
Historische Vorbemerkungen

C. Benzmüller Konzepte & Nutzen von λ-Ausdrücken in Java 8 3

Bilder: Wikipedia

C. Benzmüller Konzepte & Nutzen von λ-Ausdrücken in Java 8 4

Allgemeine Theorien von Berechnung (30er Jahre)
Bilder: Wikipedia

Turing (1912-54)

Gödel (1906-1978)

Church (1903-95)

C. Benzmüller Konzepte & Nutzen von λ-Ausdrücken in Java 8 4

Allgemeine Theorien von Berechnung (30er Jahre)
Bilder: Wikipedia

x := x + 1

Prozeduren

Seiteneffekte

Turing (1912-54) Turing Maschine

while . . . do . . .

Gödel (1906-1978) µ-rekursive Funktionen

(λx .x x) (λz.z)

−→β (λz.z) (λz.z)

−→β (λz.z)

Funktionen als
- Objekte
- Argumente & Resultate

keine Seiteneffekte

Church (1903-95) λ-Kalkül

C. Benzmüller Konzepte & Nutzen von λ-Ausdrücken in Java 8 4

Allgemeine Theorien von Berechnung (30er Jahre)
Bilder: Wikipedia

(Algol, Fortran, Pascal, C) — Imperative Programmierung

x := x + 1

Prozeduren

Seiteneffekte

Turing (1912-54) Turing Maschine

while . . . do . . .

Gödel (1906-1978) µ-rekursive Funktionen

(λx .x x) (λz.z)

−→β (λz.z) (λz.z)

−→β (λz.z)

Funktionen als
- Objekte
- Argumente & Resultate

keine Seiteneffekte

Church (1903-95) λ-Kalkül
(LISP, ML, OCAML, HASKELL) — Funktionale Programmierung

C. Benzmüller Konzepte & Nutzen von λ-Ausdrücken in Java 8 4

c⃝Benzmüller, 2006

λ-Calculus: Motivation
HO

L

AT
Pλ

ATPHOL’06-[2] – p.38

Benzmüller, Christoph

c⃝Benzmüller, 2006

λ-Calculus: Motivation
HO

L

AT
Pλ

Consider the following arithmetical computations

(−1)2 − 1 = 0

(1)2 − 1 = 0

(2)2 − 1 = 3

. . .

ATPHOL’06-[2] – p.38

Benzmüller, Christoph

c⃝Benzmüller, 2006

λ-Calculus: Motivation
HO

L

AT
Pλ

Consider the following arithmetical computations

(−1)2 − 1 = 0

(1)2 − 1 = 0

(2)2 − 1 = 3

. . .

A more general arithmetic expression for the LHS:

x2 − 1

ATPHOL’06-[2] – p.38

Benzmüller, Christoph

c⃝Benzmüller, 2006

λ-Calculus: Motivation
HO

L

AT
Pλ

Consider the 0’s (Nullstellen) of this function; we can express the
existence of two 0’s in first-order logic as follows

∃n, m.n2 − 1 = 0 ∧m2 − 1 = 0 ∧ n ̸= m

ATPHOL’06-[2] – p.39

Benzmüller, Christoph

c⃝Benzmüller, 2006

λ-Calculus: Motivation
HO

L

AT
Pλ

Consider the 0’s (Nullstellen) of this function; we can express the
existence of two 0’s in first-order logic as follows

∃n, m.n2 − 1 = 0 ∧m2 − 1 = 0 ∧ n ̸= m

Now we may want to talk about the existence of a function f with two 0’s:

(1) ∃f.∃n, m.f(n) = 0 ∧ f(m) = 0 ∧ n ̸= m

ATPHOL’06-[2] – p.39

Benzmüller, Christoph

c⃝Benzmüller, 2006

λ-Calculus: Motivation
HO

L

AT
Pλ

Consider the 0’s (Nullstellen) of this function; we can express the
existence of two 0’s in first-order logic as follows

∃n, m.n2 − 1 = 0 ∧m2 − 1 = 0 ∧ n ̸= m

Now we may want to talk about the existence of a function f with two 0’s:

(1) ∃f.∃n, m.f(n) = 0 ∧ f(m) = 0 ∧ n ̸= m

This expression is not a first-order statement; however we want to be able
to express such statements. We also want to prove such statements and
in a constructive proof we would like to provide witnesses for f and n, m.
In first-order logic we can describe f by the following equation

f(x) = x2 − 1

ATPHOL’06-[2] – p.39

Benzmüller, Christoph

c⃝Benzmüller, 2006

λ-Calculus: λ-terms
HO

L

AT
Pλ

In λ-calculus the specified function f can be described (without
giving it a name) by the witnessing λ-term

[λx.x2 − 1]

and the witnesses for n and m are −1 and 1.

ATPHOL’06-[2] – p.40

Benzmüller, Christoph

c⃝Benzmüller, 2006

λ-Calculus: Set of λ-expressions
HO

L

AT
Pλ

Given a countably infinite set of identifiers, say
a, b, c, ..., x, y, z, x1, x2, The set of all λ-expressions can then be
described by the following context-free grammar in BNF:

1. <expr> ::= <identifier>

ATPHOL’06-[2] – p.41

Benzmüller, Christoph

c⃝Benzmüller, 2006

λ-Calculus: Set of λ-expressions
HO

L

AT
Pλ

Given a countably infinite set of identifiers, say
a, b, c, ..., x, y, z, x1, x2, The set of all λ-expressions can then be
described by the following context-free grammar in BNF:

1. <expr> ::= <identifier>
2. <expr> ::= [λ <identifier> . <expr>] abstraction

ATPHOL’06-[2] – p.41

Benzmüller, Christoph

c⃝Benzmüller, 2006

λ-Calculus: Set of λ-expressions
HO

L

AT
Pλ

Given a countably infinite set of identifiers, say
a, b, c, ..., x, y, z, x1, x2, The set of all λ-expressions can then be
described by the following context-free grammar in BNF:

1. <expr> ::= <identifier>
2. <expr> ::= [λ <identifier> . <expr>] abstraction
3. <expr> ::= [<expr> <expr>] application

ATPHOL’06-[2] – p.41

Benzmüller, Christoph

c⃝Benzmüller, 2006

λ-Calculus: Conventions
HO

L

AT
Pλ

We often omit brackets with the following conventions:

! [FAB] means [[FA]B]. (Application associates to the left.)

ATPHOL’06-[2] – p.42

Benzmüller, Christoph

c⃝Benzmüller, 2006

λ-Calculus: Conventions
HO

L

AT
Pλ

We often omit brackets with the following conventions:

! [FAB] means [[FA]B]. (Application associates to the left.)
! [λx.λy.B] means [λx.[λy.B]].

ATPHOL’06-[2] – p.42

Benzmüller, Christoph

c⃝Benzmüller, 2006

λ-Calculus: Conventions
HO

L

AT
Pλ

We often omit brackets with the following conventions:

! [FAB] means [[FA]B]. (Application associates to the left.)
! [λx.λy.B] means [λx.[λy.B]].
! A dot (except possibly after λ <identifier>) stands for a left
bracket whose mate is as far to the right as possible without
changing the existing bracketing.

ATPHOL’06-[2] – p.42

Benzmüller, Christoph

c⃝Benzmüller, 2006

λ-Calculus: β-reduction
HO

L

AT
Pλ

Consider now the instantiation of (1) with these witness terms

∃f.∃n,m.f(n) = 0 ∧ f(m) = 0 ∧ n ̸= m

ATPHOL’06-[2] – p.43

Benzmüller, Christoph

c⃝Benzmüller, 2006

λ-Calculus: β-reduction
HO

L

AT
Pλ

Consider now the instantiation of (1) with these witness terms

∃f.∃n,m.f(n) = 0 ∧ f(m) = 0 ∧ n ̸= m

f −→ ∃n,m.[[λx.x2 − 1] n] = 0 ∧ [[λx.x2 − 1]m] = 0 ∧ n ̸= m

ATPHOL’06-[2] – p.43

Benzmüller, Christoph

c⃝Benzmüller, 2006

λ-Calculus: β-reduction
HO

L

AT
Pλ

Consider now the instantiation of (1) with these witness terms

∃f.∃n,m.f(n) = 0 ∧ f(m) = 0 ∧ n ̸= m

f −→ ∃n,m.[[λx.x2 − 1] n] = 0 ∧ [[λx.x2 − 1]m] = 0 ∧ n ̸= m
n,m −→ [[λx.x2 − 1] − 1] = 0 ∧ [[λx.x2 − 1] 1] = 0 ∧ −1 ̸= 1

ATPHOL’06-[2] – p.43

Benzmüller, Christoph

c⃝Benzmüller, 2006

λ-Calculus: β-reduction
HO

L

AT
Pλ

Consider now the instantiation of (1) with these witness terms

∃f.∃n,m.f(n) = 0 ∧ f(m) = 0 ∧ n ̸= m

f −→ ∃n,m.[[λx.x2 − 1] n] = 0 ∧ [[λx.x2 − 1]m] = 0 ∧ n ̸= m
n,m −→ [[λx.x2 − 1] − 1] = 0 ∧ [[λx.x2 − 1] 1] = 0 ∧ −1 ̸= 1

Finally we can ‘evaluate’ function applications by so called
β-reduction

((−1)2 − 1) = 0 ∧ (12 − 1) = 0 ∧ −1 ̸= 1

ATPHOL’06-[2] – p.43

Benzmüller, Christoph

c⃝Benzmüller, 2006

λ-Calculus: β-reduction
HO

L

AT
Pλ

The β-reduction rule expresses the idea of function application as
motivated on the previous slide. Formally it states that

[[λx.A]B] −→β A[x/B]

if all free occurrences in B remain free in A[x/B]. Here, A[x/B]

means the expression E with every free occurrence of x in A

replaced with B.

ATPHOL’06-[2] – p.44

Benzmüller, Christoph

c⃝Benzmüller, 2006

λ-Calculus: Currying
HO

L

AT
Pλ

A function of two variables is expressed in lambda calculus as a
function of one argument which returns a function of one argument.
For instance, the function

f(x, y) = x2 − y

is encoded as

[λx.λy.x2 − y]

ATPHOL’06-[2] – p.45

Benzmüller, Christoph

c⃝Benzmüller, 2006

λ-Calculus: α-conversion
HO

L

AT
Pλ

The names of the bound variables are unimportant:

λx.x2 − 1 and λy.y2 − 1

denote the same function.

ATPHOL’06-[2] – p.46

Benzmüller, Christoph

c⃝Benzmüller, 2006

λ-Calculus: α-conversion
HO

L

AT
Pλ

The names of the bound variables are unimportant:

λx.x2 − 1 and λy.y2 − 1

denote the same function.
Formally, the α-conversion rule states that if x and y are variables
and A is a λ-expression then

[λx.A]←→α [λy.A[x/y]]

if y does not appear freely in A and y is not bound by a λ in A

whenever it replaces a x.

ATPHOL’06-[2] – p.46

Benzmüller, Christoph

c⃝Benzmüller, 2006

λ-Calculus: η-reduction
HO

L

AT
Pλ

η-reduction expresses the idea of (functional) extensionality, which
in this context is that two functions are the same iff they give the
same result for all arguments:

[λx.Fx] −→η F

whenever x does not appear free in F.

ATPHOL’06-[2] – p.47

Benzmüller, Christoph

c⃝Benzmüller, 2006

λ-Calculus: βη-equivalence
HO

L

AT
Pλ

! We define←→∗αβη as the smallest equivalence relation closed
under the reduction rules −→β and −→η and α-conversion.
(Similarly we may define←→∗M for M ⊂ {α,β, η})

ATPHOL’06-[2] – p.48

Benzmüller, Christoph

c⃝Benzmüller, 2006

λ-Calculus: βη-equivalence
HO

L

AT
Pλ

! We define←→∗αβη as the smallest equivalence relation closed
under the reduction rules −→β and −→η and α-conversion.
(Similarly we may define←→∗M for M ⊂ {α,β, η})

! We call two λ-terms E and T αβη-equivalent (or short
equivalent) if

E ←→∗αβη T

ATPHOL’06-[2] – p.48

Benzmüller, Christoph

c⃝Benzmüller, 2006

λ-Calculus: βη-equivalence
HO

L

AT
Pλ

! We define←→∗αβη as the smallest equivalence relation closed
under the reduction rules −→β and −→η and α-conversion.
(Similarly we may define←→∗M for M ⊂ {α,β, η})

! We call two λ-terms E and T αβη-equivalent (or short
equivalent) if

E ←→∗αβη T

(Similarly we may define M-equivalence for M ⊂ {α,β, η})

ATPHOL’06-[2] – p.48

Benzmüller, Christoph

c⃝Benzmüller, 2006

λ-Calculus: Normalforms
HO

L

AT
Pλ

! A λ-expression is called a β-normal form if it does not allow
any β-reduction, i.e., has no subexpression of the form

[[λx . A]B]

ATPHOL’06-[2] – p.49

Benzmüller, Christoph

c⃝Benzmüller, 2006

λ-Calculus: Normalforms
HO

L

AT
Pλ

! A λ-expression is called a β-normal form if it does not allow
any β-reduction, i.e., has no subexpression of the form

[[λx . A]B]

! A λ-expression is called a η-normal form if it does not allow
any η-reduction, i.e., has no subexpression of the form (where
x does not occur free in E)

[λx.E x]

ATPHOL’06-[2] – p.49

Benzmüller, Christoph

c⃝Benzmüller, 2006

λ-Calculus: Normalforms
HO

L

AT
Pλ

! A λ-expression is called a β-normal form if it does not allow
any β-reduction, i.e., has no subexpression of the form

[[λx . A]B]

! A λ-expression is called a η-normal form if it does not allow
any η-reduction, i.e., has no subexpression of the form (where
x does not occur free in E)

[λx.E x]

! A λ-expression is called a βη-normal form if it satisfies both
conditions.

ATPHOL’06-[2] – p.49

Benzmüller, Christoph

c⃝Benzmüller, 2006

λ-Calculus: Normalforms
HO

L

AT
Pλ

! Not every λ-expression is equivalent to a ?-normal form (where
? ∈ {β,βη})

ATPHOL’06-[2] – p.50

Benzmüller, Christoph

c⃝Benzmüller, 2006

λ-Calculus: Normalforms
HO

L

AT
Pλ

! Not every λ-expression is equivalent to a ?-normal form (where
? ∈ {β,βη})

! The Church-Rosser theorem(s) state that if A −→∗ B and
A −→∗ C, then there is some D such that B −→∗ D and
C −→∗ D.

ATPHOL’06-[2] – p.50

Benzmüller, Christoph

c⃝Benzmüller, 2006

λ-Calculus: Normalforms
HO

L

AT
Pλ

! Not every λ-expression is equivalent to a ?-normal form (where
? ∈ {β,βη})

! The Church-Rosser theorem(s) state that if A −→∗ B and
A −→∗ C, then there is some D such that B −→∗ D and
C −→∗ D.

A

B C

D

ATPHOL’06-[2] – p.50

Benzmüller, Christoph

c⃝Benzmüller, 2006

λ-Calculus: Normalforms
HO

L

AT
Pλ

! Not every λ-expression is equivalent to a ?-normal form (where
? ∈ {β,βη})

! The Church-Rosser theorem(s) state that if A −→∗ B and
A −→∗ C, then there is some D such that B −→∗ D and
C −→∗ D.

A

B C

D

! From Church-Rosser it follows that every term has at most one
∗-normal form (up to α-conversion).

ATPHOL’06-[2] – p.50

Benzmüller, Christoph

c⃝Benzmüller, 2006

λ-Calculus: Iteration
HO

L

AT
Pλ

Consider twofold iteration of function f := [λx.x2 − 1]

f(f(x)) = (x2 − 1)2 − 1 = x4 − 2x2

ATPHOL’06-[2] – p.51

Benzmüller, Christoph

c⃝Benzmüller, 2006

λ-Calculus: Iteration
HO

L

AT
Pλ

Consider twofold iteration of function f := [λx.x2 − 1]

f(f(x)) = (x2 − 1)2 − 1 = x4 − 2x2

The following λ-term expresses twofold iteration of a function

[λg.λy.g [g y]]

ATPHOL’06-[2] – p.51

Benzmüller, Christoph

c⃝Benzmüller, 2006

λ-Calculus: Iteration
HO

L

AT
Pλ

Consider twofold iteration of function f := [λx.x2 − 1]

f(f(x)) = (x2 − 1)2 − 1 = x4 − 2x2

The following λ-term expresses twofold iteration of a function

[λg.λy.g [g y]]

Let us apply this λ-term now to our function f

[[λg.λy.g [g y]] [λx.x2 − 1]]

ATPHOL’06-[2] – p.51

c⃝Benzmüller, 2006

λ-Calculus: Iteration
HO

L

AT
Pλ

Consider twofold iteration of function f := [λx.x2 − 1]

f(f(x)) = (x2 − 1)2 − 1 = x4 − 2x2

The following λ-term expresses twofold iteration of a function

[λg.λy.g [g y]]

Let us apply this λ-term now to our function f

[[λg.λy.g [g y]] [λx.x2 − 1]]

−→β [λy.[λx.x2 − 1][[λx.x2 − 1]y]

ATPHOL’06-[2] – p.51

Benzmüller, Christoph

c⃝Benzmüller, 2006

λ-Calculus: Iteration
HO

L

AT
Pλ

Consider twofold iteration of function f := [λx.x2 − 1]

f(f(x)) = (x2 − 1)2 − 1 = x4 − 2x2

The following λ-term expresses twofold iteration of a function

[λg.λy.g [g y]]

Let us apply this λ-term now to our function f

[[λg.λy.g [g y]] [λx.x2 − 1]]

−→β [λy.[λx.x2 − 1][[λx.x2 − 1]y]

−→β λy.[λx.x2 − 1] [y2 − 1]

ATPHOL’06-[2] – p.51

Benzmüller, Christoph

c⃝Benzmüller, 2006

λ-Calculus: Iteration
HO

L

AT
Pλ

Consider twofold iteration of function f := [λx.x2 − 1]

f(f(x)) = (x2 − 1)2 − 1 = x4 − 2x2

The following λ-term expresses twofold iteration of a function

[λg.λy.g [g y]]

Let us apply this λ-term now to our function f

[[λg.λy.g [g y]] [λx.x2 − 1]]

−→β [λy.[λx.x2 − 1][[λx.x2 − 1]y]

−→β λy.[λx.x2 − 1] [y2 − 1]

−→β [λy.[y2 − 1]2 − 1] = λy.y4 − 2y2

ATPHOL’06-[2] – p.51

Benzmüller, Christoph

c⃝Benzmüller, 2006

λ-Calculus: Church Numerals
HO

L

AT
Pλ

We employ iteration to define natural numbers as Church numerals:

0 = [λf.λx.x], 1 = [λf.λx.fx], 2 = [λf.λx.f(fx)], . . .

ATPHOL’06-[2] – p.52

Benzmüller, Christoph

c⃝Benzmüller, 2006

λ-Calculus: Church Numerals
HO

L

AT
Pλ

We employ iteration to define natural numbers as Church numerals:

0 = [λf.λx.x], 1 = [λf.λx.fx], 2 = [λf.λx.f(fx)], . . .

Generally a natural number n is encoded as the Church numeral

n = [λf.λy.fn y]

where fn is an abbreviation for [f [f [f . . . [f
︸ ︷︷ ︸

n−times

y]]].

ATPHOL’06-[2] – p.52

Benzmüller, Christoph

c⃝Benzmüller, 2006

λ-Calculus: Church Numerals
HO

L

AT
Pλ

We employ iteration to define natural numbers as Church numerals:

0 = [λf.λx.x], 1 = [λf.λx.fx], 2 = [λf.λx.f(fx)], . . .

Generally a natural number n is encoded as the Church numeral

n = [λf.λy.fn y]

where fn is an abbreviation for [f [f [f . . . [f
︸ ︷︷ ︸

n−times

y]]].

Intuitively, the number n in lambda calculus is a function that takes
a function f as argument and returns the n-th iterate of f.

ATPHOL’06-[2] – p.52

Benzmüller, Christoph

c⃝Benzmüller, 2006

λ-Calculus: Church Numerals
HO

L

AT
Pλ

We can now define a successor function SUCC, which takes a
number n and returns n + 1:

SUCC = [λn.λf.λx.f[nfx]]

ATPHOL’06-[2] – p.53

Benzmüller, Christoph

c⃝Benzmüller, 2006

λ-Calculus: Church Numerals
HO

L

AT
Pλ

We can now define a successor function SUCC, which takes a
number n and returns n + 1:

SUCC = [λn.λf.λx.f[nfx]]

Addition is the defined as follows:

PLUS = [λm.λn.λf.λx.mf[nfx]]

ATPHOL’06-[2] – p.53

Benzmüller, Christoph

c⃝Benzmüller, 2006

λ-Calculus: Church Numerals
HO

L

AT
Pλ

We can now define a successor function SUCC, which takes a
number n and returns n + 1:

SUCC = [λn.λf.λx.f[nfx]]

Addition is the defined as follows:

PLUS = [λm.λn.λf.λx.mf[nfx]]

Multiplication can then be defined as

MULT = λm.λn.m[PLUS n]0,

the idea being that multiplying m and n is the same as adding n to 0

m times.

ATPHOL’06-[2] – p.53

Benzmüller, Christoph

c⃝Benzmüller, 2006

λ-Calculus: Church Numerals
HO

L

AT
Pλ

The predecessesor function is more difficult:

PRED = λn.λf.λx.n[λg.λh.h [g f]] [λu.x] [λu.u]

ATPHOL’06-[2] – p.54

Benzmüller, Christoph

c⃝Benzmüller, 2006

λ-Calculus: Church Numerals
HO

L

AT
Pλ

The predecessesor function is more difficult:

PRED = λn.λf.λx.n[λg.λh.h [g f]] [λu.x] [λu.u]

or alternatively

PRED = λn.n[λg.λk.[g 1] [λu.PLUS [g k] 1] k] [λl. 0] 0

ATPHOL’06-[2] – p.54

Benzmüller, Christoph

c⃝Benzmüller, 2006

λ-Calculus: Church Numerals
HO

L

AT
Pλ

The predecessesor function is more difficult:

PRED = λn.λf.λx.n[λg.λh.h [g f]] [λu.x] [λu.u]

or alternatively

PRED = λn.n[λg.λk.[g 1] [λu.PLUS [g k] 1] k] [λl. 0] 0

Note the trick [g1][λu.PLUS[g k] 1]k which evaluates to k if [g 1] is 0

and to [g k] + 1 otherwise.

ATPHOL’06-[2] – p.54

Benzmüller, Christoph

c⃝Benzmüller, 2006

λ-Calculus: Sets
HO

L

AT
Pλ

{x|x2 − 1 = 0}

({−1, 1})

ATPHOL’06-[2] – p.55

Benzmüller, Christoph

c⃝Benzmüller, 2006

λ-Calculus: Sets
HO

L

AT
Pλ

{x|x2 − 1 = 0}

({−1, 1})

The set A has two elements:

∃A.∃m, n.m ∈ A ∧ n ∈ A ∧m ̸= n

ATPHOL’06-[2] – p.55

Benzmüller, Christoph

c⃝Benzmüller, 2006

λ-Calculus: Sets
HO

L

AT
Pλ

{x|x2 − 1 = 0}

({−1, 1})

The set A has two elements:

∃A.∃m, n.m ∈ A ∧ n ∈ A ∧m ̸= n

In first-order, A can be ’defined’ by:

[x ∈ A] ≡ [x2 − 1 = 0]

ATPHOL’06-[2] – p.55

Benzmüller, Christoph

c⃝Benzmüller, 2006

λ-Calculus: Sets
HO

L

AT
Pλ

{x|x2 − 1 = 0}

({−1, 1})

The set A has two elements:

∃A.∃m, n.m ∈ A ∧ n ∈ A ∧m ̸= n

In first-order, A can be ’defined’ by:

[x ∈ A] ≡ [x2 − 1 = 0]

In this expression we talk about ’membership’

ATPHOL’06-[2] – p.55

Benzmüller, Christoph

c⃝Benzmüller, 2006

λ-Calculus: Sets
HO

L

AT
Pλ

{x|x2 − 1 = 0}

({−1, 1})

The set A has two elements:

∃A.∃m, n.m ∈ A ∧ n ∈ A ∧m ̸= n

In first-order, A can be ’defined’ by:

[x ∈ A] ≡ [x2 − 1 = 0]

In this expression we talk about ’membership’
Alternatively, we can express the characteristic function of A by the
λ-term

[λx.[x2 − 1 = 0]]

ATPHOL’06-[2] – p.55

Benzmüller, Christoph

c⃝Benzmüller, 2006

λ-Calculus: Sets
HO

L

AT
Pλ

[λx.x2 − 1 = 0]

ATPHOL’06-[2] – p.56

Benzmüller, Christoph

c⃝Benzmüller, 2006

λ-Calculus: Sets
HO

L

AT
Pλ

[λx.x2 − 1 = 0]

The idea is as follows

[[λx.x2 − 1 = 0] a] evaluates to a2 − 1 = 0

ATPHOL’06-[2] – p.56

Benzmüller, Christoph

c⃝Benzmüller, 2006

λ-Calculus: Sets
HO

L

AT
Pλ

[λx.x2 − 1 = 0]

The idea is as follows

[[λx.x2 − 1 = 0] a] evaluates to a2 − 1 = 0

The expression a2 − 1 = 0 is ⊤ (⊤ denotes Truth) if a is −1 or 1.

ATPHOL’06-[2] – p.56

Benzmüller, Christoph

c⃝Benzmüller, 2006

λ-Calculus: Sets
HO

L

AT
Pλ

[λx.x2 − 1 = 0]

The idea is as follows

[[λx.x2 − 1 = 0] a] evaluates to a2 − 1 = 0

The expression a2 − 1 = 0 is ⊤ (⊤ denotes Truth) if a is −1 or 1.
Otherwise, a2 − 1 = 0 is ⊥ (⊥ denotes Falsehood)

ATPHOL’06-[2] – p.56

Benzmüller, Christoph

c⃝Benzmüller, 2006

λ-Calculus: Sets
HO

L

AT
Pλ

[λx.x2 − 1 = 0]

The idea is as follows

[[λx.x2 − 1 = 0] a] evaluates to a2 − 1 = 0

The expression a2 − 1 = 0 is ⊤ (⊤ denotes Truth) if a is −1 or 1.
Otherwise, a2 − 1 = 0 is ⊥ (⊥ denotes Falsehood)
The characteristic function [λx.x2 − 1 = 0] provides a witness for

∃P.∃m, n. [Pm] ∧ [Pn] ∧ m ̸= n

ATPHOL’06-[2] – p.56

Benzmüller, Christoph

c⃝Benzmüller, 2006

λ-Calculus: Sets
HO

L

AT
Pλ

For each natural number n there is a Church numeral:

n = λf.λy.[fn y]

ATPHOL’06-[2] – p.57

Benzmüller, Christoph

c⃝Benzmüller, 2006

λ-Calculus: Sets
HO

L

AT
Pλ

For each natural number n there is a Church numeral:

n = λf.λy.[fn y]

We can also define the set N of all Church numerals

ATPHOL’06-[2] – p.57

Benzmüller, Christoph

c⃝Benzmüller, 2006

λ-Calculus: Sets
HO

L

AT
Pλ

For each natural number n there is a Church numeral:

n = λf.λy.[fn y]

We can also define the set N of all Church numerals
N must satisfy three properties:

ATPHOL’06-[2] – p.57

Benzmüller, Christoph

c⃝Benzmüller, 2006

λ-Calculus: Sets
HO

L

AT
Pλ

For each natural number n there is a Church numeral:

n = λf.λy.[fn y]

We can also define the set N of all Church numerals
N must satisfy three properties:
1. [N 0] “0 is a Church numeral”

ATPHOL’06-[2] – p.57

Benzmüller, Christoph

c⃝Benzmüller, 2006

λ-Calculus: Sets
HO

L

AT
Pλ

For each natural number n there is a Church numeral:

n = λf.λy.[fn y]

We can also define the set N of all Church numerals
N must satisfy three properties:
1. [N 0] “0 is a Church numeral”
2. ∀x.[N x] ⊃ [N[SUCC x]] “N is closed under successor”

ATPHOL’06-[2] – p.57

Benzmüller, Christoph

c⃝Benzmüller, 2006

λ-Calculus: Sets
HO

L

AT
Pλ

For each natural number n there is a Church numeral:

n = λf.λy.[fn y]

We can also define the set N of all Church numerals
N must satisfy three properties:
1. [N 0] “0 is a Church numeral”
2. ∀x.[N x] ⊃ [N[SUCC x]] “N is closed under successor”
3. ∀P.[P0] ∧ [∀x.[Px] ⊃ [P [SUCC x]]] ⊃ [N ⊆ P]

“N is the least such set”

ATPHOL’06-[2] – p.57

Benzmüller, Christoph

c⃝Benzmüller, 2006

λ-Calculus: Sets
HO

L

AT
Pλ

For each natural number n there is a Church numeral:

n = λf.λy.[fn y]

We can also define the set N of all Church numerals
N must satisfy three properties:
1. [N 0] “0 is a Church numeral”
2. ∀x.[N x] ⊃ [N[SUCC x]] “N is closed under successor”
3. ∀P.[P0] ∧ [∀x.[Px] ⊃ [P [SUCC x]]] ⊃ [N ⊆ P]

“N is the least such set”
Define N to be:

λz.∀P.[[P0] ∧ [∀x. [Px] ⊃ [P .SUCC x]]] ⊃ [P z]

ATPHOL’06-[2] – p.57

Benzmüller, Christoph

c⃝Benzmüller, 2006

λ-Calculus: Sets
HO

L

AT
Pλ

Define N to be:

λz.∀P.[[P0] ∧ [∀x. [Px] ⊃ [P .SUCC x]]] ⊃ [P z]

ATPHOL’06-[2] – p.58

Benzmüller, Christoph

c⃝Benzmüller, 2006

λ-Calculus: Sets
HO

L

AT
Pλ

Define N to be:

λz.∀P.[[P0] ∧ [∀x. [Px] ⊃ [P .SUCC x]]] ⊃ [P z]

This satisfies the three requirements.

ATPHOL’06-[2] – p.58

Benzmüller, Christoph

c⃝Benzmüller, 2006

λ-Calculus: Sets
HO

L

AT
Pλ

Define N to be:

λz.∀P.[[P0] ∧ [∀x. [Px] ⊃ [P .SUCC x]]] ⊃ [P z]

This satisfies the three requirements.
! [N 0] since [P0] implies [P0]

ATPHOL’06-[2] – p.58

Benzmüller, Christoph

c⃝Benzmüller, 2006

λ-Calculus: Sets
HO

L

AT
Pλ

Define N to be:

λz.∀P.[[P0] ∧ [∀x. [Px] ⊃ [P .SUCC x]]] ⊃ [P z]

This satisfies the three requirements.
! [N 0] since [P0] implies [P0]

! ∀x.[N x] ⊃ [N[SUCC x] since if Px and P is closed under
successor, then P [SUCCp]]

ATPHOL’06-[2] – p.58

Benzmüller, Christoph

c⃝Benzmüller, 2006

λ-Calculus: Sets
HO

L

AT
Pλ

Define N to be:

λz.∀P.[[P0] ∧ [∀x. [Px] ⊃ [P .SUCC x]]] ⊃ [P z]

This satisfies the three requirements.
! [N 0] since [P0] implies [P0]

! ∀x.[N x] ⊃ [N[SUCC x] since if Px and P is closed under
successor, then P [SUCCp]]

! ∀P.[P0] ∧ [∀x.[Px] ⊃ [P [SUCC x]]] ⊃ [N ⊆ P]

N is the least such set as the intersection of all such sets P

ATPHOL’06-[2] – p.58

Benzmüller, Christoph

c⃝Benzmüller, 2006

λ-Calculus: Sets
HO

L

AT
Pλ

Define N to be:

λz.∀P.[[P0] ∧ [∀x. [Px] ⊃ [P .SUCC x]]] ⊃ [P z]

This satisfies the three requirements.
We have used quantification over sets (characteristic functions –
the variable P) to define N.

ATPHOL’06-[2] – p.58

Benzmüller, Christoph

c⃝Benzmüller, 2006

λ-Calculus: Russell’s Paradox
HO

L

AT
Pλ

Our representation framework is very powerful.

ATPHOL’06-[2] – p.59

c⃝Benzmüller, 2006

λ-Calculus: Russell’s Paradox
HO

L

AT
Pλ

Our representation framework is very powerful.
Actually it is so powerful that it is inconsistent!

ATPHOL’06-[2] – p.59

Benzmüller, Christoph

c⃝Benzmüller, 2006

λ-Calculus: Russell’s Paradox
HO

L

AT
Pλ

Our representation framework is very powerful.
Actually it is so powerful that it is inconsistent!
Russell’s paradox:
Consider the term R:

[λx.¬[x x]]

ATPHOL’06-[2] – p.59

Benzmüller, Christoph

c⃝Benzmüller, 2006

λ-Calculus: Russell’s Paradox
HO

L

AT
Pλ

Our representation framework is very powerful.
Actually it is so powerful that it is inconsistent!
Russell’s paradox:
Consider the term R:

[λx.¬[x x]]

As a characteristic function, R represents the set of all sets which
do not contain themselves:

{x|x /∈ x}

ATPHOL’06-[2] – p.59

Benzmüller, Christoph

c⃝Benzmüller, 2006

λ-Calculus: Russell’s Paradox
HO

L

AT
Pλ

Consider the term R:
[λx.¬[x x]]

ATPHOL’06-[2] – p.60

Benzmüller, Christoph

c⃝Benzmüller, 2006

λ-Calculus: Russell’s Paradox
HO

L

AT
Pλ

Consider the term R:
[λx.¬[x x]]

Now we evaluate the expression E := [RR]

[[λx.¬.x x] R]

ATPHOL’06-[2] – p.60

Benzmüller, Christoph

c⃝Benzmüller, 2006

λ-Calculus: Russell’s Paradox
HO

L

AT
Pλ

Consider the term R:
[λx.¬[x x]]

Now we evaluate the expression E := [RR]

[[λx.¬.x x] R] evaluates to

ATPHOL’06-[2] – p.60

Benzmüller, Christoph

c⃝Benzmüller, 2006

λ-Calculus: Russell’s Paradox
HO

L

AT
Pλ

Consider the term R:
[λx.¬[x x]]

Now we evaluate the expression E := [RR]

[[λx.¬.x x] R] evaluates to ¬[RR]

ATPHOL’06-[2] – p.60

Benzmüller, Christoph

c⃝Benzmüller, 2006

λ-Calculus: Russell’s Paradox
HO

L

AT
Pλ

Consider the term R:
[λx.¬[x x]]

Now we evaluate the expression E := [RR]

[[λx.¬.x x] R] evaluates to ¬[RR]

And we evaluate ¬[RR]

¬[[λx.¬.x x]R]

ATPHOL’06-[2] – p.60

Benzmüller, Christoph

c⃝Benzmüller, 2006

λ-Calculus: Russell’s Paradox
HO

L

AT
Pλ

Consider the term R:
[λx.¬[x x]]

Now we evaluate the expression E := [RR]

[[λx.¬.x x] R] evaluates to ¬[RR]

And we evaluate ¬[RR]

¬[[λx.¬.x x]R] evaluates to

ATPHOL’06-[2] – p.60

Benzmüller, Christoph

c⃝Benzmüller, 2006

λ-Calculus: Russell’s Paradox
HO

L

AT
Pλ

Consider the term R:
[λx.¬[x x]]

Now we evaluate the expression E := [RR]

[[λx.¬.x x] R] evaluates to ¬[RR]

And we evaluate ¬[RR]

¬[[λx.¬.x x]R] evaluates to ¬¬[RR]

ATPHOL’06-[2] – p.60

Benzmüller, Christoph

c⃝Benzmüller, 2006

λ-Calculus: Russell’s Paradox
HO

L

AT
Pλ

Consider the term R:
[λx.¬[x x]]

Now we evaluate the expression E := [RR]

[[λx.¬.x x] R] evaluates to ¬[RR]

And we evaluate ¬[RR]

¬[[λx.¬.x x]R] evaluates to ¬¬[RR]

which is equivalent to [RR]

ATPHOL’06-[2] – p.60

Benzmüller, Christoph

c⃝Benzmüller, 2006

λ-Calculus: Russell’s Paradox
HO

L

AT
Pλ

Consider the term R:
[λx.¬[x x]]

Now we evaluate the expression E := [RR]

[[λx.¬.x x] R] evaluates to ¬[RR]

And we evaluate ¬[RR]

¬[[λx.¬.x x]R] evaluates to ¬¬[RR]

which is equivalent to [RR]

Thus if E holds we can infer ¬E and vice versa. This is Russell’s
paradox.

ATPHOL’06-[2] – p.60

Benzmüller, Christoph

c⃝Benzmüller, 2006

λ-Calculus: Nontermination
HO

L

AT
Pλ

Note that the term [λx.¬.x x] (just as the standard example [λx.x x])
does not terminate with respect to β-reduction:

[RR] −→β ¬[RR] −→β ¬¬[RR] −→β . . .

ATPHOL’06-[2] – p.61

Benzmüller, Christoph

	
	Outline for Today
	Notion of Higher-Order Logic
	Notion of Higher-Order Logic
	Focus of the Lecture
	Focus of the Lecture
	Relevance and Applications
	
	Who am I?
	Who am I?
	Who am I?
	Who am I?
	Who are You?
	
	Before we start ldots
	Miscellaneous
	Lectures
	Exercises and Tutorials
	Examination
	
	
	History
	History (Cont'd)
	History (Cont'd)
	History (Cont'd)
	History (Cont'd)
	History (Cont'd)
	History (Cont'd)
	History (Cont'd)
	History (Cont'd)
	History (Cont'd)
	History HOL
	History HOL (Cont'd)
	History HOL (Cont'd)
	History (Cont'd)
	
	$lambda $-Calculus: Motivation
	$lambda $-Calculus: Motivation
	$lambda $-Calculus: $lambda $-terms
	$lambda $-Calculus: Set of $lambda $-expressions
	$lambda $-Calculus: Conventions
	$lambda $-Calculus: $ eta $-reduction
	$lambda $-Calculus: $ eta $-reduction
	$lambda $-Calculus: Currying
	$lambda $-Calculus: $alpha $-conversion
	$lambda $-Calculus: $eta $-reduction
	$lambda $-Calculus: $ eta eta $-equivalence
	$lambda $-Calculus: Normalforms
	$lambda $-Calculus: Normalforms
	$lambda $-Calculus: Iteration
	$lambda $-Calculus: Church Numerals
	$lambda $-Calculus: Church Numerals
	$lambda $-Calculus: Church Numerals
	$lambda $-Calculus: Sets
	$lambda $-Calculus: Sets
	$lambda $-Calculus: Sets
	$lambda $-Calculus: Sets
	$lambda $-Calculus: Russell's Paradox
	$lambda $-Calculus: Russell's Paradox
	$lambda $-Calculus: Nontermination
	Typed $lambda $-Calculus
	Typed $lambda $-Calculus: Typed Terms
	Typed $lambda $-Calculus: Typed Terms
	Typed $lambda $-Calculus: Typed Terms
	Typed $lambda $-Calculus: Assigning Types
	Typed $lambda $-Calculus: Assigning Types
	Typed $lambda $-Calculus: Assigning Types
	Typed $lambda $-Calculus: $ eta eta $
	
	Typed $lambda $-Calculus: Logical Constants
	HOL: Abbreviations
	HOL: Expressing Properties
	HOL: Expressing Properties
	HOL: Prefix Polymorphism
	HOL: Cantor's Theorem
	HOL: Standard Higher-Order Model
	HOL: Henkin-Style Model
	
	Def.: Types
	Ex.: Freely Generated
	Ex.: Freely Generated
	Ex.: Types
	Def.: Functions
	Ex.: Sets of Functions
	Ex.: Sets of Labelled Functions
	Def.: Frames
	Ex.: Frames
	Ex.: Frames (Contd.)
	Def.: Typed Applicative Structure
	Rem.: Currying
	Interesting Properties
	Def.: Functional Applicative Structures
	Def.: Full Applicative Structures
	Def.: Standard Applicative Structures
	Rem.: Frames and Applicative Structures
	Example: Full Functional Appl. Structure
	Def.: Homomorphic Appl. Structures
	Def.: Isomorphic Appl. Structures
	
	Def.: Untyped $lambda $-Calculus
	Simply Typed $lambda $-Calculus
	Notational Conventions
	Def.: Positions in $lambda $-Terms
	Def.: Position (Contd.)
	Def.: Replacement at Position
	Def.: Scope of $lambda $-Term
	Def.: Free and Bound Variables
	
	Def.: Substitution
	Ex.: Substitution
	Def.: $alpha $-Conversion
	Def.: $ eta $-Conversion
	Def.: $ eta $-Normal Form
	Thm.: Church-Rosser Property for $	woheadrightarrow _ eta $
	Ex.: Church-Rosser Property for $	woheadrightarrow _ eta $
	Termination
	Def.: $eta $-Conversion
	Def.: $eta $-Normal Form
	Thm.: Church-Rosser Property for $	woheadrightarrow _eta $
	Def.: $ eta eta $-Conversion
	Def.: $ eta eta $-Normal Form
	Thm.: Church-Rosser Property for $	woheadrightarrow _{ eta eta }$
	Thm.: Strong Church-Rosser Property
	Def.: Long $ eta eta $-Normal Form
	Ex.: Long $ eta eta $-Normal Form
	Thm.: Long $ eta eta $-Normal Form
	Rem.: $ eta eta $-Head Normal Form
	Notation
	
	Ex.: An Interesting Applicative Structure
	Ex.: Interpretation of Terms
	Ex.: Interesting Applicative Structures
	Ex.: Interesting Applicative Structures
	Ex.: Interesting Applicative Structures
	Ex.: Interesting Applicative Structures
	Def.: Variable Assignment
	Some Assumptions
	$Signat $-Evaluations
	$Signat $-Evaluations
	Def.: Evaluation Function
	Def.: $Signat $-Evaluation
	Def.: Functional/Full/Standard $Signat $-Eval.
	What is the Idea?
	Lemma: $Signat $-Evaluations respect $ eta $-Equality
	Thm.: {Substitution-Value Lemma}
	Prf.: {Substitution-Value Lemma}
	Weaker Notions of Functionality
	Def.: $eta $-Functional
	Def.: $xi $-Functional
	Lemma: Functionality and $eta $
	Lemma: Functionality and $eta $+$xi $
	Logical Constants in Signature
	Once More: Cantor's Theorem
	Once More: Cantor's Theorem
	Once More: Cantor's Theorem
	Once More: Cantor's Theorem
	
	Def.: Properties of Logical Constants
	Def.: $Signat $-Valuation
	Def.: $Signat $-Model
	Some Conventions: Equality
	Def.: Properties $f, b, eta , xi $
	Lemma: Surjective v
	Thm.: Property $propb $
	
	Def. (Reminder):
$Signat $-Model
	Def. (Reminder):
Properties $f, b, eta , xi $
	Def. (Reminder):
Different Model Classes
	Def.: Satisfies, models, and $models $
	Semantics: HOL-CUBE
	Semantics: HOL-CUBE
	Standard Models and Henkin Models
	Standard Models and Henkin Models
	Standard Models and Henkin Models
	Standard Models and Henkin Models
	Models without Functional Extensionality
	Models without Functional Extensionality
	Semantics: HOL-CUBE
	Models without $eta $- or $xi $-Functionality
	Semantics: HOL-CUBE
	Semantics: HOL-CUBE
	Models without Boolean Extensionality
	Models without Boolean Extensionality
	Semantics: HOL-CUBE
	
	Test Problems for Theorem Provers
	Test Problems for Theorem Provers
	Remark: Signature
	HOL-Problems: $ eta $
	HOL-Problems: $propb $
	HOL-Problems: $propf $
	HOL-Problems: $propeta $
	HOL-Problems: $propxi $
	HOL-Problems: $propf $
	HOL-Problems: $propb $
	HOL-Problems: Other Examples
	HOL-Problems: DeMorgan's Law
	HOL-Problems: DeMorgan's Law
	HOL-Problems: DeMorgan's Law
	HOL-Problems: Set Comprehension
	HOL-Problems: Set Comprehension
	HOL-Problems: Set Comprehension
	
	Examples of $Signat $-Models
	Ex.: Singleton Model
	Ex.: Singleton Model
	Ex.: Model without Boolean Extensionality
	Ex.: Model without Boolean Extensionality
	Ex.: Model without Boolean Extensionality
	Ex.: Model without Boolean Extensionality
	Ex.: Groundhogs and Woodchucks
	Ex.: Groundhogs and Woodchucks
	Generalizing the Previous Model
	
	Ex.: Models without Funct. Extensionality
	Ex.: Models without $propeta $ and $propf $
	Ex.: Models without $propeta $ and $propf $
	Ex.: Models without $propeta $ and $propf $
	Ex.: Models without $propeta $ and $propf $
	Ex.: Models without $propeta $ and $propf $
	Ex.: Models without $propeta $ and $propf $
	Ex.: Models without $propeta $ and $propf $
	Ex.: Models without $propeta $ and $propf $
	Ex.: Models without $propeta $ and $propf $
	Ex.: Models without $propeta $ and $propf $
	Ex.: Models without $propxi $
	Ex.: Models without $propxi $
	
	Short Reminder
	Reading
	Natural Deduction: Motivation
	Sequent Calculus: Motivation
	Sequent Calculus: Introduction
	Natural Deduction
	Natural Deduction Rules Ia
	Natural Deduction Rules IIa
	Natural Deduction Rules IIIa
	Natural Deduction
	Natural Deduction Proofs
	Natural Deduction with Contexts
	Natural Deduction with Contexts
	Natural Deduction with Contexts
	Natural Deduction with Contexts
	Natural Deduction Rules Ib
	Natural Deduction Rules IIb
	Natural Deduction Rules IIIb
	Intercalation
	Intercalating Natural Deductions
	ND Intercalation Rules I
	ND Intercalation Rules II
	ND Intercalation Rules III
	Intercalation and ND
	Example Proofs
	Soundness and Completeness
	From ND to Sequent Calculus
	Sequent Calculus Rules I
	Sequent Calculus Rules II
	Example Proof
	Sequent Calculus: Cut-rule
	Sequent Calculus
	Gentzen's Hauptsatz
	Applications of Cut-Elimination
	What have we done?
	Applications of Cut-Elimination
	Summary
	
	ND Calculi for HOL
	ND Calculi for HOL
	ND Calculi for HOL
	ND Calculi for HOL
	ND Calculi for HOL
	ND Calculi for HOL
	ND Calculi for HOL
	ND Calculi for HOL
	ND Calculi for HOL
	
	Completeness (of $allNdcalc $)
	
	Abstract Consistency: History
	Abstract Consistency: Idea
	Abstract Consistency: Idea
	Def.: Closed under Subsets / Compact
	Ex.: Closed under Subsets / Compact
	Lemma: Closed under Subsets / Compact
	Def.: Sufficiently $Signat $-Pure
	Abstract Consistency: Conventions
	Def.: Abstract Consistency Properties
	Def.: Abstract Consistency Properties
	Def.: Abstract Consistency Classes
	Abstract Consistency Classes
	Ex.: Abstract Consistency Class
	Rem.: Possible Generalization
	Def.: Saturated
	Ex.: Saturated
	Thm.: Model Existence Theorem
	Thm.: Model Existence for Henkin Models
	
	Def.: {	ermcolor $allNdcalc $}-Consistent/Inconsistent
	Lemma: Saturated $ACCstar $
	Lemma: Saturated $ACCstar $
	Lemma: Saturated $ACCstar $
	Lemma: Saturated $ACCstar $
	Thm.: Henkin's Theorem for $allNdcalc $
	Thm.: Completeness Theorem for $allNdcalc $
	Compactness
	
	Preliminaries and Notation
	Preliminaries and Notation
	Def.: General Bindings
	Def.: Literals
	Def.: Unification Constraints
	Def.: Clauses
	Def.: Clauses (contd.)
	Rem.: Skolemisation
	
	Andrews' Higher-Order Resolution $RES $
	Andrews' Higher-Order Resolution $RES $
	Andrews' Higher-Order Resolution $RES $
	Andrews' Higher-Order Resolution $RES $
	Andrews' Higher-Order Resolution $RES $
	Andrews' Higher-Order Resolution $RES $
	Andrews' Higher-Order Resolution $RES $
	Andrews' Higher-Order Resolution $RES $
	Andrews' Higher-Order Resolution $RES $
	Andrews' Higher-Order Resolution $RES $
	Example Proofs
	Example Proofs
	Example Proofs
	
	Huet's Constrained Resolution $CRES $
	Huet's Constrained Resolution $CRES $
	Huet's Constrained Resolution $CRES $
	Huet's Constrained Resolution $CRES $
	Huet's Constrained Resolution $CRES $
	Huet's Constrained Resolution $CRES $
	Huet's Constrained Resolution $CRES $
	Huet's Constrained Resolution $CRES $
	Huet's Constrained Resolution $CRES $
	Huet's Constrained Resolution $CRES $
	Huet's Constrained Resolution $CRES $
	Huet's Constrained Resolution $CRES $
	Huet's Constrained Resolution $CRES $
	Huet's Constrained Resolution $CRES $
	Huet's Constrained Resolution $CRES $
	Huet's Constrained Resolution $CRES $
	Huet's Constrained Resolution $CRES $
	Example Proofs
	Example Proofs
	Example Proofs
	
	Extensional HO Resolution $ERES $
	Extensional HO Resolution $ERES $
	Extensional HO Resolution $ERES $
	Extensional HO Resolution $ERES $
	Extensional HO Resolution $ERES $
	Extensional HO Resolution $ERES $
	Ex.: Extensional HO Resolution $ERES $
	Ex.: Extensional HO Resolution $ERES $
	Ex.: Extensional HO Resolution $ERES $
	
	Def.: Sequent Calculi
	Def.: Validity of Sequents
	Def.: k-Admissibility of Rules
	Def.: Sequent Calculus Rules
	Def.: Sequent Calculus Rules
	ACC for Sequent Calculi
	Def.: ACC for Sequent Calculi
	Lemma: Consequence of {	ermcolor $seqneginv $}
	Thm.: Sufficient Conditions for $accseq SEQCALC in ACCMODD $
	Thm.: Sufficient Condition for $accseq SEQCALC in ACCMODD $
	Thm.: Sufficient Condition for $accseq SEQCALC in ACCMODD $
	Thm.: Saturation and Cut
	Def.: Saturated Extension
	Ex.: ACC without Saturated Extension
	Existence of Saturated Extensions and Cut

