Systematic Verification of the Modal Logic Cube in Isabelle/HOL

Christoph Benzmüller¹ Maximilian Claus¹ Nik Sultana²

 $^1{\rm Dep.}$ of Mathematics and Computer Science, Freie Universität Berlin, Germany $^2{\rm Computer}$ Lab, Cambridge University, UK

PxTP 2015, 02.08.15

Objective

- Proof object for expressive strength of different modal logics
- Two approaches:
 - Proof-theoretic (\$100 modal logic challenge [Rabe, Pudlák, Sutcliffe, Shen])
 - Model-theoretic (here)
- Reason with and about modal logic by using an embedding in HOI
- Employ automated reasoners like LEO-II and Satallax via Sledgehammer as well as Nitpick

Quantified Modal Logic (QML) with Kripke Semantics

Language:

$$F ::= \mathcal{V} \mid \neg F \mid F \wedge F \mid F \vee F \mid (\forall \mathcal{V})F \mid (\exists \mathcal{V})F \mid \Box F \mid \Diamond F$$

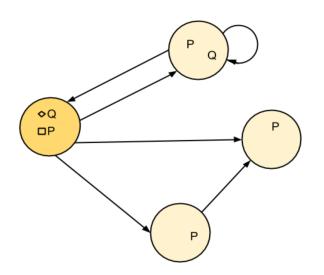
Model: $\langle W, R, \models \rangle$

- ► Set of "possible worlds" W
- ▶ Accessibility relation $R \subseteq W \times W$
- $\blacktriangleright \models \subseteq W \times W \mathcal{F} \mathcal{F}$ to check if a world satisfies some formula

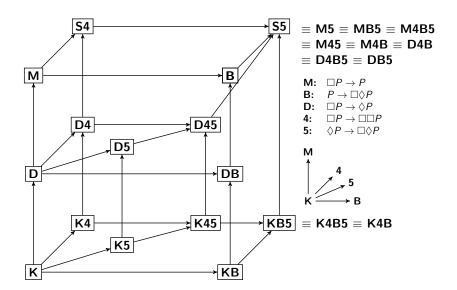
$$w \models \neg A \text{ iff } w \not\models A$$
 $w \models A \land B \text{ iff } w \models A \text{ and } w \models B$
 $w \models A \lor B \text{ iff } w \models A \text{ or } w \models B$
 $w \models (\forall v)A \text{ iff } w \models A[a \leftarrow B] \text{ for all } B \in \mathcal{WWF}$
 $w \models (\exists v)A \text{ iff there exists a } B \in \mathcal{WWF} \text{ such that } w \models A[a \leftarrow B]$
 $w \models \Box A \text{ iff } u \models A \text{ for all } u \text{ such that } wRu$
 $w \models \Diamond A \text{ iff there exists a } u \text{ such that } wRu \text{ and } u \models A$

Validity: A valid in model $\langle W, R, \models \rangle$ iff $w \models A$ for all $w \in W$

Kripke Structure



The Modal Logic Cube



Embedding of QML in HOL

[Benzmüller, Paulson]

$\mathbf{type_synonym}\ \sigma = (i \!\rightarrow\! bool)$

$$\neg^{m} :: \sigma \to \sigma \qquad \neg^{m} \phi \equiv (\lambda w. \neg (\phi w))
\wedge^{m} :: \sigma \to \sigma \to \sigma \qquad \phi \wedge^{m} \psi \equiv (\lambda w. \phi w \wedge \psi w)
\vee^{m} :: \sigma \to \sigma \to \sigma \qquad \phi \vee^{m} \psi \equiv (\lambda w. \phi w \vee \psi w)
\rightarrow^{m} :: \sigma \to \sigma \to \sigma \qquad \phi \to^{m} \psi \equiv (\lambda w. \phi w \to \psi w)
\wedge^{m} :: (\sigma \to \sigma \to \sigma) \qquad \phi \to^{m} \psi \equiv (\lambda w. \phi w \to \psi w)
\vee^{m} :: (\sigma \to \sigma) \to \sigma \qquad \forall^{m} \psi \equiv (\lambda w. \forall x. \psi x w)
\exists^{m} :: (\sigma \to \sigma) \to \sigma \qquad \forall^{m} \psi \equiv (\lambda w. \forall x. \psi x w)
\exists^{m} :: (\sigma \to \sigma) \to \sigma \qquad \forall^{m} \psi \equiv (\lambda w. \forall x. \psi x w)
\Box :: (\sigma \to \sigma) \to \sigma \qquad \Box R \phi \equiv (\lambda w. \forall v. R w v \to \phi v)
\rangle :: (\sigma \to \sigma) \to \sigma \qquad \Diamond R \phi \equiv (\lambda w. \forall v. R w v \to \phi v)
\rangle :: (\sigma \to \sigma) \to \sigma \qquad \Diamond R \phi \equiv (\lambda w. \forall v. R w v \to \phi v)$$

valid :: $\sigma \rightarrow bool$ where *valid* $p \equiv \forall w.p.w$

Correspondence Results

Sahlqvist formulae

$M \equiv \lambda R. valid(\forall^m (\lambda P. (\Box^R P) \rightarrow^m P))$ $B \equiv \lambda R. valid(\forall^m (\lambda P. P \rightarrow^m \Box^R \Diamond^R P))$ **Axioms** $D \equiv \lambda R. valid(\forall^m (\lambda P. (\Box^R P) \rightarrow^m \Diamond^R P))$ $4 \equiv \lambda R. valid(\forall^m (\lambda P. (\Box^R P) \rightarrow^m \Box^R \Box^R P))$ $5 \equiv \lambda R. valid(\forall^m (\lambda P. (\lozenge^R P) \rightarrow^m \Box^R \lozenge^R P))$ $refl = \lambda R \ \forall S R S S$ $sym \equiv \lambda R. \forall ST. (RST \rightarrow RTS)$ **Model Constraints** $ser = \lambda R \ \forall S \ \exists T \ R \ S \ T$ $trans \equiv \lambda R. \forall STU. (R S T \land R T U \rightarrow R S U)$ $eucl \equiv \lambda R. \forall STU. (R S T \land R S U \rightarrow R T U)$

Correspondence Results

Sahlqvist formulae

Axiom M corresponds to Reflexivity

theorem A1 : $(\forall R.(refl\ R) \leftrightarrow (M\ R))$ by (metis M-def refl-def)

Axiom B corresponds to Symmetry

lemma A2-a : $(\forall R.(sym R) \rightarrow (B R))$ by (metis B-def sym-def)

lemma A2-b : $(\forall R.(B\ R) \rightarrow (sym\ R))$ by (simp add:B-def sym-def, force)

theorem A2 : $(\forall R.(sym\ R) \leftrightarrow (B\ R))$ by (metis A2-a A2-b)

Axiom D corresponds to Seriality

theorem A3 : $(\forall R.(ser\ R) \leftrightarrow (D\ R))$ by (metis D-def ser-def)

Axiom 4 corresponds to Transitivity

theorem A4 : $(\forall R.(trans\ R) \leftrightarrow (IV\ R))$ by (metis IV-def trans-def)

Alternative Axiomatisations

 $M5 \leftrightarrow MB5$

theorem B1 : $\forall R$. (refl $R \land eucl\ R$) \leftrightarrow (refl $R \land sym\ R \land eucl\ R$) **by** (metis eucl-def refl-def sym-def) **theorem** B1-alt : $\forall R$. ($M\ R \land V\ R$) \leftrightarrow ($M\ R \land B\ R \land V\ R$) **by** (metis A1 A2 A5 B1)

 $M5 \leftrightarrow D4B$

theorem B5 : $\forall R$. (refl $R \land eucl\ R$) \leftrightarrow (ser $R \land trans\ R \land sym\ R$) **by** (metis eucl-def refl-def ser-def sym-def trans-def)

 $KB5 \leftrightarrow K4B$

theorem B9 : $\forall R$. (sym $R \land eucl(R) \leftrightarrow (trans(R \land sym(R))$ **by** (metis eucl-def sym-def trans-def)

Inclusion Relations

Approach

Investigate relative strength of logics. Say A > B iff logic A can prove more theorems than logic B.

- ► Model-theoretic view: *K*4 > *K* says "Not every model is transitive"
- ▶ Showing $A' \ge A$ is easy if A' results from adding more axioms to A (every proof in A is also a valid proof in A')
- ▶ In general, it is difficult for the ATPs to derive proofs for strict relations A > B
- Use Nitpick to generate counter-examples and use their features as hints for the provers
 - Number of worlds
 - Complete description of the relation

Inclusion Relations

Example: K4 > K

▶ **Step A**: In order to show K4 > K, conjecture $K4 \le K$:

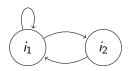
$$\forall R. trans R$$

Obtain counter model with Nitpick:

$$R = (\lambda x.-)$$

 $i1 := (\lambda x.-)(i1 := True, i2 := True),$
 $i2 := (\lambda x.-)(i1 := True, i2 := False))$

Diagram:



Example: K4 > K (cont.)

► Step B: Give arity information to prover as a hint (#₂ is a distinctiveness lemma):

$$\#_2$$
 i1 i2 $\rightarrow \forall R$. $\neg (trans R)$

► Step C: In case this is not sufficient, supply the complete counter model (r constant):

$$\#_2$$
 i1 i2 \land r i1 i1 \land r i1 i2 \land r i2 i1 \land ¬r i2 i2 \rightarrow ¬(trans r)

▶ **Step D**: Additionally, the counter models can be proven to be minimal in the number of worlds:

$$\#_1 i1 \rightarrow (\forall R. eucl R)$$

Inclusion Relations

Results

- ► All but 4 problems can be solved by Satallax and LEO-II if they are supplied arity information
 - "ATP challenge problems"
- ▶ For 10 of these problems Metis integration fails
 - "Isabelle challenge problems"
- 5 of these can also be solved by CVC4 with Metis integration succeeding
- We can obtain Isar proofs for all problems solved by Satallax and LEO-II with Nik Sultana's proof translation tool

Discussion

- HOL-ATPs handle these sorts of proofs quite well (< 1 min of total computation time for whole cube), in contrast to popular FOL provers
- Potential for automation: Cooperation of ATPs with counter model finders like Nitpick
- ► Approach could be used for verifying axiomatisations within other non-classical logics (e.g. conditional logics)
- We could even automate the whole process!