
c©Benzmüller, 2006

HO
L

AT
Pλ

HO
L

AT
Pλ

Approaches to Higher-Order
Resolution

ATPHOL’06-[12] – p.307

c©Benzmüller, 2006

Preliminaries and Notation
HO

L

AT
Pλ

! only logical constants: ¬o→o, ∨o→o→o, and Π(α→o)→o

ATPHOL’06-[12] – p.308

c©Benzmüller, 2006

Preliminaries and Notation
HO

L

AT
Pλ

! only logical constants: ¬o→o, ∨o→o→o, and Π(α→o)→o

! other logical operators can be defined (e.g.,
A ∧B := ¬(¬A ∨ ¬B), ∀Xα P X := Π((α→o)→o)(λXα P X), and
∃Xα P X := ¬∀Xα ¬(P X)))

ATPHOL’06-[12] – p.308

c©Benzmüller, 2006

Preliminaries and Notation
HO

L

AT
Pλ

! only logical constants: ¬o→o, ∨o→o→o, and Π(α→o)→o

! other logical operators can be defined (e.g.,
A ∧B := ¬(¬A ∨ ¬B), ∀Xα P X := Π((α→o)→o)(λXα P X), and
∃Xα P X := ¬∀Xα ¬(P X)))

! variables are printed as upper-case (e.g., Xα), constants as
lower-case letters (e.g., cα), and arbitrary terms appear as bold
capital letters (e.g., Tα)

ATPHOL’06-[12] – p.308

c©Benzmüller, 2006

Preliminaries and Notation
HO

L

AT
Pλ

! only logical constants: ¬o→o, ∨o→o→o, and Π(α→o)→o

! other logical operators can be defined (e.g.,
A ∧B := ¬(¬A ∨ ¬B), ∀Xα P X := Π((α→o)→o)(λXα P X), and
∃Xα P X := ¬∀Xα ¬(P X)))

! variables are printed as upper-case (e.g., Xα), constants as
lower-case letters (e.g., cα), and arbitrary terms appear as bold
capital letters (e.g., Tα)

! we abbreviate function applications by hα1→···→αn→β Un
αn

, which
stands for (· · · (hα1→···→αn→β U1

α1
) · · ·Un

αn
).

ATPHOL’06-[12] – p.308

c©Benzmüller, 2006

Preliminaries and Notation
HO

L

AT
Pλ

! only logical constants: ¬o→o, ∨o→o→o, and Π(α→o)→o

! other logical operators can be defined (e.g.,
A ∧B := ¬(¬A ∨ ¬B), ∀Xα P X := Π((α→o)→o)(λXα P X), and
∃Xα P X := ¬∀Xα ¬(P X)))

! variables are printed as upper-case (e.g., Xα), constants as
lower-case letters (e.g., cα), and arbitrary terms appear as bold
capital letters (e.g., Tα)

! we abbreviate function applications by hα1→···→αn→β Un
αn

, which
stands for (· · · (hα1→···→αn→β U1

α1
) · · ·Un

αn
).

! α-, β-, η-, βη-conversion and the definition of β-normal,
βη-normal, long βη-normal, and head-normal form defined as
usual (see [Barendregt84])

ATPHOL’06-[12] – p.308

c©Benzmüller, 2006

Preliminaries and Notation
HO

L

AT
Pλ

! only logical constants: ¬o→o, ∨o→o→o, and Π(α→o)→o

! other logical operators can be defined (e.g.,
A ∧B := ¬(¬A ∨ ¬B), ∀Xα P X := Π((α→o)→o)(λXα P X), and
∃Xα P X := ¬∀Xα ¬(P X)))

! variables are printed as upper-case (e.g., Xα), constants as
lower-case letters (e.g., cα), and arbitrary terms appear as bold
capital letters (e.g., Tα)

! we abbreviate function applications by hα1→···→αn→β Un
αn

, which
stands for (· · · (hα1→···→αn→β U1

α1
) · · ·Un

αn
).

! α-, β-, η-, βη-conversion and the definition of β-normal,
βη-normal, long βη-normal, and head-normal form defined as
usual (see [Barendregt84])

! substitutions defined as usual

ATPHOL’06-[12] – p.308

c©Benzmüller, 2006

Preliminaries and Notation
HO

L

AT
Pλ

! substitutions are represented as [T1/X1, . . . ,Tn/Xn] where the
Xi specify the variables to be replaced by the terms Ti. The
application of a substitution σ to a term (resp. literal or clause)
C is printed Cσ

ATPHOL’06-[12] – p.309

c©Benzmüller, 2006

Preliminaries and Notation
HO

L

AT
Pλ

! substitutions are represented as [T1/X1, . . . ,Tn/Xn] where the
Xi specify the variables to be replaced by the terms Ti. The
application of a substitution σ to a term (resp. literal or clause)
C is printed Cσ

! a resolution calculus R provides a set of rules {rn| 0 < n ≤ i}
defined on clauses

ATPHOL’06-[12] – p.309

c©Benzmüller, 2006

Preliminaries and Notation
HO

L

AT
Pλ

! substitutions are represented as [T1/X1, . . . ,Tn/Xn] where the
Xi specify the variables to be replaced by the terms Ti. The
application of a substitution σ to a term (resp. literal or clause)
C is printed Cσ

! a resolution calculus R provides a set of rules {rn| 0 < n ≤ i}
defined on clauses

! we write Φ &rn C (C′ &rn C) iff clause C is the result of a one step
application of rule rn ∈ R to premise clauses C′i ∈ Φ (to C′

respectively)

ATPHOL’06-[12] – p.309

c©Benzmüller, 2006

Preliminaries and Notation
HO

L

AT
Pλ

! substitutions are represented as [T1/X1, . . . ,Tn/Xn] where the
Xi specify the variables to be replaced by the terms Ti. The
application of a substitution σ to a term (resp. literal or clause)
C is printed Cσ

! a resolution calculus R provides a set of rules {rn| 0 < n ≤ i}
defined on clauses

! we write Φ &rn C (C′ &rn C) iff clause C is the result of a one step
application of rule rn ∈ R to premise clauses C′i ∈ Φ (to C′

respectively)
! multiple step derivations in calculus R are abbreviated by

Φ1 &R Φk (or C1 &R Ck)

ATPHOL’06-[12] – p.309

c©Benzmüller, 2006

Def.: General Bindings
HO

L

AT
Pλ

Let α := (βl → γ) and let h be a constant or variable of type
(δm → γ) in Σ,

ATPHOL’06-[12] – p.310

c©Benzmüller, 2006

Def.: General Bindings
HO

L

AT
Pλ

Let α := (βl → γ) and let h be a constant or variable of type
(δm → γ) in Σ, then

G := λXl
β l h Vm

(m ≥ 0) is called a partial binding of type α and head h (see
also [SnGa89,Snyder91]),

ATPHOL’06-[12] – p.310

c©Benzmüller, 2006

Def.: General Bindings
HO

L

AT
Pλ

Let α := (βl → γ) and let h be a constant or variable of type
(δm → γ) in Σ, then

G := λXl
β l h Vm

(m ≥ 0) is called a partial binding of type α and head h (see
also [SnGa89,Snyder91]), if Vi = Hi Xl

βl
and the Hi are new variables of

types βl → δi.

ATPHOL’06-[12] – p.310

c©Benzmüller, 2006

Def.: General Bindings
HO

L

AT
Pλ

Let α := (βl → γ) and let h be a constant or variable of type
(δm → γ) in Σ, then

G := λXl
β l h Vm

(m ≥ 0) is called a partial binding of type α and head h (see
also [SnGa89,Snyder91]), if Vi = Hi Xl

βl
and the Hi are new variables of

types βl → δi.

Partial bindings, where the head is a bound variable Xj
βj

are called
projection bindings (we write them as Gj

α) and imitation bindings
(written Gh

α) otherwise.

ATPHOL’06-[12] – p.310

c©Benzmüller, 2006

Def.: General Bindings
HO

L

AT
Pλ

Let α := (βl → γ) and let h be a constant or variable of type
(δm → γ) in Σ, then

G := λXl
β l h Vm

(m ≥ 0) is called a partial binding of type α and head h (see
also [SnGa89,Snyder91]), if Vi = Hi Xl

βl
and the Hi are new variables of

types βl → δi.

Partial bindings, where the head is a bound variable Xj
βj

are called
projection bindings (we write them as Gj

α) and imitation bindings
(written Gh

α) otherwise.

Since we need both imitation and projection bindings for
higher-order unification, we collect them in the set of general
bindings for h and α (ABh

α := {Gh
α} ∪ {Gj

α | j ≤ l}).

ATPHOL’06-[12] – p.310

c©Benzmüller, 2006

Def.: General Bindings
HO

L

AT
Pλ

Let α := (βl → γ) and let h be a constant or variable of type
(δm → γ) in Σ, then

G := λXl
β l h Vm

(m ≥ 0) is called a partial binding of type α and head h (see
also [SnGa89,Snyder91]), if Vi = Hi Xl

βl
and the Hi are new variables of

types βl → δi.

Partial bindings, where the head is a bound variable Xj
βj

are called
projection bindings (we write them as Gj

α) and imitation bindings
(written Gh

α) otherwise.

Since we need both imitation and projection bindings for
higher-order unification, we collect them in the set of general
bindings for h and α (ABh

α := {Gh
α} ∪ {Gj

α | j ≤ l}).

ATPHOL’06-[12] – p.310

c©Benzmüller, 2006

Def.: Literals
HO

L

AT
Pλ

! literals, e.g., [A]µ, consist of a literal atom A and a polarity
µ ∈ {T,F}

ATPHOL’06-[12] – p.311

c©Benzmüller, 2006

Def.: Literals
HO

L

AT
Pλ

! literals, e.g., [A]µ, consist of a literal atom A and a polarity
µ ∈ {T,F}

! we distinguish between proper literals and pre-literals: the
(normalised) atom of a pre-literal has a logical constant at head
position, whereas this must not be the case for proper literals

ATPHOL’06-[12] – p.311

c©Benzmüller, 2006

Def.: Literals
HO

L

AT
Pλ

! literals, e.g., [A]µ, consist of a literal atom A and a polarity
µ ∈ {T,F}

! we distinguish between proper literals and pre-literals: the
(normalised) atom of a pre-literal has a logical constant at head
position, whereas this must not be the case for proper literals

! for instance, [A ∨B]T is a pre-literal and [po→o (A ∨B)]T is a
proper literal

ATPHOL’06-[12] – p.311

c©Benzmüller, 2006

Def.: Literals
HO

L

AT
Pλ

! literals, e.g., [A]µ, consist of a literal atom A and a polarity
µ ∈ {T,F}

! we distinguish between proper literals and pre-literals: the
(normalised) atom of a pre-literal has a logical constant at head
position, whereas this must not be the case for proper literals

! for instance, [A ∨B]T is a pre-literal and [po→o (A ∨B)]T is a
proper literal

! a literal is called flexible if its atom contains a variable at head
position

ATPHOL’06-[12] – p.311

c©Benzmüller, 2006

Def.: Unification Constraints
HO

L

AT
Pλ

! a unification problem between two terms T1 and T2 (between
n terms T1, . . . ,Tn) generated during the refutation process is
called an unification constraint

ATPHOL’06-[12] – p.312

c©Benzmüller, 2006

Def.: Unification Constraints
HO

L

AT
Pλ

! a unification problem between two terms T1 and T2 (between
n terms T1, . . . ,Tn) generated during the refutation process is
called an unification constraint

! it is represented as [T1 +=? T2] (resp. [+=? (T1, . . . ,Tn)])

ATPHOL’06-[12] – p.312

c©Benzmüller, 2006

Def.: Unification Constraints
HO

L

AT
Pλ

! a unification problem between two terms T1 and T2 (between
n terms T1, . . . ,Tn) generated during the refutation process is
called an unification constraint

! it is represented as [T1 +=? T2] (resp. [+=? (T1, . . . ,Tn)])
! a unification constraint is called a flex-flex pair if both

unification terms have flexible heads, i.e. variables at head
position

ATPHOL’06-[12] – p.312

c©Benzmüller, 2006

Def.: Unification Constraints
HO

L

AT
Pλ

! a unification problem between two terms T1 and T2 (between
n terms T1, . . . ,Tn) generated during the refutation process is
called an unification constraint

! it is represented as [T1 +=? T2] (resp. [+=? (T1, . . . ,Tn)])
! a unification constraint is called a flex-flex pair if both

unification terms have flexible heads, i.e. variables at head
position

! a unification constraint is called a flex-rigid pair if one
unification term has a flexible head, i.e. variable at head
position

ATPHOL’06-[12] – p.312

c©Benzmüller, 2006

Def.: Clauses
HO

L

AT
Pλ

! clauses consist of disjunctions of literals or unification
constraints

ATPHOL’06-[12] – p.313

c©Benzmüller, 2006

Def.: Clauses
HO

L

AT
Pλ

! clauses consist of disjunctions of literals or unification
constraints

! the unification constraints specify conditions under which the
other literals are valid

ATPHOL’06-[12] – p.313

c©Benzmüller, 2006

Def.: Clauses
HO

L

AT
Pλ

! clauses consist of disjunctions of literals or unification
constraints

! the unification constraints specify conditions under which the
other literals are valid

! for instance, the clause
[pα→β→o T1

α T2
β]

T ∨ [T1
α +=

? S1
α] ∨ [T2

β +=
? S2

β] can be read as: if
T1 is unifiable with S1 and T2 with S2 then (p T1 T2) holds

ATPHOL’06-[12] – p.313

c©Benzmüller, 2006

Def.: Clauses
HO

L

AT
Pλ

! clauses consist of disjunctions of literals or unification
constraints

! the unification constraints specify conditions under which the
other literals are valid

! for instance, the clause
[pα→β→o T1

α T2
β]

T ∨ [T1
α +=

? S1
α] ∨ [T2

β +=
? S2

β] can be read as: if
T1 is unifiable with S1 and T2 with S2 then (p T1 T2) holds

! we implicitly treat the disjunction operator ∨ in clauses as
commutative and associative

ATPHOL’06-[12] – p.313

c©Benzmüller, 2006

Def.: Clauses
HO

L

AT
Pλ

! clauses consist of disjunctions of literals or unification
constraints

! the unification constraints specify conditions under which the
other literals are valid

! for instance, the clause
[pα→β→o T1

α T2
β]

T ∨ [T1
α +=

? S1
α] ∨ [T2

β +=
? S2

β] can be read as: if
T1 is unifiable with S1 and T2 with S2 then (p T1 T2) holds

! we implicitly treat the disjunction operator ∨ in clauses as
commutative and associative

! additionally we presuppose commutativity of +=? and implicitly
identify any two α-equal constraints or literals.

ATPHOL’06-[12] – p.313

c©Benzmüller, 2006

Def.: Clauses
HO

L

AT
Pλ

! clauses consist of disjunctions of literals or unification
constraints

! the unification constraints specify conditions under which the
other literals are valid

! for instance, the clause
[pα→β→o T1

α T2
β]

T ∨ [T1
α +=

? S1
α] ∨ [T2

β +=
? S2

β] can be read as: if
T1 is unifiable with S1 and T2 with S2 then (p T1 T2) holds

! we implicitly treat the disjunction operator ∨ in clauses as
commutative and associative

! additionally we presuppose commutativity of +=? and implicitly
identify any two α-equal constraints or literals.

! furthermore we assume that any two clauses have disjoint sets
of free variables, i.e. for each freshly generated clause we
choose new free variables

ATPHOL’06-[12] – p.313

c©Benzmüller, 2006

Def.: Clauses (contd.)
HO

L

AT
Pλ

! if a clause contains at least one pre-literal we call it a
pre-clause, otherwise a proper clause

ATPHOL’06-[12] – p.314

c©Benzmüller, 2006

Def.: Clauses (contd.)
HO

L

AT
Pλ

! if a clause contains at least one pre-literal we call it a
pre-clause, otherwise a proper clause

! a clause is called empty, denoted by !, if it consists only of
(possibly none) flex-flex pairs.

ATPHOL’06-[12] – p.314

c©Benzmüller, 2006

Rem.: Skolemisation
HO

L

AT
Pλ

! an important aspect of clause normalisation is Skolemisation

ATPHOL’06-[12] – p.315

c©Benzmüller, 2006

Rem.: Skolemisation
HO

L

AT
Pλ

! an important aspect of clause normalisation is Skolemisation
! we employ Miller’s sound adaptation of traditional first-order

Skolemisation [Miller:pihol83], which associates with each Skolem
function the minimum number of arguments the Skolem
function has to be applied to

ATPHOL’06-[12] – p.315

c©Benzmüller, 2006

Rem.: Skolemisation
HO

L

AT
Pλ

! an important aspect of clause normalisation is Skolemisation
! we employ Miller’s sound adaptation of traditional first-order

Skolemisation [Miller:pihol83], which associates with each Skolem
function the minimum number of arguments the Skolem
function has to be applied to

! higher-order Skolemisation becomes sound, if any Skolem
function fn only occurs in a Skolem term, i.e., a formula
S = fnAn, where none of the Ai contains a bound variable

ATPHOL’06-[12] – p.315

c©Benzmüller, 2006

Rem.: Skolemisation
HO

L

AT
Pλ

! an important aspect of clause normalisation is Skolemisation
! we employ Miller’s sound adaptation of traditional first-order

Skolemisation [Miller:pihol83], which associates with each Skolem
function the minimum number of arguments the Skolem
function has to be applied to

! higher-order Skolemisation becomes sound, if any Skolem
function fn only occurs in a Skolem term, i.e., a formula
S = fnAn, where none of the Ai contains a bound variable

! thus, the Skolem terms only serve as descriptions of the
existential witnesses and never appear as functions proper

ATPHOL’06-[12] – p.315

c©Benzmüller, 2006

Rem.: Skolemisation
HO

L

AT
Pλ

! an important aspect of clause normalisation is Skolemisation
! we employ Miller’s sound adaptation of traditional first-order

Skolemisation [Miller:pihol83], which associates with each Skolem
function the minimum number of arguments the Skolem
function has to be applied to

! higher-order Skolemisation becomes sound, if any Skolem
function fn only occurs in a Skolem term, i.e., a formula
S = fnAn, where none of the Ai contains a bound variable

! thus, the Skolem terms only serve as descriptions of the
existential witnesses and never appear as functions proper

! without this additional restriction the calculi do not really
become unsound, but one can prove an instance of the axiom
of choice ([Andrews73]), which we want to treat as an optional
axiom for the resolution calculi presented here

ATPHOL’06-[12] – p.315

c©Benzmüller, 2006

HO
L

AT
Pλ

HO
L

AT
Pλ

Approaches to Higher-Order
Resolution: R

ATPHOL’06-[13] – p.316

c©Benzmüller, 2006

Andrews’ Higher-Order Resolution R
HO

L

AT
Pλ

We present and discuss Andrews’ higher-order resolution
calculus [Andrews71] in our uniform notation; we call this calculus R

λ-Conversion
! Andrews’ provides two rules for α-conversion and β-reduction

ATPHOL’06-[13] – p.317

c©Benzmüller, 2006

Andrews’ Higher-Order Resolution R
HO

L

AT
Pλ

We present and discuss Andrews’ higher-order resolution
calculus [Andrews71] in our uniform notation; we call this calculus R

λ-Conversion
! Andrews’ provides two rules for α-conversion and β-reduction
! he does not provide a rule for η-conversion: consequently
η-equality of two terms (e.g., fι→ι

.
= λXι f X) cannot be proven

in this approach without employing the functional extensionality
axiom of appropriate type

ATPHOL’06-[13] – p.317

c©Benzmüller, 2006

Andrews’ Higher-Order Resolution R
HO

L

AT
Pλ

We present and discuss Andrews’ higher-order resolution
calculus [Andrews71] in our uniform notation; we call this calculus R

λ-Conversion
! Andrews’ provides two rules for α-conversion and β-reduction
! he does not provide a rule for η-conversion: consequently
η-equality of two terms (e.g., fι→ι

.
= λXι f X) cannot be proven

in this approach without employing the functional extensionality
axiom of appropriate type

! we omit explicit rules for α- and β-convertibility and instead
treat them implicitly, i.e. we assume that the presented rules
operate on input and generate output in β-normal form and we
automatically identify terms which differ only with respect to the
names of bound variables

ATPHOL’06-[13] – p.317

c©Benzmüller, 2006

Andrews’ Higher-Order Resolution R
HO

L

AT
Pλ

Clause Normalisation
! R introduces only four rules belonging to clause normalisation:

negation elimination, conjunction elimination, existential
elimination, and universal elimination

ATPHOL’06-[13] – p.318

c©Benzmüller, 2006

Andrews’ Higher-Order Resolution R
HO

L

AT
Pλ

Clause Normalisation
! R introduces only four rules belonging to clause normalisation:

negation elimination, conjunction elimination, existential
elimination, and universal elimination

! as our presentation of clauses in contrast to [Andrews71] explicitly
mentions the polarities of clauses and brackets the literal
atoms we need additional structural rules, e.g., the rule ∨T

ATPHOL’06-[13] – p.318

c©Benzmüller, 2006

Andrews’ Higher-Order Resolution R
HO

L

AT
Pλ

Clause Normalisation
! R introduces only four rules belonging to clause normalisation:

negation elimination, conjunction elimination, existential
elimination, and universal elimination

! as our presentation of clauses in contrast to [Andrews71] explicitly
mentions the polarities of clauses and brackets the literal
atoms we need additional structural rules, e.g., the rule ∨T

! negation elimination: C ∨ [¬A]T

C ∨ [A]F
¬T

C ∨ [¬A]F

C ∨ [A]T
¬F

ATPHOL’06-[13] – p.318

c©Benzmüller, 2006

Andrews’ Higher-Order Resolution R
HO

L

AT
Pλ

Clause Normalisation
! R introduces only four rules belonging to clause normalisation:

negation elimination, conjunction elimination, existential
elimination, and universal elimination

! as our presentation of clauses in contrast to [Andrews71] explicitly
mentions the polarities of clauses and brackets the literal
atoms we need additional structural rules, e.g., the rule ∨T

! negation elimination: C ∨ [¬A]T

C ∨ [A]F
¬T

C ∨ [¬A]F

C ∨ [A]T
¬F

! conjunction/disjunction elimination:

C ∨ [A ∨B]T

C ∨ [A]T ∨ [B]T
∨T

C ∨ [A ∨B]F

C ∨ [A]F
∨F

l

C ∨ [A ∨B]F

C ∨ [B]F
∨F

r

ATPHOL’06-[13] – p.318

c©Benzmüller, 2006

Andrews’ Higher-Order Resolution R
HO

L

AT
Pλ

Clause Normalisation (contd.)
! existential/universal elimination:

C ∨ [ΠαA]T

C ∨ [A Xα]T
ΠT

C ∨ [ΠαA]F

C ∨ [A sα]F
ΠF

ATPHOL’06-[13] – p.319

c©Benzmüller, 2006

Andrews’ Higher-Order Resolution R
HO

L

AT
Pλ

Clause Normalisation (contd.)
! existential/universal elimination:

C ∨ [ΠαA]T

C ∨ [A Xα]T
ΠT

C ∨ [ΠαA]F

C ∨ [A sα]F
ΠF

Xα is a new free variable and sα is a new Skolem term

ATPHOL’06-[13] – p.319

c©Benzmüller, 2006

Andrews’ Higher-Order Resolution R
HO

L

AT
Pλ

Clause Normalisation (contd.)
! existential/universal elimination:

C ∨ [ΠαA]T

C ∨ [A Xα]T
ΠT

C ∨ [ΠαA]F

C ∨ [A sα]F
ΠF

Xα is a new free variable and sα is a new Skolem term
! additionally Andrews presents rules addressing commutativity

and associativity of the ∨-operator connecting the clauses
literals; we have already mentioned the implicit treatment of
these aspects here

ATPHOL’06-[13] – p.319

c©Benzmüller, 2006

Andrews’ Higher-Order Resolution R
HO

L

AT
Pλ

Clause Normalisation (contd.)
! existential/universal elimination:

C ∨ [ΠαA]T

C ∨ [A Xα]T
ΠT

C ∨ [ΠαA]F

C ∨ [A sα]F
ΠF

Xα is a new free variable and sα is a new Skolem term
! additionally Andrews presents rules addressing commutativity

and associativity of the ∨-operator connecting the clauses
literals; we have already mentioned the implicit treatment of
these aspects here

! we refer with Cnf(A) to the set of clauses obtained from
formula A by exhaustive clause normalisation

ATPHOL’06-[13] – p.319

c©Benzmüller, 2006

Andrews’ Higher-Order Resolution R
HO

L

AT
Pλ

Resolution & Factorisation
! Instead of a resolution and a factorisation rule — which work in

connection with unification — Andrews presents a
simplification and a cut rule. The cut rule is only applicable to
clauses with two complementary literals which have identical
atoms. Similarly Sim is defined only for clauses with two
identical literals. In order to generate identical literal atoms
during the refutation process these two rules have to be
combined with the substitution rule Sub presented below.

ATPHOL’06-[13] – p.320

c©Benzmüller, 2006

Andrews’ Higher-Order Resolution R
HO

L

AT
Pλ

Resolution & Factorisation
! Instead of a resolution and a factorisation rule — which work in

connection with unification — Andrews presents a
simplification and a cut rule. The cut rule is only applicable to
clauses with two complementary literals which have identical
atoms. Similarly Sim is defined only for clauses with two
identical literals. In order to generate identical literal atoms
during the refutation process these two rules have to be
combined with the substitution rule Sub presented below.

! Simplification: [A]µ ∨ [A]µ ∨C

[A]µ ∨C
Sim

ATPHOL’06-[13] – p.320

c©Benzmüller, 2006

Andrews’ Higher-Order Resolution R
HO

L

AT
Pλ

Resolution & Factorisation
! Instead of a resolution and a factorisation rule — which work in

connection with unification — Andrews presents a
simplification and a cut rule. The cut rule is only applicable to
clauses with two complementary literals which have identical
atoms. Similarly Sim is defined only for clauses with two
identical literals. In order to generate identical literal atoms
during the refutation process these two rules have to be
combined with the substitution rule Sub presented below.

! Simplification: [A]µ ∨ [A]µ ∨C

[A]µ ∨C
Sim

! Cut: [A]µ ∨C [A]ν ∨D

C ∨D
Cut

ATPHOL’06-[13] – p.320

c©Benzmüller, 2006

Andrews’ Higher-Order Resolution R
HO

L

AT
Pλ

Unification & Primitive Substitution
! As higher-order unification was still an open problem in 1971

calculus R employs the British museum method instead, i.e. it
provides a substitution rule that allows to blindly instantiate
free variables by arbitrary terms. As the instantiated terms may
contain logical constants, instantiation of variables in proper
clauses may lead to pre-clauses, which must be normalised
again with the clause normalisation rules.

ATPHOL’06-[13] – p.321

c©Benzmüller, 2006

Andrews’ Higher-Order Resolution R
HO

L

AT
Pλ

Unification & Primitive Substitution
! As higher-order unification was still an open problem in 1971

calculus R employs the British museum method instead, i.e. it
provides a substitution rule that allows to blindly instantiate
free variables by arbitrary terms. As the instantiated terms may
contain logical constants, instantiation of variables in proper
clauses may lead to pre-clauses, which must be normalised
again with the clause normalisation rules.

! Substitution of arbitrary terms: C
C[Tα/Xα]

Sub

ATPHOL’06-[13] – p.321

c©Benzmüller, 2006

Andrews’ Higher-Order Resolution R
HO

L

AT
Pλ

Unification & Primitive Substitution
! As higher-order unification was still an open problem in 1971

calculus R employs the British museum method instead, i.e. it
provides a substitution rule that allows to blindly instantiate
free variables by arbitrary terms. As the instantiated terms may
contain logical constants, instantiation of variables in proper
clauses may lead to pre-clauses, which must be normalised
again with the clause normalisation rules.

! Substitution of arbitrary terms: C
C[Tα/Xα]

Sub

Xα is a free variable occurring in C.

ATPHOL’06-[13] – p.321

c©Benzmüller, 2006

Andrews’ Higher-Order Resolution R
HO

L

AT
Pλ

Extensionality Treatment
! Calculus R does not provide rules addressing the functional

and/or Boolean extensionality principles.

ATPHOL’06-[13] – p.322

c©Benzmüller, 2006

Andrews’ Higher-Order Resolution R
HO

L

AT
Pλ

Extensionality Treatment
! Calculus R does not provide rules addressing the functional

and/or Boolean extensionality principles.
! Instead R assumes that the following extensionality axioms are

(in form of respective clauses) explicitly added to the search
space. And since the functional extensionality principle is
parameterised over arbitrary functional types infinitely many
functional extensionality axioms are required.

ATPHOL’06-[13] – p.322

c©Benzmüller, 2006

Andrews’ Higher-Order Resolution R
HO

L

AT
Pλ

Extensionality Treatment
! Calculus R does not provide rules addressing the functional

and/or Boolean extensionality principles.
! Instead R assumes that the following extensionality axioms are

(in form of respective clauses) explicitly added to the search
space. And since the functional extensionality principle is
parameterised over arbitrary functional types infinitely many
functional extensionality axioms are required.

! Extensionality axioms

EXT
.
=
α→β : ∀Fα→β ∀Gα→β (∀Xβ F X

.
= G X)⇒ F

.
= G

EXT
.
=
o : ∀Ao ∀Bo (A⇔ B)⇒ A

.
=o B

ATPHOL’06-[13] – p.322

c©Benzmüller, 2006

Andrews’ Higher-Order Resolution R
HO

L

AT
Pλ

Extensionality Treatment (contd.)
! The extensionality clauses derived from the extensionality

axioms have the following form (note the many free variables,
especially at literal head position, that are introduced into the
search space – they heavily increase the amount of blind
search in any attempt to automate the calculus):

ATPHOL’06-[13] – p.323

c©Benzmüller, 2006

Andrews’ Higher-Order Resolution R
HO

L

AT
Pλ

Extensionality Treatment (contd.)
! The extensionality clauses derived from the extensionality

axioms have the following form (note the many free variables,
especially at literal head position, that are introduced into the
search space – they heavily increase the amount of blind
search in any attempt to automate the calculus):

Eα→β
1

: [p (F s)]T ∨ [Q F]F ∨ [Q G]T

Eα→β
2

: [p (G s)]F ∨ [Q F]F ∨ [Q G]T

ATPHOL’06-[13] – p.323

c©Benzmüller, 2006

Andrews’ Higher-Order Resolution R
HO

L

AT
Pλ

Extensionality Treatment (contd.)
! The extensionality clauses derived from the extensionality

axioms have the following form (note the many free variables,
especially at literal head position, that are introduced into the
search space – they heavily increase the amount of blind
search in any attempt to automate the calculus):

Eα→β
1

: [p (F s)]T ∨ [Q F]F ∨ [Q G]T

Eα→β
2

: [p (G s)]F ∨ [Q F]F ∨ [Q G]T

Eo
1 : [A]F∨ [B]F∨ [P A]F∨ [P B]T

Eo
2 : [A]T∨[B]T∨[P A]F∨[P B]T

ATPHOL’06-[13] – p.323

c©Benzmüller, 2006

Andrews’ Higher-Order Resolution R
HO

L

AT
Pλ

Extensionality Treatment (contd.)
! The extensionality clauses derived from the extensionality

axioms have the following form (note the many free variables,
especially at literal head position, that are introduced into the
search space – they heavily increase the amount of blind
search in any attempt to automate the calculus):

Eα→β
1

: [p (F s)]T ∨ [Q F]F ∨ [Q G]T

Eα→β
2

: [p (G s)]F ∨ [Q F]F ∨ [Q G]T

Eo
1 : [A]F∨ [B]F∨ [P A]F∨ [P B]T

Eo
2 : [A]T∨[B]T∨[P A]F∨[P B]T

pβ→o, sα are Skolem terms and Ao, Bo, Po→o, Q(α→β)→o are
new free variables.

ATPHOL’06-[13] – p.323

c©Benzmüller, 2006

Andrews’ Higher-Order Resolution R
HO

L

AT
Pλ

Proof Search
! initially the proof problem is negated and normalised

ATPHOL’06-[13] – p.324

c©Benzmüller, 2006

Andrews’ Higher-Order Resolution R
HO

L

AT
Pλ

Proof Search
! initially the proof problem is negated and normalised
! proof search then starts with the normalised clauses and

applies the cut and simplification rule in close connection with
the substitution rule

ATPHOL’06-[13] – p.324

c©Benzmüller, 2006

Andrews’ Higher-Order Resolution R
HO

L

AT
Pλ

Proof Search
! initially the proof problem is negated and normalised
! proof search then starts with the normalised clauses and

applies the cut and simplification rule in close connection with
the substitution rule

! intermediate applications of the clause normalisation rules may
be needed to normalise temporarily generated pre-clauses

ATPHOL’06-[13] – p.324

c©Benzmüller, 2006

Andrews’ Higher-Order Resolution R
HO

L

AT
Pλ

Proof Search
! initially the proof problem is negated and normalised
! proof search then starts with the normalised clauses and

applies the cut and simplification rule in close connection with
the substitution rule

! intermediate applications of the clause normalisation rules may
be needed to normalise temporarily generated pre-clauses

! the extensionality treatment in R simply assumes to add at the
beginning of the refutation process the above clauses obtained
from the extensionality axioms

ATPHOL’06-[13] – p.324

c©Benzmüller, 2006

Andrews’ Higher-Order Resolution R
HO

L

AT
Pλ

Proof Search
! initially the proof problem is negated and normalised
! proof search then starts with the normalised clauses and

applies the cut and simplification rule in close connection with
the substitution rule

! intermediate applications of the clause normalisation rules may
be needed to normalise temporarily generated pre-clauses

! the extensionality treatment in R simply assumes to add at the
beginning of the refutation process the above clauses obtained
from the extensionality axioms

! the proof search can be graphically illustrated as follows:

axioms
ext. proof search & blind variable instantiation

ATPHOL’06-[13] – p.324

c©Benzmüller, 2006

Andrews’ Higher-Order Resolution R
HO

L

AT
Pλ

Completeness
! [Andrews71] gives a completeness proof for calculus R with

respect to the semantical notion of V-complexes (corresponds
to our weakest model class Mβ(Σ))

ATPHOL’06-[13] – p.325

c©Benzmüller, 2006

Andrews’ Higher-Order Resolution R
HO

L

AT
Pλ

Completeness
! [Andrews71] gives a completeness proof for calculus R with

respect to the semantical notion of V-complexes (corresponds
to our weakest model class Mβ(Σ))

! as the extensionality principles are not valid in this rather weak
semantical structures, the extensionality axioms are not
needed in this completeness proof

ATPHOL’06-[13] – p.325

c©Benzmüller, 2006

Andrews’ Higher-Order Resolution R
HO

L

AT
Pλ

Completeness
! [Andrews71] gives a completeness proof for calculus R with

respect to the semantical notion of V-complexes (corresponds
to our weakest model class Mβ(Σ))

! as the extensionality principles are not valid in this rather weak
semantical structures, the extensionality axioms are not
needed in this completeness proof

! Theorem: (V-completeness of R) The calculus R is (sound
and) complete with respect to the notion of V-complexes.

Proof: [Andrews71].

ATPHOL’06-[13] – p.325

c©Benzmüller, 2006

Andrews’ Higher-Order Resolution R
HO

L

AT
Pλ

Henkin Completeness
! We can also prove Henkin completeness of calculus R.

ATPHOL’06-[13] – p.326

c©Benzmüller, 2006

Andrews’ Higher-Order Resolution R
HO

L

AT
Pλ

Henkin Completeness
! We can also prove Henkin completeness of calculus R.
! Theorem: (Henkin completeness of R) The calculus R is

(sound and) complete with respect to Henkin semantics
provided that the infinitely many extensionality axioms are
given.

Proof: exercise

ATPHOL’06-[13] – p.326

c©Benzmüller, 2006

Andrews’ Higher-Order Resolution R
HO

L

AT
Pλ

Henkin Completeness
! We can also prove Henkin completeness of calculus R.
! Theorem: (Henkin completeness of R) The calculus R is

(sound and) complete with respect to Henkin semantics
provided that the infinitely many extensionality axioms are
given.

Proof: exercise

ATPHOL’06-[13] – p.326

c©Benzmüller, 2006

Example Proofs
HO

L

AT
Pλ

Exercise: How are the following theorems proved in calculus R?
! Leibniz equality and η-equality:

fι→ι
.
= λXι f X

ATPHOL’06-[13] – p.327

c©Benzmüller, 2006

Example Proofs
HO

L

AT
Pλ

Exercise: How are the following theorems proved in calculus R?
! Leibniz equality and η-equality:

fι→ι
.
= λXι f X

! The set of all red balls equals the set of all balls that are red:
{X|red X ∧ ball X} = {X|ball X ∧ red X}. This problem can be
encoded as

(λXι red X ∧ ball X) = (λXι ball X ∧ red X)

ATPHOL’06-[13] – p.327

c©Benzmüller, 2006

Example Proofs
HO

L

AT
Pλ

Exercise: How are the following theorems proved in calculus R?
! All unary logical operators Oo→o which map the propositions a

and b to . consequently also map a ∧ b to .:

∀Oo→o (O ao) ∧ (O bo)⇒ (O (ao ∧ bo))

ATPHOL’06-[13] – p.328

c©Benzmüller, 2006

Example Proofs
HO

L

AT
Pλ

Exercise: How are the following theorems proved in calculus R?
! In Henkin semantics the domain Do of all Booleans contains

exactly the truth values ⊥ and .. Consequently the domain of
all mappings from Booleans to Booleans contains exactly
contains in each Henkin model at most four elements. And
because of the requirement, that the function domains in
Henkin models must be rich enough such that every term has
a denotation, it follows that Do→o contains exactly the pairwise
distinct denotations of the following four terms: λXo Xo,
λXo ¬Xo , λXo ⊥, and λXo .. This theorem can be formulated
as follows (where fo→o is a constant):

(f = λXo Xo) ∨ (f = λXo ¬Xo) ∨ (f = λXo ⊥) ∨ (f = λXo .)

ATPHOL’06-[13] – p.329

c©Benzmüller, 2006

HO
L

AT
Pλ

HO
L

AT
Pλ

Approaches to Higher-Order
Resolution: CR

ATPHOL’06-[14] – p.330

c©Benzmüller, 2006

Huet’s Constrained Resolution CR
HO

L

AT
Pλ

We transform Huet’s constrained resolution approach [Huet72,Huet73]

in our uniform notation. The calculus here is the unsorted fragment
of the variant of Huet’s approach as presented in [Kohlhase94]. In the
remainder of this paper we refer to this calculus with CR.

λ-Conversion
! Calculus CR assumes that terms, literals, and clauses are

implicitly reduced to β-normal form.

ATPHOL’06-[14] – p.331

c©Benzmüller, 2006

Huet’s Constrained Resolution CR
HO

L

AT
Pλ

We transform Huet’s constrained resolution approach [Huet72,Huet73]

in our uniform notation. The calculus here is the unsorted fragment
of the variant of Huet’s approach as presented in [Kohlhase94]. In the
remainder of this paper we refer to this calculus with CR.

λ-Conversion
! Calculus CR assumes that terms, literals, and clauses are

implicitly reduced to β-normal form.
! Furthermore, we assume that α-equality is treated implicitly,

i.e. we identify all terms that differ only with respect to the
names of bound variables.

ATPHOL’06-[14] – p.331

c©Benzmüller, 2006

Huet’s Constrained Resolution CR
HO

L

AT
Pλ

Clause Normalisation
! [Huet72] does not explicitly present clause normalisation rules

but assumes that they are given. Here we employ the rules ¬T,
¬F, ∨T, ∨F

l , ∨F
r , ΠT, and ΠF as already defined for calculus R

before.

ATPHOL’06-[14] – p.332

c©Benzmüller, 2006

Huet’s Constrained Resolution CR
HO

L

AT
Pλ

Clause Normalisation
! [Huet72] does not explicitly present clause normalisation rules

but assumes that they are given. Here we employ the rules ¬T,
¬F, ∨T, ∨F

l , ∨F
r , ΠT, and ΠF as already defined for calculus R

before.

ATPHOL’06-[14] – p.332

c©Benzmüller, 2006

Huet’s Constrained Resolution CR
HO

L

AT
Pλ

Resolution & Factorisation
! As first-order unification is decidable and unitary it can be

employed as a strong filter in first-order resolution [Robinson65].

ATPHOL’06-[14] – p.333

c©Benzmüller, 2006

Huet’s Constrained Resolution CR
HO

L

AT
Pλ

Resolution & Factorisation
! As first-order unification is decidable and unitary it can be

employed as a strong filter in first-order resolution [Robinson65].
! Unfortunately higher-order unification is not decidable

(cf. [Lucchesi72,Huet73,Goldfarb81]) and thus it can not be applied in
the sense of a terminating side computation in higher-order
theorem proving.

ATPHOL’06-[14] – p.333

c©Benzmüller, 2006

Huet’s Constrained Resolution CR
HO

L

AT
Pλ

Resolution & Factorisation
! As first-order unification is decidable and unitary it can be

employed as a strong filter in first-order resolution [Robinson65].
! Unfortunately higher-order unification is not decidable

(cf. [Lucchesi72,Huet73,Goldfarb81]) and thus it can not be applied in
the sense of a terminating side computation in higher-order
theorem proving.

! Huet therefore suggests in [Huet72,Huet73] to delay the unification
process and to explicitly encode unification problems occurring
during the refutation search as unification constraints.

ATPHOL’06-[14] – p.333

c©Benzmüller, 2006

Huet’s Constrained Resolution CR
HO

L

AT
Pλ

Resolution & Factorisation (contd.)
! In his original approach Huet presented a hyper-resolution rule

which simultaneously resolves on the resolution literals
A1, . . .An (1 ≤ n) and B1, . . .Bm (1 ≤ m) of two given clauses
and adds the unification constraint [+=? (A1, . . . An,B1, . . .Bm)]

to the resolvent:

[A1]µ ∨ . . . ∨ [An]µ ∨C [B1]ν ∨ . . . ∨ [Bm]ν ∨D

C ∨D ∨ [+=? (A1, . . .An,B1, . . .Bm)]
Hres

(where µ += ν).

ATPHOL’06-[14] – p.334

c©Benzmüller, 2006

Huet’s Constrained Resolution CR
HO

L

AT
Pλ

Resolution & Factorisation (contd.)
! In order to ease the comparison with the two other approaches

discussed in this paper we instead employ a resolution rule
Res and a factorisation rule Fac.

ATPHOL’06-[14] – p.335

c©Benzmüller, 2006

Huet’s Constrained Resolution CR
HO

L

AT
Pλ

Resolution & Factorisation (contd.)
! In order to ease the comparison with the two other approaches

discussed in this paper we instead employ a resolution rule
Res and a factorisation rule Fac.

! Like Hres both rules encode the unification problem to be
solved as a unification constraint:

ATPHOL’06-[14] – p.335

c©Benzmüller, 2006

Huet’s Constrained Resolution CR
HO

L

AT
Pλ

Resolution & Factorisation (contd.)
! In order to ease the comparison with the two other approaches

discussed in this paper we instead employ a resolution rule
Res and a factorisation rule Fac.

! Like Hres both rules encode the unification problem to be
solved as a unification constraint:

! Constrained resolution:
[A]µ ∨C [B]ν ∨D

C ∨D ∨ [A +=? B]
Res

(where µ += ν).

ATPHOL’06-[14] – p.335

c©Benzmüller, 2006

Huet’s Constrained Resolution CR
HO

L

AT
Pλ

Resolution & Factorisation (contd.)
! In order to ease the comparison with the two other approaches

discussed in this paper we instead employ a resolution rule
Res and a factorisation rule Fac.

! Like Hres both rules encode the unification problem to be
solved as a unification constraint:

! Constrained resolution:
[A]µ ∨C [B]ν ∨D

C ∨D ∨ [A +=? B]
Res

(where µ += ν).

! Constrained factorisation:
[A]µ ∨ [B]µ ∨C

[A]µ ∨C ∨ [A +=? B]F
Fac

ATPHOL’06-[14] – p.335

c©Benzmüller, 2006

Huet’s Constrained Resolution CR
HO

L

AT
Pλ

Resolution & Factorisation (contd.)
! One can easily prove by induction on n + m that each proof

step applying rule Hres can be replaced by a corresponding
derivation employing Res and Fac.

ATPHOL’06-[14] – p.336

c©Benzmüller, 2006

Huet’s Constrained Resolution CR
HO

L

AT
Pλ

Resolution & Factorisation (contd.)
! One can easily prove by induction on n + m that each proof

step applying rule Hres can be replaced by a corresponding
derivation employing Res and Fac.

! For a formal proof note that the unification constraint
[+=? (A1, . . .An,B1, . . .Bm)] is equivalent to
[A1 +=? A2] ∨ [A2 +=? A3] ∨ . . . ∨ [An−1 +=? An] ∨ [An +=?

B1] ∨ [B1 +=? B2] ∨ [B2 +=? B3] ∨ . . . ∨ [Bn−1 +=? Bn].

ATPHOL’06-[14] – p.336

c©Benzmüller, 2006

Huet’s Constrained Resolution CR
HO

L

AT
Pλ

Unification & Splitting
! [Huet75] introduces higher-order unification and higher-order

pre-unification and shows that higher-order pre-unification is
sufficient to verify the soundness of a refutation in which the
occurring unification problems have been delayed until the
end.

ATPHOL’06-[14] – p.337

c©Benzmüller, 2006

Huet’s Constrained Resolution CR
HO

L

AT
Pλ

Unification & Splitting
! [Huet75] introduces higher-order unification and higher-order

pre-unification and shows that higher-order pre-unification is
sufficient to verify the soundness of a refutation in which the
occurring unification problems have been delayed until the end.

! The higher-order pre-unification rules presented here are
discussed in detail in [Benzmüller-PhD-99]. They furthermore
closely reflect the rules as presented in [SnyderGallier89].

ATPHOL’06-[14] – p.337

c©Benzmüller, 2006

Huet’s Constrained Resolution CR
HO

L

AT
Pλ

Unification & Splitting
! [Huet75] introduces higher-order unification and higher-order

pre-unification and shows that higher-order pre-unification is
sufficient to verify the soundness of a refutation in which the
occurring unification problems have been delayed until the end.

! The higher-order pre-unification rules presented here are
discussed in detail in [Benzmüller-PhD-99]. They furthermore
closely reflect the rules as presented in [SnyderGallier89].

! Elimination of trivial pairs: C ∨ [A +=? A]

C
Triv

ATPHOL’06-[14] – p.337

c©Benzmüller, 2006

Huet’s Constrained Resolution CR
HO

L

AT
Pλ

Unification & Splitting
! [Huet75] introduces higher-order unification and higher-order

pre-unification and shows that higher-order pre-unification is
sufficient to verify the soundness of a refutation in which the
occurring unification problems have been delayed until the end.

! The higher-order pre-unification rules presented here are
discussed in detail in [Benzmüller-PhD-99]. They furthermore
closely reflect the rules as presented in [SnyderGallier89].

! Elimination of trivial pairs: C ∨ [A +=? A]

C
Triv

! Decomposition C ∨ [hUn +=? hVn]

C ∨ [U1 +=? V1] ∨ . . . ∨ [Un +=? Vn]
Dec

ATPHOL’06-[14] – p.337

c©Benzmüller, 2006

Huet’s Constrained Resolution CR
HO

L

AT
Pλ

Unification & Splitting (contd.)

!

Elimination of λ-binders:
(weak functional extensional-
ity)

C ∨ [Mα→β +=? Nα→β]

C ∨ [M sα +=? N sα]
Func

ATPHOL’06-[14] – p.338

c©Benzmüller, 2006

Huet’s Constrained Resolution CR
HO

L

AT
Pλ

Unification & Splitting (contd.)

!

Elimination of λ-binders:
(weak functional extensional-
ity)

C ∨ [Mα→β +=? Nα→β]

C ∨ [M sα +=? N sα]
Func

sα is a new Skolem term.

ATPHOL’06-[14] – p.338

c©Benzmüller, 2006

Huet’s Constrained Resolution CR
HO

L

AT
Pλ

Unification & Splitting (contd.)

!

Elimination of λ-binders:
(weak functional extensional-
ity)

C ∨ [Mα→β +=? Nα→β]

C ∨ [M sα +=? N sα]
Func

sα is a new Skolem term.

! Imitation of rigid heads:
C ∨ [Fγ Un +=? h Vm] G ∈ ABh

γ

C ∨ [F +=? G] ∨ [F Un +=? h Vm]
FlexRigid

ATPHOL’06-[14] – p.338

c©Benzmüller, 2006

Huet’s Constrained Resolution CR
HO

L

AT
Pλ

Unification & Splitting (contd.)

!

Elimination of λ-binders:
(weak functional extensional-
ity)

C ∨ [Mα→β +=? Nα→β]

C ∨ [M sα +=? N sα]
Func

sα is a new Skolem term.

! Imitation of rigid heads:
C ∨ [Fγ Un +=? h Vm] G ∈ ABh

γ

C ∨ [F +=? G] ∨ [F Un +=? h Vm]
FlexRigid

ABh
γ is the set of general bindings of type γ for head h.

ATPHOL’06-[14] – p.338

c©Benzmüller, 2006

Huet’s Constrained Resolution CR
HO

L

AT
Pλ

Unification & Splitting (contd.)

! Huet points to the usefulness of eager unification to filter out
clauses with non-unifiable unification constraints or to
back-propagate the solutions of easily solvable constraints
(e.g., in case of first-order unification problems occurring
during the proof search): many of the higher-order unification
problems occurring in practice are decidable and have only
finitely many solutions.

ATPHOL’06-[14] – p.339

c©Benzmüller, 2006

Huet’s Constrained Resolution CR
HO

L

AT
Pλ

Unification & Splitting (contd.)

! Huet points to the usefulness of eager unification to filter out
clauses with non-unifiable unification constraints or to
back-propagate the solutions of easily solvable constraints
(e.g., in case of first-order unification problems occurring
during the proof search): many of the higher-order unification
problems occurring in practice are decidable and have only
finitely many solutions.

! Hence, even though higher-order unification is generally not
decidable it is sensible in practice to apply the unification
algorithm with a particular resource, such that only those
unification problems which may have further solutions beyond
this bound need to be delayed.

ATPHOL’06-[14] – p.339

c©Benzmüller, 2006

Huet’s Constrained Resolution CR
HO

L

AT
Pλ

Unification & Splitting (contd.)

! In our presentation of calculus CR we explicitly address the
aspect of eager unification and substitution by rule Subst. This
rule back-propagates eagerly computed unifiers to the literal
part of a clause.

ATPHOL’06-[14] – p.340

c©Benzmüller, 2006

Huet’s Constrained Resolution CR
HO

L

AT
Pλ

Unification & Splitting (contd.)

! In our presentation of calculus CR we explicitly address the
aspect of eager unification and substitution by rule Subst. This
rule back-propagates eagerly computed unifiers to the literal
part of a clause.

! Eager unification & substitution:

C ∨ [X +=? A] X /∈ free(A)

C[A/X]
Subst

ATPHOL’06-[14] – p.340

c©Benzmüller, 2006

Huet’s Constrained Resolution CR
HO

L

AT
Pλ

Unification & Splitting (contd.)

! The literal heads of our clauses may consist of set variables
and it may be necessary to instantiate them with terms
introducing new logical constant at head position in order to
find a refutation.

ATPHOL’06-[14] – p.341

c©Benzmüller, 2006

Huet’s Constrained Resolution CR
HO

L

AT
Pλ

Unification & Splitting (contd.)

! The literal heads of our clauses may consist of set variables
and it may be necessary to instantiate them with terms
introducing new logical constant at head position in order to
find a refutation.

! Unfortunately not all appropriate instantiations can be
computed with the calculus rules presented so far.

ATPHOL’06-[14] – p.341

c©Benzmüller, 2006

Huet’s Constrained Resolution CR
HO

L

AT
Pλ

Unification & Splitting (contd.)

! The literal heads of our clauses may consist of set variables
and it may be necessary to instantiate them with terms
introducing new logical constant at head position in order to
find a refutation.

! Unfortunately not all appropriate instantiations can be
computed with the calculus rules presented so far.

! To address this problem Huet’s approach provides the
following splitting rules:

ATPHOL’06-[14] – p.341

c©Benzmüller, 2006

Huet’s Constrained Resolution CR
HO

L

AT
Pλ

Unification & Splitting (contd.)
! Instantiate

set variables:

ATPHOL’06-[14] – p.342

c©Benzmüller, 2006

Huet’s Constrained Resolution CR
HO

L

AT
Pλ

Unification & Splitting (contd.)
! Instantiate

set variables:

[P A]T ∨C

[Q]T ∨ [R]T ∨C ∨ [P A +=? (Qo ∨ Ro)]
ST
∨

ATPHOL’06-[14] – p.342

c©Benzmüller, 2006

Huet’s Constrained Resolution CR
HO

L

AT
Pλ

Unification & Splitting (contd.)
! Instantiate

set variables:

[P A]T ∨C

[Q]T ∨ [R]T ∨C ∨ [P A +=? (Qo ∨ Ro)]
ST
∨

[P A]µ ∨C

[Q]ν ∨C ∨ [P A +=? ¬Qo]
STF
¬

[P A]F ∨C

[Q]F ∨C ∨ [P A +=? (Qo ∨ Ro)]
SF
∨

[R]F ∨C ∨ [P A +=? (Qo ∨ Ro)]

(where µ += ν)

ATPHOL’06-[14] – p.342

c©Benzmüller, 2006

Huet’s Constrained Resolution CR
HO

L

AT
Pλ

Unification & Splitting (contd.)
! Instantiate

set variables:

[P A]T ∨C

[Q]T ∨ [R]T ∨C ∨ [P A +=? (Qo ∨ Ro)]
ST
∨

[P A]µ ∨C

[Q]ν ∨C ∨ [P A +=? ¬Qo]
STF
¬

[P A]F ∨C

[Q]F ∨C ∨ [P A +=? (Qo ∨ Ro)]
SF
∨

[R]F ∨C ∨ [P A +=? (Qo ∨ Ro)]

(where µ += ν)
[P Aα→o]T ∨C

[Mα→o Z]T ∨C ∨ [P A +=? ΠαM]
ST

Π

ATPHOL’06-[14] – p.342

c©Benzmüller, 2006

Huet’s Constrained Resolution CR
HO

L

AT
Pλ

Unification & Splitting (contd.)
! Instantiate

set variables:

[P A]T ∨C

[Q]T ∨ [R]T ∨C ∨ [P A +=? (Qo ∨ Ro)]
ST
∨

[P A]µ ∨C

[Q]ν ∨C ∨ [P A +=? ¬Qo]
STF
¬

[P A]F ∨C

[Q]F ∨C ∨ [P A +=? (Qo ∨ Ro)]
SF
∨

[R]F ∨C ∨ [P A +=? (Qo ∨ Ro)]

(where µ += ν)
[P Aα→o]T ∨C

[Mα→o Z]T ∨C ∨ [P A +=? ΠαM]
ST

Π

[P Aα→o]F ∨C

[Mα→o s]F ∨C ∨ [P A +=? ΠαM]
SF

Π

ATPHOL’06-[14] – p.342

c©Benzmüller, 2006

Huet’s Constrained Resolution CR
HO

L

AT
Pλ

Unification & Splitting (contd.)
! Instantiate

set variables:

[P A]T ∨C

[Q]T ∨ [R]T ∨C ∨ [P A +=? (Qo ∨ Ro)]
ST
∨

[P A]µ ∨C

[Q]ν ∨C ∨ [P A +=? ¬Qo]
STF
¬

[P A]F ∨C

[Q]F ∨C ∨ [P A +=? (Qo ∨ Ro)]
SF
∨

[R]F ∨C ∨ [P A +=? (Qo ∨ Ro)]

(where µ += ν)
[P Aα→o]T ∨C

[Mα→o Z]T ∨C ∨ [P A +=? ΠαM]
ST

Π

[P Aα→o]F ∨C

[Mα→o s]F ∨C ∨ [P A +=? ΠαM]
SF

Π

! ST
Π and SF

Π are infinitely branching as they are parameterised
over type α. Qo,Ro,Mα→o,Zα are new variables and sα is a
new Skolem constant.

ATPHOL’06-[14] – p.342

c©Benzmüller, 2006

Huet’s Constrained Resolution CR
HO

L

AT
Pλ

Unification & Splitting (contd.)
! A theorem which is not refutable in CR if the splitting rules are

not available is ∃Ao.A:

ATPHOL’06-[14] – p.343

c©Benzmüller, 2006

Huet’s Constrained Resolution CR
HO

L

AT
Pλ

Unification & Splitting (contd.)
! A theorem which is not refutable in CR if the splitting rules are

not available is ∃Ao.A:
! After negation this statement normalises to clause C1 : [A]F,

such that none but the splitting rules are applicable. With the
help of rule STF

¬ and eager unification, however, we can derive
C2 : [A′]T which is then successfully resolvable against C1.

ATPHOL’06-[14] – p.343

c©Benzmüller, 2006

Huet’s Constrained Resolution CR
HO

L

AT
Pλ

Extensionality Treatment
! On the one hand η-convertibility is built-in in higher-order

unification, such that calculus CR already supports functional
extensionality reasoning to a certain extend.

ATPHOL’06-[14] – p.344

c©Benzmüller, 2006

Huet’s Constrained Resolution CR
HO

L

AT
Pλ

Extensionality Treatment
! On the one hand η-convertibility is built-in in higher-order

unification, such that calculus CR already supports functional
extensionality reasoning to a certain extend.

! On the other hand CR nevertheless fails to address full
extensionality as it does not realise the required subtle
interplay between the functional and Boolean extensionality
principles.

ATPHOL’06-[14] – p.344

c©Benzmüller, 2006

Huet’s Constrained Resolution CR
HO

L

AT
Pλ

Extensionality Treatment
! On the one hand η-convertibility is built-in in higher-order

unification, such that calculus CR already supports functional
extensionality reasoning to a certain extend.

! On the other hand CR nevertheless fails to address full
extensionality as it does not realise the required subtle
interplay between the functional and Boolean extensionality
principles.

! Without employing additional (Boolean and functional!)
extensionality axioms CR is, e.g., not able to prove the rather
simple examples presented before.

ATPHOL’06-[14] – p.344

c©Benzmüller, 2006

Huet’s Constrained Resolution CR
HO

L

AT
Pλ

Proof Search
! Initially the proof problem is negated and normalised. The

main proof search then operates on the generated clauses by
applying the resolution, factorisation, and splitting rules.

ATPHOL’06-[14] – p.345

c©Benzmüller, 2006

Huet’s Constrained Resolution CR
HO

L

AT
Pλ

Proof Search
! Initially the proof problem is negated and normalised. The

main proof search then operates on the generated clauses by
applying the resolution, factorisation, and splitting rules.

! Despite the possibility of eager unification CR generally
foresees to delay the higher-order unification process in order
to overcome the undecidability problem.

ATPHOL’06-[14] – p.345

c©Benzmüller, 2006

Huet’s Constrained Resolution CR
HO

L

AT
Pλ

Proof Search
! Initially the proof problem is negated and normalised. The

main proof search then operates on the generated clauses by
applying the resolution, factorisation, and splitting rules.

! Despite the possibility of eager unification CR generally
foresees to delay the higher-order unification process in order
to overcome the undecidability problem.

! When deriving a potentially empty clause (no normal literals),
CR then tests whether the accumulated unification constraints
justifying this particular refutation are solvable.

ATPHOL’06-[14] – p.345

c©Benzmüller, 2006

Huet’s Constrained Resolution CR
HO

L

AT
Pλ

Proof Search (contd.)
! Like R, the extensionality treatment of CR requires to add

infinitely many extensionality axioms to the search space.

ATPHOL’06-[14] – p.346

c©Benzmüller, 2006

Huet’s Constrained Resolution CR
HO

L

AT
Pλ

Proof Search (contd.)
! Like R, the extensionality treatment of CR requires to add

infinitely many extensionality axioms to the search space.
! The following figure graphically illustrates the main ideas of the

proof search in CR.

pre-unification
delayed

axioms
ext.

eager unification
proof search &

ATPHOL’06-[14] – p.346

c©Benzmüller, 2006

Huet’s Constrained Resolution CR
HO

L

AT
Pλ

Completeness Results
! [Huet72,Huet73] analyses completeness of CR formally only with

respect to Andrews V-complexes, i.e. Huet verifies that the set
of non-refutable sentences in CR is an abstract consistency
class for V-complexes.

ATPHOL’06-[14] – p.347

c©Benzmüller, 2006

Huet’s Constrained Resolution CR
HO

L

AT
Pλ

Completeness Results
! [Huet72,Huet73] analyses completeness of CR formally only with

respect to Andrews V-complexes, i.e. Huet verifies that the set
of non-refutable sentences in CR is an abstract consistency
class for V-complexes.

! Theorem (V-completeness of CR): The calculus CR is
complete with respect to the notion of V-complexes.

Proof: [Huet72,Huet73]

ATPHOL’06-[14] – p.347

c©Benzmüller, 2006

Huet’s Constrained Resolution CR
HO

L

AT
Pλ

Completeness Results
! [Huet72,Huet73] analyses completeness of CR formally only with

respect to Andrews V-complexes, i.e. Huet verifies that the set
of non-refutable sentences in CR is an abstract consistency
class for V-complexes.

! Theorem (V-completeness of CR): The calculus CR is
complete with respect to the notion of V-complexes.

Proof: [Huet72,Huet73]

! Theorem (Henkin completeness of CR): The calculus CR is
complete wrt. Henkin semantics provided that the infinitely
many extensionality axioms are given.

Proof: exercise

ATPHOL’06-[14] – p.347

c©Benzmüller, 2006

Example Proofs
HO

L

AT
Pλ

Exercise: How are the following theorems proved in calculus CR?
! Leibniz equality and η-equality:

fι→ι
.
= λXι f X

ATPHOL’06-[14] – p.348

c©Benzmüller, 2006

Example Proofs
HO

L

AT
Pλ

Exercise: How are the following theorems proved in calculus CR?
! Leibniz equality and η-equality:

fι→ι
.
= λXι f X

! The set of all red balls equals the set of all balls that are red:
{X|red X ∧ ball X} = {X|ball X ∧ red X}. This problem can be
encoded as

(λXι red X ∧ ball X) = (λXι ball X ∧ red X)

ATPHOL’06-[14] – p.348

c©Benzmüller, 2006

Example Proofs
HO

L

AT
Pλ

Exercise: How are the following theorems proved in calculus CR?
! All unary logical operators Oo→o which map the propositions a

and b to . consequently also map a ∧ b to .:

∀Oo→o (O ao) ∧ (O bo)⇒ (O (ao ∧ bo))

ATPHOL’06-[14] – p.349

c©Benzmüller, 2006

Example Proofs
HO

L

AT
Pλ

Exercise: How are the following theorems proved in calculus CR?
! In Henkin semantics the domain Do of all Booleans contains

exactly the truth values ⊥ and .. Consequently the domain of
all mappings from Booleans to Booleans contains exactly
contains in each Henkin model at most four elements. And
because of the requirement, that the function domains in
Henkin models must be rich enough such that every term has
a denotation, it follows that Do→o contains exactly the pairwise
distinct denotations of the following four terms: λXo Xo,
λXo ¬Xo , λXo ⊥, and λXo .. This theorem can be formulated
as follows (where fo→o is a constant):

(f = λXo Xo) ∨ (f = λXo ¬Xo) ∨ (f = λXo ⊥) ∨ (f = λXo .)

ATPHOL’06-[14] – p.350

c©Benzmüller, 2006

HO
L

AT
Pλ

HO
L

AT
Pλ

Approaches to Higher-Order
Resolution: ER

ATPHOL’06-[15] – p.351

c©Benzmüller, 2006

Extensional HO Resolution ER
HO

L

AT
Pλ

Clause normalization

C ∨ [A ∨ B]T

C ∨ [A]T ∨ [B]T
∨T

C ∨ [A ∨ B]F

C ∨ [A]F
∨F

l

C ∨ [A ∨ B]F

C ∨ [B]F
∨F

r

C ∨ [¬A]T

C ∨ [A]F
¬T

C ∨ [¬A]F

C ∨ [A]T
¬F

C ∨ [ΠαA]T Xα new variable
C ∨ [A X]T

ΠT

C ∨ [ΠαA]F skα Skolem term
C ∨ [A skα]F

ΠF

This rules may be combined into a single rule Cnf.

ATPHOL’06-[15] – p.352

c©Benzmüller, 2006

Extensional HO Resolution ER
HO

L

AT
Pλ

Resolution and Factorisation

[N]α ∨ C [M]β ∨ D α += β

C ∨ D ∨ [N +=? M]
Res

[N]α ∨ [M]α ∨ C α ∈ {T,F}

[N]α ∨ C ∨ [N +=? M]
Fac

[QγUk]α ∨ C P ∈ GB{¬,∨}∪{Πβ |β∈T k}
γ

[QγUk]α ∨ C ∨ [Q +=? P]
Primk

ATPHOL’06-[15] – p.353

c©Benzmüller, 2006

Extensional HO Resolution ER
HO

L

AT
Pλ

(Pre-)unification rules

C ∨ [Mα→β +=? Nα→β]F sα Skolem-Term
C ∨ [M s +=? N s]

Func

C ∨ [hUn +=? hVn]

C ∨ [U1 +=? V1] ∨ . . . ∨ [Un +=? Vn]
Dec

C ∨ [A +=? A]

C
Triv

C ∨ [FγUn +=? hVn] G ∈ GBh
γ

C ∨ [F +=? G] ∨ [FUn +=? hVn]
Flex/Rigid

C ∨ E E solved for C
Cnf(substE(C))

Subst

ATPHOL’06-[15] – p.354

c©Benzmüller, 2006

Extensional HO Resolution ER
HO

L

AT
Pλ

Extensionality rules

C ∨ [Mo +=? No]F

Cnf(C ∨ [Mo ⇔ No]F)
Equiv

C ∨ [Mα +=? Nα]F α ∈ {o, ι}

Cnf(C ∨ [∀Pα→o PM⇒ PN]F)
Leib

ATPHOL’06-[15] – p.355

c©Benzmüller, 2006

Extensional HO Resolution ER
HO

L

AT
Pλ

Extensionality Treatment
! Instead of adding infinitely many extensionality axioms to the

search space CR provides two new extensionality rules which
closely connect refutation search and eager unification.

ATPHOL’06-[15] – p.356

c©Benzmüller, 2006

Extensional HO Resolution ER
HO

L

AT
Pλ

Extensionality Treatment
! Instead of adding infinitely many extensionality axioms to the

search space CR provides two new extensionality rules which
closely connect refutation search and eager unification.

! The idea is to allow for recursive calls from higher-order
unification to the overall refutation process.

ATPHOL’06-[15] – p.356

c©Benzmüller, 2006

Extensional HO Resolution ER
HO

L

AT
Pλ

Extensionality Treatment
! Instead of adding infinitely many extensionality axioms to the

search space CR provides two new extensionality rules which
closely connect refutation search and eager unification.

! The idea is to allow for recursive calls from higher-order
unification to the overall refutation process.

! This turns the rather weak syntactical higher-order unification
approach considered so far into a most general approach for
dynamic higher-order theory unification.

ATPHOL’06-[15] – p.356

c©Benzmüller, 2006

Extensional HO Resolution ER
HO

L

AT
Pλ

Proof Search
! Initially the proof problem is negated and normalised. The

main proof search then closely interleaves the refutation
process on resolution layer and unification, i.e. the main proof
search rules Res, Fac, and Prim and the unification rules are
integrated at a common conceptual level. The calls from
unification to the overall refutation process with rules Leib and
Equiv introduce new clauses into the search space which can
be resolved against already given ones.

ATPHOL’06-[15] – p.357

c©Benzmüller, 2006

Extensional HO Resolution ER
HO

L

AT
Pλ

Proof Search
! Initially the proof problem is negated and normalised. The

main proof search then closely interleaves the refutation
process on resolution layer and unification, i.e. the main proof
search rules Res, Fac, and Prim and the unification rules are
integrated at a common conceptual level. The calls from
unification to the overall refutation process with rules Leib and
Equiv introduce new clauses into the search space which can
be resolved against already given ones.

! The following figure graphically illustrates the main ideas of the
proof search in ER.

interleaved proof search & unification

ATPHOL’06-[15] – p.357

c©Benzmüller, 2006

Ex.: Extensional HO Resolution ER
HO

L

AT
Pλ

∀Bα→o, Cα→o, Dα→o B ∪ (C ∩ D) = (B ∪ C) ∩ (B ∪ D)

Negation and definition expansion with
∪ = λAα→o, Bα→o, Xα (A X) ∨ (B X) ∩ = λAα→o, Bα→o, Xα (A X) ∧ (B X)

leads to:
C1 : [λXα (b X) ∨ ((c X) ∧ (d X)) +=? λXα ((b X) ∨ (c X)) ∧ ((b X) ∨ (d X)))]

Goal directed functional and Boolean extensionality treatment:
C2 : [(b x) ∨ ((c x) ∧ (d x))⇔ ((b x) ∨ (c x)) ∧ ((b x) ∨ (d x)))]F

Clause normalization results then in a pure propositional, i.e. decidable, set of
clauses. Only these clauses are still in the search space of LEO(in total there
are 33 clauses generated and LEO finds the proof on a 2,5GHz PC in 820ms).

Similar proof in case of embedded propositions:
∀P(α→o)→o, Bα→o, Cα→o, Dα→o P(B ∪ (C ∩ D))⇒ P((B ∪ C) ∩ (B ∪ D))

ATPHOL’06-[15] – p.358

c©Benzmüller, 2006

Ex.: Extensional HO Resolution ER
HO

L

AT
Pλ

∀Po→o (P ao) ∧ (P bo)⇒ (P (ao ∧ bo))

Negation and clause normalization

C1 : [p a]T C2 : [p b]T C3 : [p (a ∧ b)]F

Resolution between C1 and C3 and between C2 and C3

C4 : [p a +=? p (a ∧ b)] C5 : [p b +=? p (a ∧ b)]

Decomposition
C6 : [a +=? (a ∧ b)] C7 : [b +=? (a ∧ b)]

Recursive call of proof process with rules Equiv and Cnf

C8 : [a]F ∨ [b]F C9 : [a]T ∨ [b]T C10 : [a]T C11 : [b]T

ATPHOL’06-[15] – p.359

c©Benzmüller, 2006

Ex.: Extensional HO Resolution ER
HO

L

AT
Pλ

Further small examples which test Henkin completeness:

∀Fo→o (F
.
= λXo Xo)∨(F

.
= λXo ¬Xo)∨(F

.
= λXo ⊥)∨(F

.
= λXo .)

∀Ho→o H ⊥
.
= H (H .

.
= H ⊥)

. . .

ATPHOL’06-[15] – p.360

	
	Outline for Today
	Notion of Higher-Order Logic
	Notion of Higher-Order Logic
	Focus of the Lecture
	Focus of the Lecture
	Relevance and Applications
	
	Who am I?
	Who am I?
	Who am I?
	Who am I?
	Who are You?
	
	Before we start ldots
	Miscellaneous
	Lectures
	Exercises and Tutorials
	Examination
	
	
	History
	History (Cont'd)
	History (Cont'd)
	History (Cont'd)
	History (Cont'd)
	History (Cont'd)
	History (Cont'd)
	History (Cont'd)
	History (Cont'd)
	History (Cont'd)
	History HOL
	History HOL (Cont'd)
	History HOL (Cont'd)
	History (Cont'd)
	
	$lambda $-Calculus: Motivation
	$lambda $-Calculus: Motivation
	$lambda $-Calculus: $lambda $-terms
	$lambda $-Calculus: Set of $lambda $-expressions
	$lambda $-Calculus: Conventions
	$lambda $-Calculus: $ eta $-reduction
	$lambda $-Calculus: $ eta $-reduction
	$lambda $-Calculus: Currying
	$lambda $-Calculus: $alpha $-conversion
	$lambda $-Calculus: $eta $-reduction
	$lambda $-Calculus: $ eta eta $-equivalence
	$lambda $-Calculus: Normalforms
	$lambda $-Calculus: Normalforms
	$lambda $-Calculus: Iteration
	$lambda $-Calculus: Church Numerals
	$lambda $-Calculus: Church Numerals
	$lambda $-Calculus: Church Numerals
	$lambda $-Calculus: Sets
	$lambda $-Calculus: Sets
	$lambda $-Calculus: Sets
	$lambda $-Calculus: Sets
	$lambda $-Calculus: Russell's Paradox
	$lambda $-Calculus: Russell's Paradox
	$lambda $-Calculus: Nontermination
	Typed $lambda $-Calculus
	Typed $lambda $-Calculus: Typed Terms
	Typed $lambda $-Calculus: Typed Terms
	Typed $lambda $-Calculus: Typed Terms
	Typed $lambda $-Calculus: Assigning Types
	Typed $lambda $-Calculus: Assigning Types
	Typed $lambda $-Calculus: Assigning Types
	Typed $lambda $-Calculus: $ eta eta $
	
	Typed $lambda $-Calculus: Logical Constants
	HOL: Abbreviations
	HOL: Expressing Properties
	HOL: Expressing Properties
	HOL: Prefix Polymorphism
	HOL: Cantor's Theorem
	HOL: Standard Higher-Order Model
	HOL: Henkin-Style Model
	
	Def.: Types
	Ex.: Freely Generated
	Ex.: Freely Generated
	Ex.: Types
	Def.: Functions
	Ex.: Sets of Functions
	Ex.: Sets of Labelled Functions
	Def.: Frames
	Ex.: Frames
	Ex.: Frames (Contd.)
	Def.: Typed Applicative Structure
	Rem.: Currying
	Interesting Properties
	Def.: Functional Applicative Structures
	Def.: Full Applicative Structures
	Def.: Standard Applicative Structures
	Rem.: Frames and Applicative Structures
	Example: Full Functional Appl. Structure
	Def.: Homomorphic Appl. Structures
	Def.: Isomorphic Appl. Structures
	
	Def.: Untyped $lambda $-Calculus
	Simply Typed $lambda $-Calculus
	Notational Conventions
	Def.: Positions in $lambda $-Terms
	Def.: Position (Contd.)
	Def.: Replacement at Position
	Def.: Scope of $lambda $-Term
	Def.: Free and Bound Variables
	
	Def.: Substitution
	Ex.: Substitution
	Def.: $alpha $-Conversion
	Def.: $ eta $-Conversion
	Def.: $ eta $-Normal Form
	Thm.: Church-Rosser Property for $	woheadrightarrow _ eta $
	Ex.: Church-Rosser Property for $	woheadrightarrow _ eta $
	Termination
	Def.: $eta $-Conversion
	Def.: $eta $-Normal Form
	Thm.: Church-Rosser Property for $	woheadrightarrow _eta $
	Def.: $ eta eta $-Conversion
	Def.: $ eta eta $-Normal Form
	Thm.: Church-Rosser Property for $	woheadrightarrow _{ eta eta }$
	Thm.: Strong Church-Rosser Property
	Def.: Long $ eta eta $-Normal Form
	Ex.: Long $ eta eta $-Normal Form
	Thm.: Long $ eta eta $-Normal Form
	Rem.: $ eta eta $-Head Normal Form
	Notation
	
	Ex.: An Interesting Applicative Structure
	Ex.: Interpretation of Terms
	Ex.: Interesting Applicative Structures
	Ex.: Interesting Applicative Structures
	Ex.: Interesting Applicative Structures
	Ex.: Interesting Applicative Structures
	Def.: Variable Assignment
	Some Assumptions
	$Signat $-Evaluations
	$Signat $-Evaluations
	Def.: Evaluation Function
	Def.: $Signat $-Evaluation
	Def.: Functional/Full/Standard $Signat $-Eval.
	What is the Idea?
	Lemma: $Signat $-Evaluations respect $ eta $-Equality
	Thm.: {Substitution-Value Lemma}
	Prf.: {Substitution-Value Lemma}
	Weaker Notions of Functionality
	Def.: $eta $-Functional
	Def.: $xi $-Functional
	Lemma: Functionality and $eta $
	Lemma: Functionality and $eta $+$xi $
	Logical Constants in Signature
	Once More: Cantor's Theorem
	Once More: Cantor's Theorem
	Once More: Cantor's Theorem
	Once More: Cantor's Theorem
	
	Def.: Properties of Logical Constants
	Def.: $Signat $-Valuation
	Def.: $Signat $-Model
	Some Conventions: Equality
	Def.: Properties $f, b, eta , xi $
	Lemma: Surjective v
	Thm.: Property $propb $
	
	Def. (Reminder):
$Signat $-Model
	Def. (Reminder):
Properties $f, b, eta , xi $
	Def. (Reminder):
Different Model Classes
	Def.: Satisfies, models, and $models $
	Semantics: HOL-CUBE
	Semantics: HOL-CUBE
	Standard Models and Henkin Models
	Standard Models and Henkin Models
	Standard Models and Henkin Models
	Standard Models and Henkin Models
	Models without Functional Extensionality
	Models without Functional Extensionality
	Semantics: HOL-CUBE
	Models without $eta $- or $xi $-Functionality
	Semantics: HOL-CUBE
	Semantics: HOL-CUBE
	Models without Boolean Extensionality
	Models without Boolean Extensionality
	Semantics: HOL-CUBE
	
	Test Problems for Theorem Provers
	Test Problems for Theorem Provers
	Remark: Signature
	HOL-Problems: $ eta $
	HOL-Problems: $propb $
	HOL-Problems: $propf $
	HOL-Problems: $propeta $
	HOL-Problems: $propxi $
	HOL-Problems: $propf $
	HOL-Problems: $propb $
	HOL-Problems: Other Examples
	HOL-Problems: DeMorgan's Law
	HOL-Problems: DeMorgan's Law
	HOL-Problems: DeMorgan's Law
	HOL-Problems: Set Comprehension
	HOL-Problems: Set Comprehension
	HOL-Problems: Set Comprehension
	
	Examples of $Signat $-Models
	Ex.: Singleton Model
	Ex.: Singleton Model
	Ex.: Model without Boolean Extensionality
	Ex.: Model without Boolean Extensionality
	Ex.: Model without Boolean Extensionality
	Ex.: Model without Boolean Extensionality
	Ex.: Groundhogs and Woodchucks
	Ex.: Groundhogs and Woodchucks
	Generalizing the Previous Model
	
	Ex.: Models without Funct. Extensionality
	Ex.: Models without $propeta $ and $propf $
	Ex.: Models without $propeta $ and $propf $
	Ex.: Models without $propeta $ and $propf $
	Ex.: Models without $propeta $ and $propf $
	Ex.: Models without $propeta $ and $propf $
	Ex.: Models without $propeta $ and $propf $
	Ex.: Models without $propeta $ and $propf $
	Ex.: Models without $propeta $ and $propf $
	Ex.: Models without $propeta $ and $propf $
	Ex.: Models without $propeta $ and $propf $
	Ex.: Models without $propxi $
	Ex.: Models without $propxi $
	
	Short Reminder
	Reading
	Natural Deduction: Motivation
	Sequent Calculus: Motivation
	Sequent Calculus: Introduction
	Natural Deduction
	Natural Deduction Rules Ia
	Natural Deduction Rules IIa
	Natural Deduction Rules IIIa
	Natural Deduction
	Natural Deduction Proofs
	Natural Deduction with Contexts
	Natural Deduction with Contexts
	Natural Deduction with Contexts
	Natural Deduction with Contexts
	Natural Deduction Rules Ib
	Natural Deduction Rules IIb
	Natural Deduction Rules IIIb
	Intercalation
	Intercalating Natural Deductions
	ND Intercalation Rules I
	ND Intercalation Rules II
	ND Intercalation Rules III
	Intercalation and ND
	Example Proofs
	Soundness and Completeness
	From ND to Sequent Calculus
	Sequent Calculus Rules I
	Sequent Calculus Rules II
	Example Proof
	Sequent Calculus: Cut-rule
	Sequent Calculus
	Gentzen's Hauptsatz
	Applications of Cut-Elimination
	What have we done?
	Applications of Cut-Elimination
	Summary
	
	ND Calculi for HOL
	ND Calculi for HOL
	ND Calculi for HOL
	ND Calculi for HOL
	ND Calculi for HOL
	ND Calculi for HOL
	ND Calculi for HOL
	ND Calculi for HOL
	ND Calculi for HOL
	
	Completeness (of $allNdcalc $)
	
	Abstract Consistency: History
	Abstract Consistency: Idea
	Abstract Consistency: Idea
	Def.: Closed under Subsets / Compact
	Ex.: Closed under Subsets / Compact
	Lemma: Closed under Subsets / Compact
	Def.: Sufficiently $Signat $-Pure
	Abstract Consistency: Conventions
	Def.: Abstract Consistency Properties
	Def.: Abstract Consistency Properties
	Def.: Abstract Consistency Classes
	Abstract Consistency Classes
	Ex.: Abstract Consistency Class
	Rem.: Possible Generalization
	Def.: Saturated
	Ex.: Saturated
	Thm.: Model Existence Theorem
	Thm.: Model Existence for Henkin Models
	
	Def.: {	ermcolor $allNdcalc $}-Consistent/Inconsistent
	Lemma: Saturated $ACCstar $
	Lemma: Saturated $ACCstar $
	Lemma: Saturated $ACCstar $
	Lemma: Saturated $ACCstar $
	Thm.: Henkin's Theorem for $allNdcalc $
	Thm.: Completeness Theorem for $allNdcalc $
	Compactness
	
	Preliminaries and Notation
	Preliminaries and Notation
	Def.: General Bindings
	Def.: Literals
	Def.: Unification Constraints
	Def.: Clauses
	Def.: Clauses (contd.)
	Rem.: Skolemisation
	
	Andrews' Higher-Order Resolution $RES $
	Andrews' Higher-Order Resolution $RES $
	Andrews' Higher-Order Resolution $RES $
	Andrews' Higher-Order Resolution $RES $
	Andrews' Higher-Order Resolution $RES $
	Andrews' Higher-Order Resolution $RES $
	Andrews' Higher-Order Resolution $RES $
	Andrews' Higher-Order Resolution $RES $
	Andrews' Higher-Order Resolution $RES $
	Andrews' Higher-Order Resolution $RES $
	Example Proofs
	Example Proofs
	Example Proofs
	
	Huet's Constrained Resolution $CRES $
	Huet's Constrained Resolution $CRES $
	Huet's Constrained Resolution $CRES $
	Huet's Constrained Resolution $CRES $
	Huet's Constrained Resolution $CRES $
	Huet's Constrained Resolution $CRES $
	Huet's Constrained Resolution $CRES $
	Huet's Constrained Resolution $CRES $
	Huet's Constrained Resolution $CRES $
	Huet's Constrained Resolution $CRES $
	Huet's Constrained Resolution $CRES $
	Huet's Constrained Resolution $CRES $
	Huet's Constrained Resolution $CRES $
	Huet's Constrained Resolution $CRES $
	Huet's Constrained Resolution $CRES $
	Huet's Constrained Resolution $CRES $
	Huet's Constrained Resolution $CRES $
	Example Proofs
	Example Proofs
	Example Proofs
	
	Extensional HO Resolution $ERES $
	Extensional HO Resolution $ERES $
	Extensional HO Resolution $ERES $
	Extensional HO Resolution $ERES $
	Extensional HO Resolution $ERES $
	Extensional HO Resolution $ERES $
	Ex.: Extensional HO Resolution $ERES $
	Ex.: Extensional HO Resolution $ERES $
	Ex.: Extensional HO Resolution $ERES $
	
	Def.: Sequent Calculi
	Def.: Validity of Sequents
	Def.: k-Admissibility of Rules
	Def.: Sequent Calculus Rules
	Def.: Sequent Calculus Rules
	ACC for Sequent Calculi
	Def.: ACC for Sequent Calculi
	Lemma: Consequence of {	ermcolor $seqneginv $}
	Thm.: Sufficient Conditions for $accseq SEQCALC in ACCMODD $
	Thm.: Sufficient Condition for $accseq SEQCALC in ACCMODD $
	Thm.: Sufficient Condition for $accseq SEQCALC in ACCMODD $
	Thm.: Saturation and Cut
	Def.: Saturated Extension
	Ex.: ACC without Saturated Extension
	Existence of Saturated Extensions and Cut

