can be represented by the inference:

p1:U V p2:V

w
Trans- (1)
c:Uu W

An eminent feature of theABKLAYER is that inferences can be appliedstab
formulas of a given task. Consider the task to prove thfatsfan automorphism on
some groufss, then thef-image of the Kernel o6 is a subset 06.

A B) f(A) f(B)" AutoMorphisntf,G)) f(Ker(f,G) G (2

where we have the additional hypothesis, that if two arbjtsets are in a subset
relation, then so are their images unfler

A deep application of the inferend@ans- matching the conclusion with the
subformuld (Ker(f,G)) G and the rst premise with the subformuigd) f(B)
reduces the task in one step to

A B) (f(A) f(B)) " AutoMorphisntf,G)) (Ker(f,G) B~ f(B) G)

which can be proved immediately using the de nitionsfaftoMorphismandKer.
This one step inference would not be possible unless we @ifljto match the
subformula within the conclusion of the task (2).

2.1.2 Application Direction of an Inference

The problem is to nd all possible ways to apply a given infeze to some task,
i.e. to compute all possible instantiations of an infereriggically, some of the
parameters as well as some of the formal arguments of theeimde are already
instantiated. The formal arguments and the parameters ioffarence will be col-
lectively called theargumentof an inference.

The process starts with a partial argument instantiatié) @hd we have to nd
values for the non-instantiated arguments of the inferemhese arguments take
positions as values within the task or they have formulasasesg.

Example 1Consider the inferencubst-nof Fig. 1 before, which we want to apply
tothetaski:2 3=6" 2 3< 7.Thenpai; = h;,fc7! (10)g;i is a partial argument
instantiation for the inferencaubst-mwhere(10) denotes the position of 23< 7
in the task. As no completion function has been invoked sppfai; is initial. It
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is notcompleteas there is not enough information for the completion fuonito
compute given onlyc; thuspi, p2 can not be computed yet.

The extension of a partial argument instantiation congiftn assignment of
values to arguments of the inference that are not yet iratadt There are two
possible choices: (1) either assign a task position to adbargument or (2) to
assign a term to a formal argument.

The rst kind of update involves searching for possible piosis in the task
while respecting already introduced bindings. The secdand &f update involves
no search for further instances in the task, as it uses theletion functions to
compute the missing values.

Thus we can separate the updating process into two phagég: st phase we
update the positions by searching the task for appropmistamnce of the formula
schemes and in the second phase we only use the completictiofus1to com-
pute the missing arguments. The general idea is to use as deuivled knowledge
as possible and then decide whether this knowledge is ®rftdior the inference
to be drawn. A partial argument instantiatipai is called complete, if it contains
suf cient information to compute all other values of argumgusing completion
functions.

Example 2If we add an instantiation for the argumemtin pai; we obtainpai, =
h;,fp2 7! (00),c 7! (10)g;i , where(00) denotes the position of the formula 3=

6 in our task angbai, is an extension opai;. It is complete, as we can invoke the
completion functions to rst obtain and then to obtaip;.

The con guration of a complete partial argument instamdiatdescribes aap-
plication directionof the inference. All application directions can be deteradi by
analysing the completion functions of an inference. As aamgXe consider infer-
enceTrans- (p.5): The application of the inference on task (2) instetic with
f(Ker(f,G)) G andp; with f(A) f(B), which is represented by the partial ar-
gument instantiatiopai := Hpy 7! f(A) f(B)g;,fc 7! f(Ker(f,G)) Gg. The
con guration of paiy, that is the premises and conclusions that are instantiated
those which not, classify this rule application as “backiiaihe same rule with
both premises instantiated but not the conclusion is a “éodirule.

2.1.3 Representation of Proof

The proof data structure is at the centre of such a systemtstakk is to maintain
the current status of the proof search so far and to repréasandifferent levels of
abstraction and granularity. Tipeoof data structurdPDS) is baseton the follow-
ing ideas:

2 |t reects our experience of more than a decade of developnuénthe WMEGA sys-
tem (Cheikhrouhou and Sorge, 2000; Siekmann et al, 2002a(}3; Autexier et al, 2006) as well
as ideas from the QODLIBET system (Avenhaus et al, 2003).
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Each conjecturedemmagets its ownproof tree (actually a directed acyclic
graph), whose nodes are (sub-)goals to be shown.

In this proof forest each lemma can be applied in each proof tree as an inference;
either as a lemma in the usual sense, or as an induction registin a possibly
mutual induction process, see (Wirth, 2004).

A lemma is ataskto be proved reductively. Aeductionstep reduces goal
to a conjunction osub-goalswith respect to gusti cation. This are the proof
construction steps of theAEKL AYER.

Several reduction steps applied to the same goal resultemative proof at-
tempts, which either represent different praddasor the same proof idea but at
a different level of abstraction granularity (with more or less detail).

The PDS is essentially a directed acyclic graph (dag) whodesare labelled with
tasks. It has two sorts of linkgisti cation hyper-linksrepresent some relation of a
task node to its sub-task nodes, dnerarchical edgepoint from justi cations to
other justi cations which they re ne.

This de nition allows for alternative justi cations and talrnative hierarchical
edges. In particular, several outgoing justi cations ofaan, which are not con-
nected by hierarchical edges, are OR-alternatives. Thad [grove a noda, only
the targets of one of these justi cations have to be solvezhdé they represent al-
ternative ways to tackle the same problenThis describes the horizontal structure
of a proof. Note further that we can share re nements: fotanse, two abstract
justi cations may be re ned by one and the same justi catiailower levels.

Hierarchical edges are used to construct the vertical tstreiof a proof. This
mechanism supports both recursive expansion and abstraafiproofs. For in-
stance, in Fig. 2a, the edge frgmto j; indicates thaj, re nesj;. The hierarchical
edges distinguish between upper layer proof steps andréhnaeements at a more
granular layer.

(a) PDS-node with all outgoing partially hierar- (b) PDS-node in the PDS-view obtained for
chically ordered justi cations, angly,j4 in the the selected set of alternativiesj 4.

set of alternatives. Justi cations are depicted as

boxes.

Fig. 2: An example PDS and one of its PDS-views
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A proof may be rst conceived at a high level of abstractiom éinenexpanded
to a ner level of granularity. Vice versagbstractionmeans the process of suc-
cessively contracting ne-grained proof steps to more raastproof steps. Fur-
thermore, the PDS generally supports alternative and riytincomparable re-

nements of one and the same upper layer proof step. Thizbotal structuring
mechanism—together with the possibility to represent QBatives at the ver-
tical level—provides very rich and powerful means to repreésand maintain the
proof attempts during the search for the nal proof. In fastich multidimensional
proof attempts may easily become too complex for a human bisesince the user
does not have to work simultaneously on different grantiéesdf a proof, elaborate
functionalities to access only selected parts of a PDS dpéheThey are required,
for instance, for user-oriented presentation of a PDS, iiclwthe user should be
able to focus only on those parts of the PDS he is currenthkingrwith. At any
time, the user can choose to see more details of some prpodisten the contrary,
he may want to see a coarse structure when he is lost in datallsannot see the
wood for trees.

One such functionality is BDS-viewthat extracts from a given PDS only a hor-
izontal structure of the represented proof attempts, btit all its OR-alternatives.
As an example consider the PDS fragments in Fig. 2.

The noden; in the fragment on the left has two alternative proof attesmpith
different granularities. The fragment on the right giveszSPview which results
from selection of a certain granularity for each altermafproof attempt, respec-
tively. The set of alternatives may be selected by the usdetoe the granularity
on which he currently wants to inspect the proof. The raesglRDS-view is a slice
plane through the hierarchical PDS and is—from a technigatpf view—also a
PDS, but without hierarchies, that is without hierarchaddes.

2.2 Searching for a Proof

In the following we shall look at our main mechanisms for atiju nding a proof
and we distinguish two basic modes, knowledge based, iibedative proof search
and reactive proof search.

2.2.1 Knowledge-based Proof Search

WMEGA's main focus is on knowledge-based proof planning (Bun®g8, 1991,
Melis and Siekmann, 1999a; Melis et al, 2007), where prodsat conceived in
terms of low-level calculus rules, but at a less detailedhglarity, that is at a more
abstract level, that highlights the main ideas and de-esigpbs minor logical or
mathematical manipulations of formulas. The motivatiomciseduce the combi-
natorial explosion of the search space in classical auteanidteorem proving by
providing means for a more global search control. Indeesiséarch space in proof
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planning tends to be orders of magnitude smaller than aethet bf calculus rules
(Bundy, 2002; Melis and Siekmann, 1999b). Furthermore, r2lguogical proof
more often than not obscures its main mathematical ideas.

Knowledge-based proof planning is a paradigm in automdtedrem proving,
which swings the motivational pendulum back to the Al orggin that it employs
and further develops many Al principles and techniques sischierarchical plan-
ning, knowledge representation in frames and control rglesstraint solving, tac-
tical theorem proving, and meta-level reasoning.

It differs from traditional search based techniques nattl@aits level of granu-
larity: The proof of a theorem is planned at an abstract lededre aroutline of the
proof is found rst. This outline, that is, the abstract pf@dan, can be recursively
expanded to construct a proof within a logical calculus jafet the expansion of
the proof plan does not fail.

The building blocks of a proof plan are the plan operatortedanethodsvhich
represent mathematical techniques familiar to a workingheraatician. Another
important feature is the separation of the knowledge of wioeapply a certain
technique from the technique itself, which is explicitlpigd incontrol rules Con-
trol rules cannot only reason about the current goals andgstsons, but also about
the whole proof attempt so far.

Methods and control rules can employ external systems if&iance, a method
may call one of the computer algebra systems) and make udeedénowledge
in these system$8\WEGA's multi-strategy proof planner MLTI (Melis and Meier,
2000; Meier and Melis, 2005; Melis et al, 2007) searches fplaa using the ac-
quired methods and strategies guided by the control knayel@dthe control rules.
In general, proof planning provides a natural basis for ttiegration of computa-
tional systems for both guiding the automated proof corsivn and performing
proof steps.

Knowledge-based proof planning was successfully apptiedany mathemati-
cal domains, including the domain of limit theorems (Meligl&iekmann, 1999a),
which was proposed by Woody Bledsoe (Bledsoe, 1990) as #olgal to auto-
mated reasoning systems. The general-purpose plannesmséef the mathemat-
ical domain knowledge for- -proofs and of the guidance provided by declaratively
represented control rules, which correspond to matheaiatiition about how to
prove a theorem in a given situation. Knowledge based priaoitng has also been
applied to residue-classes problems (Meier et al, 2002k t@ plan “irrationality
of T I”-conjectures for arbitrary natural numbgrand| (Siekmann et al, 2003).

Methods, Control Rules, and Strategies

Methodswere originally invented by Alan Bundy (Bundy, 1988) as iextaug-
mented with preconditions and effects, call@@misesand conclusionsrespec-
tively. A method represents a large inference of the commtugom the premises
based on the body of the tactic. The advantage of speciffiagffects of a tactic
are twofold: (i) the attached tactic need not be executethduhe search, (ii) the
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speci cation of the tactic may contain additional congttaior control knowledge
to restrict the search.

Knowledge-based proof planning expands on these ideas dusify on en-
coding domain or problem-speci ¢ mathematical methodsrasfsplanning meth-
ods and additionally supports the explicit representatiocontrol knowledge and
strategic knowledge. For instance, consider the methodsl-1in Fig. 3.

P;:8Y. P, :8x.P(x) , P 3:P(C)
_— ————————  homl-{
C :P(F(QC))

Appl. Cond.:
Completions: h 1  termrploccéX, ,C)i

h o, termrplocc¢X, ,F(C))i
Expansion: Ps: »

1 2

Fig. 3: Methodhom1-1

It encodes a planning operator that uses preniseB,, P; to prove the subgoal
C. P1,P,, andC are annotated with control information stating in this cdwse they
must be instantiated. Informally, the method describesath@ving proof situation:

If f is a given functionp a de ned predicate and the goal is to prgug(c)), then
showp(c) and use this to show(f(c)). Note thatPs is an open goal that does not
occur in the speci cation and therefore does not directligethe planning process.
The later expansion process will inseg as additional goal in the planning state
and then call the planner to close it. To postpone the proafgdal is an essential
feature of methods and provides a means to structure thehsgaace.

Control rulesrepresent mathematical knowledge about how to proceedein th
proof planning process. They can in uence the planner'ssvélur at choice points
(such as deciding which goal to tackle next or which methodpply next) by
preferring members of the corresponding list of alterreti¢for instance, the list of
possible goals or the list of possible methods). This waysong search paths are
preferred and the search space can be pruned. An examplewofralcule is shown
in Fig. 4.

(control-rule prove-inequality
(kind methods)
(IF (and (goal-matches (REL A B))
(in REL {<,><=>=}))
(THEN (prefer (TELLCS-B TELLCS-F, ASKCS-B, SIMPLIFY-B,
SIMPLIFY-F, SOLVE =*-B, COMPLEX-ESTIMATE-B,
FACTORIALESTIMATE-B, SET-FOCUS-B))))

Fig. 4: Control Ruleprove-inequality



WMEGA: Resource Adaptive Processes in an Automated Reasoningnsys 11

Its IF -part checks whether the current goal is an inequality. i th the case, it
prefers the methods stated after the keyworefer  of the rule in the speci ed
order. The general idea of this control rule is that a coirgtshould be simpli ed
until it can be handled by the constraint solver, which aifieconstraints in goals
and assumptions through the meth@@4.LCS-B andTELLCS-F.

Strategieencapsulate xed sets of methods and control rules and, thokle a
problem by some mathematical standard that happens to ioaltjqr this problem.
The reasoning as to which strategy to employ for a given grakik an explicit
choice pointin MULTI. In particular the MILTI system can backtrack from a chosen
strategy and commence search with different strategieexample of a strategy is
shown in Fig. 5.

(strategy Solvelnequality
(condition inequality-task)
(algorithm PPlanner)
(methods COMPLEXESTIMATE-B, TELLCS-B, TELLCS-F, SOLVE *-B ..)
(crules prove-inequality, eager-instantiage ...)
(termination no-inequalities)

)
Fig. 5: Strategy Solvelnequality

It is applicable for tasks whose formulas are inequalitiesvhose formulas can
be reduced to inequalities. It comprises methods sudGEPLEXESTIMATE-B
and TELLCS-B. It consists of control rules such gsove-inequality . The
strategy terminates, if there are no further tasks comtgimequalities.

Detailed discussions MEGA's method and control rule language can be found
in (Meier, 2004; Meier et al, 2002a). A detailed introduatto proof planning with
multiple strategies is given in (Melis and Meier, 2000; Maiaed Melis, 2005) and
more recently in (Melis et al, 2007).

2.2.2 Reactive Proof Search

TheW-ANTs-system was originally developed to support interactiemtlem prov-
ing (Benzmiiller and Sorge, 1998). Later it was extended tdla dutomated the-
orem prover (Benzmiiller and Sorge, 2000; Sorge, 2001) aratporated into the
WMEGA-system. The basic idea is to encapsulate each inferermcarirggent, called
aninference antAll ants watch out for their applicability thus generatitiig each
proof situation, a ranked list of bids for their applicatidn this process, all infer-
ences are uniformly viewed wrt. their arguments, that isirhremises, conclusions
as well as other parameters. An inference is applicable iawe found a complete
partial argument instantiation and the task of WWeANTS system is to incremen-
tally nd complete partial argument instantiations. Thiarss with an empty partial
argument instantiation and searches for instantiationshi® missing arguments.
This search is performed by separate, concurrent procéssfésare agents) which
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compute and report bids for possible instantiations. lreottords, each inference
ant is realised as a cooperating societa@ument ants

TheW-ANTS architecture

The architecture consists of two layers. At the bottom Iglyiels of possible instan-
tiations of the arguments of individual inference are cotagdlby argument ants.
Each inference gets its own dedicated blackboard and oreveral argument ants
for each of its arguments. The role of each argument ant isrigpate possible in-

stantiations for its designated argument of the inferead, if successful to record
these as bids on the blackboard for this inference. The ctatipns are carried out
within the given proof context and by exploiting bids alrggtesent on the infer-

ence's blackboard, that is, argument instantiations cdetpioly other argument ants
working for the same rule. On the upper layer, the bids froeltbttom layer that

are applicable in the current proof state are accumulatédiaunristically ranked by

another process. The most promising bid on the upper laytbers applied to the

central proof object and the data on the blackboards isedifar the next round of

computations.

W-ANTS employs resource-bounded reasoning to guide the searghravides
facilities to de ne and modify the processes at runtime (Baiiller and Sorge,
1999). This enables the controlled integration (for insgrby specifying time-
outs) of full- edged external reasoning systems such asraated theorem provers,
computer algebra systems, or model generators into th@ectire. The use of the
external systems is modelled by inferences, usually onedoh system. Their cor-
responding computations are encapsulated into one of ¢jugreant ants connected
to this inference. For example, consider an inference endating the application
of an ATP:

P- e

c:
Appl. Cond.: =>
Completions: h ATP( )i

The inference contains an completion function that conmgptite value for its

premise given a conclusion argument, that is, an open gba.cbmpletion func-

tion is turned into an argument ant for the premise argun@nte an open goal
is placed on the blackboard, this argument ant picks it upapplies the prover
to it in a concurrent process. While the prover runs, othguisrent ants for other
inferences may run in parallel and try to enable their apgitim. Once the prover
found a proof or a partial-proof, it is again written onto tilackboard and subse-
quently inserted into the proof object if the inference iplagd. The semantics of
the connections to external reasoners is currently hadee;dout an ontology could
be fruitfully employed like the one suggested in (Sutcléfeal, 2004).
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The advantage of this setup is that it enables proof cortgiruby a collab-
orative effort of diverse reasoning systems. Moreover atuhitecture provides a
simple and general mechanism for integrating new reasameershe system inde-
pendently of other systems already present. Adding a nesongéag system to the
architecture requires only to model it as an inference amutd@wide the argument
ants and the inference ant for it. These ants then commuenidtt the blackboard
by reading and writing subproblems to and from it, as well aising proofs back
to the blackboard in a standardised format.

Communication as a Bottleneck

A main disadvantage of our generic architecture is the comaoation overhead,
since the results from the external systems have to be &tadsback and forth
between their respective syntax and the language of theatgmbof object. W-
ANTS has initially been rather inef cient: the case studies mgdin (Benzmiiller
et al, 1999b) show that the larger part of the proof effortametimes spent on
communication rather than on the actual proof search.

In order to overcome this problem, we devised a new methodhi®rcooper-
ation between two integrated systems via a single inferenlee rst presented
in (Benzmdller et al, 2005). This effectively cuts out theedéo communicate via
the central proof object.

However, direct bilateral integration of two reasoningteysis dif cult if both
systems do not share representation formalisms that am@esfy similar: im-
plementing a dedicated inference for the combination of padicular reasoning
systems is more cumbersome than simply integrating eadhrsyand its results
into W-ANTS' central architecture. See (Benzmdiller et al, 2007) for t@itkd case
study, which evaluates this approach for the cooperativmden the higher-order
resolution prover EW (Benzmiller and Kohlhase, 1998) and a rst-order theorem
prover. The general idea is thaeWW sends the subset of its clauses that do not con-
tain any “real' higher-order literals to a rst-order theon prover.

3 Knowledge as a Resource

There is a need to organise the different knowledge formsdatermine which
knowledge is available for which problem. Furthermoresé¢his a need to avoid
redundant information for knowledge maintenance readarthe WMEGA system
we use development graphs (Hutter, 2000; Autexier and H2095) as a general
mechanism to maintain inferences, strategies and contles iin the system (see
Section 3.1). In Section 3.2 we describe how this knowledgebe formalised and
included into the development graph. In Section 3.3 we mitds@w inferences can
be automatically synthesised from axioms and lemmas maédan the develop-
ment graph. Based on inferences, we describe how the knge/fied the planner
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can be automatically synthesised from inferences (Se8tiéhand Section 3.5 de-
scribes the mechanism to automatically generate a set oifrengt agents out of the
inference descriptions.

3.1 Managing Mathematical Knowledge

The knowledge of th®WEGA system is organised in theories that are built up hi-
erarchically by importing knowledge from lower theoriea ¥iheory morphisms to
upper layers. These theories and morphisms are organispdatésely as nodes
and edges oflevelopment graphas implemented in the MA system (Autexier
and Hutter, 2005) which is the central component of\iEGA system that main-
tains information about the status of conjectures (unkngwoved, disproved, or
in-progress) and controls which knowledge is availablexfloich conjecture. MyA
supports the evolution of mathematical theories by a stipated mechanism for
themanagement of changks main feature is to maintain the proofs already done
when changing or augmenting the theories.

Each theory in the development graph contains standardniafiion like the
signature of its mathematical concepts and their form@disavith axioms, lem-
mas and theorems. The development graph stores other Kikdewledge as well,
such as speci ¢ inferences, strategies, control rules afatmation that links the
symbols with their de ning axioms as well as symbol ordegng

Each knowledge item is attached to a speci c theory. To maketually visible
in all theories that are built on that theory, the develophgeaph allows to specify
how morphisms affect the knowledge item.

For each open lemma in a speci ¢ theory, the developmernttgpmovides all
knowledge items that can potentially be used for the leminia. up to the proof
procedure to select the relevant parts and possibly tramsfleem into a specic
representation for the proof procedure.

3.2 Formalising Mathematical Knowledge

To accommodate a variety of input forms, tieMEGA system uses the OM-
Doc (Kohlhase, 2006) document format as a uniform interfacetiarctured theo-
ries.

The OMDoc standard is an XML-language f@penM athematicaDocuments,
whichincludes structured theories modelled on developgraphs and a proof rep-
resentation formalism that is modelled WiEGA's proof datastructure PDS (Au-
texier and Sacerdoti-Coen, 2006).

Structured theories are not the only knowledge forms we ln$erences can be
automatically synthesised from assertions (Section X18)the required planner
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methods and agents can in turn be synthesised from infesgB8eetions 3.4 and
3.5).

The development and encoding of proof methods by hand is @&itals and
therefore we studied automatic learning techniques fsrtoblem in collaboration
with colleagues from the EARNWMATIC project (Jamnik et al, 2003).

When a number of proofs use a similar reasoning patternpditern should be
captured by a new method in proof planning and tlEARNWMATIC system can
now learn new methods automatically from a number of wellselmo(positive) ex-
amples. Automated learning of proof methods is particylianteresting since theo-
rems and their proofs exist typically in abundadeghile the extraction of methods
from these examples is a major bottleneck of the proof plammethodology. The
evaluation of the EARNWMATIC system showed that approach this leads to meth-
ods that make proofs shorter, reduces search and enableftganner to prove
theorems that they could not before (Jamnik et al, 2003).

3.3 From Assertions to Inferences

How can we compute a set of inferences for arbitrary assex®id he intuitive idea
is as follows; given the de nition of :
8U,V.U V, (Bxx2U) x2V)

Reading the equivalence as two implications, this asserésults in the two infer-
ences:

[X2 U]

: Xé \ U v X2U
p Def- P1 P2
c:U Vv c:X2V
Appl. Cond.: X new forU andV Appl. Cond.: X new forU andV

Def-

whereU, V, andX are meta-variables.
Another example is the de nition of the limit of a function

8f,a,l.
8.>0)9 .>0)8 x.(0<jx- ajnjx-aj< )) jf(x- lj< (3)
) limgf=1

which can be turned into the inference

3 For example, the testbed we developed for proof planningréimas about residue classes consists
of more than 70000 theorems.
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[ > 0,D> 0,0<jx- Ajjx- Aj<D]
PjR(x)- Lj<
C:limF=1L
A

Application Condition: EV( ,fF,A,L9 " EV(X,fFA,L,D9
Parameters: ,x

(4)

whereF, A,L,D are meta-variables, andx are parameter&€V(x,fF,A,L,Dg is
the application condition requiring that the parameteshould not occur in the
instances ofF, A,L,Dg(i.e.,x is an Eigenvariable wrt. the instancesroA, L, and
D).

The technique to obtain such inferences automatically fassertions (Autex-
ier and Dietrich, 2006) follows the introduction and elimfion rules of a natural
deduction (ND) calculus (Gentzen, 1969). Given a formula irst phase the ND
elimination rules are exhaustively applied to that formeddecting theEigenvari-
ableconditions as we go. This results in a set of inference detsonis withEigen-
variableconditions. In a second phase the premises of the inferarsmigtions are
simpli ed by exhaustively applying ND introduction rules the premises as well as
to possible hypotheses obtained for the premises in thaepfi&e collecteiigen-
variable conditions are of the formmy new wrt.S’, wherey is the Eigenvariable
andSis a list of constants and meta-variables in whycmust not occur (including
the symbols in the meta-variable substitutions). Checltiege conditions by using
the predicat&V(y,S) we compute inferences of the form

[Hil Hn]

Py

C Parameters(y1,...,Yn)
Application Condition: EV(y1,$)” ...» EV(Ym ,Sm)

for every assertion.

3.4 From Inferences to Planner Methods

Inferences are either operational representations of ohomdoms, lemmas and
theorems or user-de ned, domain or problem speci ¢ mathgzahmethods. This
may even include specialised computing and reasoningragstdow, inferences
can be applied in many ways (see Section 2.1.2), but not @aliesh contribute to
the goal of the current proof plan. Rather, ef cient (and trolhed) search is only
possible if we chose an appropriate subset of the many apiplicdirections. For
example, suppose the current task is to slhow B,x2 B) x2 A~ A=Band
we are given the inference
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P.:A B P.:B A
C:A=B

originating from the assertioA = B, A B” B A. Suppose further that the
proof plan requires to unfold the de nitions in the goal rahd then to use logi-
cal arguments to nish the proof. With respect to the rstpten the proof plan,
only those application directions of this inference makesse in which the con-
clusion C is instantiated, i.e. the following four partial argumenstantiations:
fP1,P,,CgfP;,CgfP,,CgfCg A convenient way to select the “right” subset is to
specify implicitly the subseftad 2 AD jad F  gof the application direction8D

by a property , such thatthe application directian of interest satis es it. In other
words, determines exactly those application directions whiclcarapatible with
the current meta level goal or the current mathematicahtiecie.

In our example, we could specify the subset of interest byireyy that the
partial argument instantiations drackward where “backward” means that all con-
clusions of the inference are instantiated (H&yeAnother, equally appropriate way
would be to characterise the subset of interest as thoséhwiditice the target term
with respect to a term ordering.

An inference augmented with the information about the a&agilbn direction is
called aplanning methodHowever, given a set of planning methods there is no
control information which ranks the inferences, i.e., vhaontrols the choice in
case several methods are applicable. This is done by theotouies (see Section
2.2.1) that are also maintained in the development graplpemdded manually or
are part of strategy descriptions.

3.5 From Inferences to Agents

Given an inference, we may wish to synthesise a society afitages ants i\
ANTS in addition to proof planning methods. The problem is thathsa society is
“fragile” in the sense that removing one agent can result mo@-operational unit
that cannot produce useful suggestions or any suggesttaals dlence we must
choose a suf ciently large set of agents such that for ea@ntthere is another
agent which produces partial argument instantiationsiredipy the agent. But each
agent allocates valuable resources (space and runtime$. drieating all possible
agents would deteriorate the system performance, as itdtalké too much time to
compute any suggestion at all.

Our solution is to generate a so-calladent creation graphwhose nodes are
equivalence classes on partial argument instantiatiortswdnose edges are all pos-
sible partial argument instantiation updates. A societggents induces a subgraph
of the agent creation graph by restricting the edges cooretipg to the society
of agents. Reachability of a node from the equivalence aasse empty partial
argument instantiation in the induced subgraph means #réapargument instan-
tiations for this equivalence class can be generated bydbiety of agents. The
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problem of generating an ef cient society of agents suchatiaquivalence classes
are reachable is thensingle source shortest path problemwhere we assign posi-
tive weights to the edges in the graph. This problem can tleesobved by known
algorithms (Dijkstra, 1959).

A comparison in (Dietrich, 2006) of some automatically gawed units of ar-
gument agents with manually speci ed argument agents slioaéthey are almost
identical. For details about the algorithm see (DietriddQ&, Autexier and Dietrich,
2006).

4 Specialised Computing and Reasoning Resources

Mathematical theorem proving requires a great variety iisskence it is desirable
to have several systems with complementary capabilitiesy¢hestrate their use,
and to integrate their results.

The situation is comparable to, say, a travel booking systeasth must com-
bine different information sources, such as the searchnesgiprice computation
schemes, and the travel information in distributed (veay¢ databases, in order to
answer a booking request. The information sources arelistd over the Internet
and the access to such specialised travel information esunas to be planned, the
results have to be combined and, nally there must be a ctarsiy check of the
time constraints.

In (Zimmer, 2008; Zimmer and Autexier, 2006) this methodylavas trans-
ferred and applied to mathematical problem solving. TherMSERV system plans
the combination of several mathematical information sesisuch as mathemati-
cal databases), computer algebra systems (CASs), andnegguocesses such as
automated theorem provers (ATPs), constraint solvers)(6Ssodel generation
systems (MGs).

The MATHSERV system is based on theAIHWEB-SB network of mathemati-
cal services (Franke and Kohlhase, 1999; Zimmer and Kohb|2302), which was
the rst approach for an open and modern software enviroriitien enables modu-
larisation, distribution and networking of mathematicaihdces. This provided the
infrastructure for building a society of software agentattrender mathematical
services by either encapsulating legacy deduction soéweapther functionalities.
The software agents deliver their services via a commonenadhical software bus
in which a central broker agent provides routing and autbation information.
Once the connection to a reasoning system has been establigtthe broker, the
requesting client has to access the reasoning systemligivéxits API. The soft-
ware bus and its associated reasoning systems were usedyuithin the eld of
automated theorem proving, but also for the semantic aisabjatural language
(disambiguating syntactical constraints), veri catiasks (proving a veri cation
condition), and others, which resulted sometimes in séteoasand theorems per
day to be proven routinely for these external users.
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The MATHSERV system extends the MHWEB-SB's client-server architecture
by semantic brokering of mathematical services and advhpiablem solving ca-
pabilities to orchestrate the access to the reasoningmgsiEhe key aspects of the
MATH SERV framework are:

Problem-Oriented Interface: amore abstract communicégicel for MATHWEB-
SB, such that general mathematical problem description®easent to MTH-
SERV which in turn returns a solution to that problem. Essentjalle moved
from theserviceoriented interface of MTHWEB-SB to aproblemoriented in-
terface for MATH SERV.

Advanced Problem Solving Capabilities:  Typically, a giveroblem cannot be
solved by a single service but only by a combination of sdveeavices. In
order to support the automatic selection and combinatioexidting services,
the key idea is as follows: an ontology is used for the quali#edescription of
MATHWEB-SB services anthese descriptions are then used as Al planning op-
erators in analogy to the proof planning approachati SERV uses planning
techniques (Carbonell et al, 1992; Erol et al, 1994) to aatirally generate
a plan that describes how existing services must be combmedlve a given
mathematical problem.

We used external systems in the search for a proof in two waysnW\MMEGA:
to provide a solution to a subproblem, or to give hints fordbatrol of the search.
In the rst case, the call of a reasoning system is modelledragnference rule
and the output of the incorporated reasoning system islat@asand inserted as a
subproof into the PDS. This back-translation is necessarynterfacing systems
that operate at different levels of granularity, and alscafuman-oriented display
and inspection of a partial proof. In the other case, whexegternal system is used
to compute values that may be used to guide the search prtlcesystem can be
called by a completion function or from within control rules

The following external systems were integrated and usedéMWEGA system
over the years:

Computer Algebra Systems (CAS) provide symbolic compaitativhich can be
used to compute hints to guide the proof search (such asssigsdor existential
variables), or, second, to perform some complex algeb@itputation such as
to normalise or simplify terms. In the latter case the syngadmputation is di-
rectly translated into proof stepsWVEGA. CASs are integrated via the transfor-
mation and translation moduleaBPER (Sorge, 2000). CurrentlYMMEGA uses
the systems MpPLE (Char et al, 1992) and & (Schénert et al, 1995).

Automated Deduction Systems (ATP) are used to solve subgoafrently the
rst-order provers BIKSEM (de Nivelle, 1999), EQP (McCune, 1997)TCER
(McCune, 1994), ROTEIN (Baumgartner and Furbach, 1994psSs (Weiden-
bach et al, 1999), WLDMEISTER (Hillenbrand et al, 1999), the higher-order
systems TPS (Andrews et al, 1996), areM/(Benzmiller and Kohlhase, 1998;
Benzmiller, 1999), and AMPIRE (Riazanov and Voronkov, 2001). The rst-
order ATPs were connected vimAMP (Meier, 2000), which is a proof transfor-
mation system that transforms resolution-style proofe adsertion-level ND-
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proofs which were then integrated iffdMEGA's PDS. The TPS system gener-
ates ND-proofs directly, which could then be further preeesand checked with
little transformational effort (Benzmiller et al, 1999a).

Model Generators (MG) provide either witnesses for freésfextial) variables,
or counter-models, which show that some subgoal is not a¢ghedWEGA used
the model generatorsa$cHMO (Manthey and Bry, 1988) andew (Zhang and
Zhang, 1995).

Constraint Solver (CS) construct mathematical objects thieory-speci ¢ prop-
erties as witnesses for free (existential) variables. Meee a constraint solver
can reduce the proof search by checking for inconsistermiesonstraints.
WMEGA employedCoSIE (Melis et al, 2000; Zimmer and Melis, 2004), a con-
straint solver for inequalities and equations over the eldeal numbers.

Automated Theory Formation systems (ATF) explore mathemalatheories and
search for new properties. The HR system is an ATF systemadrsgfirit of
Doug Lenat's AM, which conjectures mathematical theoriasig empirical
data (Colton, 2002)0MEGA used the HR system to provide instances for meta-
variables that satisfy some required properties. ThaWSAID system proves
and identi es theorems (lemmas, corollaries, etc.) fromieeig set of axioms
and de nitions (McCasland et al, 2006). AMHSAID was used byMMEGA to
derive interesting lemmas for given mathematical theasieieh would enable
the ATPs to prove theorems they could not prove without tfersenas.

5 WMEGA as an adaptive Resource

If a mathematical assistance system is to be used as a redpuother systems as
well as by users with different skills and backgrounds westtawedesign the archi-
tecture of the system to make it adaptive. We present tharasand development
for the interaction with a human-users in Section 5.1 ancldis the interaction with
other software systems in Section 5.2.

5.1 Adaptation to Users with different Skills

The OMEGA research group early addressed the interactiovelea proof assistant
system and human user. In a rst stage we developed an elebgraphical user
interface WUI (Siekmann et al, 1999) (see Fig. 6a).

The three inter-connected windows present the shape ofethieat proof tree
(left), information about the nodes in the tree (upper nigand the pretty printing
of the complete formula of a selected node (lower right).r€he also support to
switch between different levels of granularity at which agfrcan be presented and
it is also possible to browse through mathematical theamias HTML-like viewer.
These functionalities were targeted towards a user, what&aowledge about the
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(a) The linked proof window views (b) The natural language presenta-
tion of proofs withP.rex

Fig. 6: LWUI: The rst Graphical User Interface of the mathematical sissitWMEGA

actual implementation and the programming language, botig/familiar with the
main concepts of formal logic, natural deduction proofggbmplanning methods
and tactics.

Also in the early 1980s, members of the group began to relsehecpresenta-
tion of proofs in a text-book style form (see Fig. 6b), whiabed not pre-suppose
skills in formal logic from the user. The translation of reg@mn proofs into natural
deduction and the subsequent restructuring techniquesfionproved presentation
were early results (Lingenfelder, 1989, 1990). Based oseldevelopments Xi-
arong Huang developed th&BVvERB system (Huang, 1996), a landmark at its time,
which translated these ND-proofs into well-structurediratlanguage texts. Today
we use theéP.rexsystem (Fiedler, 1999, 2001a,b), which is based ROERB, but
presents the proof in a user-adaptive style, i.e. the modwesfentation and ab-
straction is relative to the skills of the user. The qualifytree proof presentation
generated by thE.rexsystem is still a corner-stone in the area of proof presiemta
and the overall development in this eld within the last tardecades is the subject
of the forthcoming textbook (Siekmann et al, to appear).

More recent work on human interaction with the system folldva different
approach to make it more acceptable to the mathematical cortynThe mathe-
matical assistance system must be integrated with the addtiiat the users already
employ, like standard text processing systems (suchigX).for the preparation of
documents. @Xyacs (van der Hoeven, 2001) is a scienti ¢ text-editor that pa®s
professional type-setting and supports authoring withgréub macro de nition fa-
cilities like those inATEX, but the user works on the nal document (“What you see
is what you get”, WYSIWYG). As a rst step we integrated t#EGA system into
TeXmacs using the generic mediatoL Rt W(Wagner et al, 2006). In this setting the
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formal content of a document is amenable to machine prawgssithout imposing
any restrictions on how the document is structured and whinjuage is used in the
document. The PATWsystem (Wagner, 2006) developed in the DFG-projeeRyY
IMATHDOC transforms the representation of the formal content of aidhent into
the representation used in a proof assistance system amthimaithe consistency
between the two representations throughout potentialggsan

In turn, theWMEGA system provides its support now transparently within the
text-editor EXpmacs- Fig. 7 shows typical example documents on the screen:

(@ (b)

Fig. 7: The user perspective of the support offeredMyEGA inside the text-editorg@Xyacs via
PLATW.

Fig. 7a shows how the author can formalise mathematics:dBasehe formal
representation obtained by RrW, theWMEGA system provides its support context-
sensitively as a menu inside the text-editor. Fig. 7b shawes & menu generated
by the system, that displays the different assertions wharh be applied in the
actual proof situation. The proof parts generatedMyeEGA are patched into the
document using natural language patterns. Current workiserned with adapting
the proof presentation techniques as usefl faxto this setting. More details about
that integration and thelRT Wsystem can be found in (Wagner, 2006; Wagner et al,
2006).

All of this required the following changes in the architeetof the system: First,
we need a clean interface with the text-editgXjjacs. The role of this interface
is to establish and maintain the correspondence of the tshijethe document and
their counter-parts withilMEGA. Based on the development graph, the de nitions,
axioms, and theorems in &Xyacs document are grouped into theories and they
have a one-to-one correspondence to the development graptuse. The notion of
a “PDS view” (Section 2.1.3) is the key prerequisite to cetasitly link the proofin
the document with the respective part of the much more etabqroof representa-
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tion PDS inWMEGA: Each manually written proof step in the document is modelle
as a proof sketch in the PDS, which has to be veri ed later-on.

Furthermore, the author of a document usually writes maffgrént proofs for
different theorems in different theories before the docuti® nished. This cor-
responds to multiple, parallel proof attemptsWuEGA: the development graph
maintains the multiple ongoing proof attempts and deteesiimhich assertions in
the document are visible for which proof attempt.

Having that infrastructure in place was the key to turn\eeGA system into a
server, that can provide mathematical assistance seifacesultiple documents in
parallel sessions.

A second issue is that the author changes his document yisnahy times.
Hence the proof assistance system has to be able to deakmfliwith non-
monotonic changes not only inside a theory but also withénaitoofs. For instance,
deleting an axiom from a theory should result in pruning ofeast invalidating
proof steps in all proofs that relied on that axiom. Furtherenif by such an action
a proof of some theorem is invalidated, then all other prteps that used this the-
orem must be agged and invalidated in turn. The immediatduton”, i.e. to au-
tomatically re-execute all proof procedures, is not anaypi this setting: it would
be too slow and short response times are an issue when thar afithe document
has to wait when “simply” deleting an axiom. Furthermoregrecuting the proof
procedures may generate different proofs: since the preitifiésn WMEGA have to
be synchronised with the proofs in the text-editor, this mesult in drastic invasive
(fully automatic) rearrangements of the document. Suchstesy behaviour would
most certainly jeopardise the acceptance of the system.

For these reasons we integrated a sophisticated and nelgraruth-maintenan-
ce system, which tracks all dependencies between elemiemti@ory and their use
in other theories and proofs (see (Autexier et al, 2008) &taids).

5.2 Adaptation to different Software Systems

Just asMMEGA is used now as a subsystem withipX[acs it could be used by
other software systems such as a program veri cation toch @oftware devel-
opment platform. Yet another application area we are ctigrevorking on is the
integration of WMEGA into ACTIVEMATH, an e-learning system for mathemat-
ics (E. Melis, 2004).

More speci cally, the DALOG project (Benzmdller et al, 2003) studies natural
language-based tutorial dialogs when teaching how to paotreeorem. Within a
tutorial dialogue, the student has to prove a theorem iateedy with the system.
The system provides feedback to the student's input, ctarfaalty steps and aids
the student in nding a solution, with the overall goal to wey speci c concepts
and techniques of a given mathematical domain.

Due to the exible and unpredictable nature of a tutoriallaipue it is neces-
sary to dynamically process and analyse the informal inpthé system, including
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linguistic analysis of the informal input to the system, leedion of utterances in
terms ofsoundnesgyranularity andrelevance andambiguity resolutiorat all lev-

els of processingMVEGA is used to (i) represent the mathematical theory within
which the proof exercise is carried out, i.e. the de nitipagioms, and theorems of
the mathematical domain, (i) to represent the ongoingfatiempts of the student,
in particular the management of ambiguous proof statedtiegdrom underspec-

i ed or ambiguous proof attempts, (iii) to maintain the mamhatical knowledge
the student is allowed to use and to react to changes of tlis/lkdge, and (iv)

to reconstruct intermediate steps necessary to verifymesieered by the student,
thereby resolving ambiguity and underspeci cation.

The main problem in such a setting is the high-level and mfdmature of hu-
man proofs: a classical automated deduction system istlef fielp here and these
developments are only possible now, because of the high{egof representation
and proof planning techniques.

5.2.1 Checking the Correctness

The proof steps entered by the student are statements tieenslyas to analyse with
respect to its correctness. A proof step ideally introdutes hypotheses and/or
new subgoals along with some justi cation how they have bebktained. If this
information is complete and correct, the veri cation amtsuto a simple check.
However, in a tutorial setting, this is not the typical stiaa. The more likely and,
from our point of view, more interesting case is that theestant is incomplete
or faulty. Note that an incomplete proof step is not necdgdaulty: when writing
proofs, humans typically omit information considered uportant or trivial. Simply
noting that a proof step is false or just incomplete is notefuldint for the student,
so we need a more detailed analysis. If no justi cation isegivbut the hypotheses
and subgoals can be correctly derived, the missing jugibcehas to be computed.
Conversely, if there is a justi cation, but the hypothesisabgoal are missing, the
missing parts should be returned by the system. If one of tkdaise, the system
should return a corrected one.

In the sequel we show some typical phenomena extracted froompas of tu-
torial dialogues collected in the Wizard-of-Oz experingebétween students and
experienced math teachers (Benzmiuiller et al, 2006). Figno8vs excerpts from
collected dialogues, where the tutor's statements are edankth a capitall and
the student's utterances with a capial

Underspeci cation:  The proof step entered by the student is often not fully spec-
i ed and information may be missing. Utteran&4.in Fig. 8 is an example of
this underspeci cation which appear throughout the corpbe proof step irfs1
includes the application of set extensionality, but the ialnot stated explicitly.
Also the student does not say which of the two subgoals ioted by set exten-
sionality he is now proving, nor does he specify that there s&cond subgoal.
Further, the number of steps needed to reach this proofistatd given. Part of
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T: Please provéR S) 1= 51 R- 1 Sla:we consider the subgoals
Sl:let(x,y)2 (R S)°* (R syt st Rt

T2: correct and(R S)°! s1 R1
S3:hence(y ,x) 2 (S R) S1b: rst, we consider the

T4: incorrect subgoakR S)"* s ! R1

Fig. 8:left: Example dialog between a tutdf)and a studentS). right: Two alternative ways of
how the student started to solve the exercise

the task of analysing such steps is to instantiate the ngissformation so that
the formal proof object is complete.

Incomplete Information: In addition to issues of underspeci cation, there may
be crucial information missing for the formal correctnesalgsis. For instance
the utteranceS1is clearly a contribution to the proof, but since the stepyonl
introduces a new variable binding, there is no assertiorselith value can be
checked. However, anticipating that the student wantsadhessubset de nition
A B, x2A) x2 B allows us to determine that the new variable binding
is useful. Utteranc&1bis also a correct contribution, but the second subgoal is
not stated. This is however necessary in order to verifyttt@subset relation is
part of the equality of sets.

These examples show that the veri cation in this scenarimissimply a matter
of checking logical correctness, but we must take the proofext into account.

Ambiguity:  Ambiguity pervades all levels of the analysis of naturaglaage and
mathematical expressions. Even in fully speci ed proopstan element of am-
biguity may remain. For example in any proof step which fat&s1a we don't
know which subgoal the student has decided to work on. Alseenstudents
state formulas without natural language expressions, agctence” or “con-
jecture”, it is not clear whether the formula is a newly dedvfact or a newly
introduced conjecture. Again, this type of ambiguity catydre resolved in the
context of the current proof. When no resolution is possitile ambiguity must
be propagated and this must be done by maintaining multgellel interpre-
tations, which are retained until enough information isilatéde later on in the
proof attempt.

5.2.2 Cognitive Proof States

A well-known phenomenon with underspeci ed or faulty pradéps, is that there
is in general more than one reasonable reconstruction. ieaoinstruction directly
in uences the analysis of the subsequent proof step, thatdebsequent step can be
classi ed to be correct with respect to one reconstructiom not with respect to an-
other. Hence it is necessary to determine and maintain afliple reconstructions,
which we callcognitive proof statesAmbiguities which can not immediately be
resolved are propagated as parallel cognitive proof statésenough information
is available for their resolution.
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Technically, the PDS is used to simultaneously represénf tie possible cog-
nitive proof states of the student, each represented by amndag Initially, there is
only one cognitive proof state, containing the initial tdsk ~ where denotes
the assumptions andis the subgoal to be shown.

Updating the Cognitive Proof States

Given a set of possible cognitive proof states and a prepsaceutterancs, all
possible successor states have to be determined, whicbrsistent with the utter-
ances. Each utterance is possibly—but not necessarily—annbtaith informa-
tion about whether the step represents a new lemma or whittisesupposed to
contribute to the overall proof.

For each given cognitive proof state, we determine the sstrestates that are
consistent with the utteraneelf no such successor state can be found this cognitive
state is deleted. If several, alternative successor statee found, i.e. the utterance
s is ambiguous, they replace the given cognitive state.

That procedure also resolves ambiguities introduced inipue proof steps by
deleting all cognitive states that are no longer consistatht the current utterance
s. If all cognitive proof states are deleted, i.e. no succeske is found for any of
the given cognitive states, the step is classi edresrrect

The overall result is a con rmation of whether the step cdoédveri ed, along
with the side-effect that the PDS has been updated to coekaictly the possible
cognitive proof states resulting from the performance efdtep. More details about
the update process are given in (Dietrich and Buckley, 2B0€kley and Dietrich,
2007).

5.2.3 Evaluation

We tested our proof-step checking component on a littlethesss 20 tutorial dialogs
from a Wizard-of-Oz experiment, where students had to sekercises on binary
relations. Of 116 correct steps, 113 (97.4%) were correetlyed and we correctly
classify 141 out of 144 steps (97.9%) as correct or wrong .vEniecation failed for
the remaining three steps. The average checking time wasm@rm seconds on a
standard PC, the longest checking time has been 30 secamelsndin reason for
the ef ciency lies in the fact that we directly search at tresexrtion level, which
makes a small search depth suf cient to verify correct pisieps.

6 Future Research

We now want to improve the system qualitp\@fEGA, such that we can train users
to author documents with formal logical content. Mé@EGA system now provides
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an adequate environment for this endeavour, because hdéigl proof represen-
tation and proof planning techniques presuppose littlest@dge—the main hurdle
which typically hampers the use of such systems. FurtheenMimEGA's capa-
bilites to adapt to different users and usages providesia fuaghe integration into
standard text preparation systems and e-learning enveotsn

First we want to support authoring and maintenance of doatsngith formal
logical content such that the author can formulate new qusceonjectures and
proofs in a document. Furthermore, we want to integraterattealities like dia-
grams both to describe mathematical content and use itrwitlathematical proof.

Secondly, we want to further increase usability of formak@ning tools by fur-
ther developing the logical foundations of assertiondlpyeofs and automate proof
search either by proof planning directly on the assertexell or by transforming
proofs obtained from classical automated deduction systenkey question here
is how to characterise and search for “good” proofs. Funttoge, we plan to auto-
mate proof search in large, structured theories, whereate, thuman guidance of
the proof procedures is indispensable, even for theoreatstie simple by human
standards. We will research how to exploit the structurdsriye theories not only to
search for proofs but also to synthesise new interestingledye using automated
theory formation (McCasland and Bundy, 2006).

Finally, we want to support the training of students in usiognal reasoning
tools. Rather than teaching students mathematical prodétmyng them to do a
proof in a typical formal calculus, we want to allow the stntiéo freely build
any valid proof of the theorem at hand. On the tutoring sitles gives the free-
dom to adapt the tutoring to the student's skills: less elgperd students will be
taught more rigid proof styles that come close to the progéstnforced by classi-
cal formal calculi, while this is not imposed for more exgeged students. In this
context, we will further develop domain-independent ciditéo dynamically eval-
uate the correctness, granularity and relevance of usenedtiproof steps, provide
domain-independent and domain-speci c didactic straegxploiting the dynamic
proof step analysis capabilities of tiévEGA system, and exploit them to generate
useful hints for the student.
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