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! substitutions are represented as [T1/X1, . . . ,Tn/Xn] where the
Xi specify the variables to be replaced by the terms Ti. The
application of a substitution σ to a term (resp. literal or clause)
C is printed Cσ

! a resolution calculus R provides a set of rules {rn| 0 < n ≤ i}
defined on clauses

! we write Φ &rn C (C′ &rn C) iff clause C is the result of a one step
application of rule rn ∈ R to premise clauses C′i ∈ Φ (to C′

respectively)
! multiple step derivations in calculus R are abbreviated by

Φ1 &R Φk (or C1 &R Ck)
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µ ∈ {T,F}

! we distinguish between proper literals and pre-literals: the
(normalised) atom of a pre-literal has a logical constant at head
position, whereas this must not be the case for proper literals

! for instance, [A ∨B]T is a pre-literal and [po→o (A ∨B)]T is a
proper literal
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! it is represented as [T1 +=? T2] (resp. [+=? (T1, . . . ,Tn)])
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! clauses consist of disjunctions of literals or unification
constraints

! the unification constraints specify conditions under which the
other literals are valid

! for instance, the clause
[pα→β→o T1

α T2
β]

T ∨ [T1
α +=

? S1
α] ∨ [T2

β +=
? S2

β ] can be read as: if
T1 is unifiable with S1 and T2 with S2 then (p T1 T2) holds

! we implicitly treat the disjunction operator ∨ in clauses as
commutative and associative

! additionally we presuppose commutativity of +=? and implicitly
identify any two α-equal constraints or literals.

! furthermore we assume that any two clauses have disjoint sets
of free variables, i.e. for each freshly generated clause we
choose new free variables
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! a clause is called empty, denoted by !, if it consists only of
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! an important aspect of clause normalisation is Skolemisation
! we employ Miller’s sound adaptation of traditional first-order

Skolemisation [Miller:pihol83], which associates with each Skolem
function the minimum number of arguments the Skolem
function has to be applied to

! higher-order Skolemisation becomes sound, if any Skolem
function fn only occurs in a Skolem term, i.e., a formula
S = fnAn, where none of the Ai contains a bound variable

! thus, the Skolem terms only serve as descriptions of the
existential witnesses and never appear as functions proper

! without this additional restriction the calculi do not really
become unsound, but one can prove an instance of the axiom
of choice ([Andrews73]), which we want to treat as an optional
axiom for the resolution calculi presented here
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We present and discuss Andrews’ higher-order resolution
calculus [Andrews71] in our uniform notation; we call this calculus R

λ-Conversion
! Andrews’ provides two rules for α-conversion and β-reduction
! he does not provide a rule for η-conversion: consequently
η-equality of two terms (e.g., fι→ι

.
= λXι f X) cannot be proven

in this approach without employing the functional extensionality
axiom of appropriate type

! we omit explicit rules for α- and β-convertibility and instead
treat them implicitly, i.e. we assume that the presented rules
operate on input and generate output in β-normal form and we
automatically identify terms which differ only with respect to the
names of bound variables
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Clause Normalisation
! R introduces only four rules belonging to clause normalisation:

negation elimination, conjunction elimination, existential
elimination, and universal elimination
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Clause Normalisation
! R introduces only four rules belonging to clause normalisation:

negation elimination, conjunction elimination, existential
elimination, and universal elimination

! as our presentation of clauses in contrast to [Andrews71] explicitly
mentions the polarities of clauses and brackets the literal
atoms we need additional structural rules, e.g., the rule ∨T

! negation elimination: C ∨ [¬A]T

C ∨ [A]F
¬T

C ∨ [¬A]F

C ∨ [A]T
¬F
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Clause Normalisation
! R introduces only four rules belonging to clause normalisation:

negation elimination, conjunction elimination, existential
elimination, and universal elimination

! as our presentation of clauses in contrast to [Andrews71] explicitly
mentions the polarities of clauses and brackets the literal
atoms we need additional structural rules, e.g., the rule ∨T

! negation elimination: C ∨ [¬A]T

C ∨ [A]F
¬T

C ∨ [¬A]F

C ∨ [A]T
¬F

! conjunction/disjunction elimination:

C ∨ [A ∨B]T

C ∨ [A]T ∨ [B]T
∨T

C ∨ [A ∨B]F

C ∨ [A]F
∨F

l

C ∨ [A ∨B]F

C ∨ [B]F
∨F

r
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Clause Normalisation (contd.)
! existential/universal elimination:

C ∨ [ΠαA]T

C ∨ [A Xα]T
ΠT

C ∨ [ΠαA]F

C ∨ [A sα]F
ΠF
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Clause Normalisation (contd.)
! existential/universal elimination:

C ∨ [ΠαA]T

C ∨ [A Xα]T
ΠT

C ∨ [ΠαA]F

C ∨ [A sα]F
ΠF

Xα is a new free variable and sα is a new Skolem term

ATPHOL’06-[13] – p.319



c©Benzmüller, 2006

Andrews’ Higher-Order Resolution R
HO

L

AT
Pλ

Clause Normalisation (contd.)
! existential/universal elimination:

C ∨ [ΠαA]T

C ∨ [A Xα]T
ΠT

C ∨ [ΠαA]F

C ∨ [A sα]F
ΠF

Xα is a new free variable and sα is a new Skolem term
! additionally Andrews presents rules addressing commutativity

and associativity of the ∨-operator connecting the clauses
literals; we have already mentioned the implicit treatment of
these aspects here
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Clause Normalisation (contd.)
! existential/universal elimination:

C ∨ [ΠαA]T

C ∨ [A Xα]T
ΠT

C ∨ [ΠαA]F

C ∨ [A sα]F
ΠF

Xα is a new free variable and sα is a new Skolem term
! additionally Andrews presents rules addressing commutativity

and associativity of the ∨-operator connecting the clauses
literals; we have already mentioned the implicit treatment of
these aspects here

! we refer with Cnf(A) to the set of clauses obtained from
formula A by exhaustive clause normalisation
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Resolution & Factorisation
! Instead of a resolution and a factorisation rule — which work in

connection with unification — Andrews presents a
simplification and a cut rule. The cut rule is only applicable to
clauses with two complementary literals which have identical
atoms. Similarly Sim is defined only for clauses with two
identical literals. In order to generate identical literal atoms
during the refutation process these two rules have to be
combined with the substitution rule Sub presented below.
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Resolution & Factorisation
! Instead of a resolution and a factorisation rule — which work in

connection with unification — Andrews presents a
simplification and a cut rule. The cut rule is only applicable to
clauses with two complementary literals which have identical
atoms. Similarly Sim is defined only for clauses with two
identical literals. In order to generate identical literal atoms
during the refutation process these two rules have to be
combined with the substitution rule Sub presented below.

! Simplification: [A]µ ∨ [A]µ ∨C

[A]µ ∨C
Sim
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Resolution & Factorisation
! Instead of a resolution and a factorisation rule — which work in

connection with unification — Andrews presents a
simplification and a cut rule. The cut rule is only applicable to
clauses with two complementary literals which have identical
atoms. Similarly Sim is defined only for clauses with two
identical literals. In order to generate identical literal atoms
during the refutation process these two rules have to be
combined with the substitution rule Sub presented below.

! Simplification: [A]µ ∨ [A]µ ∨C

[A]µ ∨C
Sim

! Cut: [A]µ ∨C [A]ν ∨D

C ∨D
Cut
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Unification & Primitive Substitution
! As higher-order unification was still an open problem in 1971

calculus R employs the British museum method instead, i.e. it
provides a substitution rule that allows to blindly instantiate
free variables by arbitrary terms. As the instantiated terms may
contain logical constants, instantiation of variables in proper
clauses may lead to pre-clauses, which must be normalised
again with the clause normalisation rules.
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Unification & Primitive Substitution
! As higher-order unification was still an open problem in 1971

calculus R employs the British museum method instead, i.e. it
provides a substitution rule that allows to blindly instantiate
free variables by arbitrary terms. As the instantiated terms may
contain logical constants, instantiation of variables in proper
clauses may lead to pre-clauses, which must be normalised
again with the clause normalisation rules.

! Substitution of arbitrary terms: C
C[Tα/Xα]

Sub
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Unification & Primitive Substitution
! As higher-order unification was still an open problem in 1971

calculus R employs the British museum method instead, i.e. it
provides a substitution rule that allows to blindly instantiate
free variables by arbitrary terms. As the instantiated terms may
contain logical constants, instantiation of variables in proper
clauses may lead to pre-clauses, which must be normalised
again with the clause normalisation rules.

! Substitution of arbitrary terms: C
C[Tα/Xα]

Sub

Xα is a free variable occurring in C.
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Extensionality Treatment
! Calculus R does not provide rules addressing the functional

and/or Boolean extensionality principles.
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Extensionality Treatment
! Calculus R does not provide rules addressing the functional

and/or Boolean extensionality principles.
! Instead R assumes that the following extensionality axioms are

(in form of respective clauses) explicitly added to the search
space. And since the functional extensionality principle is
parameterised over arbitrary functional types infinitely many
functional extensionality axioms are required.
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Extensionality Treatment
! Calculus R does not provide rules addressing the functional

and/or Boolean extensionality principles.
! Instead R assumes that the following extensionality axioms are

(in form of respective clauses) explicitly added to the search
space. And since the functional extensionality principle is
parameterised over arbitrary functional types infinitely many
functional extensionality axioms are required.

! Extensionality axioms

EXT
.
=
α→β : ∀Fα→β ∀Gα→β (∀Xβ F X

.
= G X)⇒ F

.
= G

EXT
.
=
o : ∀Ao ∀Bo (A⇔ B)⇒ A

.
=o B
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Extensionality Treatment (contd.)
! The extensionality clauses derived from the extensionality

axioms have the following form (note the many free variables,
especially at literal head position, that are introduced into the
search space – they heavily increase the amount of blind
search in any attempt to automate the calculus):
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Extensionality Treatment (contd.)
! The extensionality clauses derived from the extensionality

axioms have the following form (note the many free variables,
especially at literal head position, that are introduced into the
search space – they heavily increase the amount of blind
search in any attempt to automate the calculus):

Eα→β
1

: [p (F s)]T ∨ [Q F]F ∨ [Q G]T

Eα→β
2

: [p (G s)]F ∨ [Q F]F ∨ [Q G]T
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Extensionality Treatment (contd.)
! The extensionality clauses derived from the extensionality

axioms have the following form (note the many free variables,
especially at literal head position, that are introduced into the
search space – they heavily increase the amount of blind
search in any attempt to automate the calculus):

Eα→β
1

: [p (F s)]T ∨ [Q F]F ∨ [Q G]T

Eα→β
2

: [p (G s)]F ∨ [Q F]F ∨ [Q G]T

Eo
1 : [A]F∨ [B]F∨ [P A]F∨ [P B]T

Eo
2 : [A]T∨[B]T∨[P A]F∨[P B]T
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Extensionality Treatment (contd.)
! The extensionality clauses derived from the extensionality

axioms have the following form (note the many free variables,
especially at literal head position, that are introduced into the
search space – they heavily increase the amount of blind
search in any attempt to automate the calculus):

Eα→β
1

: [p (F s)]T ∨ [Q F]F ∨ [Q G]T

Eα→β
2

: [p (G s)]F ∨ [Q F]F ∨ [Q G]T

Eo
1 : [A]F∨ [B]F∨ [P A]F∨ [P B]T

Eo
2 : [A]T∨[B]T∨[P A]F∨[P B]T

pβ→o, sα are Skolem terms and Ao, Bo, Po→o, Q(α→β)→o are
new free variables.
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Proof Search
! initially the proof problem is negated and normalised
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! proof search then starts with the normalised clauses and

applies the cut and simplification rule in close connection with
the substitution rule
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Proof Search
! initially the proof problem is negated and normalised
! proof search then starts with the normalised clauses and

applies the cut and simplification rule in close connection with
the substitution rule

! intermediate applications of the clause normalisation rules may
be needed to normalise temporarily generated pre-clauses
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Proof Search
! initially the proof problem is negated and normalised
! proof search then starts with the normalised clauses and

applies the cut and simplification rule in close connection with
the substitution rule

! intermediate applications of the clause normalisation rules may
be needed to normalise temporarily generated pre-clauses

! the extensionality treatment in R simply assumes to add at the
beginning of the refutation process the above clauses obtained
from the extensionality axioms
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Proof Search
! initially the proof problem is negated and normalised
! proof search then starts with the normalised clauses and

applies the cut and simplification rule in close connection with
the substitution rule

! intermediate applications of the clause normalisation rules may
be needed to normalise temporarily generated pre-clauses

! the extensionality treatment in R simply assumes to add at the
beginning of the refutation process the above clauses obtained
from the extensionality axioms

! the proof search can be graphically illustrated as follows:

axioms
ext. proof search & blind variable instantiation
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Completeness
! [Andrews71] gives a completeness proof for calculus R with

respect to the semantical notion of V-complexes (corresponds
to our weakest model class Mβ(Σ))
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Completeness
! [Andrews71] gives a completeness proof for calculus R with

respect to the semantical notion of V-complexes (corresponds
to our weakest model class Mβ(Σ))

! as the extensionality principles are not valid in this rather weak
semantical structures, the extensionality axioms are not
needed in this completeness proof
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Completeness
! [Andrews71] gives a completeness proof for calculus R with

respect to the semantical notion of V-complexes (corresponds
to our weakest model class Mβ(Σ))

! as the extensionality principles are not valid in this rather weak
semantical structures, the extensionality axioms are not
needed in this completeness proof

! Theorem: (V-completeness of R) The calculus R is (sound
and) complete with respect to the notion of V-complexes.

Proof: [Andrews71].
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Henkin Completeness
! We can also prove Henkin completeness of calculus R.
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Henkin Completeness
! We can also prove Henkin completeness of calculus R.
! Theorem: (Henkin completeness of R) The calculus R is

(sound and) complete with respect to Henkin semantics
provided that the infinitely many extensionality axioms are
given.

Proof: exercise
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Henkin Completeness
! We can also prove Henkin completeness of calculus R.
! Theorem: (Henkin completeness of R) The calculus R is

(sound and) complete with respect to Henkin semantics
provided that the infinitely many extensionality axioms are
given.

Proof: exercise
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Exercise: How are the following theorems proved in calculus R?
! Leibniz equality and η-equality:

fι→ι
.
= λXι f X

ATPHOL’06-[13] – p.327



c©Benzmüller, 2006

Example Proofs
HO

L

AT
Pλ

Exercise: How are the following theorems proved in calculus R?
! Leibniz equality and η-equality:

fι→ι
.
= λXι f X

! The set of all red balls equals the set of all balls that are red:
{X|red X ∧ ball X} = {X|ball X ∧ red X}. This problem can be
encoded as

(λXι red X ∧ ball X) = (λXι ball X ∧ red X)
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Exercise: How are the following theorems proved in calculus R?
! All unary logical operators Oo→o which map the propositions a

and b to . consequently also map a ∧ b to .:

∀Oo→o (O ao) ∧ (O bo)⇒ (O (ao ∧ bo))
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Exercise: How are the following theorems proved in calculus R?
! In Henkin semantics the domain Do of all Booleans contains

exactly the truth values ⊥ and .. Consequently the domain of
all mappings from Booleans to Booleans contains exactly
contains in each Henkin model at most four elements. And
because of the requirement, that the function domains in
Henkin models must be rich enough such that every term has
a denotation, it follows that Do→o contains exactly the pairwise
distinct denotations of the following four terms: λXo Xo,
λXo ¬Xo , λXo ⊥, and λXo .. This theorem can be formulated
as follows (where fo→o is a constant):

(f = λXo Xo) ∨ (f = λXo ¬Xo) ∨ (f = λXo ⊥) ∨ (f = λXo .)
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Approaches to Higher-Order
Resolution: CR
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We transform Huet’s constrained resolution approach [Huet72,Huet73]

in our uniform notation. The calculus here is the unsorted fragment
of the variant of Huet’s approach as presented in [Kohlhase94]. In the
remainder of this paper we refer to this calculus with CR.

λ-Conversion
! Calculus CR assumes that terms, literals, and clauses are

implicitly reduced to β-normal form.
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We transform Huet’s constrained resolution approach [Huet72,Huet73]

in our uniform notation. The calculus here is the unsorted fragment
of the variant of Huet’s approach as presented in [Kohlhase94]. In the
remainder of this paper we refer to this calculus with CR.

λ-Conversion
! Calculus CR assumes that terms, literals, and clauses are

implicitly reduced to β-normal form.
! Furthermore, we assume that α-equality is treated implicitly,

i.e. we identify all terms that differ only with respect to the
names of bound variables.
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Clause Normalisation
! [Huet72] does not explicitly present clause normalisation rules

but assumes that they are given. Here we employ the rules ¬T,
¬F, ∨T, ∨F

l , ∨F
r , ΠT, and ΠF as already defined for calculus R

before.
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! [Huet72] does not explicitly present clause normalisation rules

but assumes that they are given. Here we employ the rules ¬T,
¬F, ∨T, ∨F

l , ∨F
r , ΠT, and ΠF as already defined for calculus R

before.
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Resolution & Factorisation
! As first-order unification is decidable and unitary it can be

employed as a strong filter in first-order resolution [Robinson65].
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Resolution & Factorisation
! As first-order unification is decidable and unitary it can be

employed as a strong filter in first-order resolution [Robinson65].
! Unfortunately higher-order unification is not decidable

(cf. [Lucchesi72,Huet73,Goldfarb81]) and thus it can not be applied in
the sense of a terminating side computation in higher-order
theorem proving.

ATPHOL’06-[14] – p.333
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Resolution & Factorisation
! As first-order unification is decidable and unitary it can be

employed as a strong filter in first-order resolution [Robinson65].
! Unfortunately higher-order unification is not decidable

(cf. [Lucchesi72,Huet73,Goldfarb81]) and thus it can not be applied in
the sense of a terminating side computation in higher-order
theorem proving.

! Huet therefore suggests in [Huet72,Huet73] to delay the unification
process and to explicitly encode unification problems occurring
during the refutation search as unification constraints.
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Resolution & Factorisation (contd.)
! In his original approach Huet presented a hyper-resolution rule

which simultaneously resolves on the resolution literals
A1, . . .An (1 ≤ n) and B1, . . .Bm (1 ≤ m) of two given clauses
and adds the unification constraint [+=? (A1, . . . An,B1, . . .Bm)]

to the resolvent:

[A1]µ ∨ . . . ∨ [An]µ ∨C [B1]ν ∨ . . . ∨ [Bm]ν ∨D

C ∨D ∨ [+=? (A1, . . .An,B1, . . .Bm)]
Hres

(where µ += ν).
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Resolution & Factorisation (contd.)
! In order to ease the comparison with the two other approaches

discussed in this paper we instead employ a resolution rule
Res and a factorisation rule Fac.

ATPHOL’06-[14] – p.335



c©Benzmüller, 2006

Huet’s Constrained Resolution CR
HO

L

AT
Pλ

Resolution & Factorisation (contd.)
! In order to ease the comparison with the two other approaches

discussed in this paper we instead employ a resolution rule
Res and a factorisation rule Fac.

! Like Hres both rules encode the unification problem to be
solved as a unification constraint:
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Resolution & Factorisation (contd.)
! In order to ease the comparison with the two other approaches

discussed in this paper we instead employ a resolution rule
Res and a factorisation rule Fac.

! Like Hres both rules encode the unification problem to be
solved as a unification constraint:

! Constrained resolution:
[A]µ ∨C [B]ν ∨D

C ∨D ∨ [A +=? B]
Res

(where µ += ν).
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Resolution & Factorisation (contd.)
! In order to ease the comparison with the two other approaches

discussed in this paper we instead employ a resolution rule
Res and a factorisation rule Fac.

! Like Hres both rules encode the unification problem to be
solved as a unification constraint:

! Constrained resolution:
[A]µ ∨C [B]ν ∨D

C ∨D ∨ [A +=? B]
Res

(where µ += ν).

! Constrained factorisation:
[A]µ ∨ [B]µ ∨C

[A]µ ∨C ∨ [A +=? B]F
Fac
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Resolution & Factorisation (contd.)
! One can easily prove by induction on n + m that each proof

step applying rule Hres can be replaced by a corresponding
derivation employing Res and Fac.
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Resolution & Factorisation (contd.)
! One can easily prove by induction on n + m that each proof

step applying rule Hres can be replaced by a corresponding
derivation employing Res and Fac.

! For a formal proof note that the unification constraint
[+=? (A1, . . .An,B1, . . .Bm)] is equivalent to
[A1 +=? A2] ∨ [A2 +=? A3] ∨ . . . ∨ [An−1 +=? An] ∨ [An +=?

B1] ∨ [B1 +=? B2] ∨ [B2 +=? B3] ∨ . . . ∨ [Bn−1 +=? Bn].
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Unification & Splitting
! [Huet75] introduces higher-order unification and higher-order

pre-unification and shows that higher-order pre-unification is
sufficient to verify the soundness of a refutation in which the
occurring unification problems have been delayed until the
end.
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! [Huet75] introduces higher-order unification and higher-order

pre-unification and shows that higher-order pre-unification is
sufficient to verify the soundness of a refutation in which the
occurring unification problems have been delayed until the end.

! The higher-order pre-unification rules presented here are
discussed in detail in [Benzmüller-PhD-99]. They furthermore
closely reflect the rules as presented in [SnyderGallier89].
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Unification & Splitting
! [Huet75] introduces higher-order unification and higher-order

pre-unification and shows that higher-order pre-unification is
sufficient to verify the soundness of a refutation in which the
occurring unification problems have been delayed until the end.

! The higher-order pre-unification rules presented here are
discussed in detail in [Benzmüller-PhD-99]. They furthermore
closely reflect the rules as presented in [SnyderGallier89].

! Elimination of trivial pairs: C ∨ [A +=? A]

C
Triv
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Unification & Splitting
! [Huet75] introduces higher-order unification and higher-order

pre-unification and shows that higher-order pre-unification is
sufficient to verify the soundness of a refutation in which the
occurring unification problems have been delayed until the end.

! The higher-order pre-unification rules presented here are
discussed in detail in [Benzmüller-PhD-99]. They furthermore
closely reflect the rules as presented in [SnyderGallier89].

! Elimination of trivial pairs: C ∨ [A +=? A]

C
Triv

! Decomposition C ∨ [hUn +=? hVn]

C ∨ [U1 +=? V1] ∨ . . . ∨ [Un +=? Vn]
Dec
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Unification & Splitting (contd.)

!

Elimination of λ-binders:
(weak functional extensional-
ity)

C ∨ [Mα→β +=? Nα→β ]

C ∨ [M sα +=? N sα]
Func
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Unification & Splitting (contd.)

!

Elimination of λ-binders:
(weak functional extensional-
ity)

C ∨ [Mα→β +=? Nα→β ]

C ∨ [M sα +=? N sα]
Func

sα is a new Skolem term.
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Unification & Splitting (contd.)

!

Elimination of λ-binders:
(weak functional extensional-
ity)

C ∨ [Mα→β +=? Nα→β ]

C ∨ [M sα +=? N sα]
Func

sα is a new Skolem term.

! Imitation of rigid heads:
C ∨ [Fγ Un +=? h Vm] G ∈ ABh

γ

C ∨ [F +=? G] ∨ [F Un +=? h Vm]
FlexRigid
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Unification & Splitting (contd.)

!

Elimination of λ-binders:
(weak functional extensional-
ity)

C ∨ [Mα→β +=? Nα→β ]

C ∨ [M sα +=? N sα]
Func

sα is a new Skolem term.

! Imitation of rigid heads:
C ∨ [Fγ Un +=? h Vm] G ∈ ABh

γ

C ∨ [F +=? G] ∨ [F Un +=? h Vm]
FlexRigid

ABh
γ is the set of general bindings of type γ for head h.
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Unification & Splitting (contd.)

! Huet points to the usefulness of eager unification to filter out
clauses with non-unifiable unification constraints or to
back-propagate the solutions of easily solvable constraints
(e.g., in case of first-order unification problems occurring
during the proof search): many of the higher-order unification
problems occurring in practice are decidable and have only
finitely many solutions.
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Unification & Splitting (contd.)

! Huet points to the usefulness of eager unification to filter out
clauses with non-unifiable unification constraints or to
back-propagate the solutions of easily solvable constraints
(e.g., in case of first-order unification problems occurring
during the proof search): many of the higher-order unification
problems occurring in practice are decidable and have only
finitely many solutions.

! Hence, even though higher-order unification is generally not
decidable it is sensible in practice to apply the unification
algorithm with a particular resource, such that only those
unification problems which may have further solutions beyond
this bound need to be delayed.
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Unification & Splitting (contd.)

! In our presentation of calculus CR we explicitly address the
aspect of eager unification and substitution by rule Subst. This
rule back-propagates eagerly computed unifiers to the literal
part of a clause.
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Unification & Splitting (contd.)

! In our presentation of calculus CR we explicitly address the
aspect of eager unification and substitution by rule Subst. This
rule back-propagates eagerly computed unifiers to the literal
part of a clause.

! Eager unification & substitution:

C ∨ [X +=? A] X /∈ free(A)

C[A/X]
Subst
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Unification & Splitting (contd.)

! The literal heads of our clauses may consist of set variables
and it may be necessary to instantiate them with terms
introducing new logical constant at head position in order to
find a refutation.
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Unification & Splitting (contd.)

! The literal heads of our clauses may consist of set variables
and it may be necessary to instantiate them with terms
introducing new logical constant at head position in order to
find a refutation.

! Unfortunately not all appropriate instantiations can be
computed with the calculus rules presented so far.
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Unification & Splitting (contd.)

! The literal heads of our clauses may consist of set variables
and it may be necessary to instantiate them with terms
introducing new logical constant at head position in order to
find a refutation.

! Unfortunately not all appropriate instantiations can be
computed with the calculus rules presented so far.

! To address this problem Huet’s approach provides the
following splitting rules:
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Unification & Splitting (contd.)
! Instantiate

set variables:
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Unification & Splitting (contd.)
! Instantiate

set variables:

[P A]T ∨C

[Q]T ∨ [R]T ∨C ∨ [P A +=? (Qo ∨ Ro)]
ST
∨
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Unification & Splitting (contd.)
! Instantiate

set variables:

[P A]T ∨C

[Q]T ∨ [R]T ∨C ∨ [P A +=? (Qo ∨ Ro)]
ST
∨

[P A]µ ∨C

[Q]ν ∨C ∨ [P A +=? ¬Qo]
STF
¬

[P A]F ∨C

[Q]F ∨C ∨ [P A +=? (Qo ∨ Ro)]
SF
∨

[R]F ∨C ∨ [P A +=? (Qo ∨ Ro)]

(where µ += ν)
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Unification & Splitting (contd.)
! Instantiate

set variables:

[P A]T ∨C

[Q]T ∨ [R]T ∨C ∨ [P A +=? (Qo ∨ Ro)]
ST
∨

[P A]µ ∨C

[Q]ν ∨C ∨ [P A +=? ¬Qo]
STF
¬

[P A]F ∨C

[Q]F ∨C ∨ [P A +=? (Qo ∨ Ro)]
SF
∨

[R]F ∨C ∨ [P A +=? (Qo ∨ Ro)]

(where µ += ν)
[P Aα→o]T ∨C

[Mα→o Z]T ∨C ∨ [P A +=? ΠαM]
ST

Π
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Unification & Splitting (contd.)
! Instantiate

set variables:

[P A]T ∨C

[Q]T ∨ [R]T ∨C ∨ [P A +=? (Qo ∨ Ro)]
ST
∨

[P A]µ ∨C

[Q]ν ∨C ∨ [P A +=? ¬Qo]
STF
¬

[P A]F ∨C

[Q]F ∨C ∨ [P A +=? (Qo ∨ Ro)]
SF
∨

[R]F ∨C ∨ [P A +=? (Qo ∨ Ro)]

(where µ += ν)
[P Aα→o]T ∨C

[Mα→o Z]T ∨C ∨ [P A +=? ΠαM]
ST

Π

[P Aα→o]F ∨C

[Mα→o s]F ∨C ∨ [P A +=? ΠαM]
SF

Π

ATPHOL’06-[14] – p.342



c©Benzmüller, 2006

Huet’s Constrained Resolution CR
HO

L

AT
Pλ

Unification & Splitting (contd.)
! Instantiate

set variables:

[P A]T ∨C

[Q]T ∨ [R]T ∨C ∨ [P A +=? (Qo ∨ Ro)]
ST
∨

[P A]µ ∨C

[Q]ν ∨C ∨ [P A +=? ¬Qo]
STF
¬

[P A]F ∨C

[Q]F ∨C ∨ [P A +=? (Qo ∨ Ro)]
SF
∨

[R]F ∨C ∨ [P A +=? (Qo ∨ Ro)]

(where µ += ν)
[P Aα→o]T ∨C

[Mα→o Z]T ∨C ∨ [P A +=? ΠαM]
ST

Π

[P Aα→o]F ∨C

[Mα→o s]F ∨C ∨ [P A +=? ΠαM]
SF

Π

! ST
Π and SF

Π are infinitely branching as they are parameterised
over type α. Qo,Ro,Mα→o,Zα are new variables and sα is a
new Skolem constant.
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Unification & Splitting (contd.)
! A theorem which is not refutable in CR if the splitting rules are

not available is ∃Ao.A:
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Unification & Splitting (contd.)
! A theorem which is not refutable in CR if the splitting rules are

not available is ∃Ao.A:
! After negation this statement normalises to clause C1 : [A]F,

such that none but the splitting rules are applicable. With the
help of rule STF

¬ and eager unification, however, we can derive
C2 : [A′]T which is then successfully resolvable against C1.
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Extensionality Treatment
! On the one hand η-convertibility is built-in in higher-order

unification, such that calculus CR already supports functional
extensionality reasoning to a certain extend.
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Extensionality Treatment
! On the one hand η-convertibility is built-in in higher-order

unification, such that calculus CR already supports functional
extensionality reasoning to a certain extend.

! On the other hand CR nevertheless fails to address full
extensionality as it does not realise the required subtle
interplay between the functional and Boolean extensionality
principles.
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Extensionality Treatment
! On the one hand η-convertibility is built-in in higher-order

unification, such that calculus CR already supports functional
extensionality reasoning to a certain extend.

! On the other hand CR nevertheless fails to address full
extensionality as it does not realise the required subtle
interplay between the functional and Boolean extensionality
principles.

! Without employing additional (Boolean and functional!)
extensionality axioms CR is, e.g., not able to prove the rather
simple examples presented before.

ATPHOL’06-[14] – p.344



c©Benzmüller, 2006

Huet’s Constrained Resolution CR
HO

L

AT
Pλ

Proof Search
! Initially the proof problem is negated and normalised. The

main proof search then operates on the generated clauses by
applying the resolution, factorisation, and splitting rules.
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Proof Search
! Initially the proof problem is negated and normalised. The

main proof search then operates on the generated clauses by
applying the resolution, factorisation, and splitting rules.

! Despite the possibility of eager unification CR generally
foresees to delay the higher-order unification process in order
to overcome the undecidability problem.
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Proof Search
! Initially the proof problem is negated and normalised. The

main proof search then operates on the generated clauses by
applying the resolution, factorisation, and splitting rules.

! Despite the possibility of eager unification CR generally
foresees to delay the higher-order unification process in order
to overcome the undecidability problem.

! When deriving a potentially empty clause (no normal literals),
CR then tests whether the accumulated unification constraints
justifying this particular refutation are solvable.
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Proof Search (contd.)
! Like R, the extensionality treatment of CR requires to add

infinitely many extensionality axioms to the search space.
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Proof Search (contd.)
! Like R, the extensionality treatment of CR requires to add

infinitely many extensionality axioms to the search space.
! The following figure graphically illustrates the main ideas of the

proof search in CR.

pre-unification
delayed

axioms
ext.

eager unification
proof search & 
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Completeness Results
! [Huet72,Huet73] analyses completeness of CR formally only with

respect to Andrews V-complexes, i.e. Huet verifies that the set
of non-refutable sentences in CR is an abstract consistency
class for V-complexes.
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Completeness Results
! [Huet72,Huet73] analyses completeness of CR formally only with

respect to Andrews V-complexes, i.e. Huet verifies that the set
of non-refutable sentences in CR is an abstract consistency
class for V-complexes.

! Theorem (V-completeness of CR): The calculus CR is
complete with respect to the notion of V-complexes.

Proof: [Huet72,Huet73]
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Completeness Results
! [Huet72,Huet73] analyses completeness of CR formally only with

respect to Andrews V-complexes, i.e. Huet verifies that the set
of non-refutable sentences in CR is an abstract consistency
class for V-complexes.

! Theorem (V-completeness of CR): The calculus CR is
complete with respect to the notion of V-complexes.

Proof: [Huet72,Huet73]

! Theorem (Henkin completeness of CR): The calculus CR is
complete wrt. Henkin semantics provided that the infinitely
many extensionality axioms are given.

Proof: exercise
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Exercise: How are the following theorems proved in calculus CR?
! Leibniz equality and η-equality:

fι→ι
.
= λXι f X
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Example Proofs
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Exercise: How are the following theorems proved in calculus CR?
! Leibniz equality and η-equality:

fι→ι
.
= λXι f X

! The set of all red balls equals the set of all balls that are red:
{X|red X ∧ ball X} = {X|ball X ∧ red X}. This problem can be
encoded as

(λXι red X ∧ ball X) = (λXι ball X ∧ red X)
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Exercise: How are the following theorems proved in calculus CR?
! All unary logical operators Oo→o which map the propositions a

and b to . consequently also map a ∧ b to .:

∀Oo→o (O ao) ∧ (O bo)⇒ (O (ao ∧ bo))
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Exercise: How are the following theorems proved in calculus CR?
! In Henkin semantics the domain Do of all Booleans contains

exactly the truth values ⊥ and .. Consequently the domain of
all mappings from Booleans to Booleans contains exactly
contains in each Henkin model at most four elements. And
because of the requirement, that the function domains in
Henkin models must be rich enough such that every term has
a denotation, it follows that Do→o contains exactly the pairwise
distinct denotations of the following four terms: λXo Xo,
λXo ¬Xo , λXo ⊥, and λXo .. This theorem can be formulated
as follows (where fo→o is a constant):

(f = λXo Xo) ∨ (f = λXo ¬Xo) ∨ (f = λXo ⊥) ∨ (f = λXo .)
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Approaches to Higher-Order
Resolution: ER
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Clause normalization

C ∨ [A ∨ B]T

C ∨ [A]T ∨ [B]T
∨T

C ∨ [A ∨ B]F

C ∨ [A]F
∨F

l

C ∨ [A ∨ B]F

C ∨ [B]F
∨F

r

C ∨ [¬A]T

C ∨ [A]F
¬T

C ∨ [¬A]F

C ∨ [A]T
¬F

C ∨ [ΠαA]T Xα new variable
C ∨ [A X]T

ΠT

C ∨ [ΠαA]F skα Skolem term
C ∨ [A skα]F

ΠF

This rules may be combined into a single rule Cnf.
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Resolution and Factorisation

[N]α ∨ C [M]β ∨ D α += β

C ∨ D ∨ [N +=? M]
Res

[N]α ∨ [M]α ∨ C α ∈ {T,F}

[N]α ∨ C ∨ [N +=? M]
Fac

[QγUk]α ∨ C P ∈ GB{¬,∨}∪{Πβ |β∈T k}
γ

[QγUk]α ∨ C ∨ [Q +=? P]
Primk
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(Pre-)unification rules

C ∨ [Mα→β +=? Nα→β ]F sα Skolem-Term
C ∨ [M s +=? N s]

Func

C ∨ [hUn +=? hVn]

C ∨ [U1 +=? V1] ∨ . . . ∨ [Un +=? Vn]
Dec

C ∨ [A +=? A]

C
Triv

C ∨ [FγUn +=? hVn] G ∈ GBh
γ

C ∨ [F +=? G] ∨ [FUn +=? hVn]
Flex/Rigid

C ∨ E E solved for C
Cnf(substE(C))

Subst
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Extensionality rules

C ∨ [Mo +=? No]F

Cnf(C ∨ [Mo ⇔ No]F)
Equiv

C ∨ [Mα +=? Nα]F α ∈ {o, ι}

Cnf(C ∨ [∀Pα→o PM⇒ PN]F)
Leib
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Extensionality Treatment
! Instead of adding infinitely many extensionality axioms to the

search space CR provides two new extensionality rules which
closely connect refutation search and eager unification.
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Extensionality Treatment
! Instead of adding infinitely many extensionality axioms to the

search space CR provides two new extensionality rules which
closely connect refutation search and eager unification.

! The idea is to allow for recursive calls from higher-order
unification to the overall refutation process.
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Extensional HO Resolution ER
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Extensionality Treatment
! Instead of adding infinitely many extensionality axioms to the

search space CR provides two new extensionality rules which
closely connect refutation search and eager unification.

! The idea is to allow for recursive calls from higher-order
unification to the overall refutation process.

! This turns the rather weak syntactical higher-order unification
approach considered so far into a most general approach for
dynamic higher-order theory unification.
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Proof Search
! Initially the proof problem is negated and normalised. The

main proof search then closely interleaves the refutation
process on resolution layer and unification, i.e. the main proof
search rules Res, Fac, and Prim and the unification rules are
integrated at a common conceptual level. The calls from
unification to the overall refutation process with rules Leib and
Equiv introduce new clauses into the search space which can
be resolved against already given ones.
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Extensional HO Resolution ER
HO

L

AT
Pλ

Proof Search
! Initially the proof problem is negated and normalised. The

main proof search then closely interleaves the refutation
process on resolution layer and unification, i.e. the main proof
search rules Res, Fac, and Prim and the unification rules are
integrated at a common conceptual level. The calls from
unification to the overall refutation process with rules Leib and
Equiv introduce new clauses into the search space which can
be resolved against already given ones.

! The following figure graphically illustrates the main ideas of the
proof search in ER.

interleaved proof search & unification
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∀Bα→o, Cα→o, Dα→o B ∪ (C ∩ D) = (B ∪ C) ∩ (B ∪ D)

Negation and definition expansion with
∪ = λAα→o, Bα→o, Xα (A X) ∨ (B X) ∩ = λAα→o, Bα→o, Xα (A X) ∧ (B X)

leads to:
C1 : [λXα (b X) ∨ ((c X) ∧ (d X)) +=? λXα ((b X) ∨ (c X)) ∧ ((b X) ∨ (d X)))]

Goal directed functional and Boolean extensionality treatment:
C2 : [(b x) ∨ ((c x) ∧ (d x))⇔ ((b x) ∨ (c x)) ∧ ((b x) ∨ (d x)))]F

Clause normalization results then in a pure propositional, i.e. decidable, set of
clauses. Only these clauses are still in the search space of LEO(in total there
are 33 clauses generated and LEO finds the proof on a 2,5GHz PC in 820ms).

Similar proof in case of embedded propositions:
∀P(α→o)→o, Bα→o, Cα→o, Dα→o P(B ∪ (C ∩ D))⇒ P((B ∪ C) ∩ (B ∪ D))
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∀Po→o (P ao) ∧ (P bo)⇒ (P (ao ∧ bo))

Negation and clause normalization

C1 : [p a]T C2 : [p b]T C3 : [p (a ∧ b)]F

Resolution between C1 and C3 and between C2 and C3

C4 : [p a +=? p (a ∧ b)] C5 : [p b +=? p (a ∧ b)]

Decomposition
C6 : [a +=? (a ∧ b)] C7 : [b +=? (a ∧ b)]

Recursive call of proof process with rules Equiv and Cnf

C8 : [a]F ∨ [b]F C9 : [a]T ∨ [b]T C10 : [a]T C11 : [b]T
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Further small examples which test Henkin completeness:

∀Fo→o (F
.
= λXo Xo)∨(F

.
= λXo ¬Xo)∨(F

.
= λXo ⊥)∨(F

.
= λXo .)

∀Ho→o H ⊥
.
= H (H .

.
= H ⊥)

. . .

ATPHOL’06-[15] – p.360
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