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Let T be the least set s.t:
o ∈ T

ι ∈ T

∀α,β ∈ T : (αβ) ∈ T
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Let T be the least set s.t:
o ∈ T

ι ∈ T

∀α,β ∈ T : (αβ) ∈ T

We say that α ∈ T is a simple type (or type).
(αβ) is called a function type.

! The set T is defined inductively.
! The set T is "freely generated".
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Consider the set N = {0, 1, 2...}.
! 0 ∈ N
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! 0 ∈ N

! ∀n ∈ N : s(n) ∈ N.

! ∀n : 0 #= s(n).
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Consider the set N = {0, 1, 2...}.
! 0 ∈ N

! ∀n ∈ N : s(n) ∈ N.

! ∀n : 0 #= s(n).

! ∀m, n : s(m) = s(n)⇒ m = n.
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Consider the set N = {0, 1, 2...}.
! 0 ∈ N

! ∀n ∈ N : s(n) ∈ N.

! ∀n : 0 #= s(n).

! ∀m, n : s(m) = s(n)⇒ m = n.

The set N is "freely generated".
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Consider the set N = {0, 1, 2...}.
! 0 ∈ N

! ∀n ∈ N : s(n) ∈ N.

! ∀n : 0 #= s(n).

! ∀m, n : s(m) = s(n)⇒ m = n.

The set N is "freely generated".

Contrast N to Z = {...,−1, 0, 1, ...}.
Note that Z contains 0 and is closed under successor, but is not the
least such set.
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! ι #= (αβ)
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The set T is "freely generated":
! o #= ι

! o #= (αβ)

! ι #= (αβ)

! (αβ) = (γδ)⇒ α = γ ∧ β = δ
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! (oι) ∈ T

! (o(oι)) ∈ T

! (ιι) ∈ T

! ((oι)ι) ∈ T

Is (oιι) also a type?
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! (oι) ∈ T

! (o(oι)) ∈ T

! (ιι) ∈ T

! ((oι)ι) ∈ T

Is (oιι) also a type? – no
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! (oι) ∈ T

! (o(oι)) ∈ T

! (ιι) ∈ T

! ((oι)ι) ∈ T

Is (oιι) also a type? – no

But we can and will consider it shorthand by replacing missing
parenthesis, associating to the left: (oιι) = ((oι)ι) #= (o(ιι)).
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Let A,B be sets.
f : B→ A : a function from B to A.
AB: set of functions from B to A.

Assume (only for the moment) that A,B are finite.
Let |A| = m, |B| = n. Then |AB| = mn = |A||B|.
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f : B→ A : a function from B to A.
AB: set of functions from B to A.

Assume (only for the moment) that A,B are finite.
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Let A,B be sets.
f : B→ A : a function from B to A.
AB: set of functions from B to A.

Assume (only for the moment) that A,B are finite.
Let |A| = m, |B| = n. Then |AB| = mn = |A||B|.

Example:
! f : {0, 1, 2}→ {0, 1}
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Let A,B be sets.
f : B→ A : a function from B to A.
AB: set of functions from B to A.

Assume (only for the moment) that A,B are finite.
Let |A| = m, |B| = n. Then |AB| = mn = |A||B|.

Example:
! f : {0, 1, 2}→ {0, 1}

! f(0), f(1), f(2) ∈ {0, 1}
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Let A,B be sets.
f : B→ A : a function from B to A.
AB: set of functions from B to A.

Assume (only for the moment) that A,B are finite.
Let |A| = m, |B| = n. Then |AB| = mn = |A||B|.

Example:
! f : {0, 1, 2}→ {0, 1}

! f(0), f(1), f(2) ∈ {0, 1}

! A = {0, 1},B = {0, 1, 2}
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Let A,B be sets.
f : B→ A : a function from B to A.
AB: set of functions from B to A.

Assume (only for the moment) that A,B are finite.
Let |A| = m, |B| = n. Then |AB| = mn = |A||B|.

Example:
! f : {0, 1, 2}→ {0, 1}

! f(0), f(1), f(2) ∈ {0, 1}

! A = {0, 1},B = {0, 1, 2}

! |AB| = 2 · 2 · 2 = 23 = 8
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Let F = {f : B→ A|∀x, y ∈ B : x ≤ y⇒ f(x) ≤ f(y)} ⊆ AB.
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Let F = {f : B→ A|∀x, y ∈ B : x ≤ y⇒ f(x) ≤ f(y)} ⊆ AB.

|F| =?
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Let F = {f : B→ A|∀x, y ∈ B : x ≤ y⇒ f(x) ≤ f(y)} ⊆ AB.

|F| =?

AB f(0) f(1) f(2)

K0 ∈ F 0 0 0
∈ F 0 0 1
/∈ F 0 1 0
∈ F 0 1 1

g /∈ F 1 0 0
/∈ F 1 0 1
/∈ F 1 1 0

K1 ∈ F 1 1 1

Consider:
g : x = 0, y = 1, x ≤ y, but
f(x) ≥ f(y)⇒ g /∈ F.
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Let F = {f : B→ A|∀x, y ∈ B : x ≤ y⇒ f(x) ≤ f(y)} ⊆ AB.

|F| =?

AB f(0) f(1) f(2)

K0 ∈ F 0 0 0
∈ F 0 0 1
/∈ F 0 1 0
∈ F 0 1 1

g /∈ F 1 0 0
/∈ F 1 0 1
/∈ F 1 1 0

K1 ∈ F 1 1 1

Consider:
g : x = 0, y = 1, x ≤ y, but
f(x) ≥ f(y)⇒ g /∈ F.

|F| = 4
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C = {red, blue, green}
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C = {red, blue, green}

FC = {〈c, f〉|c ∈ C, f ∈ F}

|FC| = 3 · 4 = 12
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∀α,β ∈ T : Dαβ ⊆ DDβ

α

A Frame is called standard if
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A frame is a family (Dα)α∈T of nonempty sets s.t:

∀α,β ∈ T : Dαβ ⊆ DDβ

α

A Frame is called standard if

Dαβ = DDβ

α ∀α,β ∈ T
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Do = {⊥,.}

Dι = {1}

Dαβ = D
Dβ

α

D: the standard frame with Do = {⊥,.},Di = {1}
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Consider the set Do(ιι)((o(ιo))). Is the set empty?
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Consider the set Do(ιι)((o(ιo))). Is the set empty? — no!
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Consider the set Do(ιι)((o(ιo))). Is the set empty? — no!

Claim: ∀α ∈ T : Dα #= ∅.
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Consider the set Do(ιι)((o(ιo))). Is the set empty? — no!

Claim: ∀α ∈ T : Dα #= ∅.
Proof: induction on type.
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Consider the set Do(ιι)((o(ιo))). Is the set empty? — no!

Claim: ∀α ∈ T : Dα #= ∅.
Proof: induction on type.

! Base: Do = {⊥,.} #= ∅,Di = {1} #= ∅.

ATPHOL’06-[3] – p.89



c©Benzmüller, 2006

Ex.: Frames (Contd.)
HO

L

AT
Pλ

Consider the set Do(ιι)((o(ιo))). Is the set empty? — no!

Claim: ∀α ∈ T : Dα #= ∅.
Proof: induction on type.

! Base: Do = {⊥,.} #= ∅,Di = {1} #= ∅.

! Step: Assume Dα #= ∅ ∧ Dβ #= ∅. Want to show: Dαβ #= ∅.
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Consider the set Do(ιι)((o(ιo))). Is the set empty? — no!

Claim: ∀α ∈ T : Dα #= ∅.
Proof: induction on type.

! Base: Do = {⊥,.} #= ∅,Di = {1} #= ∅.

! Step: Assume Dα #= ∅ ∧ Dβ #= ∅. Want to show: Dαβ #= ∅.
Since Dα #= ∅ ⇒ ∃a ∈ Dα,

ATPHOL’06-[3] – p.89



c©Benzmüller, 2006

Ex.: Frames (Contd.)
HO

L

AT
Pλ

Consider the set Do(ιι)((o(ιo))). Is the set empty? — no!

Claim: ∀α ∈ T : Dα #= ∅.
Proof: induction on type.

! Base: Do = {⊥,.} #= ∅,Di = {1} #= ∅.

! Step: Assume Dα #= ∅ ∧ Dβ #= ∅. Want to show: Dαβ #= ∅.
Since Dα #= ∅ ⇒ ∃a ∈ Dα, hence Ka ∈ Dαβ .
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Consider the set Do(ιι)((o(ιo))). Is the set empty? — no!

Claim: ∀α ∈ T : Dα #= ∅.
Proof: induction on type.

! Base: Do = {⊥,.} #= ∅,Di = {1} #= ∅.

! Step: Assume Dα #= ∅ ∧ Dβ #= ∅. Want to show: Dαβ #= ∅.
Since Dα #= ∅ ⇒ ∃a ∈ Dα, hence Ka ∈ Dαβ .

(Here Ka is the constant function which always returns a. We
will often use this notation for constant functions.)
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A (typed) applicative structure is a tupel

〈D,@〉

where
! D := (Dα)α∈T is a family of nonempty sets
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A (typed) applicative structure is a tupel

〈D,@〉

where
! D := (Dα)α∈T is a family of nonempty sets
! @ := (@αβ : Dαβ × Dβ → Dα)α,β∈T
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A (typed) applicative structure is a tupel

〈D,@〉

where
! D := (Dα)α∈T is a family of nonempty sets
! @ := (@αβ : Dαβ × Dβ → Dα)α,β∈T

Usually we write f@b for @αβ(f, b) when f ∈ Dαβ ∧ b ∈ Dβ
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The application operator @ in an applicative structure is an ab-

stract version of function application.
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a binary application operator, which corresponds to unary function

application,
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Rem.: Currying
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The application operator @ in an applicative structure is an abstract

version of function application. It is no restriction to exclusively use

a binary application operator, which corresponds to unary function

application, since we can define higher-arity application operators

from the binary one by setting f@(a1, . . . , an) := (. . . (f@a1) . . . @an)

(“Currying”).
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c©Benzmüller, 2006

Interesting Properties
HO

L

AT
Pλ

Let D be a frame.

ATPHOL’06-[3] – p.92



c©Benzmüller, 2006

Interesting Properties
HO

L

AT
Pλ

Let D be a frame.

∀f, g ∈ Dαβ (∀b ∈ Dβ : f(b) = g(b))⇒ f = g.
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Let D be a frame.

∀f, g ∈ Dαβ (∀b ∈ Dβ : f(b) = g(b))⇒ f = g.

Let 〈D,@〉 be an applicative structure. Consider the property:
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Let D be a frame.

∀f, g ∈ Dαβ (∀b ∈ Dβ : f(b) = g(b))⇒ f = g.

Let 〈D,@〉 be an applicative structure. Consider the property:

∀f, g ∈ Dαβ (∀b ∈ Dβ : f@b = g@b)⇒ f = g.
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functional if
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Given an applicative structure 〈D,@〉. We say that 〈D,@〉 is
functional if

∀α,β ∈ T : ∀f, g ∈ Dαβ(∀b ∈ Dβ : f@b = g@b)⇒ f = g
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Given an applicative structure 〈D,@〉. We say that 〈D,@〉 is full if
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Given an applicative structure 〈D,@〉. We say that 〈D,@〉 is full if

∀α,β ∀h : Dβ → Dα ∃f ∈ Dαβ∀b ∈ Dβ : f@b = h(b)
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An applicative structure A := 〈D,@〉 is called standard if
it is a frame structure (i.e. @ is function application) where D is
standard.
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An applicative structure A := 〈D,@〉 is called standard if
it is a frame structure (i.e. @ is function application) where D is
standard.

Note that the definitions of functional, full, and standard impose re-

strictions on the domains for function types only.
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It is easy to show that every frame is functional.
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It is easy to show that every frame is functional.

Furthermore, an applicative structure is standard iff it is a full frame.
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Let Dα = {1} ∀α

Let f@b = 1 ∀f ∈ Dαβ ∀b ∈ Dβ

〈D,@〉 is a full functional applicative structure, but it is not a frame.
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Let Dα = {1} ∀α

Let f@b = 1 ∀f ∈ Dαβ ∀b ∈ Dβ

〈D,@〉 is a full functional applicative structure, but it is not a frame.

1 ∈ Doo but 1 /∈ DDo
o ⇒ Doo #⊆ DDo

o
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Let 〈D1,@1〉 and 〈D2,@2〉 are applicative structures. We say that κ
is a homomorphism from 〈D1,@1〉 to 〈D2,@2〉 if

! κα : D1
α → D2

α ∀α ∈ T

! ∀α,β ∈ T , ∀f ∈ D1
αβ , ∀b ∈ D1

β :

κ(f)@2κ(b) = κ(f@1b)
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We say that 〈D1,@1〉 and 〈D2,@2〉 are isomorphic if ∃i, j s.t:
! i is a homomorphism from 〈D1,@1〉 to 〈D2,@2〉

! j is a homomorphism from 〈D2,@2〉 to 〈D1,@1〉

! i and j are inverses (i.e i(j(a2)) = a2 and j(i(a1)) = a1).
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Let Σ = (V , C) be a signature where
! V — countably infinite set of variables
! C — possibly empty set of constants

We define the set Λ = wffΣ(Σ) to be the smallest set s.t:

! x ∈ V then x ∈ Λ

! c ∈ C then c ∈ Λ

! A ∈ Λ, B ∈ Λ then (AB) ∈ Λ

! x ∈ V , A ∈ Λ then (λx.A) ∈ Λ
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Let Σ = (Vα, Cα) be a signature where
! Vα =

⋃

α∈T
Vα — countably infinite sets of variables

! Cα =
⋃

α∈T
Cα — possibly empty sets of constants

We define the set Λα = wffΣ(Σ)α =
⋃

α∈T
Λα to be the smallest set s.t:

! xα ∈ Vα then xα ∈ Λα

! cα ∈ Cα then cα ∈ Λα

! Aαβ ∈ Λαβ , Bβ ∈ Λβ then (AB) ∈ Λα

! xα ∈ Vα , Aβ ∈ Λβ then (λxα.Aβ)βα ∈ Λβα
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! brackets may be avoided: ABC! ((AB)C)

! λxι.Aoι Bι Cι — dots as far to the right as is consistent:
((λxι.AoιBι)Cι)

! λx, y.A! (λx.(λy.A))

! λxn.A! (λx1.(. . . (λxn.A) . . .))

! λx.A — n is not important
! (f A

n
)! (. . . ((f A1)A2) . . . An)
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Consider the following term:

((λx.x)((λy.y)(λz.z)))

The position [212] points to the red y in

((λx.x)((λy.y)(λz.z)))

. . . Graphics on Blackboard . . .
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Ap

refers to the subterm of A at position p.

Example: Consider T := ((λx.x)((λy.y)(λz.z)))

T[212] = y

ATPHOL’06-[3] – p.105



c©Benzmüller, 2006

Def.: Replacement at Position
HO

L

AT
Pλ

Replacement of Ap in A by a term B is denoted as

A[B]p
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Replacement of Ap in A by a term B is denoted as

A[B]p

Example:
T[(f x)][212] = ((λx.x)((λy.(fx))(λz.z)))
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(λx.A) : We say that A is in the scope of λ-binder that binds x.
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An occurrence of a variable x in a term A is called bound if it is in
the scope of a λ-binder that binds x.

Otherwise it is called free.

We denote the set of all free variables in a λ-term as FV(A).
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[A/x] : Λ→ Λ (untyped)

[Aα/xα] : Λα → Λα (typed)

and is defined as follows:

1. [Nα/xα]xα = Nα

2. [Nα/xα]aβ = aβ if aβ #= xα ∧ aβ ∈ Vβ ∪ Cβ

3. [Nα/xα](AααBβ) = ([Nα/xα]A)([Nα/xα]B)

4. [Nα/xα](λxα.Aγ) = (λxαAγ)

5. [Nα/xα](λyβ .Aγ) = (λyβ .[Nα/xα]Aγ) if
xα #= yβ ∧ (yβ /∈ FV(Nα) ∨ xα /∈ FV(Aγ))
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Substitution is a map
[A/x] : Λ→ Λ (untyped)

[Aα/xα] : Λα → Λα (typed)

and is defined as follows:

1. [Nα/xα]xα = Nα

2. [Nα/xα]aβ = aβ if aβ #= xα ∧ aβ ∈ Vβ ∪ Cβ

3. [Nα/xα](AααBβ) = ([Nα/xα]A)([Nα/xα]B)

4. [Nα/xα](λxα.Aγ) = (λxαAγ)

5. [Nα/xα](λyβ .Aγ) = (λyβ .[Nα/xα]Aγ) if
xα #= yβ ∧ (yβ /∈ FV(Nα) ∨ xα /∈ FV(Aγ))

6. [Nα/xα](λyα.Aγ) = (λzβ .[Nα/xα][zβ/yβ ]Aγ) if xα #= yβ∧
(yβ ∈ FV(Nα) ∧ xα ∈ FV(Aγ)) and z is a ’fresh’ variable.
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Ex.: Substitution
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! [y/x](λy.x) — the occurrence of x is free
#= (λy.y) — if we replace x with y, the variable y becomes
bound.

! [y/x](λy.x) — the occurrence of x is free
= (λz[y/x][z/y]x) — we need a fresh variable
= (λz.y) — the occurrence of y is free

! Further Examples on Blackboard
! Claim: [N/x]A = A if x /∈ FV(A)

Proof: Induction on A
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[λx.M] →α [λy. [y/x]M]

where y /∈ FV(M)

A =α B

if A can be converted to B by renaming the bound variables. We
read A =α B as A is α-equal to B.

From now on (λy. y) = (λz. z), that is, we will say that two terms are
simply equal, if they are α-equal. Two terms are equal means that
two terms are α-convertable.
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A β-redex is a term ((λx.A)B). The β-reduct of this redex is [B/x]A.
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Def.: β-Conversion
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A β-redex is a term ((λx.A)B). The β-reduct of this redex is [B/x]A.

We say M→β N, ie. β-reduces in 1 step, if

M = P[(λx.A)B]p

N = P[[B/x]A]p

We say M"β N, ie. β-reduces in several steps, if ∃M1, . . . ,Mn for
n ≥ 1 such that M = M1 and N = Mn and Mi →β Mi+1.
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A term is called β-normal if it contains no β-redexes.

Any term that does not contain λ-abstractions is β-normal.

A term is called β-head normal if the head term of its outermost
application can not be further reduced.

Any term that does not contain λ-abstractions is β-head normal.
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Bα

β β

β β

If Tα β-reduces in multiple steps with one strategy to Lα and with
another strategy to Rα then there exists a term Bα such that Lα and
Rα β-reduce in multiple steps to Bα.

Note that Bα is not necessarily in normal form.

The Church-Rosser Property for"β holds for Λ and Λα.
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((λf. f) g)((λx. x) a)

g((λx. x) a) ((λf. f)g) a

g a

β β

β β
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Do we always get a β-normal form as we apply β-reduction?

Typed Case: Forall Aα there exists a unique (up to α-conversion)
β-normal term B such that A"β B

Untyped Case: Consider the term ω = (λx. xx)

(λx. xx)(λx. xx)→1
β ωω

ATPHOL’06-[4] – p.117
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A η-redex is a term of the form (λxβ .Fαβ x) where x #∈ FV(F). The
η-reduct of this term is F.
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A η-redex is a term of the form (λxβ .Fαβ x) where x #∈ FV(F). The
η-reduct of this term is F.

We say M→η N, ie. η-reduces in 1 step, if

M = P[(λxβ .Fαβx)]p

N = P[F]p

We say M"η N, ie. η-reduces in several steps, if ∃M1, . . . ,Mn for
n ≥ 1 such that M = M1 and N = Mn and Mi →β Mi+1.
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A term is called η-normal if it contains no η-redexes.

ATPHOL’06-[4] – p.119



c©Benzmüller, 2006

Thm.: Church-Rosser Property for"η
HO

L

AT
Pλ

Tα

Lα Rα

Bα

η η

η η

ATPHOL’06-[4] – p.120



c©Benzmüller, 2006

Thm.: Church-Rosser Property for"η
HO

L

AT
Pλ

Tα

Lα Rα

Bα

η η

η η

If Tα η-reduces in multiple steps with one strategy to Lα and with
another strategy to Rα then there exists a term Bα such that Lα and
Rα η-reduce in multiple steps to Bα.

ATPHOL’06-[4] – p.120



c©Benzmüller, 2006

Thm.: Church-Rosser Property for"η
HO

L

AT
Pλ

Tα

Lα Rα

Bα

η η

η η

If Tα η-reduces in multiple steps with one strategy to Lα and with
another strategy to Rα then there exists a term Bα such that Lα and
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→βη :=→β ∪ →η

If M→βη N we say M βη-reduces in 1 step to N.

We say M"βη N, ie. η-reduces in several steps, if ∃M1, . . . ,Mn for
n ≥ 1 such that M = M1 and N = Mn and Mi →βη Mi+1.
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A term is βη-normal if it contains no β-redexes and no η-redexes.
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another strategy to Rα then there exists a term Bα such that Lα and
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Tα

Lα Rα

Bα

βη βη

βη βη

If Tα βη-reduces in multiple steps with one strategy to Lα and with
another strategy to Rα then there exists a term Bα such that Lα and
Rα βη-reduce in multiple steps to Bα.

The Church-Rosser Property for"βη holds for Λ and Λα.
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In Λα (simply typed λ-calculus) the relations"β and"βη have the
strong Church Rosser property:

ATPHOL’06-[4] – p.124



c©Benzmüller, 2006

Thm.: Strong Church-Rosser Property
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In Λα (simply typed λ-calculus) the relations"β and"βη have the
strong Church Rosser property: for very term Aτ there exists a
unique (up to α-renaming) β-normal resp. βη-normal term Bτ such
that Aτ "β Bτ resp. Aτ "βη Bτ .
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Let n ≥ 0, α1, . . . ,αn ∈ T , and β ∈ {o, ι}. A term A of type
(β,αn, . . . ,α1) is in long βη-normal form if it is of form

λx1
α1 . . . xn

αn .(hβγm...γ1A1
γ1 . . . Am

γm)

for a variable or constant hβγm...γ1 , m ≥ 0 and long βη-normal forms
A1
γ1 , . . . ,Am

γm .
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Let n ≥ 0, α1, . . . ,αn ∈ T , and β ∈ {o, ι}. A term A of type
(β,αn, . . . ,α1) is in long βη-normal form if it is of form

λx1
α1 . . . xn

αn .(hβγm...γ1A1
γ1 . . . Am

γm)

for a variable or constant hβγm...γ1 , m ≥ 0 and long βη-normal forms
A1
γ1 , . . . ,Am
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is when m = 0.
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Let n ≥ 0, α1, . . . ,αn ∈ T , and β ∈ {o, ι}. A term A of type
(β,αn, . . . ,α1) is in long βη-normal form if it is of form

λx1
α1 . . . xn

αn .(hβγm...γ1A1
γ1 . . . Am

γm)

for a variable or constant hβγm...γ1 , m ≥ 0 and long βη-normal forms
A1
γ1 , . . . ,Am

γm . Note that this is an inductive definition; the base case
is when m = 0. Note that if λxn.(hAm) is in long βη-normal form
then (hAm) is of base type.

ATPHOL’06-[4] – p.125



c©Benzmüller, 2006

Ex.: Long βη-Normal Form
HO

L

AT
Pλ

Consider the βη-normal term fι(ιι).

fι(ιι)

↑η

λwιι. (fι(ιι)wιι)

↑η

λwιι. (f(λxι.wιιx))
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For every term A there is unique long βη-normal form B such that
A =βη B.
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Instead of terms in long βη-normal form we often use in practice
terms in βη-head normal form.
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Rem.: βη-Head Normal Form
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Instead of terms in long βη-normal form we often use in practice
terms in βη-head normal form. Definition is similar to long
βη-normal, but we do not require the embedded terms Ai

γ i to be in
normal form.
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! A↓β is the β-normal form of A.
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Notation
HO
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! A↓β is the β-normal form of A.
! A↓η is the η-normal form of A.
! A↓ is the βη-normal form of A.
! A6 is the long βη-normal form of A.
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Semantics: Σ-Evaluations
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Dα := {Aα ∈ Λα|A is closed}.

! Is Dα non-empty for all α?
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! Is Dα non-empty for all α?
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Ex.: An Interesting Applicative Structure
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Dα := {Aα ∈ Λα|A is closed}.

! Is Dα non-empty for all α?
! If Cι #= ∅ and Co #= ∅ , then ∀α ∈ T .Λα #= ∅.
! Is Dαβ a set of functions? (ie. Dαβ ⊆ (Dα)Dβ ?) — No!
! Is (λxι x) ∈ Dιι? — Yes!
! D = (Dα)α∈T is not a frame!
! It requires a specific application operator @ : Dαβ × Dβ → Dα

! If Λα is non-empty for all α ∈ T , then < D,@ > is an applicative
structure.
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Syntax Semantics < D,@ >

(λxι. x)
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(λxι. x) (λxι. x) ∈ Dιι
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yι ϕ(y) ∈ Dι

aι ∈ C a ∈ Dι
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(λxι. x) (λxι. x) ∈ Dιι

yι ϕ(y) ∈ Dι

aι ∈ C a ∈ Dι
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Syntax Semantics < D,@ >

(λxι. x) (λxι. x) ∈ Dιι

yι ϕ(y) ∈ Dι

aι ∈ C a ∈ Dι
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Ex.: Interpretation of Terms
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Syntax Semantics < D,@ >

(λxι. x) (λxι. x) ∈ Dιι

yι ϕ(y) ∈ Dι

aι ∈ C a ∈ Dι

(λxι. x)aι (λxι. x)@aι ∈ Dι

Remark: The variable yι is a non-closed well-formed formula of
type ι. We need an assignment ϕα : Vα → Dα to give it a meaning.
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! Let Dα ↓β := {Aα ∈ Λα|A is closed and A is in β-normal form}
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! Let D := (Dα ↓β)α∈T

! Let @β
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! Let Dα ↓β := {Aα ∈ Λα|A is closed and A is in β-normal form}

! Let D := (Dα ↓β)α∈T

! Let @β
γδ : Dγδ × Dδ → Dγ be defined by

Fγδ@
β
γδGδ = (FG) ↓β

for all Fγδ ∈ Dγδ and Gδ ∈ Dδ.

! @β = (@β
γδ)γδ∈T

Claim: If Cι #= ∅ and Co #= ∅ (i.e., at least one constant for each base

type is given), then (D,@β) is an applicative structure.
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Proof:
! Is Dα ↓β nonempty for all α ∈ T ?

ATPHOL’06-[5] – p.134



c©Benzmüller, 2006

Ex.: Interesting Applicative Structures
HO

L

AT
Pλ

Proof:
! Is Dα ↓β nonempty for all α ∈ T ?
! Yes! This follows since Cι #= ∅ and C" #= ∅ .

ATPHOL’06-[5] – p.134



c©Benzmüller, 2006

Ex.: Interesting Applicative Structures
HO

L

AT
Pλ

Proof:
! Is Dα ↓β nonempty for all α ∈ T ?
! Yes! This follows since Cι #= ∅ and C" #= ∅ .

! Is Fγδ@
β
γδGδ ∈ Dγ ↓β?

ATPHOL’06-[5] – p.134



c©Benzmüller, 2006

Ex.: Interesting Applicative Structures
HO

L

AT
Pλ

Proof:
! Is Dα ↓β nonempty for all α ∈ T ?
! Yes! This follows since Cι #= ∅ and C" #= ∅ .

! Is Fγδ@
β
γδGδ ∈ Dγ ↓β?

! Let’s check: Fγδ@
β
γδGδ = (FG) ↓β∈ Dγ ↓β
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! Let Dα ↓βη:= {Aα ∈ Λα|A is closed and A is in βη-normal form}

! Let D := (Dα ↓βη)α∈T

! Let @βη
γδ : Dγδ × Dδ → Dγ be defined by

Fγδ@
βη
γδGδ = (FG) ↓
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! Let Dα ↓βη:= {Aα ∈ Λα|A is closed and A is in βη-normal form}

! Let D := (Dα ↓βη)α∈T

! Let @βη
γδ : Dγδ × Dδ → Dγ be defined by

Fγδ@
βη
γδGδ = (FG) ↓

for all Fγδ ∈ Dγδ and Gδ ∈ Dδ.

! @βη = (@βη
γδ )γδ∈T

Claim: If Cι #= ∅ and Co #= ∅ (i.e., at least one constant for each base

type is given), then (D,@βη) is an applicative structure.
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Proof:
! . . . analogous . . .
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Let A := (D,@) be an applicative structure.
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A typed function ϕ:V −→ D := (ϕα:Vα −→ Dα)α∈T is called a
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Let A := (D,@) be an applicative structure.

A typed function ϕ:V −→ D := (ϕα:Vα −→ Dα)α∈T is called a
variable assignment into A.

Given a variable assignment ϕ, variable Xα, and value a ∈ Dα, we
use ϕ, [a/X] to denote the variable assignment with
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Let A := (D,@) be an applicative structure.

A typed function ϕ:V −→ D := (ϕα:Vα −→ Dα)α∈T is called a
variable assignment into A.

Given a variable assignment ϕ, variable Xα, and value a ∈ Dα, we
use ϕ, [a/X] to denote the variable assignment with

(ϕ, [a/X])(X) = a
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Let A := (D,@) be an applicative structure.

A typed function ϕ:V −→ D := (ϕα:Vα −→ Dα)α∈T is called a
variable assignment into A.

Given a variable assignment ϕ, variable Xα, and value a ∈ Dα, we
use ϕ, [a/X] to denote the variable assignment with

(ϕ, [a/X])(X) = a

and
(ϕ, [a/X])(Y) = ϕ(Y)

for variables Y other than X.
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From now on, we assume the signature Σα = (V , C) to be infinite
for each type α.
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From now on, we assume the signature Σα = (V , C) to be infinite
for each type α. Furthermore, we assume there is a particular
cardinal ℵs such that Σα has cardinality ℵs for every type α. Since
V is countable, this implies wffα(Σ) := Λα and
cwffα(Σ) := {A ∈ Λα|Aclosed} have cardinality ℵs for each type α.
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From now on, we assume the signature Σα = (V , C) to be infinite
for each type α. Furthermore, we assume there is a particular
cardinal ℵs such that Σα has cardinality ℵs for every type α. Since
V is countable, this implies wffα(Σ) := Λα and
cwffα(Σ) := {A ∈ Λα|Aclosed} have cardinality ℵs for each type α.
Also, whether or not primitive equality is included in the signature,
there can only be finitely many logical constants in Σα for each
particular type α.
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From now on, we assume the signature Σα = (V , C) to be infinite
for each type α. Furthermore, we assume there is a particular
cardinal ℵs such that Σα has cardinality ℵs for every type α. Since
V is countable, this implies wffα(Σ) := Λα and
cwffα(Σ) := {A ∈ Λα|Aclosed} have cardinality ℵs for each type α.
Also, whether or not primitive equality is included in the signature,
there can only be finitely many logical constants in Σα for each
particular type α. Thus, the cardinality of the set of parameters in
Σα is also ℵs. In the countable case, ℵs is ℵ0.
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Let Σ be a signature.

ATPHOL’06-[5] – p.139



c©Benzmüller, 2006

Σ-Evaluations
HO

L

AT
Pλ

Let Σ be a signature. We build on the notion of applicative
structures to define Σ-evaluations, where the evaluation function is
assumed to respect application and β-conversion.
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Let Σ be a signature. We build on the notion of applicative
structures to define Σ-evaluations, where the evaluation function is
assumed to respect application and β-conversion.

In such models, a function is not uniquely determined by its
behavior on all possible arguments.
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Let Σ be a signature. We build on the notion of applicative
structures to define Σ-evaluations, where the evaluation function is
assumed to respect application and β-conversion.

In such models, a function is not uniquely determined by its
behavior on all possible arguments.

Such models can be constructed, for example, by labeling for
functions (e.g., a green and a red version of a function f) in order to
differentiate between them, even though they are functionally
equivalent.
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Let E :FT (V ;D) −→ FT (wff(Σ),D) be a total function, where
FT (V ;D) is the set of variable assignments and FT (wff(Σ),D) is
the set of typed functions mapping terms into objects in D.
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Let E :FT (V ;D) −→ FT (wff(Σ),D) be a total function, where
FT (V ;D) is the set of variable assignments and FT (wff(Σ),D) is
the set of typed functions mapping terms into objects in D. We will
write the argument of E as a subscript. So, for each assignment ϕ,
we have a typed function

Eϕ:wff(Σ) −→ D
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Let E :FT (V ;D) −→ FT (wff(Σ),D) be a total function, where
FT (V ;D) is the set of variable assignments and FT (wff(Σ),D) is
the set of typed functions mapping terms into objects in D. We will
write the argument of E as a subscript. So, for each assignment ϕ,
we have a typed function

Eϕ:wff(Σ) −→ D

What properties shall E fulfill?
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E is called an evaluation function for an applicative structure
A = (D,@)
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E is called an evaluation function for an applicative structure
A = (D,@) if for any assignments ϕ and ψ into A, we have

1. Eϕ|V = ϕ
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E is called an evaluation function for an applicative structure
A = (D,@) if for any assignments ϕ and ψ into A, we have

1. Eϕ|V = ϕ

2. Eϕ(FA) = Eϕ(F)@Eϕ(A) for any F ∈ wffα→β(Σ) and
A ∈ wffα(Σ) and types α and β.
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E is called an evaluation function for an applicative structure
A = (D,@) if for any assignments ϕ and ψ into A, we have

1. Eϕ|V = ϕ

2. Eϕ(FA) = Eϕ(F)@Eϕ(A) for any F ∈ wffα→β(Σ) and
A ∈ wffα(Σ) and types α and β.

3. Eϕ(A) = Eψ(A) for any type α and A ∈ wffα(Σ), whenever ϕ
and ψ coincide on FV(A).
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E is called an evaluation function for an applicative structure
A = (D,@) if for any assignments ϕ and ψ into A, we have

1. Eϕ|V = ϕ

2. Eϕ(FA) = Eϕ(F)@Eϕ(A) for any F ∈ wffα→β(Σ) and
A ∈ wffα(Σ) and types α and β.

3. Eϕ(A) = Eψ(A) for any type α and A ∈ wffα(Σ), whenever ϕ
and ψ coincide on FV(A).

4. Eϕ(A) = Eϕ(A↓β) for all A ∈ wffα(Σ).
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We call J := (D,@, E) a Σ-evaluation if (D,@) is an applicative
structure and E is an evaluation function for (D,@). We call
Eϕ(Aα) ∈ Dα the denotation of Aα in J for ϕ.
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We call J := (D,@, E) a Σ-evaluation if (D,@) is an applicative
structure and E is an evaluation function for (D,@). We call
Eϕ(Aα) ∈ Dα the denotation of Aα in J for ϕ.

Remark: since E is a function, the denotation in J is unique.
However, for a given applicative structure A, there may be many
possible evaluation functions.
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We call J := (D,@, E) a Σ-evaluation if (D,@) is an applicative
structure and E is an evaluation function for (D,@). We call
Eϕ(Aα) ∈ Dα the denotation of Aα in J for ϕ.

Remark: since E is a function, the denotation in J is unique.
However, for a given applicative structure A, there may be many
possible evaluation functions.

If A is a closed formula, then Eϕ(A) is independent of ϕ, since
Free(A) = ∅. In these cases we sometimes drop the reference to ϕ
from Eϕ(A) and simply write E(A).
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We call a Σ-evaluation J := (D,@, E) functional [full, standard] if
the applicative structure (D,@) is functional [full, standard].
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We call a Σ-evaluation J := (D,@, E) functional [full, standard] if
the applicative structure (D,@) is functional [full, standard].

We say J is a Σ-evaluation over a frame if (D,@) is a frame.
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Σ-evaluations generalize Σ-evaluations over frames, which are the
basis for Henkin models, to the non-functional case.
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Σ-evaluations generalize Σ-evaluations over frames, which are the
basis for Henkin models, to the non-functional case.

The existence of an evaluation function that meets the conditions
as presented seems to be the weakest situation where one would
like to speak of a model.
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like to speak of a model.

We cannot in general assume the evaluation function is uniquely
determined by its values on constants as this requires functionality.
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Σ-evaluations generalize Σ-evaluations over frames, which are the
basis for Henkin models, to the non-functional case.

The existence of an evaluation function that meets the conditions
as presented seems to be the weakest situation where one would
like to speak of a model.

We cannot in general assume the evaluation function is uniquely
determined by its values on constants as this requires functionality.
Example: two evaluation functions E and E ′ on the same
applicative structure may agree on all constants, but give a different
value to the term (λXι X).
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Let J := (D,@, E) be a Σ-evaluation and A=βB. For all
assignments ϕ into (D,@), we have

.

ATPHOL’06-[5] – p.145



c©Benzmüller, 2006

Lemma: Σ-Evaluations respect β-Equality
HO

L

AT
Pλ

Let J := (D,@, E) be a Σ-evaluation and A=βB. For all
assignments ϕ into (D,@), we have

Eϕ(A) = = Eϕ(B)

.
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Let J := (D,@, E) be a Σ-evaluation and A=βB. For all
assignments ϕ into (D,@), we have

Eϕ(A) = Eϕ(A↓β) Eϕ(B↓β) = Eϕ(B)

.
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Let J := (D,@, E) be a Σ-evaluation and A=βB. For all
assignments ϕ into (D,@), we have

Eϕ(A) = Eϕ(A↓β) = Eϕ(B↓β) = Eϕ(B)

.
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Let J := (D,@, E) be a Σ-evaluation and ϕ be an assignment into
J .
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Let J := (D,@, E) be a Σ-evaluation and ϕ be an assignment into
J . For any types α and β, variables Xβ, and formulae A ∈ wffα(Σ)

and B ∈ wffβ(Σ), we have
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Let J := (D,@, E) be a Σ-evaluation and ϕ be an assignment into
J . For any types α and β, variables Xβ, and formulae A ∈ wffα(Σ)

and B ∈ wffβ(Σ), we have

Eϕ,[Eϕ(B)/X](A) = Eϕ([B/X]A)

.
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Proof:

.
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Proof: Using the fact that E respects β-equality and the other
properties of E , we can compute

.
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Eϕ,[Eϕ(B)/X](A) =

.
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Proof: Using the fact that E respects β-equality and the other
properties of E , we can compute

Eϕ,[Eϕ(B)/X](A) = Eϕ,[Eϕ(B)/X]((λX A)X)

.
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Proof: Using the fact that E respects β-equality and the other
properties of E , we can compute

Eϕ,[Eϕ(B)/X](A) = Eϕ,[Eϕ(B)/X]((λX A)X)

= Eϕ,[Eϕ(B)/X](λX A)@Eϕ,[Eϕ(B)/X](X)

.
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Proof: Using the fact that E respects β-equality and the other
properties of E , we can compute

Eϕ,[Eϕ(B)/X](A) = Eϕ,[Eϕ(B)/X]((λX A)X)

= Eϕ,[Eϕ(B)/X](λX A)@Eϕ,[Eϕ(B)/X](X)

= Eϕ(λX A)@Eϕ(B)

.
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Proof: Using the fact that E respects β-equality and the other
properties of E , we can compute

Eϕ,[Eϕ(B)/X](A) = Eϕ,[Eϕ(B)/X]((λX A)X)

= Eϕ,[Eϕ(B)/X](λX A)@Eϕ,[Eϕ(B)/X](X)

= Eϕ(λX A)@Eϕ(B)

= Eϕ((λX A)B)

.
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Proof: Using the fact that E respects β-equality and the other
properties of E , we can compute

Eϕ,[Eϕ(B)/X](A) = Eϕ,[Eϕ(B)/X]((λX A)X)

= Eϕ,[Eϕ(B)/X](λX A)@Eϕ,[Eϕ(B)/X](X)

= Eϕ(λX A)@Eϕ(B)

= Eϕ((λX A)B)

= Eϕ([B/X]A).
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We will consider two weaker notions of functionality. These forms
are often discussed in the literature (cf. [HindleySeldin86]).
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We will consider two weaker notions of functionality. These forms
are often discussed in the literature (cf. [HindleySeldin86]).

! η-functionality simply means the evaluation respects
η-conversion.
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We will consider two weaker notions of functionality. These forms
are often discussed in the literature (cf. [HindleySeldin86]).

! η-functionality simply means the evaluation respects
η-conversion.

! ξ-functionality means we have functionality (only) with respect
to λ-abstractions.
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Let J = (D,@, E) be a Σ-evaluation.
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Let J = (D,@, E) be a Σ-evaluation.
We say J is η-functional if
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Let J = (D,@, E) be a Σ-evaluation.
We say J is η-functional if

Eϕ(A) = Eϕ(A↓βη)

for any type α, formula A ∈ wffα(Σ), and assignment ϕ.
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Let J = (D,@, E) be a Σ-evaluation.
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Let J = (D,@, E) be a Σ-evaluation. We say J is ξ-functional if
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Let J = (D,@, E) be a Σ-evaluation. We say J is ξ-functional if
for all α,β ∈ T , M,N ∈ wffβ(Σ), assignments ϕ, and variables Xα,
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Let J = (D,@, E) be a Σ-evaluation. We say J is ξ-functional if
for all α,β ∈ T , M,N ∈ wffβ(Σ), assignments ϕ, and variables Xα,

Eϕ(λXα Mβ) = Eϕ(λXα Nβ)
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Let J = (D,@, E) be a Σ-evaluation. We say J is ξ-functional if
for all α,β ∈ T , M,N ∈ wffβ(Σ), assignments ϕ, and variables Xα,

Eϕ(λXα Mβ) = Eϕ(λXα Nβ)

whenever
Eϕ,[a/X](M) = Eϕ,[a/X](N)

for every a ∈ Dα.
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Let J := (D,@, E) be a functional Σ-evaluation.
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Let J := (D,@, E) be a functional Σ-evaluation.
1. For any assignment ϕ into J and F ∈ wffα→β(Σ) where

Xα /∈ Free(F), we have
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Let J := (D,@, E) be a functional Σ-evaluation.
1. For any assignment ϕ into J and F ∈ wffα→β(Σ) where

Xα /∈ Free(F), we have

Eϕ(λXα FX) = Eϕ(F)
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Let J := (D,@, E) be a functional Σ-evaluation.
1. For any assignment ϕ into J and F ∈ wffα→β(Σ) where

Xα /∈ Free(F), we have

Eϕ(λXα FX) = Eϕ(F)

2. If a formula A η-reduces to B in one step, then for any
assignment ϕ into J , we have

ATPHOL’06-[5] – p.151



c©Benzmüller, 2006

Lemma: Functionality and η
HO

L

AT
Pλ

Let J := (D,@, E) be a functional Σ-evaluation.
1. For any assignment ϕ into J and F ∈ wffα→β(Σ) where

Xα /∈ Free(F), we have

Eϕ(λXα FX) = Eϕ(F)

2. If a formula A η-reduces to B in one step, then for any
assignment ϕ into J , we have

Eϕ(A) = Eϕ(B)
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Let J := (D,@, E) be a functional Σ-evaluation.
1. For any assignment ϕ into J and F ∈ wffα→β(Σ) where

Xα /∈ Free(F), we have

Eϕ(λXα FX) = Eϕ(F)

2. If a formula A η-reduces to B in one step, then for any
assignment ϕ into J , we have

Eϕ(A) = Eϕ(B)

Proof: Exercise
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Let J := (D,@, E) be a Σ-evaluation.
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Let J := (D,@, E) be a Σ-evaluation. Then J is functional iff it is
both η-functional and ξ-functional.
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Let J := (D,@, E) be a Σ-evaluation. Then J is functional iff it is
both η-functional and ξ-functional.

Proof: Exercise
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Let Σ := (V , C) be a signature.
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Let Σ := (V , C) be a signature.

The following logical constants may or may not be in the set C of
constants:

.o, ⊥o, ¬oo, ∨ooo, ∧ooo, ⊃ooo, ⇔ooo

Παo(oα)(Π
αFoα ∼ ∀xαFx), Σα

o(oα)(Σ
αFoα ∼ ∃xαFx)
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The following logical constants may or may not be in the set C of
constants:
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Let Σ := (V , C) be a signature.

The following logical constants may or may not be in the set C of
constants:

.o, ⊥o, ¬oo, ∨ooo, ∧ooo, ⊃ooo, ⇔ooo

Παo(oα)(Π
αFoα ∼ ∀xαFx), Σα

o(oα)(Σ
αFoα ∼ ∃xαFx)

=α
oαα

for all α ∈ T
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For any set A,

|A| < |P(A)|
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For any set A,

|A| < |P(A)|

i.e., ¬∃g : A→ P(A) with g surjective.
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Assume the set A is associated with ι.
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Assume the set A is associated with ι. Then P(A) has type oι, i.e.
the type of "sets" (or characteristic functions) over ι.
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Assume the set A is associated with ι. Then P(A) has type oι, i.e.
the type of "sets" (or characteristic functions) over ι.

Doι
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Assume the set A is associated with ι. Then P(A) has type oι, i.e.
the type of "sets" (or characteristic functions) over ι.

Doι = DDι

o

= {⊥,.}Dι

= {f| f : Dι → {⊥,.} }
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Assume the set A is associated with ι. Then P(A) has type oι, i.e.
the type of "sets" (or characteristic functions) over ι.

Doι = DDι

o

= {⊥,.}Dι

= {f| f : Dι → {⊥,.} }
∼= { X | X ⊆ Dι }
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Assume the set A is associated with ι. Then P(A) has type oι, i.e.
the type of "sets" (or characteristic functions) over ι.

Doι = DDι

o

= {⊥,.}Dι

= {f| f : Dι → {⊥,.} }
∼= { X | X ⊆ Dι }

= P(Dι)
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We can now formulate Cantor’s Theorem with typed terms (as seen
before):
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We can now formulate Cantor’s Theorem with typed terms (as seen
before):

¬∃goιι∀foι∃xι : gx = f
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We can now formulate Cantor’s Theorem with typed terms (as seen
before):

¬∃goιι∀foι∃xι : gx = f

which is shorthand for:

¬ooΣ
oιι
o(o(oιι))

(

λgoιι.Π
oι
o(o(oι))

(

λfoι.Σ
ι
o(oι)

(

λxι. =oι
o(oι)(oι) (gx) f

)))
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We can now formulate Cantor’s Theorem with typed terms (as seen
before):

¬∃goιι∀foι∃xι : gx = f

which is shorthand for:

¬ooΣ
oιι
o(o(oιι))

(

λgoιι.Π
oι
o(o(oι))

(

λfoι.Σ
ι
o(oι)

(

λxι. =oι
o(oι)(oι) (gx) f

)))

Note: for this term to be in the set cwffα(Σ), the constants
¬oo, Σoιι

o(o(oιι)), Πoι
o(o(oι)), Σι and =oι have to be in the set C.
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Proof: Assume such a function g exists.
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Proof: Assume such a function g exists.
Let f = {x | x #∈ gx} that is f = (λxι.¬gxx).
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Proof: Assume such a function g exists.
Let f = {x | x #∈ gx} that is f = (λxι.¬gxx).
g is surjective,
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Proof: Assume such a function g exists.
Let f = {x | x #∈ gx} that is f = (λxι.¬gxx).
g is surjective, hence

(∃yι : gy = [λx.¬gxx])
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Proof: Assume such a function g exists.
Let f = {x | x #∈ gx} that is f = (λxι.¬gxx).
g is surjective, hence

(∃yι : gy = [λx.¬gxx])

hence
(gyy⇔ ¬gyy)
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Proof: Assume such a function g exists.
Let f = {x | x #∈ gx} that is f = (λxι.¬gxx).
g is surjective, hence

(∃yι : gy = [λx.¬gxx])

hence
(gyy⇔ ¬gyy)

Contradiction!
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Proof: Assume such a function g exists.
Let f = {x | x #∈ gx} that is f = (λxι.¬gxx).
g is surjective, hence

(∃yι : gy = [λx.¬gxx])

hence
(gyy⇔ ¬gyy)

Contradiction!

Note that the proof uses ¬.
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Let (D,@) be an applicative structure and let v : Do → {T, F} be a
function (for given T #= F).
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Let (D,@) be an applicative structure and let v : Do → {T, F} be a
function (for given T #= F). For each logical constant cβ and for
a ∈ Dβ , we define the proposition Lc(()a) with respect to v:
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Let (D,@) be an applicative structure and let v : Do → {T, F} be a
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Let (D,@) be an applicative structure and let v : Do → {T, F} be a
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function (for given T #= F). For each logical constant cβ and for
a ∈ Dβ , we define the proposition Lc(()a) with respect to v:

c β Lc(()a) holds when

% o v(a) = T

ATPHOL’06-[6] – p.159



c©Benzmüller, 2006

Def.: Properties of Logical Constants
HO

L

AT
Pλ

Let (D,@) be an applicative structure and let v : Do → {T, F} be a
function (for given T #= F). For each logical constant cβ and for
a ∈ Dβ , we define the proposition Lc(()a) with respect to v:

c β Lc(()a) holds when

% o v(a) = T
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Let (D,@) be an applicative structure and let v : Do → {T, F} be a
function (for given T #= F). For each logical constant cβ and for
a ∈ Dβ , we define the proposition Lc(()a) with respect to v:

c β Lc(()a) holds when

% o v(a) = T

⊥ o
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Let (D,@) be an applicative structure and let v : Do → {T, F} be a
function (for given T #= F). For each logical constant cβ and for
a ∈ Dβ , we define the proposition Lc(()a) with respect to v:

c β Lc(()a) holds when

% o v(a) = T

⊥ o v(a) = F
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Let (D,@) be an applicative structure and let v : Do → {T, F} be a
function (for given T #= F). For each logical constant cβ and for
a ∈ Dβ , we define the proposition Lc(()a) with respect to v:

c β Lc(()a) holds when

% o v(a) = T

⊥ o v(a) = F

¬
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Let (D,@) be an applicative structure and let v : Do → {T, F} be a
function (for given T #= F). For each logical constant cβ and for
a ∈ Dβ , we define the proposition Lc(()a) with respect to v:

c β Lc(()a) holds when

% o v(a) = T

⊥ o v(a) = F

¬ oo
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Let (D,@) be an applicative structure and let v : Do → {T, F} be a
function (for given T #= F). For each logical constant cβ and for
a ∈ Dβ , we define the proposition Lc(()a) with respect to v:

c β Lc(()a) holds when

% o v(a) = T

⊥ o v(a) = F

¬ oo v(a@b) = T iff v(b) = F ∀b ∈ Do
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Let (D,@) be an applicative structure and let v : Do → {T, F} be a
function (for given T #= F). For each logical constant cβ and for
a ∈ Dβ , we define the proposition Lc(()a) with respect to v:

c β Lc(()a) holds when

% o v(a) = T

⊥ o v(a) = F

¬ oo v(a@b) = T iff v(b) = F ∀b ∈ Do

∨ ooo
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Let (D,@) be an applicative structure and let v : Do → {T, F} be a
function (for given T #= F). For each logical constant cβ and for
a ∈ Dβ , we define the proposition Lc(()a) with respect to v:

c β Lc(()a) holds when

% o v(a) = T

⊥ o v(a) = F

¬ oo v(a@b) = T iff v(b) = F ∀b ∈ Do

∨ ooo v(a@b@c) = T iff v(b) = T or v(c) = T ∀b, c ∈ Do
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Let (D,@) be an applicative structure and let v : Do → {T, F} be a
function (for given T #= F). For each logical constant cβ and for
a ∈ Dβ , we define the proposition Lc(()a) with respect to v:

c β Lc(()a) holds when

% o v(a) = T

⊥ o v(a) = F

¬ oo v(a@b) = T iff v(b) = F ∀b ∈ Do

∨ ooo v(a@b@c) = T iff v(b) = T or v(c) = T ∀b, c ∈ Do
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Let (D,@) be an applicative structure and let v : Do → {T, F} be a
function (for given T #= F). For each logical constant cβ and for
a ∈ Dβ , we define the proposition Lc(()a) with respect to v:

c β Lc(()a) holds when

% o v(a) = T

⊥ o v(a) = F

¬ oo v(a@b) = T iff v(b) = F ∀b ∈ Do

∨ ooo v(a@b@c) = T iff v(b) = T or v(c) = T ∀b, c ∈ Do

∧
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Let (D,@) be an applicative structure and let v : Do → {T, F} be a
function (for given T #= F). For each logical constant cβ and for
a ∈ Dβ , we define the proposition Lc(()a) with respect to v:

c β Lc(()a) holds when

% o v(a) = T

⊥ o v(a) = F

¬ oo v(a@b) = T iff v(b) = F ∀b ∈ Do

∨ ooo v(a@b@c) = T iff v(b) = T or v(c) = T ∀b, c ∈ Do

∧ ooo
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Let (D,@) be an applicative structure and let v : Do → {T, F} be a
function (for given T #= F). For each logical constant cβ and for
a ∈ Dβ , we define the proposition Lc(()a) with respect to v:

c β Lc(()a) holds when

% o v(a) = T

⊥ o v(a) = F

¬ oo v(a@b) = T iff v(b) = F ∀b ∈ Do

∨ ooo v(a@b@c) = T iff v(b) = T or v(c) = T ∀b, c ∈ Do

∧ ooo v(a@b@c) = T iff v(b) = T and v(c) = T ∀b, c ∈ Do
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Let (D,@) be an applicative structure and let v : Do → {T, F} be a
function (for given T #= F). For each logical constant cβ and for
a ∈ Dβ , we define the proposition Lc(()a) with respect to v:

c β Lc(()a) holds when

% o v(a) = T

⊥ o v(a) = F

¬ oo v(a@b) = T iff v(b) = F ∀b ∈ Do

∨ ooo v(a@b@c) = T iff v(b) = T or v(c) = T ∀b, c ∈ Do

∧ ooo v(a@b@c) = T iff v(b) = T and v(c) = T ∀b, c ∈ Do

⊃
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Let (D,@) be an applicative structure and let v : Do → {T, F} be a
function (for given T #= F). For each logical constant cβ and for
a ∈ Dβ , we define the proposition Lc(()a) with respect to v:

c β Lc(()a) holds when

% o v(a) = T

⊥ o v(a) = F

¬ oo v(a@b) = T iff v(b) = F ∀b ∈ Do

∨ ooo v(a@b@c) = T iff v(b) = T or v(c) = T ∀b, c ∈ Do

∧ ooo v(a@b@c) = T iff v(b) = T and v(c) = T ∀b, c ∈ Do

⊃ ooo
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Let (D,@) be an applicative structure and let v : Do → {T, F} be a
function (for given T #= F). For each logical constant cβ and for
a ∈ Dβ , we define the proposition Lc(()a) with respect to v:

c β Lc(()a) holds when

% o v(a) = T

⊥ o v(a) = F

¬ oo v(a@b) = T iff v(b) = F ∀b ∈ Do

∨ ooo v(a@b@c) = T iff v(b) = T or v(c) = T ∀b, c ∈ Do

∧ ooo v(a@b@c) = T iff v(b) = T and v(c) = T ∀b, c ∈ Do

⊃ ooo v(a@b@c) = T iff v(b) = F or v(c) = T ∀b, c ∈ Do
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Let (D,@) be an applicative structure and let v : Do → {T, F} be a
function (for given T #= F). For each logical constant cβ and for
a ∈ Dβ , we define the proposition Lc(()a) with respect to v:

c β Lc(()a) holds when

% o v(a) = T

⊥ o v(a) = F

¬ oo v(a@b) = T iff v(b) = F ∀b ∈ Do

∨ ooo v(a@b@c) = T iff v(b) = T or v(c) = T ∀b, c ∈ Do

∧ ooo v(a@b@c) = T iff v(b) = T and v(c) = T ∀b, c ∈ Do

⊃ ooo v(a@b@c) = T iff v(b) = F or v(c) = T ∀b, c ∈ Do

⇔
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Let (D,@) be an applicative structure and let v : Do → {T, F} be a
function (for given T #= F). For each logical constant cβ and for
a ∈ Dβ , we define the proposition Lc(()a) with respect to v:

c β Lc(()a) holds when

% o v(a) = T

⊥ o v(a) = F

¬ oo v(a@b) = T iff v(b) = F ∀b ∈ Do

∨ ooo v(a@b@c) = T iff v(b) = T or v(c) = T ∀b, c ∈ Do

∧ ooo v(a@b@c) = T iff v(b) = T and v(c) = T ∀b, c ∈ Do

⊃ ooo v(a@b@c) = T iff v(b) = F or v(c) = T ∀b, c ∈ Do

⇔ ooo
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Let (D,@) be an applicative structure and let v : Do → {T, F} be a
function (for given T #= F). For each logical constant cβ and for
a ∈ Dβ , we define the proposition Lc(()a) with respect to v:

c β Lc(()a) holds when

% o v(a) = T

⊥ o v(a) = F

¬ oo v(a@b) = T iff v(b) = F ∀b ∈ Do

∨ ooo v(a@b@c) = T iff v(b) = T or v(c) = T ∀b, c ∈ Do

∧ ooo v(a@b@c) = T iff v(b) = T and v(c) = T ∀b, c ∈ Do

⊃ ooo v(a@b@c) = T iff v(b) = F or v(c) = T ∀b, c ∈ Do

⇔ ooo v(a@b@c) = T iff v(b) = v(c) ∀b, c ∈ Do
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Let (D,@) be an applicative structure and let v : Do → {T, F} be a
function (for given T #= F). For each logical constant cβ and for
a ∈ Dβ , we define the proposition Lc(()a) with respect to v:

c β Lc(()a) holds when

% o v(a) = T

⊥ o v(a) = F

¬ oo v(a@b) = T iff v(b) = F ∀b ∈ Do

∨ ooo v(a@b@c) = T iff v(b) = T or v(c) = T ∀b, c ∈ Do

∧ ooo v(a@b@c) = T iff v(b) = T and v(c) = T ∀b, c ∈ Do

⊃ ooo v(a@b@c) = T iff v(b) = F or v(c) = T ∀b, c ∈ Do

⇔ ooo v(a@b@c) = T iff v(b) = v(c) ∀b, c ∈ Do

=α
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Let (D,@) be an applicative structure and let v : Do → {T, F} be a
function (for given T #= F). For each logical constant cβ and for
a ∈ Dβ , we define the proposition Lc(()a) with respect to v:

c β Lc(()a) holds when

% o v(a) = T

⊥ o v(a) = F

¬ oo v(a@b) = T iff v(b) = F ∀b ∈ Do

∨ ooo v(a@b@c) = T iff v(b) = T or v(c) = T ∀b, c ∈ Do

∧ ooo v(a@b@c) = T iff v(b) = T and v(c) = T ∀b, c ∈ Do

⊃ ooo v(a@b@c) = T iff v(b) = F or v(c) = T ∀b, c ∈ Do

⇔ ooo v(a@b@c) = T iff v(b) = v(c) ∀b, c ∈ Do

=α oαα
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Let (D,@) be an applicative structure and let v : Do → {T, F} be a
function (for given T #= F). For each logical constant cβ and for
a ∈ Dβ , we define the proposition Lc(()a) with respect to v:

c β Lc(()a) holds when

% o v(a) = T

⊥ o v(a) = F

¬ oo v(a@b) = T iff v(b) = F ∀b ∈ Do

∨ ooo v(a@b@c) = T iff v(b) = T or v(c) = T ∀b, c ∈ Do

∧ ooo v(a@b@c) = T iff v(b) = T and v(c) = T ∀b, c ∈ Do

⊃ ooo v(a@b@c) = T iff v(b) = F or v(c) = T ∀b, c ∈ Do

⇔ ooo v(a@b@c) = T iff v(b) = v(c) ∀b, c ∈ Do

=α oαα v(a@b@c) = T iff b = c ∀b, c ∈ Do
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Let (D,@) be an applicative structure and let v : Do → {T, F} be a
function (for given T #= F). For each logical constant cβ and for
a ∈ Dβ , we define the proposition Lc(()a) with respect to v:

c β Lc(()a) holds when

% o v(a) = T

⊥ o v(a) = F

¬ oo v(a@b) = T iff v(b) = F ∀b ∈ Do

∨ ooo v(a@b@c) = T iff v(b) = T or v(c) = T ∀b, c ∈ Do

∧ ooo v(a@b@c) = T iff v(b) = T and v(c) = T ∀b, c ∈ Do

⊃ ooo v(a@b@c) = T iff v(b) = F or v(c) = T ∀b, c ∈ Do

⇔ ooo v(a@b@c) = T iff v(b) = v(c) ∀b, c ∈ Do

=α oαα v(a@b@c) = T iff b = c ∀b, c ∈ Do

Πα
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Let (D,@) be an applicative structure and let v : Do → {T, F} be a
function (for given T #= F). For each logical constant cβ and for
a ∈ Dβ , we define the proposition Lc(()a) with respect to v:

c β Lc(()a) holds when

% o v(a) = T

⊥ o v(a) = F

¬ oo v(a@b) = T iff v(b) = F ∀b ∈ Do

∨ ooo v(a@b@c) = T iff v(b) = T or v(c) = T ∀b, c ∈ Do

∧ ooo v(a@b@c) = T iff v(b) = T and v(c) = T ∀b, c ∈ Do

⊃ ooo v(a@b@c) = T iff v(b) = F or v(c) = T ∀b, c ∈ Do

⇔ ooo v(a@b@c) = T iff v(b) = v(c) ∀b, c ∈ Do

=α oαα v(a@b@c) = T iff b = c ∀b, c ∈ Do

Πα o(oα)
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Let (D,@) be an applicative structure and let v : Do → {T, F} be a
function (for given T #= F). For each logical constant cβ and for
a ∈ Dβ , we define the proposition Lc(()a) with respect to v:

c β Lc(()a) holds when

% o v(a) = T

⊥ o v(a) = F

¬ oo v(a@b) = T iff v(b) = F ∀b ∈ Do

∨ ooo v(a@b@c) = T iff v(b) = T or v(c) = T ∀b, c ∈ Do

∧ ooo v(a@b@c) = T iff v(b) = T and v(c) = T ∀b, c ∈ Do

⊃ ooo v(a@b@c) = T iff v(b) = F or v(c) = T ∀b, c ∈ Do

⇔ ooo v(a@b@c) = T iff v(b) = v(c) ∀b, c ∈ Do

=α oαα v(a@b@c) = T iff b = c ∀b, c ∈ Do

Πα o(oα) v(a@f) = T iff ∀b ∈ Dα : v(f@b) = T ∀f ∈ Doα

ATPHOL’06-[6] – p.159



c©Benzmüller, 2006

Def.: Properties of Logical Constants
HO

L

AT
Pλ

Let (D,@) be an applicative structure and let v : Do → {T, F} be a
function (for given T #= F). For each logical constant cβ and for
a ∈ Dβ , we define the proposition Lc(()a) with respect to v:

c β Lc(()a) holds when

% o v(a) = T

⊥ o v(a) = F

¬ oo v(a@b) = T iff v(b) = F ∀b ∈ Do

∨ ooo v(a@b@c) = T iff v(b) = T or v(c) = T ∀b, c ∈ Do

∧ ooo v(a@b@c) = T iff v(b) = T and v(c) = T ∀b, c ∈ Do

⊃ ooo v(a@b@c) = T iff v(b) = F or v(c) = T ∀b, c ∈ Do

⇔ ooo v(a@b@c) = T iff v(b) = v(c) ∀b, c ∈ Do

=α oαα v(a@b@c) = T iff b = c ∀b, c ∈ Do

Πα o(oα) v(a@f) = T iff ∀b ∈ Dα : v(f@b) = T ∀f ∈ Doα

Σα
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Let (D,@) be an applicative structure and let v : Do → {T, F} be a
function (for given T #= F). For each logical constant cβ and for
a ∈ Dβ , we define the proposition Lc(()a) with respect to v:

c β Lc(()a) holds when

% o v(a) = T

⊥ o v(a) = F

¬ oo v(a@b) = T iff v(b) = F ∀b ∈ Do

∨ ooo v(a@b@c) = T iff v(b) = T or v(c) = T ∀b, c ∈ Do

∧ ooo v(a@b@c) = T iff v(b) = T and v(c) = T ∀b, c ∈ Do

⊃ ooo v(a@b@c) = T iff v(b) = F or v(c) = T ∀b, c ∈ Do

⇔ ooo v(a@b@c) = T iff v(b) = v(c) ∀b, c ∈ Do

=α oαα v(a@b@c) = T iff b = c ∀b, c ∈ Do

Πα o(oα) v(a@f) = T iff ∀b ∈ Dα : v(f@b) = T ∀f ∈ Doα
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Let (D,@) be an applicative structure and let v : Do → {T, F} be a
function (for given T #= F). For each logical constant cβ and for
a ∈ Dβ , we define the proposition Lc(()a) with respect to v:

c β Lc(()a) holds when

% o v(a) = T

⊥ o v(a) = F

¬ oo v(a@b) = T iff v(b) = F ∀b ∈ Do

∨ ooo v(a@b@c) = T iff v(b) = T or v(c) = T ∀b, c ∈ Do

∧ ooo v(a@b@c) = T iff v(b) = T and v(c) = T ∀b, c ∈ Do

⊃ ooo v(a@b@c) = T iff v(b) = F or v(c) = T ∀b, c ∈ Do

⇔ ooo v(a@b@c) = T iff v(b) = v(c) ∀b, c ∈ Do

=α oαα v(a@b@c) = T iff b = c ∀b, c ∈ Do

Πα o(oα) v(a@f) = T iff ∀b ∈ Dα : v(f@b) = T ∀f ∈ Doα

Σα o(oα) v(a@f) = T iff ∃b ∈ Dα : v(f@b) = T ∀f ∈ Doα
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Let J := (D,@, E) be a Σ-evaluation and v : Do → {T, F}.
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Let J := (D,@, E) be a Σ-evaluation and v : Do → {T, F}. We say

v is a Σ-valuation w.r.t J if
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Let J := (D,@, E) be a Σ-evaluation and v : Do → {T, F}. We say

v is a Σ-valuation w.r.t J if Lc((E(c))) holds w.r.t v for each logical

constant c ∈ Σ.
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Let J := (D,@, E) be a Σ-evaluation and let v : Do → {T, F} be a
Σ-valuation w.r.t J
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Let J := (D,@, E) be a Σ-evaluation and let v : Do → {T, F} be a
Σ-valuation w.r.t J

We say M = (D,@, E , v) is a Σ-model.
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Let J := (D,@, E) be a Σ-evaluation and let v : Do → {T, F} be a
Σ-valuation w.r.t J

We say M = (D,@, E , v) is a Σ-model.

If (D,@, E) is functional (full, standard), we say M is functional (full,
standard).
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Let J := (D,@, E) be a Σ-evaluation and let v : Do → {T, F} be a
Σ-valuation w.r.t J

We say M = (D,@, E , v) is a Σ-model.

If (D,@, E) is functional (full, standard), we say M is functional (full,
standard).

If (D,@, E) is η-functional, we say M is η-functional.
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Let J := (D,@, E) be a Σ-evaluation and let v : Do → {T, F} be a
Σ-valuation w.r.t J

We say M = (D,@, E , v) is a Σ-model.

If (D,@, E) is functional (full, standard), we say M is functional (full,
standard).

If (D,@, E) is η-functional, we say M is η-functional.

If (D,@, E) is ξ-functional, we say M is ξ-functional.
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Some important conventions:
! = denotes primitive equality
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Some important conventions:
! = denotes primitive equality
!

.
= denotes Leibniz equality: Aα

.
=α

Bα := ∀Poα (PA)⇒ (PB)
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Some important conventions:
! = denotes primitive equality
!

.
= denotes Leibniz equality: Aα

.
=α

Bα := ∀Poα (PA)⇒ (PB)

!
..
= . . . other definition of equality (e.g., see [Andrews02])
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Some important conventions:
! = denotes primitive equality
!

.
= denotes Leibniz equality: Aα

.
=α

Bα := ∀Poα (PA)⇒ (PB)

!
..
= . . . other definition of equality (e.g., see [Andrews02])

We use ∗= in the following to refer to any of the above
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Let M = (D,@, E , v) be a C-model. We say, M has property
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Let M = (D,@, E , v) be a C-model. We say, M has property
η if M is η-functional (respectively (D,@, E) is η-functional)
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Let M = (D,@, E , v) be a C-model. We say, M has property
η if M is η-functional (respectively (D,@, E) is η-functional)
ξ if M is ξ-functional (respectively (D,@, E) is ξ-functional)
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Let M = (D,@, E , v) be a C-model. We say, M has property
η if M is η-functional (respectively (D,@, E) is η-functional)
ξ if M is ξ-functional (respectively (D,@, E) is ξ-functional)
f if M is functional (respectively (D,@, E) is functional)
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Let M = (D,@, E , v) be a C-model. We say, M has property
η if M is η-functional (respectively (D,@, E) is η-functional)
ξ if M is ξ-functional (respectively (D,@, E) is ξ-functional)
f if M is functional (respectively (D,@, E) is functional)
b if v is injective.
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Let M = (D,@, E , v) be a C-model. We say, M has property
η if M is η-functional (respectively (D,@, E) is η-functional)
ξ if M is ξ-functional (respectively (D,@, E) is ξ-functional)
f if M is functional (respectively (D,@, E) is functional)
b if v is injective.

Note: In the [JSC04]-paper, b is defined as Do = {T, F}, but here we are using the

injectivity criterion, because we are varying the signature. If the signature is too

sparse, we could have a Do with two elements which both valuate via v to T. Another ill

case would be Do with just one element.
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Let M = (D,@, E , v) be a C-model. We say, M has property
η if M is η-functional (respectively (D,@, E) is η-functional)
ξ if M is ξ-functional (respectively (D,@, E) is ξ-functional)
f if M is functional (respectively (D,@, E) is functional)
b if v is injective.
q if for all α ∈ T there is some q ∈ Doαα such that L=α(q).
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Let M = (D,@, E , v) be a C-model. We say, M has property
η if M is η-functional (respectively (D,@, E) is η-functional)
ξ if M is ξ-functional (respectively (D,@, E) is ξ-functional)
f if M is functional (respectively (D,@, E) is functional)
b if v is injective.
q if for all α ∈ T there is some q ∈ Doαα such that L=α(q).

Note: This basically says that for each type α the identity relation over α is already

present in the model. If we require =oαα∈ C with L=α (Eϕ(=oαα)), then this property

is automatically ensured, but not for weaker signatures. See [Andrew71] for a detailed

discussion of property q. Andrews constructs a Henkin model where Leibniz equality
.
= does not evaluate to the intended identity relation. This is resolved by property q.

ATPHOL’06-[6] – p.163



c©Benzmüller, 2006

Lemma: Surjective v
HO

L

AT
Pλ

Let C be a signature and M = (D,@, E , v) be a C-model.
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Let C be a signature and M = (D,@, E , v) be a C-model.
If T, F ∈ C or ¬ ∈ C then v is surjective.
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Let C be a signature and M = (D,@, E , v) be a C-model.
If T, F ∈ C or ¬ ∈ C then v is surjective.

Proof: Exercise.
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Let C be a signature and M = (D,@, E , v) be a C-model.
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Let C be a signature and M = (D,@, E , v) be a C-model.
Suppose T, F ∈ C or ¬ ∈ C.
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Let C be a signature and M = (D,@, E , v) be a C-model.
Suppose T, F ∈ C or ¬ ∈ C.
Then M satisfies property b iff |Do| = 2.
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Let C be a signature and M = (D,@, E , v) be a C-model.
Suppose T, F ∈ C or ¬ ∈ C.
Then M satisfies property b iff |Do| = 2.

Proof: Exercise.
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Semantics: HOL-CUBE
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Let J := (D,@, E) be a Σ-evaluation and let v : Do → {T, F} be a
Σ-valuation w.r.t J
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Let J := (D,@, E) be a Σ-evaluation and let v : Do → {T, F} be a
Σ-valuation w.r.t J

We say M = (D,@, E , v) is a Σ-model.

ATPHOL’06-[7] – p.167



c©Benzmüller, 2006

Def. (Reminder): Σ-Model
HO

L

AT
Pλ

Let J := (D,@, E) be a Σ-evaluation and let v : Do → {T, F} be a
Σ-valuation w.r.t J

We say M = (D,@, E , v) is a Σ-model.

If (D,@, E) is functional (full, standard), we say M is functional (full,
standard).
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We say M = (D,@, E , v) is a Σ-model.

If (D,@, E) is functional (full, standard), we say M is functional (full,
standard).

If (D,@, E) is η-functional, we say M is η-functional.

ATPHOL’06-[7] – p.167



c©Benzmüller, 2006

Def. (Reminder): Σ-Model
HO

L

AT
Pλ

Let J := (D,@, E) be a Σ-evaluation and let v : Do → {T, F} be a
Σ-valuation w.r.t J

We say M = (D,@, E , v) is a Σ-model.

If (D,@, E) is functional (full, standard), we say M is functional (full,
standard).

If (D,@, E) is η-functional, we say M is η-functional.

If (D,@, E) is ξ-functional, we say M is ξ-functional.
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Let M = (D,@, E , v) be a C-model. We say, M has property
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Let M = (D,@, E , v) be a C-model. We say, M has property
η if M is η-functional (respectively (D,@, E) is η-functional)
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Let M = (D,@, E , v) be a C-model. We say, M has property
η if M is η-functional (respectively (D,@, E) is η-functional)
ξ if M is ξ-functional (respectively (D,@, E) is ξ-functional)
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Let M = (D,@, E , v) be a C-model. We say, M has property
η if M is η-functional (respectively (D,@, E) is η-functional)
ξ if M is ξ-functional (respectively (D,@, E) is ξ-functional)
f if M is functional (respectively (D,@, E) is functional)
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Let M = (D,@, E , v) be a C-model. We say, M has property
η if M is η-functional (respectively (D,@, E) is η-functional)
ξ if M is ξ-functional (respectively (D,@, E) is ξ-functional)
f if M is functional (respectively (D,@, E) is functional)
b if v is injective.
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Let M = (D,@, E , v) be a C-model. We say, M has property
η if M is η-functional (respectively (D,@, E) is η-functional)
ξ if M is ξ-functional (respectively (D,@, E) is ξ-functional)
f if M is functional (respectively (D,@, E) is functional)
b if v is injective.
q if for all α ∈ T there is some q ∈ Doαα such that L=α(q).
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We denote the class of C-models by Mβ(Σ).
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We denote the class of C-models by Mβ(Σ). We obtain a hierarchy
of subclasses of Mβ(Σ) by adding the properties ξ, η, f, b.
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We denote the class of C-models by Mβ(Σ). We obtain a hierarchy
of subclasses of Mβ(Σ) by adding the properties ξ, η, f, b. Thus we
obtain
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We denote the class of C-models by Mβ(Σ). We obtain a hierarchy
of subclasses of Mβ(Σ) by adding the properties ξ, η, f, b. Thus we
obtain

! Mβη(Σ)

ATPHOL’06-[7] – p.169



c©Benzmüller, 2006

Def. (Reminder): Different Model Classes
HO

L

AT
Pλ

We denote the class of C-models by Mβ(Σ). We obtain a hierarchy
of subclasses of Mβ(Σ) by adding the properties ξ, η, f, b. Thus we
obtain

! Mβη(Σ)

! Mβξ(Σ)
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We denote the class of C-models by Mβ(Σ). We obtain a hierarchy
of subclasses of Mβ(Σ) by adding the properties ξ, η, f, b. Thus we
obtain

! Mβη(Σ)

! Mβξ(Σ)

! Mβf(Σ)
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We denote the class of C-models by Mβ(Σ). We obtain a hierarchy
of subclasses of Mβ(Σ) by adding the properties ξ, η, f, b. Thus we
obtain

! Mβη(Σ)

! Mβξ(Σ)

! Mβf(Σ)

! Mβb(Σ)
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We denote the class of C-models by Mβ(Σ). We obtain a hierarchy
of subclasses of Mβ(Σ) by adding the properties ξ, η, f, b. Thus we
obtain

! Mβη(Σ)

! Mβξ(Σ)

! Mβf(Σ)

! Mβb(Σ)

! Mβηb(Σ)
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We denote the class of C-models by Mβ(Σ). We obtain a hierarchy
of subclasses of Mβ(Σ) by adding the properties ξ, η, f, b. Thus we
obtain

! Mβη(Σ)

! Mβξ(Σ)

! Mβf(Σ)

! Mβb(Σ)

! Mβηb(Σ)

! Mβξb(Σ)
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We denote the class of C-models by Mβ(Σ). We obtain a hierarchy
of subclasses of Mβ(Σ) by adding the properties ξ, η, f, b. Thus we
obtain

! Mβη(Σ)

! Mβξ(Σ)

! Mβf(Σ)

! Mβb(Σ)

! Mβηb(Σ)

! Mβξb(Σ)

! Mβfb(Σ)
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Let M = (D,@, E , v) be a Σ-model and let ϕ be an assignment into
M.
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Let M = (D,@, E , v) be a Σ-model and let ϕ be an assignment into
M.

We say ϕ satisfies a formula A ∈ wffo(Σ) in M (we write M |=ϕ A)
if υ(Eϕ(A)) = T.
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Let M = (D,@, E , v) be a Σ-model and let ϕ be an assignment into
M.

We say ϕ satisfies a formula A ∈ wffo(Σ) in M (we write M |=ϕ A)
if υ(Eϕ(A)) = T.

We say that A is valid in M (and write M |= A) if M |=ϕ A for all
assignments ϕ.
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Let M = (D,@, E , v) be a Σ-model and let ϕ be an assignment into
M.

We say ϕ satisfies a formula A ∈ wffo(Σ) in M (we write M |=ϕ A)
if υ(Eϕ(A)) = T.

We say that A is valid in M (and write M |= A) if M |=ϕ A for all
assignments ϕ. When A ∈ cwffo(Σ), we drop the reference to the
assignment and use the notation M |= A.
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Let M = (D,@, E , v) be a Σ-model and let ϕ be an assignment into
M.

We say ϕ satisfies a formula A ∈ wffo(Σ) in M (we write M |=ϕ A)
if υ(Eϕ(A)) = T.

We say that A is valid in M (and write M |= A) if M |=ϕ A for all
assignments ϕ. When A ∈ cwffo(Σ), we drop the reference to the
assignment and use the notation M |= A.

Finally, we say that M is a Σ-model for a set Φ ⊆ cwffo(Σ) (we write
M |= Φ) if M |= A for all A ∈ Φ.
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ST(Σ)

Mβfb(Σ) . H(Σ)

Mβηb(Σ)Mβξb(Σ)Mβf(Σ)

Mβξ(Σ) Mβη(Σ) Mβb(Σ)

Mβ(Σ)

ξ

η

η

ηξ

f

ξ

f

b

b

b

b

ξη

full

Landscape of HOL model classes
[Kohlhase-PhD-94]
[Benzmüller-PhD-99]
[Brown-PhD-04]

[Benzm.BrownKohlhase-JSL-04]

ATPHOL’06-[7] – p.171



c©Benzmüller, 2006

Semantics: HOL-CUBE
HO

L

AT
Pλ

ST(Σ)

Mβfb(Σ) . H(Σ)

Mβηb(Σ)Mβξb(Σ)Mβf(Σ)

Mβξ(Σ) Mβη(Σ) Mβb(Σ)

Mβ(Σ)

ξ

η

η

ηξ

f

ξ

f

b

b

b

b

ξη

full

Landscape of HOL model classes
[Kohlhase-PhD-94]
[Benzmüller-PhD-99]
[Brown-PhD-04]

[Benzm.BrownKohlhase-JSL-04]

Mβ(Σ) model class for Σ-fragment of
elementary type theory
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ST(Σ)

Mβfb(Σ) . H(Σ)

Mβηb(Σ)Mβξb(Σ)Mβf(Σ)

Mβξ(Σ) Mβη(Σ) Mβb(Σ)

Mβ(Σ)

ξ

η

η

ηξ

f

ξ

f

b

b

b

b

ξη

full

Landscape of HOL model classes
[Kohlhase-PhD-94]
[Benzmüller-PhD-99]
[Brown-PhD-04]

[Benzm.BrownKohlhase-JSL-04]

Mβ(Σ) model class for Σ-fragment of
elementary type theory

Mβfb(Σ) model class for Σ-fragment of
extensional type theory (Henkin models)
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ST(Σ)

Mβfb(Σ) . H(Σ)

Mβηb(Σ)Mβξb(Σ)Mβf(Σ)

Mβξ(Σ) Mβη(Σ) Mβb(Σ)

Mβ(Σ)

ξ

η

η

ηξ

f

ξ

f

b

b

b

b

ξη

full

β: models support β-equality
q: models provide identity relations

∀α : id ∈ Dα→α→o
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ST(Σ)

Mβfb(Σ) . H(Σ)

Mβηb(Σ)Mβξb(Σ)Mβf(Σ)

Mβξ(Σ) Mβη(Σ) Mβb(Σ)

Mβ(Σ)

ξ

η

η

ηξ

f

ξ

f

b

b

b

b

ξη

full

β: models support β-equality
q: models provide identity relations

∀α : id ∈ Dα→α→o

! [Andrews72]: without property q

Leibniz equality .
= not necessarily

evaluates to identity relation even
in Henkin semantics (H(Σ))
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Leon Henkin generalized the class of admissible domains for
functional types.
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Leon Henkin generalized the class of admissible domains for
functional types.

Instead of requiring Dαβ (and thus in particular, Doι) to be the full
set of functions (predicates), it is sufficient to require that Dαβ has
enough members that any well-formed formula can be evaluated
(in other words, the domains of function types are rich enough to
satisfy comprehension).
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Leon Henkin generalized the class of admissible domains for
functional types.

Instead of requiring Dαβ (and thus in particular, Doι) to be the full
set of functions (predicates), it is sufficient to require that Dαβ has
enough members that any well-formed formula can be evaluated
(in other words, the domains of function types are rich enough to
satisfy comprehension).

Note that with this generalized notion of a model, there are fewer
formulae that are valid in all models (intuitively, for any given formula
there are more possibilities for counter-models).
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standard-
models

Henkin-

semantics
Henkin-
valid in

formulas
models

formulas
valid in

standard-
semantics
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The generalization to Henkin models restricts the set of valid formu-
lae sufficiently so that all of them can be proven by a Hilbert-style
calculus [Henkin50].
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The generalization to Henkin models restricts the set of valid formu-
lae sufficiently so that all of them can be proven by a Hilbert-style
calculus [Henkin50].
Of course our HOL-CUBE is not complete here; we can axiomati-
cally require the existence of particular (classes of) functions, e.g.,
by assuming the description or choice operators.
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The generalization to Henkin models restricts the set of valid formu-
lae sufficiently so that all of them can be proven by a Hilbert-style
calculus [Henkin50].
Of course our HOL-CUBE is not complete here; we can axiomati-
cally require the existence of particular (classes of) functions, e.g.,
by assuming the description or choice operators.
We will not pursue this here; for a detailed discussion of the se-
mantic issues raised by the presence of these logical constants see
[Andrews72].
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The generalization to Henkin models restricts the set of valid formu-
lae sufficiently so that all of them can be proven by a Hilbert-style
calculus [Henkin50].
Of course our HOL-CUBE is not complete here; we can axiomati-
cally require the existence of particular (classes of) functions, e.g.,
by assuming the description or choice operators.
We will not pursue this here; for a detailed discussion of the se-
mantic issues raised by the presence of these logical constants see
[Andrews72].
Note that even though we can consider model classes with richer
and richer function spaces, we can never reach standard models
where function spaces are full while maintaining complete (recur-
sively axiomatizable) calculi.
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models

Henkin-

semantics
Henkin-
valid in

formulas
models

formulas
valid in

standard-
semantics

What has been our motivation for further generalization of Henkin
semantics with respect to Boolean and functional extensionality?
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Motivation: modeling programs as (higher-order) functions
! We might be interested in intensional properties like run-time

complexity.
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Motivation: modeling programs as (higher-order) functions
! We might be interested in intensional properties like run-time

complexity.
! I := λX X and L := λX rev(rev(X)), where rev is the self-inverse

function.
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Motivation: modeling programs as (higher-order) functions
! We might be interested in intensional properties like run-time

complexity.
! I := λX X and L := λX rev(rev(X)), where rev is the self-inverse

function.
! The identity function has constant complexity, the function rev

is linear in the length of its argument.
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How do we account for models without functional extensionality?
! We have generalized the notion of domains at function types

and evaluation functions.
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! We have generalized the notion of domains at function types

and evaluation functions.
! The usual construction already uses sets of (extensional)

functions for the domains of function type and the property of
functionality to construct values for λ-terms.
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How do we account for models without functional extensionality?
! We have generalized the notion of domains at function types

and evaluation functions.
! The usual construction already uses sets of (extensional)

functions for the domains of function type and the property of
functionality to construct values for λ-terms.

! We build on the notion of applicative structures to define
Σ-evaluations, where the evaluation function is assumed to
respect application and β-conversion.
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How do we account for models without functional extensionality?
! We have generalized the notion of domains at function types

and evaluation functions.
! The usual construction already uses sets of (extensional)

functions for the domains of function type and the property of
functionality to construct values for λ-terms.

! We build on the notion of applicative structures to define
Σ-evaluations, where the evaluation function is assumed to
respect application and β-conversion.

! In such models, a function is not uniquely determined by its
behavior on all possible arguments.
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ST(Σ)

Mβfb(Σ) . H(Σ)

Mβηb(Σ)Mβξb(Σ)Mβf(Σ)

Mβξ(Σ) Mβη(Σ) Mβb(Σ)

Mβ(Σ)

ξ

η

η

ηξ

f

ξ

f

b

b

b

b

ξη

full

f: models are functional

∀f, g ∈ Dβα :

f = g iff f@a = g@a (∀a ∈ Dα)
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Motivation: in standard literature functional extensionality is often is
discussed in terms of
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discussed in terms of

! ξ-functionality
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Models without η- or ξ-Functionality
HO

L

AT
Pλ

Motivation: in standard literature functional extensionality is often is
discussed in terms of

! ξ-functionality
! η-functionality
! Therefore, we integrated these two cases in our landscape.
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ST(Σ)

Mβfb(Σ) . H(Σ)

Mβηb(Σ)Mβξb(Σ)Mβf(Σ)

Mβξ(Σ) Mβη(Σ) Mβb(Σ)

Mβ(Σ)

ξ

η

η

ηξ

f

ξ

f

b

b

b

b

ξη

full

η: models are η-functional

Eϕ(A) = Eϕ(A ↓βη)
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ST(Σ)

Mβfb(Σ) . H(Σ)

Mβηb(Σ)Mβξb(Σ)Mβf(Σ)

Mβξ(Σ) Mβη(Σ) Mβb(Σ)

Mβ(Σ)

ξ

η

η

ηξ

f

ξ

f

b

b

b

b

ξη

full

ξ: models are ξ-functional

Eϕ(λXα Mβ) = Eϕ(λXα Nβ) iff
Eϕ,[a/X](M) = Eϕ,[a/X](N) (∀a ∈ Dα)
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! We may not want to commit to a logic where the sentence

“John believes that Phil is a woodchuck”
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ATPHOL’06-[7] – p.183



c©Benzmüller, 2006

Models without Boolean Extensionality
HO

L

AT
Pλ

Motivation: Semantics of natural language
! We may not want to commit to a logic where the sentence

“John believes that Phil is a woodchuck” automatically entails
“John believes that Phil is a groundhog” since John might not
know that “woodchuck” is just another word for “groundhog”.
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Motivation: Semantics of natural language
! We may not want to commit to a logic where the sentence

“John believes that Phil is a woodchuck” automatically entails
“John believes that Phil is a groundhog” since John might not
know that “woodchuck” is just another word for “groundhog”.

! However, Boolean extensionality does just that: whenever two
propositions are equivalent, they must be equal, and can be
substituted for each other.
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Motivation: Semantics of natural language
! We may not want to commit to a logic where the sentence

“John believes that Phil is a woodchuck” automatically entails
“John believes that Phil is a groundhog” since John might not
know that “woodchuck” is just another word for “groundhog”.

! However, Boolean extensionality does just that: whenever two
propositions are equivalent, they must be equal, and can be
substituted for each other.

! Another example: obvious(O) and obvious(F) where
O := 2 + 2 = 4 and F := ∀n > 2 xn + yn = zn ⇒ x = y = z = 0

should not be equivalent, even if their arguments are.
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Motivation: Semantics of natural language
! We may not want to commit to a logic where the sentence

“John believes that Phil is a woodchuck” automatically entails
“John believes that Phil is a groundhog” since John might not
know that “woodchuck” is just another word for “groundhog”.

! However, Boolean extensionality does just that: whenever two
propositions are equivalent, they must be equal, and can be
substituted for each other.

! Another example: obvious(O) and obvious(F) where
O := 2 + 2 = 4 and F := ∀n > 2 xn + yn = zn ⇒ x = y = z = 0

should not be equivalent, even if their arguments are.
! Such phenomena have been studied under the heading of

“hyper-intensional semantics” in theoretical semantics.
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How do we account for models without Boolean extensionality?
! We have weakened the assumption that Do = {T, F}, since this

entails that the values of O and F are identical.
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How do we account for models without Boolean extensionality?
! We have weakened the assumption that Do = {T, F}, since this

entails that the values of O and F are identical.
! In our Σ-models without property b we only insist that there is a

division of the truth values into “good” and “bad” ones, which
we express by insisting on the existence of a valuation υ of Do,
i.e., a function υ:Do → {T, F} that is coordinated with the
interpretations of the logical constants ¬, ∨, and Πα (for each
type α).
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How do we account for models without Boolean extensionality?
! We have weakened the assumption that Do = {T, F}, since this

entails that the values of O and F are identical.
! In our Σ-models without property b we only insist that there is a

division of the truth values into “good” and “bad” ones, which
we express by insisting on the existence of a valuation υ of Do,
i.e., a function υ:Do → {T, F} that is coordinated with the
interpretations of the logical constants ¬, ∨, and Πα (for each
type α).

! Notion of validity: we call a sentence A valid in such a model if
υ(a) = T, where a ∈ Do is the denotation of the sentence A.

ATPHOL’06-[7] – p.184
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ST(Σ)

Mβfb(Σ) . H(Σ)

Mβηb(Σ)Mβξb(Σ)Mβf(Σ)

Mβξ(Σ) Mβη(Σ) Mβb(Σ)

Mβ(Σ)

ξ

η

η

ηξ

f

ξ

f

b

b

b

b

ξη

full

b: models are Boolean extensional

v is injective
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ST(Σ)

Mβfb(Σ) . H(Σ)

Mβηb(Σ)Mβξb(Σ)Mβf(Σ)

Mβξ(Σ) Mβη(Σ) Mβb(Σ)

Mβ(Σ)

ξ

η

η

ηξ

f

ξ

f

b

b

b

b

ξη

full

b: models are Boolean extensional

v is injective

If Σ contains sufficiently many logical
constants:

Do = {⊥,%}

ATPHOL’06-[7] – p.185



c©Benzmüller, 2006

HO
L

AT
Pλ

HO
L

AT
Pλ

Semantics and Theorem
Proving: Test Problems for

Theorem Provers
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! Test problems for FOL theorem provers
" [McCharenOverbeekWos76], [WilsonMinker79],

[Pelletier86], etc.
" TPTP [PelletierSutcliffeSuttner02]
" significantly fostered the development of FOL ATPs

! Test problems for HOL theorem provers
" common library missing

! Following slides: example problems from our paper
[TPHOLS-05]
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! Test problems for FOL theorem provers
" [McCharenOverbeekWos76], [WilsonMinker79],

[Pelletier86], etc.
" TPTP [PelletierSutcliffeSuttner02]
" significantly fostered the development of FOL ATPs

! Test problems for HOL theorem provers
" common library missing

! Following slides: example problems from our paper
[TPHOLS-05]

! Are we proposing challenging HOL benchmark problems?
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! Test problems for FOL theorem provers
" [McCharenOverbeekWos76], [WilsonMinker79],

[Pelletier86], etc.
" TPTP [PelletierSutcliffeSuttner02]
" significantly fostered the development of FOL ATPs

! Test problems for HOL theorem provers
" common library missing

! Following slides: example problems from our paper
[TPHOLS-05]

! Are we proposing challenging HOL benchmark problems?
" No!!!

ATPHOL’06-[7] – p.187
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! Examples are simple
" highlight the essence of some semantical or technical point
" easy to understand and easy to encode
" relevant for both: automated and interactive TP

! Examples are structured
" quick indicators for completeness and soundness wrt to

HOL model classes from [Benzm.BrownKohlhase-JSL-04]
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" highlight the essence of some semantical or technical point
" easy to understand and easy to encode
" relevant for both: automated and interactive TP

! Examples are structured
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HOL model classes from [Benzm.BrownKohlhase-JSL-04]
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ATPHOL’06-[7] – p.188



c©Benzmüller, 2006

Test Problems for Theorem Provers
HO

L

AT
Pλ

! Examples are simple
" highlight the essence of some semantical or technical point
" easy to understand and easy to encode
" relevant for both: automated and interactive TP

! Examples are structured
" quick indicators for completeness and soundness wrt to

HOL model classes from [Benzm.BrownKohlhase-JSL-04]
" shall precede formal soundness / completeness analysis
" many are collected from experience with LEO and TPS

! (Some more challenging examples are also added in
[TPHOLS-05])

ATPHOL’06-[7] – p.188
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Unless stated otherwise we assume on the following slides that our
signature Σ contains the following logical connectives:

{.,⊥,¬,∧,∨,⊃,⇔} ∪ {Πα,Σα,=α}

(less logical connectives are possible)
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ST(Σ)

Mβfb(Σ) . H(Σ)

Mβηb(Σ)Mβξb(Σ)Mβf(Σ)

Mβξ(Σ) Mβη(Σ) Mβb(Σ)

Mβ(Σ)

ξ

η

η

ηξ

f

ξ

f

b

b

b

b

ξη

full

∗

= is equivalence relation

! ∀Xα X
∗

= X

! ∀Xα, Yα X
∗

= Y ⊃ Y
∗

= X

! ∀Xα, Yα, Zα (X
∗

= Y ∧Y
∗

= Z) ⊃ X
∗

= Z
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Mβ(Σ)

ξ

η

η

ηξ

f

ξ

f

b

b

b

b

ξη

full

∗

= is equivalence relation

! ∀Xα X
∗

= X

! ∀Xα, Yα X
∗

= Y ⊃ Y
∗

= X

! ∀Xα, Yα, Zα (X
∗

= Y ∧Y
∗

= Z) ⊃ X
∗

= Z

∗

= is congruence relation

! ∀Xα, Yα, Fαα X
∗

= Y ⊃ (FX)
∗

= (FY)

! ∀Xα, Yα, Poα X
∗

= Y ∧ (PX) ⊃ (PY)
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ST(Σ)

Mβfb(Σ) . H(Σ)

Mβηb(Σ)Mβξb(Σ)Mβf(Σ)

Mβξ(Σ) Mβη(Σ) Mβb(Σ)

Mβ(Σ)

ξ

η

η

ηξ

f

ξ

f

b

b

b

b

ξη

full

∗

= is equivalence relation

! ∀Xα X
∗

= X

! ∀Xα, Yα X
∗

= Y ⊃ Y
∗

= X

! ∀Xα, Yα, Zα (X
∗

= Y ∧Y
∗

= Z) ⊃ X
∗

= Z

∗

= is congruence relation

! ∀Xα, Yα, Fαα X
∗

= Y ⊃ (FX)
∗

= (FY)

! ∀Xα, Yα, Poα X
∗

= Y ∧ (PX) ⊃ (PY)

Trivial directions of Boolean and functional exten-
sionality

! ∀Ao, Bo A
∗

= B ⊃ (A⇔ B)

! ∀Fβα, Gβα F
∗

= G ⊃ (∀Xα FX
∗

= GX)
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ST(Σ)

Mβfb(Σ) . H(Σ)

Mβηb(Σ)Mβξb(Σ)Mβf(Σ)

Mβξ(Σ) Mβη(Σ) Mβb(Σ)

Mβ(Σ)

ξ

η

η

ηξ

f

ξ

f

b

b

b

b

ξη

full

Non-trivial direction of Boolean extensionality

! ∀Ao, Bo (A⇔ B) ⊃ A
∗

= B
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ST(Σ)

Mβfb(Σ) . H(Σ)

Mβηb(Σ)Mβξb(Σ)Mβf(Σ)

Mβξ(Σ) Mβη(Σ) Mβb(Σ)

Mβ(Σ)

ξ

η

η

ηξ

f

ξ

f

b

b

b

b

ξη

full

Non-trivial direct. of functional extensionality

! ∀Fβα, Gβα (∀Xα FX
∗

= GX) ⊃ F
∗

= G
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ST(Σ)

Mβfb(Σ) . H(Σ)

Mβηb(Σ)Mβξb(Σ)Mβf(Σ)

Mβξ(Σ) Mβη(Σ) Mβb(Σ)

Mβ(Σ)

ξ

η

η

ηξ

f

ξ

f

b

b

b

b

ξη

full

Example requiring property η

! (po(ιι)(λXι fιιX)) ⊃ (p f)
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ST(Σ)

Mβfb(Σ) . H(Σ)

Mβηb(Σ)Mβξb(Σ)Mβf(Σ)

Mβξ(Σ) Mβη(Σ) Mβb(Σ)

Mβ(Σ)

ξ

η

η

ηξ

f

ξ

f

b

b

b

b

ξη

full

Example requiring property ξ (and q!)

! (∀Xι (fιιX)
∗

= X) ∧ po(ιι)(λXι X)

⊃ p(λXι fX)
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ST(Σ)

Mβfb(Σ) . H(Σ)

Mβηb(Σ)Mβξb(Σ)Mβf(Σ)

Mβξ(Σ) Mβη(Σ) Mβb(Σ)

Mβ(Σ)

ξ

η

η

ηξ

f

ξ

f

b

b

b

b

ξη

full

Example requiring property f (and q!)

! (∀Xι (fιιX)
∗

= X) ∧ po(ιι)(λXι X)

⊃ (p f)
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ST(Σ)

Mβfb(Σ) . H(Σ)

Mβηb(Σ)Mβξb(Σ)Mβf(Σ)

Mβξ(Σ) Mβη(Σ) Mβb(Σ)

Mβ(Σ)

ξ

η

η

ηξ

f

ξ

f

b

b

b

b

ξη

full

Examples requiring property b

! (poo ao) ∧ (p bo)⇒ (p (a ∧ b))

! ¬(a
∗

= ¬a) (in particular ¬(a = ¬a))

! (hιo((h%)
∗

= (h⊥)))
∗

= (h⊥)
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ST(Σ)

Mβfb(Σ) . H(Σ)

Mβηb(Σ)Mβξb(Σ)Mβf(Σ)

Mβξ(Σ) Mβη(Σ) Mβb(Σ)

Mβ(Σ)

ξ

η

η

ηξ

f

ξ

f

b

b

b

b

ξη

full

Playing with DeMorgan’s Law:

! ∀X, Y X ∧ Y ⇔ ¬(¬X ∨ ¬Y)

’Ok’ for all model classes
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ST(Σ)

Mβfb(Σ) . H(Σ)

Mβηb(Σ)Mβξb(Σ)Mβf(Σ)

Mβξ(Σ) Mβη(Σ) Mβb(Σ)

Mβ(Σ)

ξ

η

η

ηξ

f

ξ

f

b

b

b

b

ξη

full

Playing with DeMorgan’s Law:

! ∀X, Y X ∧ Y ⇔ ¬(¬X ∨ ¬Y)

! ∀X, Y X ∧ Y
∗

= ¬(¬X ∨ ¬Y)

requires b
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ST(Σ)

Mβfb(Σ) . H(Σ)

Mβηb(Σ)Mβξb(Σ)Mβf(Σ)

Mβξ(Σ) Mβη(Σ) Mβb(Σ)

Mβ(Σ)

ξ

η

η

ηξ

f

ξ

f

b

b

b

b

ξη

full

Playing with DeMorgan’s Law:

! ∀X, Y X ∧ Y ⇔ ¬(¬X ∨ ¬Y)

! ∀X, Y X ∧ Y
∗

= ¬(¬X ∨ ¬Y)

! (λUλV U ∧ V)
∗

= (λXλY ¬(¬X ∨ ¬Y))

requires b and ξ
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Mβfb(Σ) . H(Σ)

Mβηb(Σ)Mβξb(Σ)Mβf(Σ)

Mβξ(Σ) Mβη(Σ) Mβb(Σ)

Mβ(Σ)

ξ

η

η

ηξ

f

ξ
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Playing with DeMorgan’s Law:

! ∀X, Y X ∧ Y ⇔ ¬(¬X ∨ ¬Y)

! ∀X, Y X ∧ Y
∗

= ¬(¬X ∨ ¬Y)

! (λUλV U ∧ V)
∗

= (λXλY ¬(¬X ∨ ¬Y))

! ∧
∗

= (λXλY ¬(¬X ∨ ¬Y))

requires b and f
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ST(Σ)

Mβfb(Σ) . H(Σ)

Mβηb(Σ)Mβξb(Σ)Mβf(Σ)

Mβξ(Σ) Mβη(Σ) Mβb(Σ)

Mβ(Σ)

ξ

η

η

ηξ

f

ξ

f

b

b

b

b

ξη

full

Set comprehension

! big challenge for automation

! [Benzm.BrownKohlhase-Draft-05] set
instantiations can be used to simulate
cut-rule if one of the following axioms
is given: comprehension, induction,
extensionality, choice, description

! dependend on logical constants in Σ

ATPHOL’06-[7] – p.201
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Mβfb(Σ) . H(Σ)

Mβηb(Σ)Mβξb(Σ)Mβf(Σ)

Mβξ(Σ) Mβη(Σ) Mβb(Σ)

Mβ(Σ)

ξ

η

η

ηξ

f
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b

b
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full

Set comprehension

! big challenge for automation

! [Benzm.BrownKohlhase-Draft-05] set
instantiations can be used to simulate
cut-rule if one of the following axioms
is given: comprehension, induction,
extensionality, choice, description

! dependend on logical constants in Σ

On the following slides emphasis on:

! signature Σ varying

! no property q assumed
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ST(Σ)

Mβfb(Σ) . H(Σ)

Mβηb(Σ)Mβξb(Σ)Mβf(Σ)

Mβξ(Σ) Mβη(Σ) Mβb(Σ)

Mβ(Σ)

ξ

η

η

ηξ

f

ξ

f

b

b

b

b

ξη

full

Set comprehension

! big challenge for automation

! [Benzm.BrownKohlhase-Draft-05] set
instantiations can be used to simulate
cut-rule if one of the following axioms
is given: comprehension, induction,
extensionality, choice, description

! dependend on logical constants in Σ

On the following slides emphasis on:

! signature Σ varying

! no property q assumed

External vs. internal logical constants

! if ¬ /∈ Σ:
¬ refers to ’external’ symbol
M |= ¬A means M 1|= A
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ST(Σ)

Mβfb(Σ) . H(Σ)

Mβηb(Σ)Mβξb(Σ)Mβf(Σ)

Mβξ(Σ) Mβη(Σ) Mβb(Σ)

Mβ(Σ)

ξ

η

η

ηξ

f

ξ

f

b

b

b

b

ξη

full

Set comprehension

! ∃Noo∀Po NP⇔ ¬P

" if ¬ ∈ Σ or {⊥,⊃} ⊆ Σ or
{⊥,⇔} ⊆ Σ

" e.g.: Noo ←− λXo ¬X

e.g.: Noo ←− λXo X ⊃ ⊥
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Set comprehension

! ∃Noo∀Po NP⇔ ¬P

" if ¬ /∈ Σ and
{⊥,⊃} 1⊆ Σ or {⊥,⇔} 1⊆ Σ
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ST(Σ)

Mβfb(Σ) . H(Σ)

Mβηb(Σ)Mβξb(Σ)Mβf(Σ)
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Set comprehension

! ∃Noo∀Po NP⇔ ¬P

" if ¬ /∈ Σ and
{⊥,⊃} 1⊆ Σ or {⊥,⇔} 1⊆ Σ

Other examples from [Brown-PhD-04]

! Surjective Cantor Theorem

! Injective Cantor Theorem
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Semantics: Examples of
Σ-Models
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We now sketch the construction of models in the model classes
M∗(Σ) to demonstrate concretely how properties for Boolean,
strong and weak functional extensionality can fail.
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We now sketch the construction of models in the model classes
M∗(Σ) to demonstrate concretely how properties for Boolean,
strong and weak functional extensionality can fail.

We need this to show that the inclusions of the model classes in our
landscape are proper, and we indeed need all of them.
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! We choose (D,@) as the full frame with Do := {T, F} and
Dι := {∗}.
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! We choose (D,@) as the full frame with Do := {T, F} and
Dι := {∗}.

! Easy to define an evaluation function E for this frame by
induction on terms, using functions to interpret λ-abstractions.
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! We choose (D,@) as the full frame with Do := {T, F} and
Dι := {∗}.

! Easy to define an evaluation function E for this frame by
induction on terms, using functions to interpret λ-abstractions.

! The identity function υ:Do −→ {T, F} is a valuation, assuming
the logical constants are interpreted in the standard way.
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! We choose (D,@) as the full frame with Do := {T, F} and
Dι := {∗}.

! Easy to define an evaluation function E for this frame by
induction on terms, using functions to interpret λ-abstractions.

! The identity function υ:Do −→ {T, F} is a valuation, assuming
the logical constants are interpreted in the standard way.

! Thus, Mβfb := (D,@, E , υ) defines a Σ-model.
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! We choose (D,@) as the full frame with Do := {T, F} and
Dι := {∗}.

! Easy to define an evaluation function E for this frame by
induction on terms, using functions to interpret λ-abstractions.

! The identity function υ:Do −→ {T, F} is a valuation, assuming
the logical constants are interpreted in the standard way.

! Thus, Mβfb := (D,@, E , υ) defines a Σ-model.
! This model satisfies properties b, f (hence η and ξ) and q

(since the frame is full).
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! We choose (D,@) as the full frame with Do := {T, F} and
Dι := {∗}.

! Easy to define an evaluation function E for this frame by
induction on terms, using functions to interpret λ-abstractions.

! The identity function υ:Do −→ {T, F} is a valuation, assuming
the logical constants are interpreted in the standard way.

! Thus, Mβfb := (D,@, E , υ) defines a Σ-model.
! This model satisfies properties b, f (hence η and ξ) and q

(since the frame is full).
! So, Mβfb ∈ ST(Σ) ⊆ H(Σ) ⊆Mβfb(Σ) ⊆ . . ..
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ST(Σ)

Mβfb(Σ) < H(Σ)

Mβηb(Σ)Mβξb(Σ)Mβf(Σ)

Mβξ(Σ) Mβη(Σ) Mβb(Σ)

Mβ(Σ)

ξ

η

η

ηξ

f

ξ

f

b

b

b

b

ξη

full
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! Assume Σ contains only the connectives ¬,∨,Πα; other
connectives defined as usual, e.g., ∀X,Y X ∧ Y ⇔ ¬(¬X ∨ ¬Y).
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! Assume Σ contains only the connectives ¬,∨,Πα; other
connectives defined as usual, e.g., ∀X,Y X ∧ Y ⇔ ¬(¬X ∨ ¬Y).

! Choose (D,@) as full frame with Do = {a, b, c} and Dι = {0, 1}.
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! Assume Σ contains only the connectives ¬,∨,Πα; other
connectives defined as usual, e.g., ∀X,Y X ∧ Y ⇔ ¬(¬X ∨ ¬Y).

! Choose (D,@) as full frame with Do = {a, b, c} and Dι = {0, 1}.
! We define evaluation function E for this frame by defining E(¬),

E(∨), and E(Πα):

E(¬) a b c

c c a

E(∨) a b c

a a a a

b a a a

c a a c

E(Πα)@f =

{

a, if f@g ∈ {a, b} for all g ∈ Dα

c, if f@g = c for some g ∈ Dα
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! Assume Σ contains only the connectives ¬,∨,Πα; other
connectives defined as usual, e.g., ∀X,Y X ∧ Y ⇔ ¬(¬X ∨ ¬Y).

! Choose (D,@) as full frame with Do = {a, b, c} and Dι = {0, 1}.
! We define evaluation function E for this frame by defining E(¬),

E(∨), and E(Πα):

E(¬) a b c

c c a

E(∨) a b c

a a a a

b a a a

c a a c

E(Πα)@f =

{

a, if f@g ∈ {a, b} for all g ∈ Dα

c, if f@g = c for some g ∈ Dα

! We can choose E(w) to be arbitrary for parameters w ∈ Σ.
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! Since (D,@) is a frame, hence functional, this uniquely
determines E on all formulae.
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! Since (D,@) is a frame, hence functional, this uniquely
determines E on all formulae.

! Since the frame is full, we are guaranteed that there will be
enough functions to interpret λ-abstractions.

ATPHOL’06-[7] – p.209



c©Benzmüller, 2006

Ex.: Model without Boolean Extensionality
HO

L

AT
Pλ

! Since (D,@) is a frame, hence functional, this uniquely
determines E on all formulae.

! Since the frame is full, we are guaranteed that there will be
enough functions to interpret λ-abstractions.

! Let υ:Do −→ {T, F} be defined by υ(a) := T, υ(b) := T and
υ(c) := F.
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! Since (D,@) is a frame, hence functional, this uniquely
determines E on all formulae.

! Since the frame is full, we are guaranteed that there will be
enough functions to interpret λ-abstractions.

! Let υ:Do −→ {T, F} be defined by υ(a) := T, υ(b) := T and
υ(c) := F.

! Easy to check that Mβf := (D,@, E , υ) is indeed a Σ-model.
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! Since (D,@) is a frame, hence functional, this uniquely
determines E on all formulae.

! Since the frame is full, we are guaranteed that there will be
enough functions to interpret λ-abstractions.

! Let υ:Do −→ {T, F} be defined by υ(a) := T, υ(b) := T and
υ(c) := F.

! Easy to check that Mβf := (D,@, E , υ) is indeed a Σ-model.
! Since Mβf is a model over a frame it satisfies property f.
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! Since (D,@) is a frame, hence functional, this uniquely
determines E on all formulae.

! Since the frame is full, we are guaranteed that there will be
enough functions to interpret λ-abstractions.

! Let υ:Do −→ {T, F} be defined by υ(a) := T, υ(b) := T and
υ(c) := F.

! Easy to check that Mβf := (D,@, E , υ) is indeed a Σ-model.
! Since Mβf is a model over a frame it satisfies property f.
! Since this frame is full, we know property q holds.
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! Since (D,@) is a frame, hence functional, this uniquely
determines E on all formulae.

! Since the frame is full, we are guaranteed that there will be
enough functions to interpret λ-abstractions.

! Let υ:Do −→ {T, F} be defined by υ(a) := T, υ(b) := T and
υ(c) := F.

! Easy to check that Mβf := (D,@, E , υ) is indeed a Σ-model.
! Since Mβf is a model over a frame it satisfies property f.
! Since this frame is full, we know property q holds.
! Clearly property b fails.
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! Since (D,@) is a frame, hence functional, this uniquely
determines E on all formulae.

! Since the frame is full, we are guaranteed that there will be
enough functions to interpret λ-abstractions.

! Let υ:Do −→ {T, F} be defined by υ(a) := T, υ(b) := T and
υ(c) := F.

! Easy to check that Mβf := (D,@, E , υ) is indeed a Σ-model.
! Since Mβf is a model over a frame it satisfies property f.
! Since this frame is full, we know property q holds.
! Clearly property b fails.
! So, Mβf ∈Mβf(Σ) \ Mβfb(Σ).
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ST(Σ)

Mβfb(Σ) < H(Σ)

Mβηb(Σ)Mβξb(Σ)Mβf(Σ)

Mβξ(Σ) Mβη(Σ) Mβb(Σ)

Mβ(Σ)

ξ

η

η

ηξ

f

ξ

f

b

b

b

b

ξη

full
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In the previous model one can easily verify, if d := Eϕ(Do) and
e := Eϕ(Eo), then the values Eϕ(D ∧E), Eϕ(D⇒ E), and
Eϕ(D⇔ E) are given by the following tables:

e:

E(D ∧E) a b c

d: a a a c

b a a c

c c c c

e:

E(D⇒ E) a b c

d: a a a c

b a a c

c a a a

e:

E(D⇔ E) a b c

d: a a a c

b a a c

c c c a

Now we show that one can properly model the
woodchuck/groundhog example.
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! Let Mβf be given as above and suppose woodchuckι→o,
groundhogι→o, johnι, and philι are in the signature Σ.
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! Let Mβf be given as above and suppose woodchuckι→o,
groundhogι→o, johnι, and philι are in the signature Σ.

! Let E(phil) := 0 and E(john) := 1.
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! Let Mβf be given as above and suppose woodchuckι→o,
groundhogι→o, johnι, and philι are in the signature Σ.

! Let E(phil) := 0 and E(john) := 1.
! Let E(woodchuck) be the function w ∈ Dι→o with w(0) = b and

w(1) = c.
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! Let Mβf be given as above and suppose woodchuckι→o,
groundhogι→o, johnι, and philι are in the signature Σ.

! Let E(phil) := 0 and E(john) := 1.
! Let E(woodchuck) be the function w ∈ Dι→o with w(0) = b and

w(1) = c.
! Let E(groundhog) be the function g ∈ Dι→o with g(0) = a and

g(1) = c.
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! Let Mβf be given as above and suppose woodchuckι→o,
groundhogι→o, johnι, and philι are in the signature Σ.

! Let E(phil) := 0 and E(john) := 1.
! Let E(woodchuck) be the function w ∈ Dι→o with w(0) = b and

w(1) = c.
! Let E(groundhog) be the function g ∈ Dι→o with g(0) = a and

g(1) = c.
! One can show that the sentence
∀Xι (woodchuck X)⇔ (groundhog X) is valid.
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! Let Mβf be given as above and suppose woodchuckι→o,
groundhogι→o, johnι, and philι are in the signature Σ.

! Let E(phil) := 0 and E(john) := 1.
! Let E(woodchuck) be the function w ∈ Dι→o with w(0) = b and

w(1) = c.
! Let E(groundhog) be the function g ∈ Dι→o with g(0) = a and

g(1) = c.
! One can show that the sentence
∀Xι (woodchuck X)⇔ (groundhog X) is valid.

! Also, E(woodchuck phil) = b and E(groundhog phil) = a, so the
propositions (woodchuck phil) and (groundhog phil) are valid.
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! Suppose believeι→o→o ∈ Σ and E(believe) is the (Curried)
function bel ∈ Dι→o→o such that bel(1)(b) = b and
bel(1)(a) = bel(1)(c) = bel(0)(a) = bel(0)(b) = bel(0)(c) = c.
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! Suppose believeι→o→o ∈ Σ and E(believe) is the (Curried)
function bel ∈ Dι→o→o such that bel(1)(b) = b and
bel(1)(a) = bel(1)(c) = bel(0)(a) = bel(0)(b) = bel(0)(c) = c.

! Intuitively, John believes propositions with value b, but not
those with value a or c.
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! Suppose believeι→o→o ∈ Σ and E(believe) is the (Curried)
function bel ∈ Dι→o→o such that bel(1)(b) = b and
bel(1)(a) = bel(1)(c) = bel(0)(a) = bel(0)(b) = bel(0)(c) = c.

! Intuitively, John believes propositions with value b, but not
those with value a or c.

! So, believes john(woodchuck phil) is valid, while
believes john(groundhog phil) is not.
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As we have seen, Boolean extensionality fails when one has more
than two values in Do.
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As we have seen, Boolean extensionality fails when one has more
than two values in Do. We can generalize the construction defining
Do := {F} ∪ B, where B is any set with T ∈ B and F /∈ B.
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As we have seen, Boolean extensionality fails when one has more
than two values in Do. We can generalize the construction defining
Do := {F} ∪ B, where B is any set with T ∈ B and F /∈ B. The
model will satisfy Boolean extensionality iff B = {T}.
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As we have seen, Boolean extensionality fails when one has more
than two values in Do. We can generalize the construction defining
Do := {F} ∪ B, where B is any set with T ∈ B and F /∈ B. The
model will satisfy Boolean extensionality iff B = {T}. In this way,
we can easily construct models for the case with property b and the
case without property b simultaneously.
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As we have seen, Boolean extensionality fails when one has more
than two values in Do. We can generalize the construction defining
Do := {F} ∪ B, where B is any set with T ∈ B and F /∈ B. The
model will satisfy Boolean extensionality iff B = {T}. In this way,
we can easily construct models for the case with property b and the
case without property b simultaneously. We will use this idea to
parameterize the remaining model constructions by B.

ATPHOL’06-[7] – p.214



c©Benzmüller, 2006
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As we have seen, Boolean extensionality fails when one has more
than two values in Do. We can generalize the construction defining
Do := {F} ∪ B, where B is any set with T ∈ B and F /∈ B. The
model will satisfy Boolean extensionality iff B = {T}. In this way,
we can easily construct models for the case with property b and the
case without property b simultaneously. We will use this idea to
parameterize the remaining model constructions by B.

These semantic constructions are similar to those in multi-valued
logics.
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Generalizing the Previous Model
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As we have seen, Boolean extensionality fails when one has more
than two values in Do. We can generalize the construction defining
Do := {F} ∪ B, where B is any set with T ∈ B and F /∈ B. The
model will satisfy Boolean extensionality iff B = {T}. In this way,
we can easily construct models for the case with property b and the
case without property b simultaneously. We will use this idea to
parameterize the remaining model constructions by B.

These semantic constructions are similar to those in multi-valued
logics. In contrast to these logics where the logical connectives
are adapted to talk about multiple truth values, in our setting we are
mainly interested in multiple truth values as diverse υ-pre-images of
T and F.
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Semantics: Examples of
Σ-Models (Contd.)
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! Idea: attach distinguishing labels to functions without changing
their applicative behavior
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! Let B be any set with T ∈ B and F /∈ B
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! Idea: attach distinguishing labels to functions without changing
their applicative behavior

! Let B be any set with T ∈ B and F /∈ B

! Let Do := {F} ∪ B and Dι := {∗}
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! Idea: attach distinguishing labels to functions without changing
their applicative behavior

! Let B be any set with T ∈ B and F /∈ B

! Let Do := {F} ∪ B and Dι := {∗}

! For each function type βα, let

Dβα := {(i, f) | i ∈ {0, 1} and f:Dα −→ Dβ}

ATPHOL’06-[8] – p.216



c©Benzmüller, 2006

Ex.: Models without Funct. Extensionality
HO

L

AT
Pλ

! Idea: attach distinguishing labels to functions without changing
their applicative behavior

! Let B be any set with T ∈ B and F /∈ B

! Let Do := {F} ∪ B and Dι := {∗}

! For each function type βα, let

Dβα := {(i, f) | i ∈ {0, 1} and f:Dα −→ Dβ}

! We define application by

(i, f)@a := f(a)

whenever (i, f) ∈ Dβα and a ∈ Dα
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! Easy to check that (D,@) is an applicative structure:
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! Easy to check that (D,@) is an applicative structure:
! Evaluation function defined by induction on terms
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! Easy to check that (D,@) is an applicative structure:
! Evaluation function defined by induction on terms

" E(¬) := (0, n) where n(b) := F for every b ∈ B and n(F) := T
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! Easy to check that (D,@) is an applicative structure:
! Evaluation function defined by induction on terms

" E(¬) := (0, n) where n(b) := F for every b ∈ B and n(F) := T

" E(∨) := (0, d) where
d(b) := (0, kT) for every b ∈ B and
d(F) := (0, id)

(kT is the constant T function)
(id is the identity function from Do to Do)
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! Easy to check that (D,@) is an applicative structure:
! Evaluation function defined by induction on terms

" E(¬) := (0, n) where n(b) := F for every b ∈ B and n(F) := T

" E(∨) := (0, d) where
d(b) := (0, kT) for every b ∈ B and
d(F) := (0, id)

(kT is the constant T function)
(id is the identity function from Do to Do)

" E(Πα) := (0,πα) where for each (i, f) ∈ Doα, πα((i, f)) := T if
f(a) ∈ B for all a ∈ Dα and πα(i, f) := F otherwise
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! Easy to check that (D,@) is an applicative structure:
! Evaluation function defined by induction on terms

" E(¬) := (0, n) where n(b) := F for every b ∈ B and n(F) := T

" E(∨) := (0, d) where
d(b) := (0, kT) for every b ∈ B and
d(F) := (0, id)

(kT is the constant T function)
(id is the identity function from Do to Do)

" E(Πα) := (0,πα) where for each (i, f) ∈ Doα, πα((i, f)) := T if
f(a) ∈ B for all a ∈ Dα and πα(i, f) := F otherwise

" qα := (0, qα) ∈ Doαα where qα(a) := (0, sa) and sa(b) := T if
a = b and sa(b) := F otherwise
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! Easy to check that (D,@) is an applicative structure:
! Evaluation function defined by induction on terms

" E(¬) := (0, n) where n(b) := F for every b ∈ B and n(F) := T

" E(∨) := (0, d) where
d(b) := (0, kT) for every b ∈ B and
d(F) := (0, id)

(kT is the constant T function)
(id is the identity function from Do to Do)

" E(Πα) := (0,πα) where for each (i, f) ∈ Doα, πα((i, f)) := T if
f(a) ∈ B for all a ∈ Dα and πα(i, f) := F otherwise

" qα := (0, qα) ∈ Doαα where qα(a) := (0, sa) and sa(b) := T if
a = b and sa(b) := F otherwise

" E(w) ∈ Dα arbitrary for parameters w ∈ Σα.
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" For variables, we define Eϕ(X) := ϕ(X)
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" For application, we define Eϕ(FA) := Eϕ(F)@Eϕ(A)
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" For variables, we define Eϕ(X) := ϕ(X)

" For application, we define Eϕ(FA) := Eϕ(F)@Eϕ(A)

" For λ-abstractions, we define Eϕ(λXα Bβ) := (0, f) where
f:Dα −→ Dβ is the function such that f(a) = Eϕ,[a/X](B) for
all a ∈ Dα
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" For variables, we define Eϕ(X) := ϕ(X)

" For application, we define Eϕ(FA) := Eϕ(F)@Eϕ(A)

" For λ-abstractions, we define Eϕ(λXα Bβ) := (0, f) where
f:Dα −→ Dβ is the function such that f(a) = Eϕ,[a/X](B) for
all a ∈ Dα

! With some work (which we omit), one can show that this E is
an evaluation function
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" For variables, we define Eϕ(X) := ϕ(X)

" For application, we define Eϕ(FA) := Eϕ(F)@Eϕ(A)

" For λ-abstractions, we define Eϕ(λXα Bβ) := (0, f) where
f:Dα −→ Dβ is the function such that f(a) = Eϕ,[a/X](B) for
all a ∈ Dα

! With some work (which we omit), one can show that this E is
an evaluation function

! Taking υ to be the function such that υ(b) := T for every b ∈ B
and υ(F) := F, one can easily show that this is a valuation
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" For variables, we define Eϕ(X) := ϕ(X)

" For application, we define Eϕ(FA) := Eϕ(F)@Eϕ(A)

" For λ-abstractions, we define Eϕ(λXα Bβ) := (0, f) where
f:Dα −→ Dβ is the function such that f(a) = Eϕ,[a/X](B) for
all a ∈ Dα

! With some work (which we omit), one can show that this E is
an evaluation function

! Taking υ to be the function such that υ(b) := T for every b ∈ B
and υ(F) := F, one can easily show that this is a valuation

! Hence, MB := (D,@, E , υ) is a Σ-model
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! The objects qα := (0, qα) witness property q for MB
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! The objects qα := (0, qα) witness property q for MB

! The objects (1, qα) also witness property q (so, in the
non-functional case such witnesses are not unique)
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! The objects qα := (0, qα) witness property q for MB

! The objects (1, qα) also witness property q (so, in the
non-functional case such witnesses are not unique)

! Hence, MB := (D,@, E , υ) is a Σ-model with property q
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! Property f fails for MB, since the applicative structure (D,@) is
not functional:
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! Property f fails for MB, since the applicative structure (D,@) is
not functional:

" Consider u:Dι −→ Dι.
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! Property f fails for MB, since the applicative structure (D,@) is
not functional:

" Consider u:Dι −→ Dι.
" For both (0, u), (1, u) ∈ Dιι we have

(i, u)@∗ = ∗

although (0, u) #= (1, u)
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! Does η hold?
! No!
! Compute, for example, E(λFβα F) and E(λFβα λXα FX)

" E(λFβα F) = (0, id) where id is the identity function from Dβα

to Dβα
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! Does η hold?
! No!
! Compute, for example, E(λFβα F) and E(λFβα λXα FX)

" E(λFβα F) = (0, id) where id is the identity function from Dβα

to Dβα

" E(λFβα λXα FX) = (0, p) where p is the function from Dβα to
Dβα such that p((i, f)) = (0, f) for each f:Dα −→ Dβ
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! Does η hold?
! No!
! Compute, for example, E(λFβα F) and E(λFβα λXα FX)

" E(λFβα F) = (0, id) where id is the identity function from Dβα

to Dβα

" E(λFβα λXα FX) = (0, p) where p is the function from Dβα to
Dβα such that p((i, f)) = (0, f) for each f:Dα −→ Dβ

! Hence E(λFβα F) #= E(λFβα λXα FX)
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! Does ξ hold?
! Yes!
! If

Eϕ,[a/X](M) = Eϕ,[a/X](N)

for every a ∈ Dα, then

Eϕ(λXα M) = (0, f) = Eϕ(λX N)

where f(a) = Eϕ,[a/X](M) = Eϕ,[a/X](N) for every a ∈ Dα.
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! If B = {T}, then the model Mβξb := M{T} satisfies property b.
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! If B = {T}, then the model Mβξb := M{T} satisfies property b.
! So, we know Mβξb ∈Mβξb(Σ) \ Mβfb(Σ).

ATPHOL’06-[8] – p.223



c©Benzmüller, 2006

Ex.: Models without η and f
HO

L

AT
Pλ

! If B = {T}, then the model Mβξb := M{T} satisfies property b.
! So, we know Mβξb ∈Mβξb(Σ) \ Mβfb(Σ).
! On the other hand, if b is any value with b /∈ {T, F}, and

B = {T, b}, then the model Mβξ := M{T,b} does not satisfy
property b.

ATPHOL’06-[8] – p.223



c©Benzmüller, 2006

Ex.: Models without η and f
HO

L

AT
Pλ

! If B = {T}, then the model Mβξb := M{T} satisfies property b.
! So, we know Mβξb ∈Mβξb(Σ) \ Mβfb(Σ).
! On the other hand, if b is any value with b /∈ {T, F}, and

B = {T, b}, then the model Mβξ := M{T,b} does not satisfy
property b.

! In this case, we know Mβξ ∈Mβξ(Σ) \ (Mβf(Σ) ∪Mβξb(Σ)).
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! Let MB be the Σ-model (D,@, E , υ) as constructed before
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! Let MB be the Σ-model (D,@, E , υ) as constructed before
! Define an alternative evaluation function E ′ by induction:
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! Let MB be the Σ-model (D,@, E , υ) as constructed before
! Define an alternative evaluation function E ′ by induction:

" For all w ∈ Σ, let E ′(w) := E(w)
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! Let MB be the Σ-model (D,@, E , υ) as constructed before
! Define an alternative evaluation function E ′ by induction:

" For all w ∈ Σ, let E ′(w) := E(w)

" For variables we define E ′ϕ(X) := ϕ(X)
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! Let MB be the Σ-model (D,@, E , υ) as constructed before
! Define an alternative evaluation function E ′ by induction:

" For all w ∈ Σ, let E ′(w) := E(w)

" For variables we define E ′ϕ(X) := ϕ(X)

" We must define E ′ϕ(FA) := E ′ϕ(F)@E ′ϕ(A)
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! Let MB be the Σ-model (D,@, E , υ) as constructed before
! Define an alternative evaluation function E ′ by induction:

" For all w ∈ Σ, let E ′(w) := E(w)

" For variables we define E ′ϕ(X) := ϕ(X)

" We must define E ′ϕ(FA) := E ′ϕ(F)@E ′ϕ(A)

" We choose E ′ϕ(λXα Bβ) := (1, f) where f:Dα −→ Dβ is the
function such that f(a) = Eϕ,[a/X](B) for all a ∈ Dα
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! Let MB be the Σ-model (D,@, E , υ) as constructed before
! Define an alternative evaluation function E ′ by induction:

" For all w ∈ Σ, let E ′(w) := E(w)

" For variables we define E ′ϕ(X) := ϕ(X)

" We must define E ′ϕ(FA) := E ′ϕ(F)@E ′ϕ(A)

" We choose E ′ϕ(λXα Bβ) := (1, f) where f:Dα −→ Dβ is the
function such that f(a) = Eϕ,[a/X](B) for all a ∈ Dα

! E and E ′ agree on all constants, they are different though:

E(λXι X) = (0, id) #= (1, id) = E ′(λXι X)

where id : Dι −→ Dι is the identity function
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! Let MB be the Σ-model (D,@, E , υ) as constructed before
! Define an alternative evaluation function E ′ by induction:

" For all w ∈ Σ, let E ′(w) := E(w)

" For variables we define E ′ϕ(X) := ϕ(X)

" We must define E ′ϕ(FA) := E ′ϕ(F)@E ′ϕ(A)

" We choose E ′ϕ(λXα Bβ) := (1, f) where f:Dα −→ Dβ is the
function such that f(a) = Eϕ,[a/X](B) for all a ∈ Dα

! E and E ′ agree on all constants, they are different though:

E(λXι X) = (0, id) #= (1, id) = E ′(λXι X)

where id : Dι −→ Dι is the identity function
! Thus, in non-functional models evaluation functions are not

uniquely determined by their values on constants
ATPHOL’06-[8] – p.226
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Not here!

See [JSL-04]
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