

! α,β ::= ι| |α ! β

!

, ::= α | α

| (λ α β)α!β | (α!β α)β

| (¬ !) | (∨ ! !) | (∀ α)

!

! α,β ::= ι| |α ! β

!

, ::= α | α

| (λ α β)α!β | (α!β α)β

| (¬ !) | (∨ ! !) | (Π(α!)! (λ α))

!

! α,β ::= ι| |α ! β

!

, ::= α | α

| (λ α β)α!β | (α!β α)β

| (¬ !) | (∨ ! !) | (Π(α!)! (λ α))

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

, ::= | (. . .)

| ¬ | ∨

| ✷

| ∀ | ∀

!

!

π

!

, ::= | (. . .)

| ¬ | ∨

| ✷

| ∀ | ∀

!

!

π −→ π

4 Christoph Benzmüller and Lawrence C. Paulson

2.2. Quantified Multimodal Logic

First-order quantification can be constant domain or varying domain. Below
we only consider the constant domain case: every possible world has the same
domain. We adapt the presentation of syntax and semantics of quantified
modal logic from Fitting [18]. In contrast to Fitting we are not interested in
S5 structures but in the more general case of K.

Let IV be a set of first-order (individual) variables, PV a set of proposi-
tional variables, and SYM a set of predicate symbols of any arity. Like Fitting,
we keep our definitions simple by not having function or constant symbols;
our language has no terms other than variables. While Fitting [18] studies
quantified monomodal logic, we are interested in quantified multimodal logic.
Hence, we introduce multiple 2r operators for symbols r from an index set
S. The grammar for our quantified multimodal logic QML is thus

s, t ::= P | k(X1, . . . , Xn) | ¬ s | s _ t | 8X s | 8P s | 2r s

where P 2 PV, k 2 SYM, and X,Xi 2 IV.
Further connectives, quantifiers, and modal operators can be defined

as usual. We also obey the usual definitions of free variable occurrences and
substitutions.

Fitting introduces three di↵erent notions of semantics: QS5⇡�, QS5⇡,
and QS5⇡+. We study related notions QK⇡�, QK⇡, and QK⇡+ for a modal
context K, and we support multiple modalities.

A QK⇡� model is a structure M = (W, (Rr)r2S , D, P, (Iw)w2W) such
that (W, (Rr)r2S) is a multimodal frame (that is, W is the set of possible
worlds and the Rr are accessibility relations between worlds in W), D is a
non-empty set (the first-order domain), P is a non-empty collection of subsets
of W (the propositional domain), and the Iw are interpretation functions
mapping each n-place relation symbol k 2 SYM to some n-place relation on
D in world w.

A variable assignment g = (giv, gpv) is a pair of maps giv : IV �! D
and gpv : PV �! P , where giv maps each individual variable in IV to a an
object in D and gpv maps each propositional variable in PV to a set of worlds
in P .

Validity of a formula s for a model M = (W, (Rr)r2S , D, P, Iw), a world
w 2 W , and a variable assignment g = (giv, gpv) is denoted as M, g,w |= s
and defined as follows, where [a/Z]g denotes the assignment identical to g
except that ([a/Z]g)(Z) = a:

M, g,w |= k(X1, . . . , Xn) if and only if hgiv(X1), . . . , giv(Xn)i 2 Iw(k)

M, g,w |= P if and only if w 2 gpv(P)

M, g,w |= ¬ s if and only if M, g,w 6|= s

M, g, w |= s _ t if and only if M, g,w |= s or M, g,w |= t

M, g, w |= 8X s if and only if M, ([d/X]giv, gpv), w |= s

for all d 2 D

Quantified Multimodal Logics in Simple Type Theory 5

M, g,w |= 8Q s if and only if M, (giv, [p/Q]gpv), w |= s

for all p 2 P

M, g, w |= 2r s if and only if M, g, v |= s for all v 2 W

with hw, vi 2 Rr

A QK⇡� model M = (W, (Rr)r2S , D, P, (Iw)w2W) is a QK⇡ model if for
every variable assignment g and every formula s 2 QML, the set of worlds
{w 2 W | M, g,w |= s} is a member of P .

A QK⇡ model M = (W, (Rr)r2S , D, P, (Iw)w2W) is a QK⇡+ model if
every world w 2 W is member of an atom in P . The atoms of P are minimal
non-empty elements of P : no proper subsets of an atom are also elements of
P .

A QML formula s is valid in model M for world w if M, g,w |= s for all
variable assignments g. A formula s is valid in model M if M, g,w |= s for
all g and w. Formula s is QK⇡-valid if s is valid in all QK⇡ models, when we
write |=QK⇡ s; we define QK⇡�-valid and QK⇡+-valid analogously.

In the remainder we mainly focus on QK⇡ models. These models natu-
rally correspond to Henkin models, as we shall see in Section 4.

3. Embedding Quantified Multimodal Logic in STT

The idea of the encoding is simple. We choose type ◆ to denote the (non-
empty) set of individuals and we reserve a second base type µ to denote
the (non-empty) set of possible worlds. The type o denotes the set of truth
values. Certain formulas of type µ � o then correspond to multimodal logic
expressions. The multimodal connectives ¬ , _ , and 2 , become �-terms of
types (µ � o) � (µ � o), (µ � o) � (µ � o) � (µ � o), and (µ � µ � o) �
(µ � o) � (µ � o) respectively.

Quantification is handled as usual in higher-order logic by modeling
8X s as ⇧(�X s) for a suitably chosen connective ⇧, as we remarked in Sec-
tion 2. Here we are interested in defining two particular modal ⇧-connectives:
⇧◆, for quantification over individual variables, and ⇧µ�o, for quantifica-
tion over modal propositional variables that depend on worlds, of types
(◆ � (µ � o)) � (µ � o) and ((µ � o) � (µ � o)) � (µ � o), respectively.

In previous work [10] we have discussed first-order and higher-order
modal logic, including a means of explicitly excluding terms of certain types.
The idea was that no proper subterm of tµ�o should introduce a dependency
on worlds. Here we skip this restriction. This leads to a simpler definition of
a quantified multimodal language QMLSTT below, and it does not a↵ect our
soundness and completeness results.

Definition 3.1 (Modal operators). The modal operators ¬ , _ ,2,⇧◆, and
⇧µ�o are defined as follows:

¬ (µ�o)�(µ�o) = ��µ�o �Wµ ¬(�W)

_ (µ�o)�(µ�o)�(µ�o) = ��µ�o � µ�o �Wµ �W _ W

6 Christoph Benzmüller and Lawrence C. Paulson

2 (µ�µ�o)�(µ�o)�(µ�o) = �Rµ�µ�o ��µ�o �Wµ 8Vµ ¬(RW V) _ �V
⇧◆

(◆�(µ�o))�(µ�o) = ��◆�(µ�o) �Wµ 8X◆ �XW

⇧µ�o
((µ�o)�(µ�o))�(µ�o) = ��(µ�o)�(µ�o) �Wµ 8Pµ�o �P W

Note that our encoding actually only employs the second-order fragment of
simple type theory enhanced with lambda-notation.

Further operators can be introduced, for example,

>(µ�o)�(µ�o) = 8Pµ�o P _ ¬P

?(µ�o)�(µ�o) = ¬>
^ (µ�o)�(µ�o)�(µ�o) = ��µ�o � µ�o ¬ (¬� _ ¬)
� (µ�o)�(µ�o)�(µ�o) = ��µ�o � µ�o ¬� _

3 (µ�µ�o)�(µ�o)�(µ�o) = �Rµ�µ�o ��µ�o ¬ (2R (¬�))
⌃◆

(◆�(µ�o))�(µ�o) = ��◆�(µ�o) ¬ (⇧◆(�X◆ ¬ (�X)))

⌃µ�o
((µ�o)�(µ�o))�(µ�o) = ��(µ�o)�(µ�o) ¬ (⇧µ�o(�Pµ�o ¬ (�P)))

We could also introduce further modal operators, such as the di↵erence
modality D, the global modality E, nominals with !, or the @ operator (cf.
the recent work of Kaminski and Smolka [23] in the propositional hybrid logic
context):

D(µ�o)�(µ�o) = ��µ�o �Wµ 9Vµ W 6= V ^ �V
E(µ�o)�(µ�o) = ��µ�o � _ D �

!(µ�o)�(µ�o) = ��µ�o E (� ^ ¬ (D �))

@µ�(µ�o)�(µ�o) = �Wµ ��µ�o �W

For defining QMLSTT-propositions we fix a set IVSTT of individual
variables of type ◆, a set PVSTT of propositional variables of type µ � o, and a
set SYMSTT of n-ary (curried) predicate constants of types ◆ � . . . � ◆| {z }

n

� (µ �

o). The latter types will be abbreviated as ◆n � (µ � o) in the remainder.
Moreover, we fix a set SSTT of accessibility relation constants of type µ �
µ � o.

Definition 3.2 (QMLSTT-propositions). QMLSTT-propositions are defined as
the smallest set of simply typed �-terms for which the following hold:

• Each variable Pµ�o 2 PVSTT is an atomic QMLSTT-proposition, and
if Xj

◆ 2 IVSTT (for j = 1, . . . , n) and k◆n�(µ�o) 2 SYMSTT, then the
term (kX1 . . . Xn)µ�o is an atomic QMLSTT-proposition.

• If � and are QMLSTT-propositions, then so are ¬ � and � _ .
• If rµ�µ�o 2 SSTT is an accessibility relation constant and if � is an

QMLSTT-proposition, then 2 r � is a QMLSTT-proposition.
• If X◆ 2 IVSTT is an individual variable and � is a QMLSTT-proposition

then ⇧◆(�X◆ �) is a QMLSTT-proposition.
• If Pµ�o 2 PVSTT is a propositional variable and � is a QMLSTT-
proposition then ⇧µ�o(�Pµ�o �) is a QMLSTT-proposition.

Quantified Multimodal Logics in Simple Type Theory 7

We write 2r �, 8X◆ �, and 8Pµ�o � for 2 r �, ⇧◆(�X◆ �), and
⇧µ�o(�Pµ�o �), respectively.

Because the defining equations in Definition 3.1 are themselves formu-
las in simple type theory, we can express proof problems in a higher-order
theorem prover elegantly in the syntax of quantified multimodal logic. Using
rewriting or definition expanding, we can reduce these representations to cor-
responding statements containing only the basic connectives ¬ , _ , =, ⇧◆,
and ⇧µ�o of simple type theory.

Example. The following QMLSTT proof problem expresses that in all acces-
sible worlds there exists truth:

2r 9Pµ�o P

The term rewrites into the following �⌘-normal term of type µ � o

�Wµ 8Yµ ¬(rW Y) _ (¬8Pµ�o ¬(P Y))

Next, we define validity of QMLSTT propositions �µ�o in the obvious
way: a QML-proposition �µ�o is valid if and only if for all possible worlds wµ

we have wµ 2 �µ�o, that is, if and only if �µ�o wµ holds.

Definition 3.3 (Validity). Validity is modeled as an abbreviation for the fol-
lowing simply typed �-term:

valid = ��µ�o 8Wµ �W

Alternatively, we could define validity simply as ⇧(µ�o)�o.

Example. We analyze whether the proposition 2r 9Pµ�o P is valid or not.
For this, we formalize the following proof problem

valid (2r 9Pµ�o P)

Expanding this term leads to

8Wµ 8Yµ ¬(rW Y) _ (¬8Xµ�o ¬(X Y))

It is easy to check that this term is valid in Henkin semantics: put X =
�Yµ >.

An obvious question is whether the notion of quantified multimodal
logics we obtain via this embedding indeed exhibits the desired properties.
In the next section, we prove soundness and completeness for a mapping of
QML-propositions to QMLSTT-propositions.

4. Soundness and Completeness of the Embedding

In our soundness proof, we exploit the following mapping of QK⇡ models
into Henkin models. We assume that the QML logic L under consideration
is constructed as outlined in Section 2 from a set of individual variables IV,
a set of propositional variables PV, and a set of predicate symbols SYM. Let
2r1 , . . . , 2rn for ri 2 S be the box operators of L.

8 Christoph Benzmüller and Lawrence C. Paulson

Definition 4.1 (QMLSTT logic LSTT for QML logic L). Given an QML logic
L, define a mapping ˙ as follows:

Ẋ = X◆ for every X 2 IV

Ṗ = Pµ�o for every P 2 PV

k̇ = k◆n�(µ�o) for every n-ary k 2 SYM

ṙ = rµ�µ�o for every r 2 S

The QMLSTT logic LSTT is obtained from L by applying Def. 3.2 with
IVSTT = {Ẋ | X 2 IV}, PVSTT = {Ṗ | P 2 PV}, SYMSTT = {k̇ | k 2
SYM}, and SSTT = {ṙ | r 2 S}. Our construction obviously induces a one-

to-one correspondence ˙ between languages L and LSTT.
Moreover, let g = (giv : IV �! D, gpv : PV �! P) be a variable

assignment for L. We define the corresponding variable assignment

ġ = (ġiv : IVSTT �! D = D◆, ġ
pv : PVSTT �! P = Dµ�o)

for LSTT so that ġ(X◆) = ġ(Ẋ) = g(X) and ġ(Pµ�o) = ġ(Ṗ) = g(P) for all
X◆ 2 IVSTT and Pµ�o 2 PVSTT.

Finally, a variable assignment ġ is lifted to an assignment for variables
Z↵ of arbitrary type by choosing ġ(Z↵) = d 2 D↵ arbitrarily, if ↵ 6= ◆, µ � o.

We assume below that L, LSTT, g and ġ are defined as above.

Definition 4.2 (Henkin model HQ for QK⇡ model Q). Given a QK⇡ model
Q = (W, (Rr)r2S , D, P, (Iw)w2W) for L, a Henkin model HQ = h{D↵}↵2T, Ii
for LSTT is constructed as follows. We choose

• the set Dµ as the set of possible worlds W ,
• the set D◆ as the set of individuals D (cf. definition of ġiv),
• the set Dµ�o as the set of sets of possible worlds P (cf. definition of
ġpv),2

• the set Dµ�µ�o as the set of relations (Rr)r2S ,
• and all other sets D↵�� as (not necessarily full) sets of functions from
D↵ to D� ; for all sets D↵�� the rule that everything denotes must be
obeyed, in particular, we require that the sets D◆n�(µ�o) contain the
elements Ik◆n�(µ�o) as characterized below.

The interpretation I is as follows:

• Let k◆n�(µ�o) = k̇ for k 2 SYM and let Xi
◆ = Ẋi for Xi 2 IV. We choose

Ik◆n�(µ�o) 2 D◆n�(µ�o) such that

(I k)(ġ(X1
◆), . . . , ġ(X

n
◆), w) = T

for all worlds w 2 Dµ such that Q, g, w |= k(X1, . . . , Xn), that is, if
hg(X1), . . . , g(Xn)i 2 Iw(k). Otherwise (I k)(ġ(X1

◆), . . . , ġ(X
n
◆), w) =

F .

2
To keep things simple, we identify sets with their characteristic functions.

Quantified Multimodal Logics in Simple Type Theory 9

• Let rµ�µ�o = ṙ for r 2 S. We choose Irµ�µ�o 2 Dµ�µ�o such that
(Irµ�µ�o)(w,w0) = T if hw,w0i 2 Rr in Q and (Irµ�µ�o)(w,w0) = F
otherwise.

It is not hard to verify that HQ = h{D↵}↵2T, Ii is a Henkin model.

Lemma 4.3. Let Q = (W, (Rr)r2S , D, P, (Iw)w2W) be a QK⇡ model and let
HQ = h{D↵}↵2T, Ii be a Henkin model for Q. Furthermore, let sµ�o = ṡ
for s 2 L. Then for all worlds w 2 W and variable assignments g we have
Q, g, w |= s in Q if and only if V[w/Wµ]ġ (sµ�oWµ) = T in HQ.

Proof. The proof is by induction on the structure of s 2 L.
Let s = P for P 2 PV. By construction of Henkin model HQ and by def-

inition of ġ, we have for Pµ�o = Ṗ that V[w/Wµ]ġ (Pµ�o Wµ) = ġ(Pµ�o)(w) =
T if and only if Q, g, w |= P , that is, w 2 g(P).

Let s = k(X1, . . . , Xn) for k 2 SYM and Xi 2 IV. By construction
of Henkin model HQ and by definition of ġ, we have for k̇(Ẋ1, . . . , Ẋn) =
(k◆n�(µ�o) X

1
◆ . . . Xn

◆) that

V[w/Wµ]ġ ((k◆n�(µ�o)X
1
◆ . . . X

n
◆)Wµ) = (I k)(ġ(X1

◆), . . . , ġ(X
n
◆), w) = T

if and only if Q, g, w |= k(X1, . . . , Xn), that is, hg(X1), . . . , g(Xn)i 2 Iw(k).
Let s = ¬ t for t 2 L. We have Q, g, w |= ¬s if and only Q, g, w 6|= s,

which is equivalent by induction to V[w/Wµ]ġ (tµ�o Wµ) = F and hence to
V[w/Wµ]ġ ¬(tµ�o Wµ) =�⌘ V[w/Wµ]ġ ((¬ tµ�o)Wµ) = T .

Let s = (t _ l) for t, l 2 L. We have Q, g, w |= (t _ l) if and only if
Q, g, w |= t or Q, g, w |= l. The latter condition is equivalent by induction
to V[w/Wµ]ġ (tµ�o Wµ) = T or V[w/Wµ]ġ (lµ�o Wµ) = T and therefore to
V[w/Wµ]ġ (tµ�o Wµ) _ (lµ�o Wµ) =�⌘ V[w/Wµ]ġ (tµ�o _ lµ�o Wµ) = T .

Let s = 2r t for t 2 L. We have Q, g, w |= 2r t if and only if for all u
with hw, ui 2 Rr we have Q, g, u |= t. The latter condition is equivalent by
induction to this one: for all u with hw, ui 2 Rr we have V[u/Vµ]ġ (tµ�o Vµ) =
T . That is equivalent to

V[u/Vµ][w/Wµ]ġ (¬(rµ�µ�o Wµ Vµ) _ (tµ�o Vµ)) = T

and thus to

V[w/Wµ]ġ (8Yµ (¬(rµ�µ�o Wµ Yµ) _ (tµ�o Yµ))) =�⌘ V[w/Wµ]ġ (2r tWµ) = T.

Let s = 8X t for t 2 L and X 2 IV. We have Q, g, w |= 8X t if and
only if Q, [d/X]g, w |= t for all d 2 D. The latter condition is equivalent by
induction to V[d/X◆][w/Wµ]ġ (tµ�o Wµ) = T for all d 2 D◆. That condition is
equivalent to

V[w/Wµ]ġ (⇧
◆
(◆�o)�o(�X◆ tµ�o Wµ)) =�⌘

V[w/Wµ]ġ ((�Vµ (⇧◆
(◆�o)�o (�X◆ tµ�o Vµ)))Wµ) = T

and so by definition of ⇧◆ to V[w/Wµ]ġ ((⇧
◆
(◆�(µ�o))�(µ�o) (�X◆ tµ�o))Wµ) =

V[w/Wµ]ġ ((8X◆ tµ�o)Wµ) = T .
The case for s = 8P t where t 2 L and P 2 PV is analogous to

s = 8X t. ⇤

10 Christoph Benzmüller and Lawrence C. Paulson

We exploit this result to prove the soundness of our embedding.

Theorem 4.4 (Soundness for QK⇡ semantics). Let s 2 L be a QML proposi-

tion and let sµ�o = ṡ be the corresponding QMLSTT proposition. If |=STT

(valid sµ�o) then |=QK⇡ s.

Proof. By contraposition, assume 6|=QK⇡ s: that is, there is a QK⇡ model Q =
(W, (Rr)r2S , D, P, (Iw)w2W), a variable assignment g and a world w 2 W ,
such that Q, g, w 6|= s. By Lemma 4.3, we have V[w/Wµ]ġ (sµ�o Wµ) = F in a
Henkin model HQ for Q. Thus, Vġ (8Wµ (sµ�o W)) =�⌘ Vġ (valid sµ�o) = F .

Hence, 6|=STT (valid sµ�o). ⇤

In order to prove completeness, we reverse our mapping from Henkin
models to QK⇡ models.

Definition 4.5 (QML logic LQML for QMLSTT logic L). The mapping ¯ is
defined as the reverse map of ˙ from Def. 4.1.

The QML logic LQML is obtained from QMLSTT logic L by choosing
IV = {X̄◆ | X◆ 2 IVSTT}, PV = {P̄µ�o | Pµ�o 2 PVSTT}, SYM = {k̄◆n�(µ�o |
k◆n�(µ�o) 2 SYMSTT}, and S = {r̄µ�µ�o | rµ�µ�o 2 SSTT}.

Moreover, let g : IVSTT[PVSTT �! D[P be a variable assignment for
L. The corresponding variable assignment ḡ : IV [PV �! D [P for LQML

is defined as follows: ḡ(X) = ḡ(X̄◆) = g(X◆) and ḡ(P) = ḡ(P̄µ�o) = g(Pµ�o)
for all X 2 IV and P 2 PV.

We assume below that L, LQML, g and ḡ are defined as above.

Definition 4.6 (QK⇡� model QH for Henkin model H). Given a Henkin
model H = h{D↵}↵2T, Ii for QMLSTT logic L, we construct a QML model

QH = (W, (Rr)r2S , D, P, (Iw)w2W) for LQML by choosingW = Dµ,D = D◆,
and P = Dµ�o. Moreover, let k = k̄◆n�(µ�o) and let Xi = X̄i

◆ . We choose
Iw(k) such that hḡ(X1), . . . , ḡ(Xn)i 2 Iw(k) if and only if

(I k)(g(X1
◆), . . . , g(X

n
◆), w) = T.

Finally, let r = r̄µ�µ�o. We choose Rr such that hw,w0i 2 Rr if and only if
(Irµ�µ�o)(w,w0) = T .

It is not hard to verify that QH = (W, (Rr)r2S , D, P, (Iw)w2W) meets
the definition of QK⇡� models. Below we will see that it also meets the
definition of QK⇡ models.

Lemma 4.7. Let QH = (W, (Rr)r2S , D, P, (Iw)w2W) be a QK⇡� model for a
given Henkin model H = h{D↵}↵2T, Ii. Furthermore, let s = s̄µ�o. For all
worlds w 2 W and variable assignments g we have V[w/Wµ]g (sµ�oWµ) = T

in H if and only if QH , ḡ, w |= s in QH .

Proof. The proof is by induction on the structure of sµ�o 2 L and it is similar
to the proof of Lemma 4.3. ⇤

Quantified Multimodal Logics in Simple Type Theory 11

With the help of Lemma 4.7, we now show that the QK⇡� models we
construct in Def. 4.6 are in fact always QK⇡ models. Thus, Henkin models
never relate to QK⇡� models that do not already fulfill the QK⇡ criterion.

Lemma 4.8. Let QH = (W, (Rr)r2S , D, P, (Iw)w2W) be a QK⇡� model for a
given Henkin model H = h{D↵}↵2T, Ii. Then QH is also a QK⇡ model.

Proof. We need to show that for every variable assignment ḡ and formula
s = s̄µ�o the set {w 2 W | Qh, ḡ, w |= s} is a member of P in QH .
This is a consequence of the rule that everything denotes in the Henkin
model H. To see this, consider Vgsµ�o = Vg(�Vµ sµ�o V) for variable Vµ

not occurring free in sµ�o. By definition of Henkin models this denotes
that function from Dµ = W to truth values Do = {T, F} whose value for
each argument w 2 Dµ is V[w/Vµ]g(s V), that is, sµ�o denotes the char-
acteristic function �w 2 W V[w/Vµ]g (sµ�oVµ) = T which we identify with
the set {w 2 W | V[w/Vµ]g (sµ�oVµ) = T}. Hence, we have {w 2 W |
V[w/Vµ]g (sµ�oVµ) = T} 2 Dµ�o. By the choice of P = Dµ�o in the con-
struction of QH we know {w 2 W | V[w/Vµ]g (sµ�oVµ) = T} 2 P . By Lemma
4.7 we get {w 2 W | Qh, ḡ, w |= s} 2 P . ⇤
Theorem 4.9 (Completeness for QK⇡ models). Let sµ�o be a QMLSTT propo-

sition and let s = s̄µ�o be the corresponding QML proposition. If |=QK⇡ s then

|=STT (valid sµ�o).

Proof. By contraposition, assume 6|=STT (valid sµ�o): there is a Henkin model
H = h{D↵}↵2T, Ii and a variables assignment g such that Vg (valid sµ�o) =
F . Hence, for some world w 2 Dµ we have V[w/Wµ]g (sµ�oWµ) = F . By

Lemma 4.7 we then get QH , ḡ, w 6|=QK⇡�
s for s = s̄µ�o in QK⇡� model QH

for H. By Lemma 4.8 we know that QH is actually a QK⇡ model. Hence,
6|=QK⇡ s. ⇤

Our soundness and completeness results obviously also apply to frag-
ments of QML logics.

Corollary 4.10. The reduction of our embedding to propositional quantified
multimodal logics (which only allow quantification over propositional vari-
ables) is sound and complete.

Corollary 4.11. The reduction of our embedding to first-order multimodal
logics (which only allow quantification over individual variables) is sound
and complete.

Corollary 4.12. The reduction of our embedding to propositional multimodal
logics (no quantification) is sound and complete.

5. Conclusion

We have presented a straightforward embedding of quantified multimodal
logics in simple type theory and we have shown that this embedding is sound

! ι

! µ

−→ ι !

¬ = λφι! λ ι ¬(φ)

∨ = λφι! λψι! λ ι φ ∨ ψ

✷ = λ ι!ι! λφι! λ ι ∀ ι ¬() ∨ φ

(∀) Π
µ = λτ λ ∀ (τ)

(∀) Π
ι! = λτ λ ∀ (τ)

! ι

! µ

−→ ι !

¬ = λφι! λ ι ¬(φ)

∨ = λφι! λψι! λ ι φ ∨ ψ

✷ = λ ι!ι! λφι! λ ι ∀ ι ¬() ∨ φ

(∀) Π
µ = λτµ!(ι!) λ ι ∀ µ (τ)

(∀) Π
ι! = λτ (ι!)!(ι!) λ ι ∀ ι! (τ)

! ι

! µ

−→ ι !

¬ = λφι! λ ι ¬(φ)

∨ φ = λψι! λ ι φ ∨ ψ

✷ = λ ι!ι! λφι! λ ι ∀ ι ¬() ∨ φ

(∀) Π
µ = λτµ!(ι!) λ ι ∀ µ (τ)

(∀) Π
ι! = λτ (ι!)!(ι!) λ ι ∀ ι! (τ)

! ι

! µ

−→ ι !

¬ = λφι! λ ι ¬(φ)

∨ φ ψ = λ ι φ ∨ ψ

✷ = λ ι!ι! λφι! λ ι ∀ ι ¬() ∨ φ

(∀) Π
µ = λτµ!(ι!) λ ι ∀ µ (τ)

(∀) Π
ι! = λτ (ι!)!(ι!) λ ι ∀ ι! (τ)

! ι

! µ

−→ ι !

¬ = λφι! λ ι ¬(φ)

(∨φ ψ) = φ ∨ ψ

✷ = λ ι!ι! λφι! λ ι ∀ ι ¬() ∨ φ

(∀) Π
µ = λτµ!(ι!) λ ι ∀ µ (τ)

(∀) Π
ι! = λτ (ι!)!(ι!) λ ι ∀ ι! (τ)

! ι

! µ

−→ ι !

¬ = λφι! λ ι ¬(φ)

∨ = λφι! λψι! λ ι φ ∨ ψ

✷ = λ ι!ι! λφι! λ ι ∀ ι ¬() ∨ φ

(∀) Π
µ = λτµ!(ι!) λ ι ∀ µ (τ)

(∀) Π
ι! = λτ (ι!)!(ι!) λ ι ∀ ι! (τ)

! ι

! µ

−→ ι !

¬ = λφι! λ ι ¬(φ)

∨ = λφι! λψι! λ ι φ ∨ ψ

✷ = λφι! λ ι ∀ ι ¬() ∨ φ

(∀) Π
µ = λτµ!(ι!) λ ι ∀ µ (τ)

(∀) Π
ι! = λτ (ι!)!(ι!) λ ι ∀ ι! (τ)

! ι

! µ

−→ ι !

¬ = λφι! λ ι ¬(φ)

∨ = λφι! λψι! λ ι φ ∨ ψ

✷ = λ ι!ι! λφι! λ ι ∀ ι ¬() ∨ φ

(∀) Π
µ = λτµ!(ι!) λ ι ∀ µ (τ)

(∀) Π
ι! = λτ (ι!)!(ι!) λ ι ∀ ι! (τ)

= λφι! ∀ ι φ

✷ ∃ ι!

✷ −→ . . .

∃ −→ . . .

−→ . . .
βη↓
−→ ∀ ι ∀ ι ¬ ∨ (¬∀ ι! ¬())

= λ ι ⊤

✷ ∃ ι!

✷ −→ . . .

∃ −→ . . .

−→ . . .
βη↓
−→ ∀ ι ∀ ι ¬ ∨ (¬∀ ι! ¬())

= λ ι ⊤

✷ ∃ ι!

✷ −→ . . .

∃ −→ . . .

−→ . . .
βη↓
−→ ∀ ι ∀ ι ¬ ∨ (¬∀ ι! ¬())

= λ ι ⊤

|= π |= ι!

!

!

!

!

= λ ∀ , ⇒

= λ ∀ ∃

∀
.
⇐
.
⇒ ∀ φ φ ⊃ ✷ ✸ φ ()

∀
.
⇐
.
⇒ ∀ φ ✷ φ ⊃ ✸ φ ()

= λ ∀ , ⇒

= λ ∀ ∃

∀
.
⇐
.
⇒ ∀ φ φ ⊃ ✷ ✸ φ ()

∀
.
⇐
.
⇒ ∀ φ ✷ φ ⊃ ✸ φ ()

≡ ≡

≡ ≡ ≡

≡ ≡

≡ ≡

⇔

∀

∀ φ ✷ φ ⊃ φ

∧ ∀ φ ✸ φ ⊃ ✷ ✸ φ

}

⇔

∀ φ ✷ φ ⊃ ✸ φ

∧ ∀ φ ✷ φ ⊃ ✷ ✷ φ

∧ ∀ φ φ ⊃ ✷ ✸ φ

⎫

⎬

⎭

⇔

∀

∀ φ ✷ φ ⊃ φ

∧ ∀ φ ✸ φ ⊃ ✷ ✸ φ

}

⇔

∧ ∀ φ ✷ φ ⊃ ✷ ✷ φ

∧

⎫

⎬

⎭

⇔

∀

∧

}

⇔

∧
∧

⎫

⎬

⎭

⇔

∀

∧

}

.
⇔

∧
∧

⎫

⎬

⎭

≡ ≡

≡ ≡ ≡

≡ ≡

≡ ≡

∑

<

✷ ✷

, , ,

, , ,

∀φ ✷ ✷ φ ⇔ ✷ ✷ φ

⊢

∀φ,ψ ✷ (✷ φ ∨ ✷ ψ) ⊃ (✷ φ ∨ ✷ ψ)

∧

∀φ,ψ ✷ (✷ φ ∨ ✷ ψ) ⊃ (✷ φ ∨ ✷ ψ)

✷ ✷

, , ,

, , ,

∀φ ✷ ✷ φ ⇔ ✷ ✷ φ

⊢

∀φ,ψ ✷ (✷ φ ∨ ✷ ψ) ⊃ (✷ φ ∨ ✷ ψ)

∧

∀φ,ψ ✷ (✷ φ ∨ ✷ ψ) ⊃ (✷ φ ∨ ✷ ψ)

!

✷ , ✷ , ✷
✷

!

!

✷ () ∨ () ∨ ()

(✷ () ⇒ ✷ ())

✷ ¬ () ⇒ ✷ ¬ ())

̸= ∈ { , , }

! φ

∀ φ (✷ φ⇒ ✷ ✷ φ)

! φ

∀ φ (¬ ✷ φ⇒ ✷ ¬✷ φ)

̸= ∈ { , , }

!

∀ φ ✷ φ⇒ φ ()

∀ φ ✷ φ⇒ ✷ ✷ φ ()

∀ ∀ φ ✷ φ⇒ ✷ φ

!

¬ ✷ () ¬✷ ()

!

. . . ⊢ ✷ ()

!

¬ ✷ () ¬✷ ()

!

. . . ⊢ ✷ ()

: = λ τ λ τ ¬()

: = λ τ λ τ ∀ (() ⇒ ())

: = λ τ λ τ (() ∧ ())

: = λ τ λ τ ∃ (() ∧ ())

: = λ τ λ τ (() ∧ ¬() ∧ ¬())

: = λ τ λ τ (() ∧ ¬())

: = λ τ λ τ (() ∧ ¬())

: = λ τ λ τ (() ∧ ∃ (() ∧ ()))

: = λ τ λ τ (() ∧ ¬∃ (() ∧ ()))

(),

(),

()

⊢

()

∧

()

(),

(),

()

⊢ .

()

∧

()

∀φ ✷ φ ⊃ ✷ φ,

✷ (λ ()),

✷ (λ ()),

✷ (λ ())

⊢ ✷ (λ (() ∧ ()))

∀φ ✷ φ ⊃ ✷ φ,

✷ (λ ()),

✷ (λ ()),

✷ (λ ())

⊢ . ✷ (λ (() ∧ ()))

∀φ ✷ φ ⊃ ✷ φ,

✷ (λ ()),

✷ (λ ()),

✷ (λ ())

⊢ . ✷ (λ (() ∧ ()))

̸⊢ ✷ (λ (() ∧ ()))

∀φ ✷ φ ⊃ ✷ φ,

✷ (λ ()),

✷ (λ ()),

✷ (λ ())

⊢ . ✷ (λ (() ∧ ()))

̸⊢ . ✷ (λ (() ∧ ()))

∀φ ✷ φ ⊃ ✷ φ,

✷ (λ ()),

✷ (λ ()),

✷ (λ ())

⊢ . ✷ (λ (() ∧ ()))

̸⊢ . ✷ (λ (() ∧ ()))

()
︸ ︷︷ ︸

−→ (λ ())
︸ ︷︷ ︸

ι!

!

!

!

!

!

!

!

!

!

http://tptp.org

!

!

!

!

−→

−→

http://www.ags.uni-sb.de/~leo

≡ ≡

≡ ≡ ≡

≡ ≡

≡ ≡

∑

<

≡ ≡

≡ ≡ ≡

≡ ≡

≡ ≡

HOL based Universal Reasoning

Christoph Benzmüller

Freie Universität Berlin

UNILOG-2013, Rio de Janeiro, Brasil, April 2013

C. Benzmüller, 2013—–HOL based Universal Reasoning—–UNILOG’2013 1

HOL: Church’s STT with Henkin Semantics

P y P(y)

x P(s(x))

P(x)

P(0)

C. Benzmüller, 2013—–HOL based Universal Reasoning—–UNILOG’2013 2

Automated Reasoners for HOL

1980198519901995200020052010

TPS ... ?(Peter Andrews)

LEO-I/LEO-II (myself)

Isabelle (Nipkow/Paulson/Blanchette)

Satallax (Brown)

Nitpick (Blanchette)

agsyHOL (Lindblatt)

︸ ︷︷ ︸

• all accept TPTP THF Syntax [SutcliffeBenzmüller, J.Form.Reas, 2009]

• can be called remotely via SystemOnTPTP at Miami
• they significantly gained in strength over the last years
• they can be bundled into a combined prover HOL-P

Exploit HOL with Henkin semantics as metalogic
Automate other logics (& combinations) via semantic embeddings

— HOL-P becomes a Universal Reasoner —

C. Benzmüller, 2013—–HOL based Universal Reasoning—–UNILOG’2013 3

Short Demonstration of HOL-P

FO Modal Logic example: (✸∃xPfx ∧✷∀y(✸Py ⇒ Qy)) ⇒ ✸∃zQz
encoding in HOL: valid (✸∃xPfx ∧✷∀y(✸Py ⇒ Qy)) ⇒ ✸∃zQz
. . . in THF Syntax: . . . not here . . .

C. Benzmüller, 2013—–HOL based Universal Reasoning—–UNILOG’2013 4

Short Demonstration of HOL-P

FO Modal Logic example: (✸∃xPfx ∧✷∀y(✸Py ⇒ Qy)) ⇒ ✸∃zQz
encoding in HOL: valid (✸∃xPfx ∧✷∀y(✸Py ⇒ Qy)) ⇒ ✸∃zQz
. . . in THF Syntax: . . . not here . . .

%> ./HOL-P example.thf -timeout 20 -logic s4 -domain varying

C. Benzmüller, 2013—–HOL based Universal Reasoning—–UNILOG’2013 4

Short Demonstration of HOL-P

FO Modal Logic example: (✸∃xPfx ∧✷∀y(✸Py ⇒ Qy)) ⇒ ✸∃zQz
encoding in HOL: valid (✸∃xPfx ∧✷∀y(✸Py ⇒ Qy)) ⇒ ✸∃zQz
. . . in THF Syntax: . . . not here . . .

%> ./HOL-P example.thf -timeout 20 -logic s4 -domain varying
Calling HOL Resoners remotely in Miami . . . thanks to Geoff Sutcliffe
— LEO-II says Theorem — CPU 0.08s
— Satallax says Theorem — CPU 0.03s
— Isabelle says Unknown — CPU 11.93s
— Nitpick says Unknown — CPU 10.62s
— agsyHOL says Theorem — CPU 0.55s

C. Benzmüller, 2013—–HOL based Universal Reasoning—–UNILOG’2013 4

Short Demonstration of HOL-P

FO Modal Logic example: (✸∃xPfx ∧✷∀y(✸Py ⇒ Qy)) ⇒ ✸∃zQz
encoding in HOL: valid (✸∃xPfx ∧✷∀y(✸Py ⇒ Qy)) ⇒ ✸∃zQz
. . . in THF Syntax: . . . not here . . .

%> ./HOL-P example.thf -timeout 20 -logic s4 -domain varying
Calling HOL Resoners remotely in Miami . . . thanks to Geoff Sutcliffe
— LEO-II says Theorem — CPU 0.08s
— Satallax says Theorem — CPU 0.03s
— Isabelle says Unknown — CPU 11.93s
— Nitpick says Unknown — CPU 10.62s
— agsyHOL says Theorem — CPU 0.55s

%> ./HOL-P example.thf -timeout 20 -logic k -domain constant

C. Benzmüller, 2013—–HOL based Universal Reasoning—–UNILOG’2013 4

Short Demonstration of HOL-P

FO Modal Logic example: (✸∃xPfx ∧✷∀y(✸Py ⇒ Qy)) ⇒ ✸∃zQz
encoding in HOL: valid (✸∃xPfx ∧✷∀y(✸Py ⇒ Qy)) ⇒ ✸∃zQz
. . . in THF Syntax: . . . not here . . .

%> ./HOL-P example.thf -timeout 20 -logic s4 -domain varying
Calling HOL Resoners remotely in Miami . . . thanks to Geoff Sutcliffe
— LEO-II says Theorem — CPU 0.08s
— Satallax says Theorem — CPU 0.03s
— Isabelle says Unknown — CPU 11.93s
— Nitpick says Unknown — CPU 10.62s
— agsyHOL says Theorem — CPU 0.55s

%> ./HOL-P example.thf -timeout 20 -logic k -domain constant
Calling HOL Resoners remotely in Miami . . . thanks to Geoff Sutcliffe
— LEO-II says Unknown — CPU 11.93s
— Satallax says CounterSatisfiable — CPU 0.04s
— Isabelle says Unknown — CPU 16.19s
— Nitpick says CounterSatisfiable — CPU 8.19s
— agsyHOL says Unknown — CPU 10.82s

C. Benzmüller, 2013—–HOL based Universal Reasoning—–UNILOG’2013 4

HOL — Church’s Simple Type Theory [Church, 1940]

Simple Types α ::= ι | o | α1 → α2

C. Benzmüller, 2013—–HOL based Universal Reasoning—–UNILOG’2013 5

HOL — Church’s Simple Type Theory [Church, 1940]

Simple Types α ::= ι | o | α1 → α2

Individuals

Booleans (True and False)

Functions/Predicates

C. Benzmüller, 2013—–HOL based Universal Reasoning—–UNILOG’2013 5

HOL — Church’s Simple Type Theory [Church, 1940]

Simple Types α ::= ι | µ | o | α1 → α2

Possible worlds

Individuals

Booleans (True and False)

Functions/Predicates

C. Benzmüller, 2013—–HOL based Universal Reasoning—–UNILOG’2013 5

HOL — Church’s Simple Type Theory [Church, 1940]

HOL
s, t ::= cα | xα | (λxα sβ)α→β | (sα→β tα)β |

(¬o→o so)o | (so ∨o→o→o to)o | (∀xα to)o

C. Benzmüller, 2013—–HOL based Universal Reasoning—–UNILOG’2013 5

HOL — Church’s Simple Type Theory [Church, 1940]

HOL
s, t ::= cα | xα | (λxα sβ)α→β | (sα→β tα)β |

(¬o→o so)o | (so ∨o→o→o to)o | (∀xα to)o
︸ ︷︷ ︸

Π(α→o)→oλxαto

C. Benzmüller, 2013—–HOL based Universal Reasoning—–UNILOG’2013 5

HOL — Church’s Simple Type Theory [Church, 1940]

HOL s, t ::= C | x | (λx s) | (s t) | (¬s) | (s ∨ t) | (∀x t)

C. Benzmüller, 2013—–HOL based Universal Reasoning—–UNILOG’2013 5

HOL — Church’s Simple Type Theory [Church, 1940]

HOL s, t ::= C | x | (λx s) | (s t) | (¬s) | (s ∨ t) | (∀x t)

HOL (with Henkin semantics) is meanwhile very well understood

- Origin [Church, J.Symb.Log., 1940]

- Henkin-Semantics [Henkin, J.Symb.Log., 1950]

[Andrews, J.Symb.Log., 1971, 1972]

- Extensionality/Intensionality [BenzmüllerBrownKohlhase, J.Symb.Log., 2004]

[Muskens, J.Symb.Log., 2007]

C. Benzmüller, 2013—–HOL based Universal Reasoning—–UNILOG’2013 5

Embedding of First-order Modal Logic (FML) in HOL

HOL s, t ::= C | x | (λx s) | (s t) | (¬s) | (s ∨ t) | (∀x t)

C. Benzmüller, 2013—–HOL based Universal Reasoning—–UNILOG’2013 6

Embedding of First-order Modal Logic (FML) in HOL

HOL s, t ::= C | x | (λx s) | (s t) | (¬s) | (s ∨ t) | (∀x t)

FML ϕ,ψ ::= P(t1, . . . , tn) | (¬ϕ) | (ϕ ∨ ψ) | ✷ϕ | (∀x ϕ)

M, g , s |= ¬ϕ iff not M, g , s |= ϕ
M, g , s |= ϕ ∨ ψ iff M, g , s |= ϕ or M, g , s |= ψ
M, g , s |= ✷ϕ iff M, g , u |= ϕ for all u with r(s, u)
M, g , s |= ∀x ϕ iff M, [d/x]g , s |= ϕ for all d ∈ D

C. Benzmüller, 2013—–HOL based Universal Reasoning—–UNILOG’2013 6

Embedding of First-order Modal Logic (FML) in HOL

HOL s, t ::= C | x | (λx s) | (s t) | (¬s) | (s ∨ t) | (∀x t)

FML ϕ,ψ ::= P(t1, . . . , tn) | (¬ϕ) | (ϕ ∨ ψ) | ✷ϕ | (∀x ϕ)

M, g , s |= ¬ϕ iff not M, g , s |= ϕ
M, g , s |= ϕ ∨ ψ iff M, g , s |= ϕ or M, g , s |= ψ
M, g , s |= ✷ϕ iff M, g , u |= ϕ for all u with r(s, u)
M, g , s |= ∀x ϕ iff M, [d/x]g , s |= ϕ for all d ∈ D

FML in HOL: ¬ = λϕι!o λsι ¬ϕs
∨ = λϕι!o λψι!o λsι (ϕs ∨ ψs)
✷r = λϕι!o λsι ∀uι (¬r su ∨ ϕu)
Π = λhµ!(ι!o) λsι ∀dµ hds

(∀xϕ stands for Πλxϕ)

C. Benzmüller, 2013—–HOL based Universal Reasoning—–UNILOG’2013 6

Embedding of First-order Modal Logic (FML) in HOL

HOL s, t ::= C | x | (λx s) | (s t) | (¬s) | (s ∨ t) | (∀x t)

FML ϕ,ψ ::= P(t1, . . . , tn) | (¬ϕ) | (ϕ ∨ ψ) | ✷ϕ | (∀x ϕ)

M, g , s |= ¬ϕ iff not M, g , s |= ϕ
M, g , s |= ϕ ∨ ψ iff M, g , s |= ϕ or M, g , s |= ψ
M, g , s |= ✷ϕ iff M, g , u |= ϕ for all u with r(s, u)
M, g , s |= ∀x ϕ iff M, [d/x]g , s |= ϕ for all d ∈ D

FML in HOL: ¬ = λϕι!o λsι ¬ϕs
∨ = λϕι!o λψι!o λsι (ϕs ∨ ψs)
✷ = λrι!ι!o λϕι!o λsι ∀uι (¬r su ∨ ϕu)
Π = λhµ!(ι!o) λsι ∀dµ hds

(∀xϕ stands for Πλxϕ)

C. Benzmüller, 2013—–HOL based Universal Reasoning—–UNILOG’2013 6

Embedding of First-order Modal Logic (FML) in HOL

HOL s, t ::= C | x | (λx s) | (s t) | (¬s) | (s ∨ t) | (∀x t)

FML ϕ,ψ ::= P(t1, . . . , tn) | (¬ϕ) | (ϕ ∨ ψ) | ✷ϕ | (∀x ϕ)

M, g , s |= ¬ϕ iff not M, g , s |= ϕ
M, g , s |= ϕ ∨ ψ iff M, g , s |= ϕ or M, g , s |= ψ
M, g , s |= ✷ϕ iff M, g , u |= ϕ for all u with r(s, u)
M, g , s |= ∀x ϕ iff M, [d/x]g , s |= ϕ for all d ∈ D

FML in HOL: ¬ = λϕι!o λsι ¬ϕs
∨ = λϕι!o λψι!o λsι (ϕs ∨ ψs)
✷ = λrι!ι!o λϕι!o λsι ∀uι (¬r su ∨ ϕu)
Π = λhµ!(ι!o) λsι ∀dµ hds

(∀xϕ stands for Πλxϕ)

Idea: Lifting of modal formulas to predicates on worlds

Metalevel notions: valid = λϕι!o ∀sι ϕs

C. Benzmüller, 2013—–HOL based Universal Reasoning—–UNILOG’2013 6

B: Example — Embedding of FML in HOL

(✸∃xPf x ∧✷∀y(✸Py ⇒ Qy)) ⇒ ✸∃zQz

valid (✸∃xPf x ∧✷∀y(✸Py ⇒ Qy)) ⇒ ✸∃zQz

C. Benzmüller, 2013—–A Top-down Approach to Combining Logics—– ICAART 9

B: Example — Embedding of FML in HOL

(✸∃xPf x ∧✷∀y(✸Py ⇒ Qy)) ⇒ ✸∃zQz

valid (✸∃xPf x ∧✷∀y(✸Py ⇒ Qy)) ⇒ ✸∃zQz

C. Benzmüller, 2013—–A Top-down Approach to Combining Logics—– ICAART 9

B: Example — Embedding of FML in HOL

(✸∃xPf x ∧✷∀y(✸Py ⇒ Qy)) ⇒ ✸∃zQz

valid (✸∃xPf x ∧✷∀y(✸Py ⇒ Qy)) ⇒ ✸∃zQz

✷ = λp λw ∀v(¬(Rwv) ∨ (pv))

C. Benzmüller, 2013—–A Top-down Approach to Combining Logics—– ICAART 9

B: Example — Embedding of FML in HOL

(✸∃xPf x ∧✷∀y(✸Py ⇒ Qy)) ⇒ ✸∃zQz

valid (✸∃xPf x ∧✷∀y(✸Py ⇒ Qy)) ⇒ ✸∃zQz

valid (✸∃xPfx ∧ (λw ∀v(¬(Rwv) ∨ (∀y(✸Py⇒Qy) v)))) ⇒ ✸∃zQz

✷ = λp λw ∀v(¬(Rwv) ∨ (pv))

C. Benzmüller, 2013—–A Top-down Approach to Combining Logics—– ICAART 9

B: Example — Embedding of FML in HOL

(✸∃xPf x ∧✷∀y(✸Py ⇒ Qy)) ⇒ ✸∃zQz

valid (✸∃xPf x ∧✷∀y(✸Py ⇒ Qy)) ⇒ ✸∃zQz

valid (✸∃xPfx ∧ (λw ∀v(¬(Rwv) ∨ (∀y(✸Py⇒Qy) v)))) ⇒ ✸∃zQz

. . .

∀w(¬¬(¬¬∀v(¬Rwv ∨ ¬¬∀x¬P(fx)v) ∨ ¬∀v(¬Rwv ∨
∀y(¬¬∀u(¬Rvu∨¬Pyu)∨Qyv)))∨¬∀v(¬Rwv∨¬¬∀z¬Qzv))

C. Benzmüller, 2013—–A Top-down Approach to Combining Logics—– ICAART 9

B: Example — Embedding of FML in HOL

(✸∃xPf x ∧✷∀y(✸Py ⇒ Qy)) ⇒ ✸∃zQz

valid (✸∃xPf x ∧✷∀y(✸Py ⇒ Qy)) ⇒ ✸∃zQz

valid (✸∃xPfx ∧ (λw ∀v(¬(Rwv) ∨ (∀y(✸Py⇒Qy) v)))) ⇒ ✸∃zQz

. . .

∀w(¬¬(¬¬∀v(¬Rwv ∨ ¬¬∀x¬P(fx)v) ∨ ¬∀v(¬Rwv ∨
∀y(¬¬∀u(¬Rvu∨¬Pyu)∨Qyv)))∨¬∀v(¬Rwv∨¬¬∀z¬Qzv))

C. Benzmüller, 2013—–A Top-down Approach to Combining Logics—– ICAART 9

Propositional Quantification

Propositional Quantification [Fitting, J.Symb.Log., 2002]

. . .
M, g , s |= ∀pp ϕ iff M, [v/p]g , s |= ϕ for all v ∈ P

(P is a non-empty collection of sets of worlds, it includes atom sets)

Embedding in HOL
. . .
Πp = λh(ι!o)!(ι!o) λsι ∀vµ hvs (∀ϕψ stands for Πpλϕψ)

Modal logic axioms Semantical Condition
valid ∀pϕ(✷ϕ ⊃ ✸ϕ) ∀x∃y(rxy)

Bridge rules Semantical Condition
valid ∀pϕ(✷rϕ ⊃ ✷sϕ) ∀x∀y(rxy ⊃ sxy)

We get a wide range of modal logics and combinations for free!

C. Benzmüller, 2013—–HOL based Universal Reasoning—–UNILOG’2013 7

Propositional Quantification

Propositional Quantification [Fitting, J.Symb.Log., 2002]

. . .
M, g , s |= ∀pp ϕ iff M, [v/p]g , s |= ϕ for all v ∈ P

(P is a non-empty collection of sets of worlds, it includes atom sets)

Embedding in HOL
. . .
Πp = λh(ι!o)!(ι!o) λsι ∀vµ hvs (∀ϕψ stands for Πpλϕψ)

Modal logic axioms Semantical Condition
valid ∀pϕ(✷ϕ ⊃ ✸ϕ) ∀x∃y(rxy)

Bridge rules Semantical Condition
valid ∀pϕ(✷rϕ ⊃ ✷sϕ) ∀x∀y(rxy ⊃ sxy)

We get a wide range of modal logics and combinations for free!

C. Benzmüller, 2013—–HOL based Universal Reasoning—–UNILOG’2013 7

Propositional Quantification

Propositional Quantification [Fitting, J.Symb.Log., 2002]

. . .
M, g , s |= ∀pp ϕ iff M, [v/p]g , s |= ϕ for all v ∈ P

(P is a non-empty collection of sets of worlds, it includes atom sets)

Embedding in HOL
. . .
Πp = λh(ι!o)!(ι!o) λsι ∀vµ hvs (∀ϕψ stands for Πpλϕψ)

Modal logic axioms Semantical Condition
valid ∀pϕ(✷ϕ ⊃ ✸ϕ) ∀x∃y(rxy)

Bridge rules Semantical Condition
valid ∀pϕ(✷rϕ ⊃ ✷sϕ) ∀x∀y(rxy ⊃ sxy)

We get a wide range of modal logics and combinations for free!

C. Benzmüller, 2013—–HOL based Universal Reasoning—–UNILOG’2013 7

Propositional Quantification

Propositional Quantification [Fitting, J.Symb.Log., 2002]

. . .
M, g , s |= ∀pp ϕ iff M, [v/p]g , s |= ϕ for all v ∈ P

(P is a non-empty collection of sets of worlds, it includes atom sets)

Embedding in HOL
. . .
Πp = λh(ι!o)!(ι!o) λsι ∀vµ hvs (∀ϕψ stands for Πpλϕψ)

Modal logic axioms Semantical Condition
valid ∀pϕ(✷ϕ ⊃ ✸ϕ) ∀x∃y(rxy)

Bridge rules Semantical Condition
valid ∀pϕ(✷rϕ ⊃ ✷sϕ) ∀x∀y(rxy ⊃ sxy)

We get a wide range of modal logics and combinations for free!

C. Benzmüller, 2013—–HOL based Universal Reasoning—–UNILOG’2013 7

Propositional Quantification

Propositional Quantification [Fitting, J.Symb.Log., 2002]

. . .
M, g , s |= ∀pp ϕ iff M, [v/p]g , s |= ϕ for all v ∈ P

(P is a non-empty collection of sets of worlds, it includes atom sets)

Embedding in HOL
. . .
Πp = λh(ι!o)!(ι!o) λsι ∀vµ hvs (∀ϕψ stands for Πpλϕψ)

Modal logic axioms Semantical Condition
valid ∀pϕ(✷ϕ ⊃ ✸ϕ) ∀x∃y(rxy)

Bridge rules Semantical Condition
valid ∀pϕ(✷rϕ ⊃ ✷sϕ) ∀x∀y(rxy ⊃ sxy)

We get a wide range of modal logics and combinations for free!

C. Benzmüller, 2013—–HOL based Universal Reasoning—–UNILOG’2013 7

B: Example — Embedding of FML in HOL

(✸∃xPf x ∧✷∀y(✸Py ⇒ Qy)) ⇒ ✸∃zQz

valid (✸∃xPf x ∧✷∀y(✸Py ⇒ Qy)) ⇒ ✸∃zQz

valid (✸∃xPfx ∧ (λw ∀v(¬(Rwv) ∨ (∀y(✸Py⇒Qy) v)))) ⇒ ✸∃zQz

. . .

∀w(¬¬(¬¬∀v(¬Rwv ∨ ¬¬∀x¬P(fx)v) ∨ ¬∀v(¬Rwv ∨
∀y(¬¬∀u(¬Rvu∨¬Pyu)∨Qyv)))∨¬∀v(¬Rwv∨¬¬∀z¬Qzv))

Axiomatization of properties of accessibility relation R

Logic K: no axioms
Logic T: (reflexive R) — which expands into ∀x Rxx
Logic S4: (reflexive R) ∧ (symmetric R) ∧ (transitive R)
Logic

C. Benzmüller, 2013—–A Top-down Approach to Combining Logics—– ICAART 9

B: Example — Embedding of FML in HOL

(✸∃xPf x ∧✷∀y(✸Py ⇒ Qy)) ⇒ ✸∃zQz

valid (✸∃xPf x ∧✷∀y(✸Py ⇒ Qy)) ⇒ ✸∃zQz

valid (✸∃xPfx ∧ (λw ∀v(¬(Rwv) ∨ (∀y(✸Py⇒Qy) v)))) ⇒ ✸∃zQz

. . .

∀w(¬¬(¬¬∀v(¬Rwv ∨ ¬¬∀x¬P(fx)v) ∨ ¬∀v(¬Rwv ∨
∀y(¬¬∀u(¬Rvu∨¬Pyu)∨Qyv)))∨¬∀v(¬Rwv∨¬¬∀z¬Qzv))

Axiomatization of properties of accessibility relation R

Logic K: no axioms
Logic T: (reflexive R) — which expands into ∀x Rxx
Logic S4: (reflexive R) ∧ (symmetric R) ∧ (transitive R)
Logic

This automates FML with constant domain semantics in HOL

C. Benzmüller, 2013—–A Top-down Approach to Combining Logics—– ICAART 9

B: Example — Embedding FML in HOL

To obtain varying domain semantics:

! modify quantifier: Π = λqλw∀x ExistsInWxw ⇒ qxw

! add non-emptiness axiom: ∀w ∃xExistsInWxw

! add designation axioms for constants c : ∀w ExistsInWcw

(similar for function symbols)

C. Benzmüller, 2013—–A Top-down Approach to Combining Logics—– ICAART 10

B: Example — Embedding FML in HOL

To obtain varying domain semantics:

! modify quantifier: Π = λqλw∀x ExistsInWxw ⇒ qxw

! add non-emptiness axiom: ∀w ∃xExistsInWxw

! add designation axioms for constants c : ∀w ExistsInWcw

(similar for function symbols)

To obtain cumulative domain semantics:

! add axiom: ∀x∀v∀w ExistsInWxv ∧ Rvw ⇒ ExistsInWxw

C. Benzmüller, 2013—–A Top-down Approach to Combining Logics—– ICAART 10

Varying and Cumulative Domain Quantification

Constant Domain

Π = λh λwι ∀xµ hxw

C. Benzmüller, 2013—–HOL based Universal Reasoning—–UNILOG’2013 10

Varying and Cumulative Domain Quantification

Constant Domain

Π = λh λwι ∀xµ hxw

Varying and Cumulative Domain

Πva = λh λwι ∀xµ (¬exInWxw ∨ hxw)

C. Benzmüller, 2013—–HOL based Universal Reasoning—–UNILOG’2013 10

Varying and Cumulative Domain Quantification

Constant Domain

Π = λh λwι ∀xµ hxw

domains are non-empty

denotation (constants & functions)

Varying and Cumulative Domain

Πva = λh λwι ∀xµ (¬exInWxw ∨ hxw)

∀wι ∃xµ exInWxw

∀wι exInWcw

∀wι (exInWt1w ∧ . . . ∧ exInWtnw

⊃ exInW(f t1 . . . tn)w)

C. Benzmüller, 2013—–HOL based Universal Reasoning—–UNILOG’2013 10

Varying and Cumulative Domain Quantification

Constant Domain

Π = λh λwι ∀xµ hxw

domains are non-empty

denotation (constants & functions)

cumulative domains

Varying and Cumulative Domain

Πva = λh λwι ∀xµ (¬exInWxw ∨ hxw)

∀wι ∃xµ exInWxw

∀wι exInWcw

∀wι (exInWt1w ∧ . . . ∧ exInWtnw

⊃ exInW(f t1 . . . tn)w)
∀x , v ,w (exInWxv ∧ rvw ⊃ exInWxw)

C. Benzmüller, 2013—–HOL based Universal Reasoning—–UNILOG’2013 10

Soundness and Completeness (and Cut-elimination)

|=L ϕ iff |=HOL
Henkin validϕι!o

Logics L studied so far:

! Propositional Multimodal Logics [BenzmüllerPaulson, Log.J.IGPL, 2010]

! Quantified Multimodal Logics [BenzmüllerPaulson, Log.Univ., 2012]

! Intuitionistic Logics [BenzmüllerPaulson, Log.J.IGPL, 2010]

! Access Control Logics [Benzmüller, IFIP SEC, 2009]

! Propositional Conditional Logics [BenzmüllerEtAl., AMAI, 2012]

! Quantified Conditional Logics [Benzmüller, IJCAI, 2013]

! . . . more is on the way . . .

C. Benzmüller, 2013—–HOL based Universal Reasoning—–UNILOG’2013 9

Soundness and Completeness (and Cut-elimination)

|=L ϕ iff |=HOL
Henkin validϕι!o iff ⊢seqHOL

cut-free validϕι!o

Logics L studied so far:

! Propositional Multimodal Logics [BenzmüllerPaulson, Log.J.IGPL, 2010]

! Quantified Multimodal Logics [BenzmüllerPaulson, Log.Univ., 2012]

! Intuitionistic Logics [BenzmüllerPaulson, Log.J.IGPL, 2010]

! Access Control Logics [Benzmüller, IFIP SEC, 2009]

! Propositional Conditional Logics [BenzmüllerEtAl., AMAI, 2012]

! Quantified Conditional Logics [Benzmüller, IJCAI, 2013]

! . . . more is on the way . . .

C. Benzmüller, 2013—–HOL based Universal Reasoning—–UNILOG’2013 9

Evaluation: What Systems are there to compare with?

! Combinations of Quantified Logics no systems available

! Quantified Conditional Logics no systems available

! Quantified Multimodal Logics no systems available

!

! First-order Monomodal Logics yes, some systems exist
There is now even a benchmark library:

QMLTP-lib (580 Problems): http://www.iltp.de/qmltp/

Earlier experiments (see [BenzmüllerOttenRaths, ECAI, 2012]) already
showed that the HOL approach performs quite well.

C. Benzmüller, 2013—–HOL based Universal Reasoning—–UNILOG’2013 13

Evaluation: What Systems are there to compare with?

! Combinations of Quantified Logics no systems available

! Quantified Conditional Logics no systems available

! Quantified Multimodal Logics no systems available

!

! First-order Monomodal Logics yes, some systems exist
There is now even a benchmark library:

QMLTP-lib (580 Problems): http://www.iltp.de/qmltp/

Earlier experiments (see [BenzmüllerOttenRaths, ECAI, 2012]) already
showed that the HOL approach performs quite well.

C. Benzmüller, 2013—–HOL based Universal Reasoning—–UNILOG’2013 13

FMLtoHOL

! implemented as part of Sutcliffe’s TPTP2X tool

! included in the QMLTP—v1.1 package available at:
http://www.iltp.de/qmltp/problems.html

! written in Prolog, can be easily modified and extended

! invoked as

./tptp2X -f thf:<logic>:<domain> <qmf-file>

where <logic> ∈ {k,k4,d,d4,t,s4,s5} and
<domain> ∈ {const, vary , cumul}.

! generates TPTP thf0-files; employs include-mechanism

! can easily be combined (shell script) with HOL-P metaprover

C. Benzmüller, 2014—–HOL based First-order Modal Logic Provers — Experiments—–ARQNL’2014 8

http://www.iltp.de/qmltp/problems.html

FMLtoHOL combined with HOL-P

FO Modal Logic example: (✸∃xPfx ∧✷∀y(✸Py ⇒ Qy)) ⇒ ✸∃zQz

C. Benzmüller, 2014—–HOL based First-order Modal Logic Provers — Experiments—–ARQNL’2014 9

FMLtoHOL combined with HOL-P

FO Modal Logic example: (✸∃xPfx ∧✷∀y(✸Py ⇒ Qy)) ⇒ ✸∃zQz

%> ./FMLtoHOL-P example.thf -timeout 20 -logic s4 -domain varying
−→

C. Benzmüller, 2014—–HOL based First-order Modal Logic Provers — Experiments—–ARQNL’2014 9

FMLtoHOL combined with HOL-P

FO Modal Logic example: (✸∃xPfx ∧✷∀y(✸Py ⇒ Qy)) ⇒ ✸∃zQz

%> ./FMLtoHOL-P example.thf -timeout 20 -logic s4 -domain varying
Calling HOL Resoners remotely in Miami . . . thanks to Geoff Sutcliffe
— LEO-II says Theorem — CPU 0.08s
— Satallax says Theorem — CPU 0.03s
— Isabelle says Unknown — CPU 11.93s
— Nitpick says Unknown — CPU 10.62s
— agsyHOL says Theorem — CPU 0.55s

C. Benzmüller, 2014—–HOL based First-order Modal Logic Provers — Experiments—–ARQNL’2014 9

FMLtoHOL combined with HOL-P

FO Modal Logic example: (✸∃xPfx ∧✷∀y(✸Py ⇒ Qy)) ⇒ ✸∃zQz

%> ./FMLtoHOL-P example.thf -timeout 20 -logic s4 -domain varying
Calling HOL Resoners remotely in Miami . . . thanks to Geoff Sutcliffe
— LEO-II says Theorem — CPU 0.08s
— Satallax says Theorem — CPU 0.03s
— Isabelle says Unknown — CPU 11.93s
— Nitpick says Unknown — CPU 10.62s
— agsyHOL says Theorem — CPU 0.55s

%> ./FMLtHOL-P example.thf -timeout 20 -logic k -domain constant

C. Benzmüller, 2014—–HOL based First-order Modal Logic Provers — Experiments—–ARQNL’2014 9

FMLtoHOL combined with HOL-P

FO Modal Logic example: (✸∃xPfx ∧✷∀y(✸Py ⇒ Qy)) ⇒ ✸∃zQz

%> ./FMLtoHOL-P example.thf -timeout 20 -logic s4 -domain varying
Calling HOL Resoners remotely in Miami . . . thanks to Geoff Sutcliffe
— LEO-II says Theorem — CPU 0.08s
— Satallax says Theorem — CPU 0.03s
— Isabelle says Unknown — CPU 11.93s
— Nitpick says Unknown — CPU 10.62s
— agsyHOL says Theorem — CPU 0.55s

%> ./FMLtHOL-P example.thf -timeout 20 -logic k -domain constant

Calling HOL Resoners remotely in Miami . . . thanks to Geoff Sutcliffe
— LEO-II says Unknown — CPU 11.93s
— Satallax says CounterSatisfiable — CPU 0.04s
— Isabelle says Unknown — CPU 16.19s
— Nitpick says CounterSatisfiable — CPU 8.19s
— agsyHOL says Unknown — CPU 10.82s

C. Benzmüller, 2014—–HOL based First-order Modal Logic Provers — Experiments—–ARQNL’2014 9

Evaluation: FML’s (D — constant/varying/cumulative)

No. of solved monomodal problems (out of 580 problems, 600sec
timeout, inHOL-P a timeout of 120s was given to each of the 5
subprovers.)

MleanSeP MleanTAP f2p-MSPASS MleanCoP HOL-P
labelled labelled instant. & labelled
sequents tableaux transform. connections

Logic D, constant domains
Theorem 135 134 76 217 208
Non-Theorem 1 4 107 209 250
Solved 136 138 183 426 458

Logic D, cumulative domains
Theorem 130 120 79 200 184
Non-Theorem 4 4 108 224 269
Solved 134 124 187 424 453

Logic D, varying domains
Theorem - 100 - 170 163
Non-Theorem - 4 - 243 295
Solved - 104 - 413 458

C. Benzmüller, 2014—–HOL based First-order Modal Logic Provers — Experiments—–ARQNL’2014 10

Evaluation: FML’s (S4— constant/varying/cumulative)

No. of solved monomodal problems (out of 580 problems, 600sec
timeout, inHOL-P a timeout of 120s was given to each of the 5
subprovers.)

MleanSeP MleanTAP f2p-MSPASS MleanCoP HOL-P
labelled labelled instant. & labelled
sequents tableaux transform. connections

Logic S4, constant domains
Theorem 197 220 111 352 300
Non-Theorem 1 4 36 82 132
Solved 198 224 147 434 432

Logic S4, cumulative domains
Theorem 197 205 121 338 278
Non-Theorem 4 4 41 94 146
Solved 201 209 162 432 424

Logic S4, varying domains
Theorem - 169 - 274 245
Non-Theorem - 4 - 119 184
Solved - 173 - 393 429

C. Benzmüller, 2014—–HOL based First-order Modal Logic Provers — Experiments—–ARQNL’2014 11

Evaluation: Coverage of Logics

ATP system supported modal logics supported domain cond.
MleanSeP 1.2 K,K4,D,D4,T,S4 constant,cumulative
MleanTAP 1.3 D,T,S4,S5 constant,cumulative,varying
MleanCoP 1.2 D,T,S4,S5 (meanwhile extended) constant,cumulative,varying
f2p-MSPASS 3.0 K,K4,K5,B,D,T,S4,S5 constant,cumulative
HOL-P K,K4,K5,B,D,D4,T,S4,S5,. . . constant,cumulative,varying

HOL-P directly applicable also for multi-modal logics.

C. Benzmüller, 2014—–HOL based First-order Modal Logic Provers — Experiments—–ARQNL’2014 12

New Evaluation: First Experiment

! HOL-P: sequentially schedules LEO-II—1.6.2, Satallax—2.7,
Isabelle—2013, Nitrox—2013, agsyHOL—1.0.

! Timeout for each prover 120sec of CPU time (HOL-P 600sec).

! Experiments were run via SystemOnTPTP in Miami

K D T S4 S5
Type co cu va co cu va co cu va co cu va co cu va
THM 192 168 149 206 180 159 260 234 211 298 271 242 345 333 282
CSA 259 284 309 253 270 299 177 190 229 132 146 186 77 77 129
SAT 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2
Σ 454 455 461 461 452 460 439 426 442 432 419 430 424 412 413
Σ 458 453 458 432 424 429

! The particular results for logics D and S4 slightly differ from those
reported at LPAR 2013

! Conjecture: Differences are related to SystemOnTPTP issues. How
can the replication precision of experiments conducted via the
SystemOnTPTP be improved?

C. Benzmüller, 2014—–HOL based First-order Modal Logic Provers — Experiments—–ARQNL’2014 13

New Evaluation: First Experiment

Cumulative perfor-
mance of each prover
(with a timeout of
120sec) for all 8700
QMLTP problem vari-
ants. The cumulative
performance of HOL-P
(with a 600sec timeout)
is also depicted.

THM CSA SAT Σ UNK
HOL-P 3530 3017 33 6580 2120
Satallax 3167 752 0 3919 4781
Nitrox 0 3017 33 3050 5650
Isabelle 2955 0 0 2955 5745
LEO-II 2647 284 0 2931 5769
agsyHOL 2784 0 0 2784 5916

C. Benzmüller, 2014—–HOL based First-order Modal Logic Provers — Experiments—–ARQNL’2014 14

New Evaluation: Second Experiment

! HOL-P: sequentially schedules LEO-II—1.6.2, Satallax—2.7,
Isabelle—2013, Nitrox—2013, agsyHOL—1.0.

! Timeout for each prover 20sec of CPU time (HOL-P 100sec).

K D T S4 S5
Type co cu va co cu va co cu va co cu va co cu va
THM 186 162 141 201 175 154 252 223 205 289 261 233 345 319 270
CSA 263 275 298 233 245 268 159 180 211 128 140 179 77 74 126
SAT 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2
Σ 452 440 442 436 422 424 413 405 418 419 403 414 424 395 398

C. Benzmüller, 2014—–HOL based First-order Modal Logic Provers — Experiments—–ARQNL’2014 15

New Evaluation: Second Experiment

Cumulative perfor-
mance of each prover
(with a timeout of
20sec) for all 8700
QMLTP problem vari-
ants. The cumulative
performance of HOL-P
(with a 100sec timeout)
is also depicted.

¡

THM CSA SAT Σ UNK
HOL-P 3408 2856 33 6297 2403
Satallax 3024 749 0 3773 4927
Nitrox 0 2856 33 2889 5811
LEO-II 2472 231 0 2703 5997
agsyHOL 2644 0 0 2644 6056
Isabelle 2354 0 0 2354 6346

C. Benzmüller, 2014—–HOL based First-order Modal Logic Provers — Experiments—–ARQNL’2014 16

New Evaluation: Third Experiment

! HOL-P: sequentially schedules only Satallax—2.7 and Nitrox—2013.

! Timeout for each prover 50sec of CPU time (HOL-P 100sec).

K D T S4 S5
Type co cu va co cu va co cu va co cu va co cu va
THM 162 150 132 175 161 141 225 212 190 262 246 219 305 305 258
THM 186 162 141 201 175 154 252 223 205 289 261 233 345 319 270
CSA 266 280 308 251 267 298 176 190 223 132 146 186 77 77 129
CSA 263 275 298 233 245 268 159 180 211 128 140 179 77 74 126
SAT 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2
SAT 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2
Σ 431 433 443 428 430 441 403 404 415 396 394 407 384 384 389
Σ 452 440 442 436 422 424 413 405 418 419 403 414 424 395 398

! performance of HOL-P in this experiment is weaker than in the
second experiment

! illustrates the complementary strength of the HOL proveres for
proving theorems

! however, the performance for finding countermodels (mainly by
Nitrox) has slightly improved now for HOL-P

C. Benzmüller, 2014—–HOL based First-order Modal Logic Provers — Experiments—–ARQNL’2014 17

Conclusion

HOL based universal reasoning

! many quantified non-classical logics are fragments of HOL

! logic combinations: bridge rules as axioms

! cut-elimination and automation for free

! applications: expressive ontologies (SUMO, Cyc, Dolce, . . .)

Other (implemented) approaches to compare with?

! Institutions are great — but not helpful for automation

Future work

! more embeddings (eg. multi-valued, paraconsistent)

! other combinations (eg. fibrings)

! range of embeddable logics

! scalability to real world applications

C. Benzmüller, 2013—–HOL based Universal Reasoning—–UNILOG’2013 15

Conclusion

HOL based universal reasoning

! many quantified non-classical logics are fragments of HOL

! logic combinations: bridge rules as axioms

! cut-elimination and automation for free

! applications: expressive ontologies (SUMO, Cyc, Dolce, . . .)

Other (implemented) approaches to compare with?

! Institutions are great — but not helpful for automation

Future work

! more embeddings (eg. multi-valued, paraconsistent)

! other combinations (eg. fibrings)

! range of embeddable logics

! scalability to real world applications

C. Benzmüller, 2013—–HOL based Universal Reasoning—–UNILOG’2013 15

Conclusion

HOL based universal reasoning

! many quantified non-classical logics are fragments of HOL

! logic combinations: bridge rules as axioms

! cut-elimination and automation for free

! applications: expressive ontologies (SUMO, Cyc, Dolce, . . .)

Other (implemented) approaches to compare with?

! Institutions are great — but not helpful for automation

Future work

! more embeddings (eg. multi-valued, paraconsistent)

! other combinations (eg. fibrings)

! range of embeddable logics

! scalability to real world applications

C. Benzmüller, 2013—–HOL based Universal Reasoning—–UNILOG’2013 15

Automating Access Control Logics in Simple
Type Theory with LEO-II1

Christoph Benzmüller

International University in Germany, Bruchsal, Germany
& Articulate Software, Angwin, CA, U.S.

IFIP/SEC-2009, Paphos, Cyprus, May 18-20, 2009

1This work was supported by EU grant PIIF-GA-2008-219982 (THFTPTP)
Christoph Benzmüller Automating Access Control Logics in Simple Type Theory with

The Story — on a single slide

Simple Type Theory / HOL – an Expressive Logic

Multimodal Logics as Fragments of HOL

Access Control Logics as Fragments of S4 and hence HOL

Mechanization and Automation in HOL (prover LEO-II)

Christoph Benzmüller Automating Access Control Logics in STT with LEO-II

Simple Type Theory / HOL

Christoph Benzmüller Automating Access Control Logics in STT with LEO-II

Simple Type Theory / HOL

! simple types α,β ::= ι|o|α ! β (additional base types µi)

! simple type theory / HOL defined by

s, t ::= pα | Xα | (λXα sβ)α!β | (sα!β tα)β | (¬o!o so)o |

(so ∨o!o!o to)o | (Π(α!o)!o tα!o)o

! semantics well understood [Henkin50,Andrews72a/b,BenzmüllerEtAl04]

- Henkin semantics

! base logic of many (interactive) proof assistants:
Isabelle/HOL, HOL, HOL-light, PVS, OMEGA, . . .

! (too) few ATPs so far −→ EU IIF Project THFTPTP

Christoph Benzmüller Automating Access Control Logics in STT with LEO-II

Simple Type Theory / HOL – Expressivity

Property FOL HOL Example

Quantification over
- individuals ! ! ∀x P(F (x))
- functions - ! ∀F P(F (x))
- predicates/sets/relations - ! ∀P P(F (x))

Unnamed
- functions - ! (λx x)
- predicates/sets/relations - ! (λx x ̸= 2)

Statements about
- functions - ! continuous(λx x)
- predicates/sets/relations - ! reflexive(=)

Christoph Benzmüller Automating Access Control Logics in STT with LEO-II

Multimodal Logics
as Fragments of HOL

Christoph Benzmüller Automating Access Control Logics in STT with LEO-II

Multimodal Logics as Fragments of HOL

s, t ::= p|¬ s|s ∨ t|✷r s

Simple, Straightforward Encoding

! base type ι: set of possible worlds

! (certain) terms of type ι → o: multimodal logic formulas

⌊¬ s⌋ = λwι ¬(⌊s⌋w)

⌊s ∨ t⌋ = λwι ⌊s⌋w ∨ ⌊t⌋w

⌊✷r s⌋ = λwι ∀yι ⌊r⌋w y ⇒ ⌊s⌋ y

⌊p⌋ = pι→o

Related Work: [Gallin73], [Ohlbach88], [Carpenter98], [Merz99],
[Brown05], [Hardt&Smolka07], [Kaminski&Smolka07]

Christoph Benzmüller Automating Access Control Logics in STT with LEO-II

Multimodal Logics as Fragments of HOL

s, t ::= p|¬ s|s ∨ t|✷r s

Simple, Straightforward Encoding

! base type ι: set of possible worlds

! (certain) terms of type ι → o: multimodal logic formulas

|¬ | = λsι→o λwι ¬(s w)

|∨| = λsι→o λtι→o λwι s w ∨ t w

|✷| = λrι→ι→o λsι→o λwι ∀yι r w y ⇒ s y

|p| = pι→o

|r | = rι→ι→o

Related Work: [Gallin73], [Ohlbach88], [Carpenter98], [Merz99],
[Brown05], [Hardt&Smolka07], [Kaminski&Smolka07]

Christoph Benzmüller Automating Access Control Logics in STT with LEO-II

(Normal) Multimodal Logic in HOL

Encoding of Validity

|Mval sι→o | = ∀wι s w

|Mval| = λsι→o ∀wι s w

Local Definition Expansion

|Mval ✷r ⊤| = |Mval| |✷| |r | |⊤|

=βη ∀wι ∀yι r w y ⇒ ⊤

Christoph Benzmüller Automating Access Control Logics in STT with LEO-II

(Normal) Multimodal Logic in HOL

Encoding of Validity

|Mval sι→o | = ∀wι s w

|Mval| = λsι→o ∀wι s w

Local Definition Expansion

|Mval ✷r ⊤| = |Mval| |✷| |r | |⊤|

=βη ∀wι ∀yι r w y ⇒ ⊤

Christoph Benzmüller Automating Access Control Logics in STT with LEO-II

(Normal) Multimodal Logic in HOL

Encoding of Validity

|Mval sι→o | = ∀wι s w

|Mval| = λsι→o ∀wι s w

Local Definition Expansion

|Mval ✷r ⊤| = |Mval| |✷| |r | |⊤|

=βη ∀wι ∀yι r w y ⇒ ⊤

Christoph Benzmüller Automating Access Control Logics in STT with LEO-II

Even simpler: Reasoning within Multimodal Logics

Problem LEO-II
|Mval ✷r ⊤| 0.025s
|Mval ✷r a ⊃ ✷r a| 0.026s
|Mval ✷r a ⊃ ✷s a| –
|Mval ✷s (✷r a ⊃ ✷r a)| 0.026s
|Mval ✷r (a ∧ b) ⇔ (✷r a ∧ ✷r b)| 0.044s
|Mval ✸r (a ⊃ b) ⊃ ✷r a ⊃ ✸r b| 0.030s
|Mval ¬ ✸r a ⊃ ✷r (a ⊃ b)| 0.029s
|Mval ✷r b ⊃ ✷r (a ⊃ b)| 0.026s
|Mval (✸r a ⊃ ✷r b) ⊃ ✷r (a ⊃ b)| 0.027s
|Mval (✸r a ⊃ ✷r b) ⊃ (✷r a ⊃ ✷r b)| 0.029s
|Mval (✸r a ⊃ ✷r b) ⊃ (✸r a ⊃ ✸r b)| 0.030s

Christoph Benzmüller Automating Access Control Logics in STT with LEO-II

Example Proof: |Mval ✷s (✷r a ⊃ ✷r a)|

Initialization of problem

¬|Mval ✷s (✷r a ⊃ ✷r a)|

Definition expansion

¬(∀xι ∀yι ¬s x y ∨ ((¬(∀uι ¬r y u ∨ a u)) ∨ (∀vι ¬r y v ∨ a v)))

Normalization (x , y , u are now Skolem constants, V is a free
variable)

s x y ¬a u

r y u a V ∨ ¬r y V

Translation to FOL [Kerber94], [Hurd02], [MengPaulson04]

[@...(@...(s, x), y)]T [@...(a, u)]F

[@...(@...(r , y), u)]T [@...(a,V)]T ∨ [@...(@...(r , y),V)]F

Christoph Benzmüller Automating Access Control Logics in STT with LEO-II

Example Proof: |Mval ✷s (✷r a ⊃ ✷r a)|

Initialization of problem

¬|Mval ✷s (✷r a ⊃ ✷r a)|

Definition expansion

¬(∀xι ∀yι ¬s x y ∨ ((¬(∀uι ¬r y u ∨ a u)) ∨ (∀vι ¬r y v ∨ a v)))

Normalization (x , y , u are now Skolem constants, V is a free
variable)

s x y ¬a u

r y u a V ∨ ¬r y V

Translation to FOL [Kerber94], [Hurd02], [MengPaulson04]

[@...(@...(s, x), y)]T [@...(a, u)]F

[@...(@...(r , y), u)]T [@...(a,V)]T ∨ [@...(@...(r , y),V)]F

Christoph Benzmüller Automating Access Control Logics in STT with LEO-II

Example Proof: |Mval ✷s (✷r a ⊃ ✷r a)|

Initialization of problem

¬|Mval ✷s (✷r a ⊃ ✷r a)|

Definition expansion

¬(∀xι ∀yι ¬s x y ∨ ((¬(∀uι ¬r y u ∨ a u)) ∨ (∀vι ¬r y v ∨ a v)))

Normalization (x , y , u are now Skolem constants, V is a free
variable)

s x y ¬a u

r y u a V ∨ ¬r y V

Translation to FOL [Kerber94], [Hurd02], [MengPaulson04]

[@...(@...(s, x), y)]T [@...(a, u)]F

[@...(@...(r , y), u)]T [@...(a,V)]T ∨ [@...(@...(r , y),V)]F

Christoph Benzmüller Automating Access Control Logics in STT with LEO-II

Example Proof: |Mval ✷s (✷r a ⊃ ✷r a)|

Initialization of problem

¬|Mval ✷s (✷r a ⊃ ✷r a)|

Definition expansion

¬(∀xι ∀yι ¬s x y ∨ ((¬(∀uι ¬r y u ∨ a u)) ∨ (∀vι ¬r y v ∨ a v)))

Normalization (x , y , u are now Skolem constants, V is a free
variable)

s x y ¬a u

r y u a V ∨ ¬r y V

Translation to FOL [Kerber94], [Hurd02], [MengPaulson04]

[@...(@...(s, x), y)]T [@...(a, u)]F

[@...(@...(r , y), u)]T [@...(a,V)]T ∨ [@...(@...(r , y),V)]F

Christoph Benzmüller Automating Access Control Logics in STT with LEO-II

LEO-II employs FO-ATPs: E, Spass, Vampire

www.leoprover.org

Christoph Benzmüller Automating Access Control Logics in STT with LEO-II

Access Control Logics are
fragments of S4 and hence HOL

Christoph Benzmüller Automating Access Control Logics in STT with LEO-II

Access Control Logics

[GargAbadi08]:
A Modal Deconstruction of Access Control Logics

! ICL: Propositional Intuitionistic Logic + ”says”

(Admin says deletefile1) ⊃ deletefile1
If Admin says that file1 should be deleted, then this must be the case.

Admin says ((Bob says deletefile1) ⊃ deletefile1)
Admin trusts Bob to decide whether file1 should be deleted.

Bob says deletefile1
Bob wants to delete file1.

deletefile1 Example I
Is deletion permitted?

Christoph Benzmüller Automating Access Control Logics in STT with LEO-II

Access Control Logics

[GargAbadi08]:
A Modal Deconstruction of Access Control Logics

! ICL: Propositional Intuitionistic Logic + ”says”

! ICL⇒: ICL + =⇒ (speaks for)

(Admin says deletefile1) ⊃ deletefile1
If Admin says that file1 should be deleted, then this must be the case.

Admin says ((Bob says deletefile1) ⊃ deletefile1)
Admin trusts Bob to decide whether file1 should be deleted.

Bob says (Alice =⇒ Bob)
Bob delegates his authority to delete file1 to Alice

Alice says deletefile1
Alics wants to delete file1.

deletefile1 Example II
Is deletion permitted?

Christoph Benzmüller Automating Access Control Logics in STT with LEO-II

Access Control Logics

[GargAbadi08]:
A Modal Deconstruction of Access Control Logics

! ICL: Propositional Intuitionistic Logic + ”says”

! ICL⇒: ICL + =⇒ (speaks for)

! ICLB : ICL + Boolean combinations of principals

(Admin says ⊥) ⊃ deletefile1
Admin is trusted on deletefile1 and its consequences.

Admin says ((Bob ⊃ Admin) says deletefile1)
Admin further delegates this authority to Bob.

Bob says deletefile1
Bob wants to delete file1.

deletefile1 Example III
Is deletion permitted?

Christoph Benzmüller Automating Access Control Logics in STT with LEO-II

Access Control Logics

[GargAbadi08]:
A Modal Deconstruction of Access Control Logics

! ICL: Propositional Intuitionistic Logic + ”says”

! ICL⇒: ICL + =⇒ (speaks for)

! ICLB : ICL + Boolean combinations of principals

Christoph Benzmüller Automating Access Control Logics in STT with LEO-II

Access Control Logics

[GargAbadi08]:
A Modal Deconstruction of Access Control Logics

! ICL: Propositional Intuitionistic Logic + ”says”

! ICL⇒: ICL + =⇒ (speaks for)

! ICLB : ICL + Boolean combinations of principals

Sound and Complete Translations to Modal Logic S4

Christoph Benzmüller Automating Access Control Logics in STT with LEO-II

Access Control Logics

[GargAbadi08]:
A Modal Deconstruction of Access Control Logics

! ICL: Propositional Intuitionistic Logic + ”says”

! ICL⇒: ICL + =⇒ (speaks for)

! ICLB : ICL + Boolean combinations of principals

Sound and Complete Translations to Modal Logic S4

So, let’s combine this with our previous work . . . and apply LEO-II

Christoph Benzmüller Automating Access Control Logics in STT with LEO-II

Access Control Logics as Fragments of S4 and HOL

s, t ::= p | s ∧ t | s ∨ t | s ⊃ t |⊥ |⊤ |A says s

Translation ⌈.⌉ (of Garg and Abadi) into S4

⌈p⌉ = ✷p

⌈s ∧ t⌉ = ⌈s⌉∧⌈t⌉

⌈s ∨ t⌉ = ⌈s⌉∨⌈t⌉

⌈s ⊃ t⌉ = ✷(⌈s⌉⊃ ⌈t⌉)

⌈⊤⌉ = ⊤

⌈⊥⌉ = ⊥

⌈A says s⌉ = ✷(A∨ ⌈s⌉)

Christoph Benzmüller Automating Access Control Logics in STT with LEO-II

Access Control Logics as Fragments of S4 and HOL

s, t ::= p | s ∧ t | s ∨ t | s ⊃ t |⊥ |⊤ |A says s | s =⇒ t

Translation ⌈.⌉ (of Garg and Abadi) into S4

⌈p⌉ = ✷p

⌈s ∧ t⌉ = ⌈s⌉∧⌈t⌉

⌈s ∨ t⌉ = ⌈s⌉∨⌈t⌉

⌈s ⊃ t⌉ = ✷(⌈s⌉⊃ ⌈t⌉)

⌈⊤⌉ = ⊤

⌈⊥⌉ = ⊥

⌈A says s⌉ = ✷(A∨ ⌈s⌉)

⌈s =⇒ t⌉ = ✷(⌈s⌉⊃ ⌈t⌉)

Christoph Benzmüller Automating Access Control Logics in STT with LEO-II

Access Control Logics as Fragments of S4 and HOL

s, t ::= p | s ∧ t | s ∨ t | s ⊃ t |⊥ |⊤ |A says s | s =⇒ t

Translation ∥.∥ to HOL

|r | (we fix one single r !!!)
∥p∥ = |✷r p|
∥A∥ = |A|
∥∧∥ = λs λt |s ∧ t|
∥∨∥ = λs λt |s ∨ t|
∥⊃∥ = λs λt |✷(s ⊃ t)|
∥⊤∥ = |⊤|
∥⊥∥ = |⊥|
∥says∥ = λA λs |✷r (A∨s)|
∥=⇒∥ = λs λt |✷r (s⊃t)|

Christoph Benzmüller Automating Access Control Logics in STT with LEO-II

Access Control Logics as Fragments of S4 and HOL

s, t ::= p | s ∧ t | s ∨ t | s ⊃ t |⊥ |⊤ |A says s | s =⇒ t

Translation ∥.∥ to HOL

rι→ι→o (we fix one single r !!!)
∥p∥ = λxι ∀yι rι→ι→o x y ⇒ pι→o Y

∥A∥ = aι→o (distinct from the pι→o)

∥∧∥ = λsι→o λtι→o λwι s w ∧ t w

∥∨∥ = λsι→o λtι→o λwι s w ∨ t w

∥⊃∥ = λsι→o λtι→o λwι ∀yι r w y ⇒ (s y ⇒ t y)
∥⊤∥ = λsι→o ⊤
∥⊥∥ = λsι→o ⊥
∥says∥ = λAι→o λsι→o λwι ∀yι r w y ⇒ (A y ∨ s y)
∥=⇒∥ = λsι→o λtι→o λwι ∀yι r w y ⇒ (s y ⇒ t y)

Christoph Benzmüller Automating Access Control Logics in STT with LEO-II

Access Control Logics as Fragments of S4 and HOL

Notion of Validity

ICLval = Mval

Addition of Modal Logic Axioms for S4

∀pι→o .|Mval ✷r p ⊃ p|

∀pι→o.|Mval ✷r p ⊃ ✷r ✷r p|

Soundness and Completeness of Embedding
Proof: see paper; employs transformation from Kripke models into
corresponding Henkin models and vice versa; combines this with
results of [GargAbadi08]

Christoph Benzmüller Automating Access Control Logics in STT with LEO-II

Access Control Logics as Fragments of S4 and HOL

Notion of Validity

ICLval = Mval

Addition of Modal Logic Axioms for S4

∀pι→o .|Mval ✷r p ⊃ p|

∀pι→o.|Mval ✷r p ⊃ ✷r ✷r p|

Soundness and Completeness of Embedding
Proof: see paper; employs transformation from Kripke models into
corresponding Henkin models and vice versa; combines this with
results of [GargAbadi08]

Christoph Benzmüller Automating Access Control Logics in STT with LEO-II

Access Control Logics as Fragments of S4 and HOL

Notion of Validity

ICLval = Mval

Addition of Modal Logic Axioms for S4

∀pι→o .|Mval ✷r p ⊃ p|

∀pι→o.|Mval ✷r p ⊃ ✷r ✷r p|

Soundness and Completeness of Embedding
Proof: see paper; employs transformation from Kripke models into
corresponding Henkin models and vice versa; combines this with
results of [GargAbadi08]

Christoph Benzmüller Automating Access Control Logics in STT with LEO-II

Access Control Logics as Fragments of S4 and HOL

Example I (from [GargAbadi08]):

ICLval (Admin says deletefile1) ⊃ deletefile1
If Admin says that file1 should be deleted, then this must be the case.

ICLval Admin says ((Bob says deletefile1) ⊃ deletefile1)
Admin trusts Bob to decide whether file1 should be deleted.

ICLval Bob says deletefile1
Bob wants to delete file1.

ICLval deletefile1
Is deletion permitted?

Christoph Benzmüller Automating Access Control Logics in STT with LEO-II

Access Control Logics as Fragments of S4 and HOL

Example I (from [GargAbadi08]):

∥ICLval (Admin says deletefile1) ⊃ deletefile1∥
If Admin says that file1 should be deleted, then this must be the case.

∥ICLval Admin says ((Bob says deletefile1) ⊃ deletefile1)∥
Admin trusts Bob to decide whether file1 should be deleted.

∥ICLval Bob says deletefile1∥
Bob wants to delete file1.

∥ICLval deletefile1∥
Is deletion permitted?

Christoph Benzmüller Automating Access Control Logics in STT with LEO-II

Access Control Logics as Fragments of S4 and HOL

Example I (from [GargAbadi08]):

∥ICLval (Admin says deletefile1) ⊃ deletefile1∥
If Admin says that file1 should be deleted, then this must be the case.

∥ICLval Admin says ((Bob says deletefile1) ⊃ deletefile1)∥
Admin trusts Bob to decide whether file1 should be deleted.

|Mval ✷r (Bob ∨ ✷r deletefile1)|
Bob wants to delete file1.

∥ICLval deletefile1∥
Is deletion permitted?

Christoph Benzmüller Automating Access Control Logics in STT with LEO-II

Access Control Logics as Fragments of S4 and HOL

Example I (from [GargAbadi08]):

∥ICLval (Admin says deletefile1) ⊃ deletefile1∥
If Admin says that file1 should be deleted, then this must be the case.

∥ICLval Admin says ((Bob says deletefile1) ⊃ deletefile1)∥
Admin trusts Bob to decide whether file1 should be deleted.

∀wι ∀yι r w y ⇒ (Bob y ∨ ∀uι r w u ⇒ deletefile1 u)
Bob wants to delete file1.

∥ICLval deletefile1∥
Is deletion permitted?

LEO-II: 0.301 seconds

Christoph Benzmüller Automating Access Control Logics in STT with LEO-II

More Examples from [GargAbadi08]

! Example I: 0.301 seconds

! Example II (ICL⇒): 0.503 seconds

! Example III (ICLB): 0.077 seconds

Also possible: reasoning about meta-properties

! ICL⇒ can be expressed in ICLB : 0.073 seconds

Christoph Benzmüller Automating Access Control Logics in STT with LEO-II

Exp.: Access Control Logic in HOL

ICL:

Name Problem LEO (s)

unit {R,T} |=HOL ∥ICLval s ⊃ (A says s)∥ 0.053
cuc {R,T} |=HOL ∥ICLval

(A says (s ⊃ t)) ⊃ (A says s) ⊃ (A says t)∥ 0.167
idem {R,T} |=HOL ∥ICLval (A says A says s) ⊃ (A says s)∥ 0.058

unitK |=HOL ∥ICLval s ⊃ (A says s)∥ –
cucK |=HOL ∥ICLval (A says (s ⊃ t)) ⊃ (A says s) ⊃ (A says t)∥ –
idemK |=HOL ∥ICLval (A says A says s) ⊃ (A says s)∥ –

R, T : reflexivity and transitivity axioms for S4 as seen before

Christoph Benzmüller Automating Access Control Logics in STT with LEO-II

Exp.: Access Control Logic in HOL

ICL⇒:

Name Problem LEO (s)

refl {R,T} |=HOL ∥ICLval A =⇒ A∥ 0.059
trans {R,T} |=HOL ∥ICLval (A =⇒ B) ⊃ (B =⇒ C) ⊃ (A =⇒ C)∥ 0.083
sp.-for {R,T} |=HOL ∥ICLval (A =⇒ B) ⊃ (A says s) ⊃ (B says s)∥ 0.107
handoff {R,T} |=HOL ∥ICLval (B says (A =⇒ B)) ⊃ (A =⇒ B)∥ 0.075

reflK |=HOL ∥ICLval A =⇒ A∥ 0.034
transK |=HOL ∥ICLval (A =⇒ B) ⊃ (B =⇒ C) ⊃ (A =⇒ C)∥ –
sp.-forK |=HOL ∥ICLval (A =⇒ B) ⊃ (A says s) ⊃ (B says s)∥ –
handoffK |=HOL ∥ICLval (B says (A =⇒ B)) ⊃ (A =⇒ B)∥ –

R, T : reflexivity and transitivity axioms as for S4 seen before

Christoph Benzmüller Automating Access Control Logics in STT with LEO-II

Exp.: Access Control Logic in HOL

ICLB :

Name Problem LEO (s)

trust {R,T} |=HOL ∥ICLval (⊥ says s) ⊃ s∥ 0.058
untrust {R,T, ∥ICLval A ≡ ⊤∥} |=HOL ∥ICLval A says ⊥∥ 0.046
cuc’ {R,T} |=HOL ∥ICLval

((A ⊃ B) says s) ⊃ (A says s) ⊃ (B says s)∥ 0.200

trustK |=HOL ∥ICLval (⊥ says s) ⊃ s∥ –
untrustK {∥ICLval A ≡ ⊤∥} |=HOL ∥ICLval A says ⊥∥ 0.055
cuc’K |=HOL ∥ICLval ((A ⊃ B) says s) ⊃ (A says s) ⊃ (B says s)∥ –

R, T : reflexivity and transitivity axioms for S4 as seen before

Christoph Benzmüller Automating Access Control Logics in STT with LEO-II

Conclusion

! Prominent Access Control Logics are fragments of HOL

! Interactive and automated HOL provers can generally be
applied for reasoning in and about these logics

! Challenge: How good does approach scale?

! Examples submitted to THFTPTP

Ongoing and Future Research

! THFTPTP infrastructure

! Improvement of LEO-II – make it scale for larger examples

! Combination of different logics

! Formal verification of approach e.g. in Isabelle/HOL

Christoph Benzmüller Automating Access Control Logics in STT with LEO-II

THFTPTP
(EU grant THFTPTP – PIIF-GA-2008-219982)

Thanks to hard working Geoff Sutcliffe

Christoph Benzmüller Automating Access Control Logics in STT with LEO-II

THFTPTP – Progress in ATP for HOL

! THF syntax for HOL

! library for HOL (> 2700 problems)

! tools for HOL
(parser, type checker, pretty printer, . . .)

! integrated HOL ATPs: IsabelleP, TPS, LEO-II

! integrated HOL model generator: IsabelleM

! SystemOnTPTP online interface

Christoph Benzmüller Automating Access Control Logics in STT with LEO-II

THFTPTP – Progress in ATP for HOL

ALG higher-order abstract syntax

GRA Ramsey numbers (several open)

LCL modal logic

NUM Landau’s Grundlagen

PUZ puzzles

SET/SEU set theory, dependently typed set
theory, binary relations

SWV security, access control logic

SYN/SYO simple test problems

Christoph Benzmüller Automating Access Control Logics in STT with LEO-II

LEO-II
(EPRSC grant EP/D070511/1 at Cambridge University)

Thanks to Larry Paulson

Christoph Benzmüller Automating Access Control Logics in STT with LEO-II

LEO-II employs FO-ATPs: E, Spass, Vampire

http://www.ags.uni-sb.de/~leo

Christoph Benzmüller Automating Access Control Logics in STT with LEO-II

