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HOL-Syntax: Simple Types

0 (truth values)
Simple Types 7. L (individuals)
(v — [3)  (functions from o to /)

(v — [7) is sometimes written (Ja)

(v — [# — ) abbreviates (o« — (J — 7))
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HOL-Syntax: Simple Types

0 (truth values)
Simple Types 7. L (individuals)
(o — [#) (functions from « to /)

7 is a freely generated, inductive set.

Induction on Types: We can prove a property ¢(«) holds for all
types o by proving

(o)
p(0)
If p(a) and ¢(3), then p(a — ().
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HOL-Syntax: Simple Types

0 (truth values)
Simple Types 7. L (individuals)
(o — [#) (functions from « to /)

Recursion on Types: We can uniquely define a family D, for
a € T by specifying:

Dy
D,
A rule for forming D,_.3 given D, and Ds.
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HOL-Syntax: Simply Typed \-Terms

Typed Terms:
) Variables (V)
Co, Constants & Parameters (X & P)
(F.—3B.)s Application
(AYo Ap).—3  A-abstraction
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HOL-Syntax: Simply Typed \-Terms

Typed Terms:
) Variables (V)
Co, Constants & Parameters (X & P)
(F.—3B.)s Application
(AYo Ap).—3  A-abstraction

Equality of Terms:

a-conversion Changing bound variables
B-reduction  ((A\Y;A,)B;) = [B/Y]A
n-reduction (AYo (FoopyY)) — F (Ys ¢ Free(F))

(©Benzmiiller, 2007
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HOL-Syntax: Simply Typed \-Terms

Typed Terms:
X, Variables (V)
Co, Constants & Parameters (X & P)
(F.—3B.)s Application
(AYo Ap).—3  A-abstraction

Equality of Terms:

Every term has a unique gn-normal form (up to a-conversion).
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HOL: Adding Logical Connectives

T, —true

1, — false

—o_.o — hegation

Vo .o .o — disjunction

No 0.0 — CONjunction

Do 00 — IMplication

&6 .0 .0 —€quivalence

VX.....—universal quantification over type « (V types «)
dX,.. ... — existential quantification over type « (V types «)

=, .o o —equality at type « (V types «)
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HOL: Adding Logical Constants to X

Our choice for signature %_:

—o_.o — hegation
Vo .0 .0 — disjunction
M, ). — universal quantification over type « (V types a)

=, .o .o — equality at type « (V types «)
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HOL: Adding Logical Constants to X

Our choice for signature %_:

—o_.o — hegation

Vo .0 .0 — disjunction

M, ). — universal quantification over type «

Use abbreviations for other logical operators

AV B
ANB
A DB
A < B
VXA
IXA

(©Benzmiiller, 2007

means
means
means
means
means
means

(VAB)

—(-A Vv -B)

-A VB
(ADB)A(BDA)
NAXA)

(VX —A)

(V types «)
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HOL: Adding Logical Constants to X

Our choice for signature %_:

—o_.o — hegation
Vo .0 .0 — disjunction

M, ). — universal quantification over type « (V types «)

Use Leibniz-equality to encode equality
A, =B, means VP, .o(PA D PB)
resp. M(AP, _o(—PA VvV PB))
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(different extensionality
properties)
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Model Classes (Extensionality)

Idea of Standard Semantics:

. — D, (choose)
o — D, =AT,F} (fixed)
(@ — p) —

D&_ﬁ — .7:(1)@, D@) (flxed)

Standard Models G%(X)
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Model Classes (Extensionality)

Idea of Standard Semantics:

IEREERREERY . — D, (choose)
h 0o — D, = {T,F} (fixed)
(()4 — 6) —

D&_ﬁ — ]:(Da, D@) (fIXGd)

Henkin’s Generalization:

D. .3 CF(D.,Ds) (choose)
Standard Models &%(X) but elements are still functions!

[Henkin-50]
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Model Classes (Extensionality)

Standard Models G%(X)

choose: D,
fixed: Do, D, — g, functions
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Model Classes (Extensionality)

Standard Models 6%(X) Formulas valid in 6%(%)

choose: D,
fixed: Do, D, — g, functions
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Model Classes (Extensionality)

Henkin Models $(X) = Mg (X) Formulas valid in g, () ?

choose: D,, D, .3
fixed: D,, functions
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Model Classes (Extensionality)

Henkin Models $(X) = Mg (X) Formulas valid in 9z, (X)

choose: D,, D, .3
fixed: D,, functions
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Model Classes (Extensionality)

Non-Extensional Models 913 (%) Formulas valid in 2tz (%) ?

choose: D,, D, .3, also non—functions, D,

fixed:
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Model Classes (Extensionality)

Non-Extensional Models 913 (%) Formulas valid in 2tz (%) ?

choose: D,, D, .3, also non—functions, D, Ex.: VW XVY.XVY & Y VX
fixed: vs. V = AXAY.Y Vv X
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Model Classes (Extensionality)

We additionally studied different model classes with ’varying degrees of extensionality’

VXYY XVY &Y VX VXYY XVY =Y VX
AXAY.X VY = AXAY.Y Vv X V = AXAY.Y Vv X
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- - @1
Model Classes (Extensionality) g °
UEIOMN non-extensional X-models

b: Boolean extensionality, D, = {T,F}
f(=n + £): functional extensionality
n: n-functional
¢: &-functionality

Y

Mgsp (L) ~ H(X)

full
\/

(©Benzmiiller, 2007 SEMHOL[0] - p.18
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Model Classes (Extensionality)

(©Benzmiiller, 2007

\ Motivation for

b : Models without Functional Extensionality

b, f(=n + &) modeling programs:
: p1 # p2 even if py@a = p,@a for
every a € D,

consider, e.g., run-time complexity:
p1 <— AX.1
and
Y P2 — AX1 4+ (X +1)% — (X2 +2X +1)

EXGEER]

fuII
\/

SEMHOL[0] - p.18



Model Classes (Extensionality)

N

(©Benzmiiller, 2007

M (L)

b, f(=n+¢)

./

mﬁfb (Z) ~ H(X)

fuII
\/

A

Nigp (T)

Motivation for
Models without Boolean Extensionality?

modeling of intensional concepts
like ’knowledge’, ‘believe’, etc.

example:

O:=2+2=4

F :=Vx,y,z,n > 2x" 4+ y" =
Z2"=>x=y=z=0

We want to model:

O < F but

john_knows(F') < john_knows(O)

if we have D, = {T,F} then

O < F impliesO = F

which also enforces
john_knows(F') < john_knows(O)

SEMHOL[0] - p.18



. . 35
Model Classes (Extensionality) @
gﬁﬁ (Z Models without
/ \
fmﬁb(z)
@ﬂ=5+@

‘\ Y/

mﬁfh (Z) ~ H(X)

fuII
\/
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Model Classes (Extensionality)

N (X
Models without &

: . \
/ Eo(MXa-Mg) = Ep(AXaN) iff

Ep fa/x](M) =&, 1a/x)(N) (Va € Dq)

N,/

mﬁfh (Z) ~ H(X)

fuII
\/
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Model Classes (Extensionality)

s "A
e (x) N Mo (%)
o S
noo
Mgy (X)
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Model Classes (Extensionality)

(©Benzmiiller, 2007

fuII

\/

mﬁb (¥)
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Model Classes (Extensionality)
s (%)

/ Y \[’A

M (X) mgnm m@b (%)

m”>b* 2\ ;

mﬁgb () mﬁnb (X)

\& W«/

fuII
\/
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Model Classes (Extensionality)

VXYWYXVY &Y VX

valid for all model classes
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Model Classes (Extensionality)

VXYW XVY &Y VX
VXYY XVY =Y VX

validity requires b

(©Benzmiiller, 2007 SEMHOLI[0] - p.20



Model Classes (Extensionality)

VXYW XVY &Y VX
VXYY XVY =Y VX
AXAY X VY = AXAY.Y V X

validity requires b and &

(©Benzmiiller, 2007 SEMHOL[0] - p.21



Model Classes (Extensionality)

Mg (X)
/|
3 n YXVY.X VY < Y Vv X
/ v "\ VXYY X VY =Y VX
Mse (X) f My, () Mgp () AXAY. X VY = AXAY.Y Vv X
/ AN 6 / V = AXAY.Y Vv X
§ §

validity requires b and f

(©Benzmiiller, 2007 SEMHOL[0] - p.22



Useful: Test Problems for TPs

Examples requiring property b

(pac) A(pbo) = (p(aAb))
(ho—.((hT) = (hL))) = (hl)

(©Benzmiiller, 2007 SEMHOLI[0] - p.23



Semantics - Calculi - Abstract Consistency

Semantics:
Model Classes (Extensionality)
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Semantics - Calculi - Abstract Consistency

Semantics: Reference Calculi:
Model Classes (Extensionality) ND (and others)
/0.-| / | \
/5 ! \b ni¢) /TR0 ()
Y A s Y \
. IR
\ 774N R \ 774N Y
T4 N | -
\ noo 3 S MA(E)
N 77 N\774
Mapo (X)
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Semantics - Calculi - Abstract Consistency

Semantics: Reference Calculi:
Model Classes (Extensionality) ND (and others)
o POANRN
/5 n \b nae) /TR (o)
S A y’s \
R - . [T
7|7 g/ \b E/ 7|7 m;() m(g)/ \m(b) m(&)/ |
. 2\ MA(b) &)
\ 774N N \ 774N Y
. .. IRl
| -7 N | ‘
. 13 MA(E)
\ I MA(b) NA(n)
N7V N\774
Migie (T)

Abstract Consistency / Unifying Principle:
Extensions of Smullyan-63 and Andrews-71

7N
£ /v "\
\4
§
| / N /|
u \ % V%

n V V"1
Y '\ \/
5

pd
\Vb J}/v&
77

(©Benzmiiller, 2007 SEMHOL[0] - p.24



m
O
—

Introduction
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History

Cantor’s Set Theory — late 1800’s

Frege’s Logic — late 1800’s

Russell’s Paradox — 1902

Zermelo’s Axiomatic Set Theory — 1908

Russell’'s Type Theory — 1908

Church’s Untyped A-Calculus (Computation) — 1930’s
Church’s Type Theory — HOL (Mathematics) — 1940

Henkin Models and Completeness — 1950

Cut-Elimination (Takahashi, Prawitz, Andrews) — 1967-1972
Theorem Proving — 1980’s - today

More Semantics and Cut-Elimination — mid 1990’s - today

(©Benzmiiller, 2007 SEMHOL[1] - p.26



A Standard Frame

D, = {T,F).
D, = N (natural numbers).
Do—p = Dg=, allfunctions from D, to Dy.

(©Benzmiiller, 2007 SEMHOL[1] - p.27



A Standard Frame

D, = {T,F}.

D, = N (natural numbers).

Do—p = Dg=, allfunctions from D, to Dy.
D, .o 2 P(N):

X C N induces XX € D,_.. (characteristic function)

)T ifxeX
XX(X) | F if x ¢ X

Everyf € D,_, s Xx where

X = {x € D,Jf(x) = T}

(©Benzmiiller, 2007

SEMHOL[1] - p.27



A Standard Frame

D, = {T,F).
D, = N (natural numbers).
Do—p = Dg=, allfunctions from D, to Dy.

D, ..o =2 P(N x N): Binary relations on N

12

D(L—>O)—>O P(P(N))

(©Benzmiiller, 2007 SEMHOL[1] - p.27



Standard Frames

D, = any nonempty set
D, = any nonempty set
Do—p = (Dg)P=, all functions from D, to Dg.

Standard Frames are Determined by Domains of Base
Type: If D and ¢ are standard frames, D, = &,, and D, = £,, then
D =¢.

Proof: Induction on types.

(©Benzmiiller, 2007 SEMHOL[1] - p.28



Peano Arithmetic

Easy to Encode Peano’s Axioms with + as N,
0, a parameter and S, ., a parameter

1. Zero is a natural number.
0 has type ¢«

2. n natural number = successor of n is a natural number
[SN] has type . for any term N,

3. No successor is zero.
Vn,—[|Sn] = 0]
4. The successor function is injective.

5. Induction:

(©Benzmiiller, 2007 SEMHOL[1] - p.29



Peano Arithmetic

Easy to Encode Peano’s Axioms with + as N,
0, a parameter and S, ., a parameter

1. Zero is a natural number.
0 has type ¢«

2. n nhatural number = successor of n is a natural number

[SN] has type . for any term N,
3. No successor is zero.
LF

(t—0)—o0 AN [To—o [= o [Si—en] Ou]]]o

4. The successor function is injective.

5. Induction:
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Peano Arithmetic

Easy to Encode Peano’s Axioms with + as N,
0, a parameter and S, ., a parameter

1. Zero is a natural number.
0 has type ¢«

2. n natural number = successor of n is a natural number
[SN] has type . for any term N,

3. No successor is zero.

Vn,—[[Sn] = 0]
4. The successor function is injective.
Vn,Vm,[[[Sn] = [Sm]] D n = m]

5. Induction:
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Peano Arithmetic

Easy to Encode Peano’s Axioms with + as N,
0, a parameter and S, ., a parameter

1. Zero is a natural number.
0 has type ¢«

2. n natural number = successor of n is a natural number
[SN] has type . for any term N,

3. No successor is zero.
Vn,—|[[Sn] = 0]

4. The successor function is injective.
Vn,Vm,[[[Sn] = [Sm]] D n = m]

5. Induction: Vp,_.o[[p0] A [Vn,[[pn] D [p[Sn]]]] D [Vn, [pn]]]

(©Benzmiiller, 2007 SEMHOL[1] - p.29



S
Incompleteness wrt Standard Frames S

Only ONE standard frame with D, = {T,F} satisfies Peano: D, = N

Suppose we have a recursively axiomatizable deduction system
for HOL sound and complete for standard models with D, = {T, F}.

Godel construction gives: G,
G evaluates to T in standard frame D above < I/ [PA D G]

= [PA D G| =soundness G €valuatesto Tin D =/ [PA D G]

7 [PA © G] = G evaluates t0 T in D = completeness - [PA O G]

(©Benzmiiller, 2007 SEMHOL[1] - p.30



S
Incompleteness wrt Standard Frames S

Only ONE standard frame with D, = {T,F} satisfies Peano: D, = N

Suppose we have a recursively axiomatizable deduction system
for HOL sound and complete for standard models with D, = {T, F}.

Godel construction gives: G,
G evaluates to T in standard frame D above < I/ [PA D G]

There is no recursively axiomatizable deduction system for HOL
sound and complete wrt standard models.

(©Benzmiiller, 2007 SEMHOL[1] - p.30



Frames in General

D, = any nonempty set
D, = any nonempty set

Do—p C (Dg)P= (maybe not all functions)

Frames are NOT Determined by Domains of Base Type.

Henkin Completeness (1950): Church’s Deductive System is
Complete wrt a Class of General Frames (“Henkin Models”)

(©Benzmiiller, 2007 SEMHOL[1] - p.31



Theorem Proving in HOL

Interactive systems for constructing formal theories (these use
extensions of Church’s Type Theory):

|Isabelle-HOL
HOL-light
HOL4

Systems performing automated search for proofs in (fragments of)
Church’s Type Theory:

TPS
LEO

(©Benzmiiller, 2007 SEMHOL[1] - p.32



Theorem Proving: Extensionality

Consider [A, A Bo A [Qo—oA]] D [QB].

Theorem? Yes, assuming Boolean extensionality.
ldea: A and B true implies A and B are equal.

(©Benzmiiller, 2007 SEMHOL[1] - p.33



Theorem Proving: Extensionality

Consider [A, A Bo A [Qo—oA]] D [QB].

Theorem? Yes, assuming Boolean extensionality.
ldea: A and B true implies A and B are equal.

Automatic Search? Clauses to Refute:
A

B

QA]

-|QB]

What to resolve?
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Theorem Proving: Extensionality

Consider [A, A Bo A [Qo—oA]] D [QB].

Theorem? Yes, assuming Boolean extensionality.
ldea: A and B true implies A and B are equal.

Automatic Search? Clauses to Refute:
A

B

QA]

-|QB]

What to resolve?

None Unify Syntactically.
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Theorem Proving: Extensionality

Consider [A, A Bo A [Qo—oA]] D [QB].

Theorem? Yes, assuming Boolean extensionality.
ldea: A and B true implies A and B are equal.

Automatic Search? Clauses to Refute:

A

B

QA]

-[QB]

What to resolve?

None Unify Syntactically.

ldea: Resolve [Q A] and —=|Q B, then prove A =B

(©Benzmiiller, 2007 SEMHOL[1] - p.33



Theorem Proving: Extensionality

There are similar examples for functional extensionality

TPS traditionally searches without extensionality.

TPS could not prove such examples

TPS was not “Henkin Complete” (but maybe wrt other model
classes)?

LEO (1999) introduced search with extensionality

(©Benzmiiller, 2007 SEMHOL[1] - p.34



Coming Attractions

Semantics without all Logical Constants

Semantics without full Extensionality

(©Benzmiiller, 2007 SEMHOL[1] - p.35
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Generalizing the Semantics
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More Syntax

e o-conversion: We consider terms “identical” if they are the same
up renaming of bound variables.

Example: [Ax,\y, .|y x]] is identical to [Ay, Az, .|z Y]]

e [A /x|B denotes substitution of A for free occurrences of x in B.
We rename bound variables to ensure no capture.

Example: [y/x][\y, [p.—.—oxY]] is [Az, [py Z]].

e \We may also consider simultaneous substitutions 6 for a finite
number of variables.

(©Benzmiiller, 2007 SEMHOL[1] - p.37



More Syntax

e We will consider ¢ and » reduction and conversion.
B: [[Mxo Bg| A| B-reduces to [A /x|B
n: [Mq [Fa—px]] n-reduces to F if x ¢ Free(F)

e We write A - B if B is obtained by 3-reducing in some
position in A.

e We write A —; B if B is obtained by n-reducing in some
position in A.

o We write —— to denote the reflexive, transitive closure of —1.

e We write 2% to denote the reflexive, transitive closure of

i)l U 1.

(©Benzmiiller, 2007 SEMHOL[1] - p.38



More Syntax

e We will consider ¢ and » reduction and conversion.
B: [[Mxo Bg| A| B-reduces to [A /x|B
n: [Mq [Fa—px]] n-reduces to F if x ¢ Free(F)

Facts: —— and % satisfy the strong Church-Rosser property:
Every term A has a unique normal form.

e A| ; denotes the s-normal (i.e., — normal) form of A.

e Al ; denotes the By-normal (i.e., 7, normal) form of A.

-

(©Benzmiiller, 2007 SEMHOL[1] - p.38



Generalized Semantics

There are two key steps to generalize combinatory frames with
evaluations to give nonextensional models.

To obtain non-functional semantics, we allow D,__, 3 to be any
nonempty set and include an “application operator”
Q:Dy— 3 X Dy — Dg.

To generalize from two truth values, we allow D, to be any nonempty

set and include a “valuation” v : D, — {T,F}.

(©Benzmiiller, 2007 SEMHOL[1] - p.39



Coming Attractions

1. Definition of applicative structure generalizing frames
2. Definition of logical properties relative to v : D, — {T,F}.

3. Definition of evaluations for interpreting terms in applicative
structures

4. Definition of model for determining which terms of type o are
true

5. Definition of model classes varying extensionality

(©Benzmiiller, 2007 SEMHOL[1] - p.40



Applicative Structures

Def.: A (typed) applicative structure is a pair (D, @) where D is a
typed family of nonempty sets and @*~# : D, .5 x D, — Djs
for each function type (o — 3).

Write f@a for f@*~”a when f € D,_.5 and a € D, are clear in
context.

Def.: Let A := (D, @) be an applicative structure. We say A is

functional if for all types o and 8 and objects f,g € D, 3, f =g
whenever fQa = g@Qa for every a € D,,.

(©Benzmiiller, 2007 SEMHOL[1] - p.41



Logical Properties

Suppose v : D, — {T,F} is a function.

Def.: Let A := (D, @) be an applicative structure and
v: Dy — {T,F} be a function.
For each logical constant c, and element a € D, we define the
properties £.(a) with respect to v given in the following table...

(©Benzmiiller, 2007 SEMHOL[1] — p.42



Logical Properties

prop. where holds when for all
£-(n) n € Do_so v(n@a) =T iff wv(a)=F a €D,
Lv(d) | d € Doso—o v(d@a@b) =T iff wv(a)=Torwvw(b)=T a,b € D,
Lna(c) | ¢ € Do—so—o v(c@a@b) =T iff w(@)=Tandv(b)=T | a,b & D,
Lna(m) | ™ € Diqgoo)—o | v(m@f) =T iff Vaé&Dyuv(f@a)=T f € Daso
Lra(o) | 0 € Digoo)—so | v(0Qf) =T iff da &€ Dyv(f@a)=T f € Da—o
L£—a(q) | 9 € Dasa—o v(q@a@b) =T iff a=0b a,b € Dq

(©Benzmiiller, 2007
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Logical Properties

Def.: Suppose (D, @) is an applicative structure and
v : Dy — {T,F} is a function.

We say (D, @, v) realizes a logical constant c,,

if there is some a € D, such that £.(a) holds with respect to
this v. We say (D, @, v) realizes a signature % if it realizes
every c € 2.
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Variable Assignment

Def.: Let A := (D, @) be an applicative structure.
A typed function ¢: )V — D is called a variable assignment

into D.

Given a variable assignment ¢, variable %, and value a € D,,,
we use ¢, [a/x| to denote the variable assignment with

(¢,a/x])(x) = a and
(¢, [2/x])(y) = p(y) for variables y other than x.
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Evaluations

Def.: Let A = (D, @) be an applicative structure.

An X -evaluation function & for A is a function taking
assignments ¢ and terms A, to £,(A) € D, satisfying the
following properties:

1. E,(x) = p(x) forx e V.

2. E,(|[FA]) =E&,(F)QE,(A) forany F,_.53 and A, and types
« and (.

3. E,(A) =Ey(A) for any type a and A, whenever ¢ and v
coincide on Free(A).

4. E,(A) = 5¢(Alﬁ) for all A,,.
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Evaluations

If A is a closed formula, then £,(A) is independent of .

Then we write £(A).
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Evaluations

Def.: We call 7 := (D, @, &) an X-evaluation if
(D, @) is an applicative structure and
£ is an evaluation function for (D, @).

We call an X -evaluation J := (D, @, £) functional if the
applicative structure (D, @) is functional.

We say J is a X-evaluation over a frame if (D, @) is a frame.
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Evaluations Respect

If A 5-converts to B, then they have the same normal form.

Hence
Eo(A) = 590('%5) — 5¢(Bl5) = &, (B)
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Substitution-Value Lemma

Lemma: Substitution-Value Lemma

Ep [€.(Ba)/xs] (Aa) = EG([B/X|A)
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Substitution-Value Lemma

Lemma: Substitution-Value Lemma

Ep [€.(Ba)/xs] (Aa) = EG([B/X|A)

Proof:

Eole.BNA) = Esle.m)x([[AxA]X])
= & e, () ([MA)NAE, [ (B)/x (X)
= E,([AxA])QEL(B)
= Ey([[MxA]BJ)
= &([B/X|A).
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Substitution-Value Lemma

Lemma: Substitution-Value Lemma

Ep [€.(Ba)/xs] (Aa) = EG([B/X|A)

Proof:

Eole.BNA) = Esle.m)x([[AxA]X])
= & e, () ([MA)NAE, [ (B)/x (X)
= E,([AxA])QEL(B)
= Ey([[MxA]BJ)
= &([B/X|A).

Proof by Andrei Paskevich
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Weak Functionality

Def.: Let 7 = (D, @, &) be an X-evaluation.

We say 7 is n-functional if £,(A) = E,(A] 4,) for any type o,
term A, and assignment o.

We say J is &-functional if for all o, 3 € 7, Mg, Ng,

assignments ¢, and variables x,, E,([AxoMg]) = E,([AxaNpg|)
whenever &, 1, (M) = &, ./ (N) for every a € D,,.
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f=n+¢

Lemma: functional = n-functional
functional = ¢-functional
n-functional and ¢-functional = functional

Proof: Exercise.
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Models

Def.: Let J .= (D, @, &) be an L-evaluation.

A function v: D, — {T,F} is called a X-valuation for 7 if
£.(E(c)) holds for every c € ..

In this case, M := (D, Q, &£, v) is called an X-model.
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Models

Def.: An assignment ¢ satisfies a formula A, in M
(we write M =, A)
if v(E,(A)) =T.

We say that A is valid in M
(and write M = A)
if M =, A for all assignments .

When A, is closed, we drop ¢ and write M = A.

Finally, we say that M is an ¥-model for a set ¢ of closed
formulas

(we write M |= )

if M = A forall A € .
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Example

Assume X contains — and Vv
Let M = (D, @, £, v) be a X-model
Claim: M |=, [VP[=P]] (i.e., P V = P) where P € wif,(X)
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Example

Assume X contains — and Vv

Let M = (D, @, £, v) be a X-model

Claim: M |=, [VP[=P]] (i.e., P V = P) where P € wif,(X)
Show: v(E, (VP [=P]])) =T
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Example

Assume X contains — and Vv

Let M = (D, @, £, v) be a X-model

Claim: M |=, [VP[=P]] (i.e., P V = P) where P € wif,(X)
Show: v(E,([VP[=P]]) =T

Note: £,(|V P |- P]]) = E,(V)QE,(P)QE,([—P]) (property of £)
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Example

Assume X contains — and Vv

Let M = (D, @, £, v) be a X-model

Claim: M |=, [VP[=P]] (i.e., P V = P) where P € wif,(X)
Show: v(E,([VP[=P]]) =T

Note: £,(|V P |- P]]) = E,(V)QE,(P)QE,([—P]) (property of £)
Use £\(E(V)) — Show: Either v(£,(P)) =Torv( E,([-P]) ) =T

\ . J/

~

Eo(m)@E,(P)
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Example

Assume X contains — and Vv

Let M = (D, @, £, v) be a X-model

Claim: M |=, [VP[=P]] (i.e., P V = P) where P € wif,(X)

Show: v(E,([VP[=P]]) =T

Note: £,(|V P |- P]]) = E,(V)QE,(P)QE,([—P]) (property of £)
Use £\(E(V)) — Show: Either v(£,(P)) =Torv( E,([-P]) ) =T

\ . J/
~

Eo(—)QE,(P)
Use £.(£(—)) — Show: Either v(€,(P)) = Tor v(E,(P)) =F
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Example

Assume X contains — and Vv

Let M = (D, @, £, v) be a X-model

Claim: M |=, [VP[=P]] (i.e., P V = P) where P € wif,(X)

Show: v(E,([VP[=P]]) =T

Note: £,(|V P |- P]]) = E,(V)QE,(P)QE,([—P]) (property of £)
Use £\(E(V)) — Show: Either v(£,(P)) =Torv( E,([-P]) ) =T

\ . J/
~

Eo(—)QE,(P)
Use £.(£(—)) — Show: Either v(€,(P)) = Tor v(E,(P)) =F

OK, since v : D, — {T,F}.
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Properties of Models

Def.: A X-model M := (D, @, £, v) is called functional if the
applicative structure (D, @) is functional.

Similarly, M is called n-functional [£-functional] if the
evaluation (D, @, £) is n-functional [¢-functional].

We say M is an X-model over a frame if (D, @) is a frame.
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Properties

Def.: Given an X-model M := (D, @, £,v), we say that M has
property
q iff for all « € 7 there is some q“ € D,_.._., Such that
£_2(q%) holds.

n iff M is n-functional.
¢ iff M is &-functional.

f iff M is functional. (This is generally associated with
functional extensionality.)

b iff v is injective (and so D, has at most two elements).
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Signature Restriction

Remember: We restrict to the signature X being either
{=VvIiu{N¥aeT} or|{-,VIU{NY =%aeT}.
Unless otherwise noted, other logical “constants” are abbreviations:
> is [Apo Ado [PV d]]
A'iS [Apo Ado =[—p V —q]]
I8 [Apo Ado [[P D a] A [a D pl]]
218 [Apa—o MM [Axa —[px]]]]

We sometimes consider “Leibniz Equality” denoted =

[AXaAYaVPa—ollPX] D [pY]l]
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Model Classes

Denote class of >-models that satisfy property q by 913(X).

Specialized subclasses of depending on the validity of the
properties n, &, f, and b denoted by

Mgy (L), Miae (), Migp(X), Miap(X),

mﬁnb(Z), mﬁgb(Z), and gﬁﬁﬁ,(Z).
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Semantics: HOL-CUBE
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Semantics: HOL-CUBE

M3 ()

WEIOBMN eclementary type theory (X-

models)

Assume that logical symbols are

b: v is injective (|Do| = 2) {—,viu{N“}or{-,Vv}iu {N* ==}

f(=n + €): M is functional |
n: M is n-functional We also require property g:

& M is &-functional

without this equality = not necessar-
ily evaluates to identity relation even in
Henkin models [Andrews72]

TR ESBGIOME extensional type the-

: ory (Henkin models)
full

Standard models
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Semantics: HOL-CUBE

M3 ()

Motivation for Models without Functional

\ Extensionality
modeling programs: p; # p2 even

[’* if f@Qa = g@a for every a € D,
Mg (X) consider properties like run-time
complexity:

P := AXpat.1 and
P) = MXpat.1 + (X +1)2 — (X% +
2X + 1)

b, f(=n+¢)

P, has constant complexity, P>

has not
however, P, behaves like P> on all
Y inputs

mﬁfb ) a logic with a functionally exten-
sional model theory (property f)
fuII necessarily conflates P; and P»

M semantically
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Semantics: HOL-CUBE $

M3 (%)
How do we account for Models without
\ Functional Extensionality?
b :§ generalized the notion of domains

at function types and evaluation
functions

: example:
b, f(=n+¢) (efficient, K1) # (inefficient, K1) €
) Dhat—nat Where Ky is the
constant-1 function and (!, *?)@n

is defined as *2(n)

we build on the notion of

applicative structures to define
Y Y -evaluations, where the

gmﬁfb ) evaluation function is assumed to
respect application and

fu|| (B-conversion

\J
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Semantics: HOL-CUBE 33

Motivation for models without Boolean
Extensionality?

Mg (X)
/ : \ modeling of intensional concepts
; b* like ’knowledge’, 'believe’, etc.
f .

example:
Migo (2) O:=2+2=4
: F :=Vxy,z,n > 2x" +y" =
n J— P -
b, f(=n+&) 2"=>x=y=2z=0

We want to model:
(1) O < Fistrue

®

/ john_knows(F') <4 john_knows(O)
b - _
* Y if we have D, = {T,F} then

(1) implies O = F
which enforces

john_knows(F') = john_knows(O)
fl;” and

ST(T) john_knows(F') < john_knows(O)

(©Benzmiiller, 2007 SEMHOL[2] - p.61
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Semantics: HOL-CUBE $

How do we account for models without

M3 (%)
: \ Boolean Extensionality?
: allow that |D,| > 2 and use v
: b A
f .

partition |D,| into representatives
Mg (X) of T and F;

e.g. Do := {11 12 Tt T2} with
v(L*)=Fandv(T*) =T

b, f(=n+¢)

now, a predicate like john_knows
may map:
m%@Q
T 71
T2 — |1
11— 1
b
* Y 12 71
Smﬁf[’ ) and we may choose:
fuII O evaluates to T!
M F evaluates to T2
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Semantics: HOL-CUBE $

Models without 7

G
e
: 5¢<A):5¢<A lﬁn)
e "N

M (X)

.,/

‘mﬁfb (Z) ~ H(X)

fuII
\/
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Semantics: HOL-CUBE $
Models without 7

-
& \ Eo(A) =Ep(A Lan)
s ‘A

mﬁﬁ(z) ' f .. A (X)

| S
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Semantics: HOL-CUBE

Models without &

Eo(MXa:Mg) = Ep(AXauNjg) ff

Epfa/x](M) = &, 1a/x1(N) (Va € Dq)

\& W«/

fuII
\/
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Semantics: HOL-CUBE
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HOL Example Problems

A \
§ 1 VXYY X VY < Y v X
A "

valid for all model classes
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HOL Example Problems

VXYW XVY &Y VX
VXYY XVY =Y VX

validity requires b
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HOL Example Problems

VXYW XVY &Y VX
VXYY XVY =Y VX
AXAY X VY = AXAY.Y V X

validity requires b and &
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HOL Example Problems

Mg (X)
/|
3 n YXVY.X VY < Y Vv X
/ v "\ VXYY X VY =Y VX
Mse (X) f My, () Mgp () AXAY. X VY = AXAY.Y Vv X
/ AN 6 / V = AXAY.Y Vv X
§ §

validity requires b and f
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Defined Logical Connectives
iIn >-Models
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Defined Logical Connectives

Lemma: (Truth and Falsity in >-Models)
Let M := (D, @, £,v) be a £-model and ¢ an assignment.
Let T, .= VP..P Vv —-P and F, .= —-T,.
Then v(E,(T,)) =T and v(E,(F,)) =F.
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Defined Logical Connectives

Lemma: (Truth and Falsity in >-Models)
Let M := (D, @, £,v) be a £-model and ¢ an assignment.
Let T, .= VP..P Vv —-P and F, .= —-T,.
Then v(E,(T,)) =T and v(E,(F,)) =F.
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Defined Logical Connectives

Lemma: (Truth and Falsity in >-Models)
Let M := (D, @, £,v) be a £-model and ¢ an assignment.
Let T, .= VP..P Vv —-P and F, .= —-T,.
Then v(E,(T,)) =T and v(E,(F,)) =F.

Proof: v(€,(To)) =T
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Defined Logical Connectives

Lemma: (Truth and Falsity in >-Models)
Let M := (D, @, £,v) be a £-model and ¢ an assignment.
Let T, .= VP..P Vv —-P and F, .= —-T,.
Then v(E,(T,)) =T and v(E,(F,)) =F.
Proof: v(€,(To)) =T
iff U(ggo[p/P](P vV =P)) =T for all p € D,

(©Benzmiiller, 2007 SEMHOL[2] - p.67



Defined Logical Connectives

Lemma: (Truth and Falsity in >-Models)
Let M := (D, @, £,v) be a £-model and ¢ an assignment.
Let T, .= VP..P Vv —-P and F, .= —-T,.
Then v(E,(T,)) =T and v(E,(F,)) =F.
Proof: v(€,(To)) =T
iff v(Epp/p)(PV —P))=Tforallpe D,
This is equivalent to v(E,,/p1(P)) = T or v(E,p/p(P)) = F.
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Defined Logical Connectives

Lemma: (Truth and Falsity in >-Models)

Let M := (D, @, £,v) be a £-model and ¢ an assignment.

Let T, .= VP..P Vv —-P and F, .= —-T,.

Then v(E,(T,)) =T and v(E,(F,)) =F.

Proof: v(€,(To)) =T

iff v(Epp/p)(PV —P))=Tforallpe D,
This is equivalent to v(E,,/p1(P)) = T or v(E p/p(P)) =
This is equivalent to v(p|p/P](P)) = T or v(p|p/P|(P)) =
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Defined Logical Connectives

Lemma: (Truth and Falsity in >-Models)

Let M := (D, @, £,v) be a £-model and ¢ an assignment.

Let T, .= VP..P Vv —-P and F, .= —-T,.

Then v(E,(T,)) =T and v(E,(F,)) =F.

Proof: v(€,(To)) =T

iff v(Epp/p)(PV —P))=Tforallpe D,
This is equivalent to v(E,p/p(P)) = T or v(E 1p/p)(P)) =
This is equivalent to v(p[p/P|(P)) = T or v(p|p/P|(P)) =
Since v maps into {T,F} this must be true.
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Defined Logical Connectives

Rem.: (|D,| > 2 and v surjective)
Let M = (D, @, £,v) be a £-model. By the previous Lemma,
D, must have at least the two elements £,(T,) and £,(F,),
and v must be surjective.
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Defined Logical Connectives

Lemma: (Equivalence)
Let M = (D, @, £,v) be a £-model, ¢ an assignment into M,
and A, B € wii, ().
V(€ (A & B)) =Tiff v(E,(A)) = v(EL(B)).
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Defined Logical Connectives

Lemma: (Equivalence)
Let M = (D, @, £,v) be a £-model, ¢ an assignment into M,
and A, B € wii, ().
V(€ (A & B)) =Tiff v(E,(A)) = v(EL(B)).

Proof:
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Defined Logical Connectives

Lemma: (Equivalence)
Let M = (D, @, £,v) be a £-model, ¢ an assignment into M,
and A, B € wii, ().
V(€ (A & B)) =Tiff v(E,(A)) = v(EL(B)).

Proof:  Suppose v(£,(A < B)) =T.
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X

Defined Logical Connectives

Lemma: (Equivalence)
Let M = (D, @, £,v) be a £-model, ¢ an assignment into M,
and A, B € wii, ().
V(EL(A & B)) =Tiff u(E,(A)) = v(E,(B)).
Proof:  Suppose v(£,(A < B)) =T.
This implies v(E,(—(—(-AVB)Vv-(-BVA)))) =T
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Defined Logical Connectives

Lemma: (Equivalence)
Let M = (D, @, £,v) be a £-model, ¢ an assignment into M,
and A, B € wii, ().
V(EL(A & B)) =Tiff u(E,(A)) = v(E,(B)).
Proof:  Suppose v(£,(A < B)) =T.
This implies v(E,(—(—(-AVB)Vv-(-BVA)))) =T
This implies v(€,(-A Vv B)) =Tand v(£,(-BV A)) =T.
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Defined Logical Connectives

Lemma: (Equivalence)

Let M = (D, @, £,v) be a £-model, ¢ an assignment into M,

and A, B € wii, ().

V(EL(A & B)) =Tiff u(E,(A)) = v(E,(B)).

Proof:  Suppose v(£,(A < B)) =

This implies v(E,(—(—(—A V B) V-a(-BVA)))) =
This implies v(£,(-A vV B)) =Tand v(E,(—B V A)) =
If v(£,(A)) =T, then v(E,(—A VvV B)) = T implies
U(Ee(B)) =T, 80 v(Ey(A)) =T = v(Ex(B)).

(©Benzmiiller, 2007 SEMHOL[2] - p.69



Defined Logical Connectives

Lemma: (Equivalence)

Proof:

(©Benzmiiller, 2007

Let M = (D, @, £,v) be a £-model, ¢ an assignment into M,
and A, B € wff,(X).

V(EN(A & B)) = Tiff u(E,(A)) = v(E,(B)).

Suppose v(E,(A < B)) =

Al

(Ep(—(= (ﬂAVB) Vo(-BVA)))) =
This implies v(£,(-A vV B)) =Tand v(E,(—B V A)) =
If v(£,(A)) =T, then v(E,(—A VvV B)) = T implies
v(€p(B)) =T, 80 v(Ep(A)) =T = v(&Ex(B)).

If v(£,(A)) =F, then v(E,(—B V A)) = T implies
v(€p(B)) = F, 80 v(Ep(A)) = F = v(&,(B)).

This implies v
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Defined Logical Connectives

Lemma: (Equivalence)
Let M = (D, @, £,v) be a £-model, ¢ an assignment into M,
and A, B € wii, ().
V(€ (A & B)) =Tiff v(E,(A)) = v(EL(B)).

Proof:

(©Benzmiiller, 2007

+(A = B)) =

This implies v(E,(—(—(—A V B) V-a(-BVA)))) =

This implies v(£,(-A vV B)) =Tand v(E,(—B V A)) =

If v(£,(A)) =T, then v(E,(—A VvV B)) = T implies
v(€p(B)) =T, 80 v(Ep(A)) =T = v(&Ex(B)).

If v(£,(A)) =F, then v(E,(—B V A)) = T implies
v(€p(B)) = F, 80 v(Ep(A)) = F = v(&,(B)).

Since these are the only two possible values for v(£,(A)),
we have v(E,(A)) = v(E,(B)).

Suppose v(&
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X

Defined Logical Connectives

Lemma: (Equivalence)
Let M = (D, @, £,v) be a £-model, ¢ an assignment into M,
and A, B € wii, ().
V(€ (A & B)) =Tiff v(E,(A)) = v(EL(B)).

Proof:
Suppose v(Ey(A)) = v(Ex(B)).

(©Benzmiiller, 2007 SEMHOL[2] - p.70



Defined Logical Connectives

Lemma: (Equivalence)
Let M = (D, @, £,v) be a £-model, ¢ an assignment into M,
and A, B € wii, ().
V(€ (A & B)) =Tiff v(E,(A)) = v(EL(B)).

Proof:

Suppose v(E,(A)) = v(EH(B)).
Either v(E,(A)) = v(Ey(B)) =T
or v(&,(A)) = v(€,(B)) =F.
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Defined Logical Connectives

Lemma: (Equivalence)
Let M = (D, @, £,v) be a £-model, ¢ an assignment into M,
and A, B € wii, ().
V(EL(A & B)) =Tiff u(E,(A)) = v(E,(B)).
Proof:
Suppose v(E,(A)) = v(&,(B )
Either u(,(A) = (&,(B) =

or v(Ey(A)) = v(Ep(B)) =
An easy consideration of both cases verifies

V(€ (mAVB))=Tand v(E,(—-BV A)) =
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Defined Logical Connectives

Lemma: (Equivalence)
Let M = (D, @, £,v) be a £-model, ¢ an assignment into M,
and A, B € wii, ().
V(€ (A & B)) =Tiff v(E,(A)) = v(EL(B)).

Proof:

Suppose v(E,(A)) = v(E,(B)).

Either v(E,(A)) = v(&,(B )):

or v(Ep(A)) = v(&p(B)) =

An easy consideration of both cases verifies
V(€ (mAVB))=Tand v(E,(—-BV A)) =
Hence, v(£,(A & B)) =
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Either v(E,(A)) = v(&,(B )):
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g.e.d.
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Defined Logical Connectives

Lemma: (Equivalence)
Let M = (D, @, £,v) be a £-model, ¢ an assignment into M,
and A, B € wii, ().
V(€ (A & B)) =Tiff v(E,(A)) = v(EL(B)).

Proof:

Suppose v(E,(A)) = v(E,(B)).

Either v(E,(A)) = v(&,(B )):

or v(Ey(A)) = v(Ep(B)) =
An easy consideration of both cases verifies
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Extensionality for Leibniz Equality

Def.: (Extensionality for Leibniz Equality)
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Extensionality for Leibniz Equality

Def.: (Extensionality for Leibniz Equality)

We call a formula of the form
EXTY P = WFa5¥Gape(WXarFX =7 GX) = F =77 G

an axiom of (strong) functional extensionality for Leibniz
equality.
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Extensionality for Leibniz Equality

Def.: (Extensionality for Leibniz Equality)

We call a formula of the form
EXTY P = WFa5¥Gape(WXarFX =7 GX) = F =77 G

an axiom of (strong) functional extensionality for Leibniz
equality.

We refer to the set
EXTZ == {EXTY 7 |, B € T}
as the axioms of (strong) functional extensionality for Leibniz

equality.
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Extensionality for Leibniz Equality

Def.: (Extensionality for Leibniz Equality)
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Extensionality for Leibniz Equality

Def.: (Extensionality for Leibniz Equality)

We call the formula
EXT? = VA.VBo(A< B)=A="B

the axiom of Boolean extensionality.
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Extensionality for Leibniz Equality

Def.: (Extensionality for Leibniz Equality)

We call the formula
EXT? = VA.VBo(A< B)=A="B

the axiom of Boolean extensionality.

We call the set EXT U {EXTS } the axioms of (strong)
extensionality for Leibniz equality.
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Extensionality and Leibniz Equality

Lemma: (Leibniz Equality in X-models) Let M := (D, @, £, v) be a
2 -model, ¢ be an assignment, o € 7, and A, B € wif,(X).
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Extensionality and Leibniz Equality

Lemma: (Leibniz Equality in X-models) Let M := (D, @, £, v) be a
2 -model, ¢ be an assignment, o € 7, and A, B € wif,(X).
1. fEL(A) = E,(B), then v(E,(A =% B)) =T.
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Extensionality and Leibniz Equality

Lemma: (Leibniz Equality in X-models) Let M := (D, @, £, v) be a
2 -model, ¢ be an assignment, o € 7, and A, B € wif,(X).
1. fEL(A) = E,(B), then v(E,(A =% B)) =T.
2. If M satisf. g and v(€,(A =% B)) =T, then £,(A) = E,(B).
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Extensionality and Leibniz Equality

Lemma: (Leibniz Equality in X-models) Let M := (D, @, £, v) be a
2 -model, ¢ be an assignment, o € 7, and A, B € wif,(X).
1. fEL(A) = E,(B), then v(E,(A =% B)) =T.
2. If M satisf. g and v(€,(A =% B)) =T, then £,(A) = E,(B).

Proof:
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Extensionality and Leibniz Equality

Lemma: (Leibniz Equality in X-models) Let M := (D, @, £, v) be a
2 -model, ¢ be an assignment, o € 7, and A, B € wif,(X).
1. fEL(A) = E,(B), then v(E,(A =% B)) =T.
2. If M satisf. g and v(€,(A =% B)) =T, then £,(A) = E,(B).

Proof: Let o be any assignment into M.
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Extensionality and Leibniz Equality

Lemma: (Leibniz Equality in X-models) Let M := (D, @, £, v) be a
2 -model, ¢ be an assignment, o € 7, and A, B € wif,(X).
1. fE,(A) =E,(B), then v(E,(A =" B)) =T.
2. If M satisf. gand v(E,(A = B)) =T, then £,(A) = £,(B).

Proof: Let o be any assignment into M.

For the first part, suppose £,(A) = £,(B).
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Extensionality and Leibniz Equality

Lemma: (Leibniz Equality in X-models) Let M := (D, @, £, v) be a
2 -model, ¢ be an assignment, o € 7, and A, B € wif,(X).
1. fE,(A) =E,(B), then v(E,(A =" B)) =T.
2. If M satisf. gand v(E,(A = B)) =T, then £,(A) = £,(B).

Proof: Let o be any assignment into M.

For the first part, suppose £,(A) = £,(B).
Givenr € D,_,,, we have either
v(r@&,(A)) =v(r@&,(B)) =F or
v(r@&,(B)) = v(r@&f,(A)) =T.
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Extensionality and Leibniz Equality

Lemma: (Leibniz Equality in X-models) Let M := (D, @, £, v) be a
2 -model, ¢ be an assignment, o € 7, and A, B € wif,(X).
1. fE,(A) =E,(B), then v(E,(A =" B)) =T.
2. If M satisf. gand v(E,(A = B)) =T, then £,(A) = £,(B).

Proof: Let o be any assignment into M.

For the first part, suppose £,(A) = £,(B).

Givenr € D,_,,, we have either

v(r@&,(A)) =v(r@&,(B)) =F or

v(r@&,(B)) = v(r@&f,(A)) =T.

In either case, for any variable P,_., not in

Free(A) U Free(B), we have v(&, ,/pj(—(PA) VPB)) =T.
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Extensionality and Leibniz Equality

Lemma: (Leibniz Equality in X-models) Let M := (D, @, £, v) be a
2 -model, ¢ be an assignment, o € 7, and A, B € wif,(X).
1. fE,(A) =E,(B), then v(E,(A =" B)) =T.
2. If M satisf. gand v(E,(A = B)) =T, then £,(A) = £,(B).

Proof: Let o be any assignment into M.

For the first part, suppose £,(A) = £,(B).

Givenr € D,_,,, we have either

v(r@&,(A)) =v(r@&,(B)) =F or

v(r@&,(B)) = v(r@&f,(A)) =T.

In either case, for any variable P,_., not in

Free(A) U Free(B), we have v(&, /p|(~(PA) vV PB)) =T.

So, we have v(€,(A =" B)) =T.
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Extensionality and Leibniz Equality

Lemma: (Leibniz Equality in X-models) Let M := (D, @, £, v) be a
2 -model, ¢ be an assignment, o € 7, and A, B € wif,(X).
1. fEL(A) = E,(B), then v(E,(A =% B)) =T.
2. If M satisf. g and v(€,(A =% B)) =T, then £,(A) = E,(B).

Proot: To show the second part, suppose v(E,(A = B)) =T.

(©Benzmiiller, 2007 SEMHOL[2] - p.74



Extensionality and Leibniz Equality

Lemma: (Leibniz Equality in X-models) Let M := (D, @, £, v) be a
2 -model, ¢ be an assignment, o € 7, and A, B € wif,(X).
1. fE,(A) =E,(B), then v(E,(A =" B)) =T.
2. If M satisf. gand v(E,(A = B)) =T, then £,(A) = £,(B).

Proot: To show the second part, suppose v(E,(A = B)) =T.

By property g, there is some q“ € D,_.,_., such that for
a,b € D, we have v(q*@a@b) = T iff a = b.
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Extensionality and Leibniz Equality

Lemma: (Leibniz Equality in X-models) Let M := (D, @, £, v) be a
2 -model, ¢ be an assignment, o € 7, and A, B € wif,(X).
1. fE,(A) =E,(B), then v(E,(A =" B)) =T.
2. If M satisf. gand v(E,(A = B)) =T, then £,(A) = £,(B).

Proot: To show the second part, suppose v(E,(A = B)) =T.

By property g, there is some q“ € D,_.,_., such that for
a,b € D, we have v(q*@a@b) = T iff a = b.
Let r = q“QE,(A).
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Extensionality and Leibniz Equality

Lemma: (Leibniz Equality in X-models) Let M := (D, @, £, v) be a
2 -model, ¢ be an assignment, o € 7, and A, B € wif,(X).
1. fE,(A) =E,(B), then v(E,(A =" B)) =T.
2. If M satisf. gand v(E,(A = B)) =T, then £,(A) = £,(B).

Proot: To show the second part, suppose v(E,(A = B)) =T.

By property g, there is some q“ € D,_.,_., such that for
a,b € D, we have v(q*@a@b) = T iff a = b.

Let r = q“QE,(A).
From v(E,(A =" B)) = T we get v(E, [, /p)(-PAVPB)) =T
(where P, _., ¢ Free(A) U Free(B)).

(©Benzmiiller, 2007 SEMHOL[2] — p.74



Extensionality and Leibniz Equality

Lemma: (Leibniz Equality in X-models) Let M := (D, @, £, v) be a
2 -model, ¢ be an assignment, o € 7, and A, B € wif,(X).
1. fE,(A) =E,(B), then v(E,(A =" B)) =T.
2. If M satisf. gand v(E,(A = B)) =T, then £,(A) = £,(B).

Proot: To show the second part, suppose v(E,(A = B)) =T.

By property g, there is some q“ € D,_.,_., such that for
a,b € D, we have v(q*@a@b) = T iff a = b.

Let r = q“QE,(A).

From v(E,(A =" B)) = T we get v(E, [, /p)(-PAVPB)) =T
(where P, _., ¢ Free(A) U Free(B)).

Since v(&, r/p)(PA)) = v(q*QE,(A)QE,(A)) = T, we must
have ’U(g%[r/p](PB)) = T.
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Extensionality and Leibniz Equality

Lemma: (Leibniz Equality in X-models) Let M := (D, @, £, v) be a
2 -model, ¢ be an assignment, o € 7, and A, B € wif,(X).
1. fE,(A) =E,(B), then v(E,(A =" B)) =T.
2. If M satisf. gand v(E,(A = B)) =T, then £,(A) = £,(B).

Proot: To show the second part, suppose v(E,(A = B)) =T.

By property g, there is some q“ € D,_.,_., such that for

a,b € D, we have v(q*@Qa@b) = T iff a = b.

Let r = q“QE,(A).

From v(E,(A =" B)) = T we get v(E, [, /p)(-PAVPB)) =T
(where P, _., ¢ Free(A) U Free(B)).

Since v(&, r/p)(PA)) = v(q*QE,(A)QE,(A)) = T, we must
have ’U(g%[r/p](PB)) = T.

Thatis, v(q®@Q&,(A)QE,(B)) =T, hence £,(A) = E£,(B).
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Extensionality and Leibniz Equality

Lemma: (Leibniz Equality in X-models) Let M := (D, @, £, v) be a
2 -model, ¢ be an assignment, o € 7, and A, B € wif,(X).
1. fE,(A) =E,(B), then v(E,(A =" B)) =T.
2. If M satisf. gand v(E,(A = B)) =T, then £,(A) = £,(B).

Proot: To show the second part, suppose v(E,(A = B)) =T.

By property g, there is some q“ € D,_.,_., such that for

a,b € D, we have v(q*@Qa@b) = T iff a = b.

Let r = q“QE,(A).

From v(E,(A =" B)) = T we get v(E, [, /p)(-PAVPB)) =T
(where P, _., ¢ Free(A) U Free(B)).

Since v(&, r/p)(PA)) = v(q*QE,(A)QE,(A)) = T, we must
have ’U(g%[r/p](PB)) = T.

Thatis, v(q®@Q&,(A)QE,(B)) =T, hence £,(A) = E£,(B).
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Extensionality and Leibniz Equality

Thm.: (Extensionality in X-models)
Let M = (D, @, £, v) be a X-model.
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Extensionality and Leibniz Equality

Thm.: (Extensionality in X-models)
Let M = (D, @, £, v) be a X-model.
1. If M satisfies g but not property §, then M [= EXTZ.
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Extensionality and Leibniz Equality

Thm.: (Extensionality in X-models)
Let M = (D, @, £, v) be a X-model.
1. If M satisfies q but not property f, then M [= EXT.
2. If M satisfies q but not property b, then M = EXTC.
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Extensionality and Leibniz Equality

Thm.: (Extensionality in X-models)
Let M = (D, @, £, v) be a X-model.
1. If M satisfies q but not property f, then M [= EXT.
2. If M satisfies q but not property b, then M = EXTC.

3. If M satisfies q and f, then M |= EXTZ".
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Extensionality and Leibniz Equality

Thm.: (Extensionality in X-models)
Let M = (D, @, £, v) be a X-model.

1. If M satisfies q but not property f, then M [= EXT.
2. If M satisfies q but not property b, then M = EXTC.
3. If M satisfies q and f, then M |= EXTZ".

4. If M satisfies b, then M |= EXTC..
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Extensionality and Leibniz Equality

Thm.: (Extensionality in X-models)
Let M = (D, @, £, v) be a X-model.

1. If M satisfies g but not property §, then M [= EXTZ.
2. If M satisfies q but not property b, then M = EXTC..
3. If M satisfies q and f, then M |= EXT.

4. If M satisfies b, then M = EXTS..

in Mz (%), Mgy (3), Mge (X) Ms (2) Mige (), Mgne (), Mgep (X) || Mgpo ()
formula || valid? by valid? | by || valid? by valid? | by
EXT — 1. + 3. — -
EXTS — 2. — 2. + 4. +
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Extensionality and Leibniz Equality

Thm.: (Extensionality in X-models)
Let M = (D, @, £, v) be a X-model.
1. If M satisfies q but not property f, then M [= EXT.

Proof: Suppose M satisfies property q but does not satisfy property f.
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Extensionality and Leibniz Equality

Thm.: (Extensionality in X-models)
Let M = (D, @, £, v) be a X-model.

1. If M satisfies q but not property f, then M [= EXT.

Proof: Suppose M satisfies property q but does not satisfy property f.
Then there must be types o and 3 and objects f, g € D, .3 such that f # g but
f@a = g@a for every a € D,,.
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Extensionality and Leibniz Equality

Thm.: (Extensionality in X-models)
Let M = (D, @, £, v) be a X-model.

1. If M satisfies q but not property f, then M [= EXT.

Proof: Suppose M satisfies property q but does not satisfy property f.

Then there must be types o and 3 and objects f, g € D, .3 such that f # g but
f@a = g@a for every a € D,,.

Let F—.3,Ga—3 € Vo g be distinct variables, X, € V., and ¢ be any
assignment with ¢(F) = f and ¢(G) = g.
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Extensionality and Leibniz Equality

Thm.: (Extensionality in X-models)
Let M = (D, @, £, v) be a X-model.
1. If M satisfies q but not property f, then M [= EXT.

Proof: Suppose M satisfies property q but does not satisfy property f.

Then there must be types o and 3 and objects f, g € D, .3 such that f # g but
f@a = g@a for every a € D,,.

Let F—.3,Ga—3 € Vo g be distinct variables, X, € V., and ¢ be any
assignment with ¢(F) = f and ¢(G) = g.

Forany a € Do, fQa = gQa implies &, 5 /x)(FX) = &, a/x (GX) implies
v(Ey.a/x) (FX =" GX)) = T by Lemma "Leibniz Equality in ¥-models(1.).
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Extensionality and Leibniz Equality

Thm.: (Extensionality in X-models)
Let M = (D, @, £, v) be a X-model.
1. If M satisfies q but not property f, then M [= EXT.

Proof: Suppose M satisfies property q but does not satisfy property f.

Then there must be types o and 3 and objects f, g € D, .3 such that f # g but
f@a = g@a for every a € D,,.

Let F—.3,Ga—3 € Vo g be distinct variables, X, € V., and ¢ be any
assignment with ¢(F) = f and ¢(G) = g.

Forany a € Do, fQa = gQa implies &, 5 /x)(FX) = &, a/x (GX) implies
v(Ey.a/x) (FX =" GX)) = T by Lemma "Leibniz Equality in ¥-models(1.).
Hence, we have v (&, (VX.(FX =" GX))) = T.
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Extensionality and Leibniz Equality

Thm.: (Extensionality in X-models)
Let M = (D, @, £, v) be a X-model.

Proof:
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1.

If M satisfies g but not property f, then M = EXT.

Suppose M satisfies property q but does not satisfy property f.

Then there must be types o and 3 and objects f, g € D, .3 such that f # g but
f@a = g@a for every a € D,,.

Let F—.3,Ga—3 € Vo g be distinct variables, X, € V., and ¢ be any
assignment with ¢(F) = f and ¢(G) = g.

Forany a € Do, fQa = gQa implies &, 5 /x)(FX) = &, a/x (GX) implies
v(Ey.a/x) (FX =" GX)) = T by Lemma "Leibniz Equality in ¥-models(1.).
Hence, we have v (&, (VX.(FX =" GX))) = T.

On the other hand, since f # g and M satisfies property q, we have
v(E,(F —a—h G)) = F by contraposition of Lemma ’Leibniz Equality in
> -models(2.)’.
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Extensionality and Leibniz Equality

Thm.: (Extensionality in X-models)
Let M = (D, @, £, v) be a X-model.

Proof:
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1.

If M satisfies g but not property f, then M = EXT.

Suppose M satisfies property q but does not satisfy property f.

Then there must be types o and 3 and objects f, g € D, .3 such that f # g but
f@a = g@a for every a € D,,.

Let F—.3,Ga—3 € Vo g be distinct variables, X, € V., and ¢ be any
assignment with ¢(F) = f and ¢(G) = g.

Forany a € Do, fQa = gQa implies &, 5 /x)(FX) = &, a/x (GX) implies
v(Ey.a/x) (FX =" GX)) = T by Lemma "Leibniz Equality in ¥-models(1.).

Hence, we have v (&, (VX.(FX =" GX))) = T.

On the other hand, since f # g and M satisfies property q, we have
v(E,(F —a—h G)) = F by contraposition of Lemma ’Leibniz Equality in
> -models(2.)’.

This implies M (£ ExTY P,
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Extensionality and Leibniz Equality

Thm.: (Extensionality in X-models)
Let M = (D, @, £, v) be a X-model.
2. If M satisfies q but not property b, then M = EXTC.

Proof: Suppose M satisfies property q but does not satisfy property b.
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Extensionality and Leibniz Equality

Thm.: (Extensionality in X-models)
Let M = (D, @, £, v) be a X-model.

2. If M satisfies q but not property b, then M = EXTC.

Proof: Suppose M satisfies property q but does not satisfy property b.

Then, there must be at least three elements in D,. Since v maps into a two
element set, there must be two distinct elements a, b € D, such that v(a) = v(b).

(©Benzmiiller, 2007 SEMHOL[2] - p.77



Extensionality and Leibniz Equality

Thm.: (Extensionality in X-models)
Let M = (D, @, £, v) be a X-model.

2. If M satisfies q but not property b, then M = EXTC.

Proof: Suppose M satisfies property q but does not satisfy property b.

Then, there must be at least three elements in D,. Since v maps into a two
element set, there must be two distinct elements a, b € D, such that v(a) = v(b).

Let Ao, Bo € Vs be distinct variables and ¢ be any assignment into M with
w(A) =aand p(B) = b.
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Extensionality and Leibniz Equality

Thm.: (Extensionality in X-models)
Let M = (D, @, £, v) be a X-model.

2. If M satisfies q but not property b, then M = EXTC.

Proof: Suppose M satisfies property q but does not satisfy property b.

Then, there must be at least three elements in D,. Since v maps into a two
element set, there must be two distinct elements a, b € D, such that v(a) = v(b).

Let Ao, Bo € Vs be distinct variables and ¢ be any assignment into M with
w(A) =aand p(B) = b.
By Lemma ’Equivalence’, we know v(E, (A < B)) = T.
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Extensionality and Leibniz Equality

Thm.: (Extensionality in X-models)
Let M = (D, @, £, v) be a X-model.
2. If M satisfies q but not property b, then M = EXTC.

Proof: Suppose M satisfies property q but does not satisfy property b.

Then, there must be at least three elements in D,. Since v maps into a two
element set, there must be two distinct elements a, b € D, such that v(a) = v(b).

Let Ao, Bo € Vs be distinct variables and ¢ be any assignment into M with
w(A) =aand p(B) = b.
By Lemma ’Equivalence’, we know v(E, (A < B)) = T.

Since a # b and property g holds, by contraposition of Lemma ’Leibniz Equality in
¥ -models(2.)’, we know v(E, (A =° B)) = F.
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Extensionality and Leibniz Equality

Thm.: (Extensionality in X-models)
Let M = (D, @, £, v) be a X-model.
2. If M satisfies q but not property b, then M = EXTC.

Proof: Suppose M satisfies property q but does not satisfy property b.

Then, there must be at least three elements in D,. Since v maps into a two
element set, there must be two distinct elements a, b € D, such that v(a) = v(b).

Let Ao, Bo € Vs be distinct variables and ¢ be any assignment into M with
w(A) =aand p(B) = b.
By Lemma ’Equivalence’, we know v(E, (A < B)) = T.

Since a # b and property g holds, by contraposition of Lemma ’Leibniz Equality in
¥ -models(2.)’, we know v(E, (A =° B)) = F.

It follows that M = EXTS..
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Extensionality and Leibniz Equality

Thm.: (Extensionality in X-models)
Let M = (D, @, £, v) be a X-model.
2. If M satisfies q but not property b, then M = EXTC.

Proof: Suppose M satisfies property q but does not satisfy property b.

Then, there must be at least three elements in D,. Since v maps into a two
element set, there must be two distinct elements a, b € D, such that v(a) = v(b).

Let Ao, Bo € Vs be distinct variables and ¢ be any assignment into M with
w(A) =aand p(B) = b.
By Lemma ’Equivalence’, we know v(E, (A < B)) = T.

Since a # b and property g holds, by contraposition of Lemma ’Leibniz Equality in
¥ -models(2.)’, we know v(E, (A =° B)) = F.

It follows that M = EXTS..
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Extensionality and Leibniz Equality

Thm.: (Extensionality in X-models)
Let M = (D, @, £, v) be a X-model.
3. If M satisfies q and f, then M |= EXT.

Proof: Let © be any assignment into M.
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Extensionality and Leibniz Equality

Thm.: (Extensionality in X-models)
Let M = (D, @, £, v) be a X-model.

3. If M satisfies q and f, then M |= EXT.

Proof: Let © be any assignment into M.

From v(&E, (VXa.FX = GX)) = T we know v(&,, ,/x (FX = GX)) = T holds for all
aecD,.

(©Benzmiiller, 2007 SEMHOL[2] - p.78



Extensionality and Leibniz Equality

Thm.: (Extensionality in X-models)
Let M = (D, @, £, v) be a X-model.

3. If M satisfies q and f, then M |= EXT.

Proof: Let » be any assignment into M.
From v(&E, (VXa.FX = GX)) = T we know v(&,, ,/x (FX = GX)) = T holds for all
aecD,.

By Lemma ’'Leibniz Equality in >-models(2.)’ we can conclude that
Ep la/x](FX) = &, 1a/x1(GX) for all a € D, and hence
890,[3/)(] (F)@ggo,[a/X] (X) = gcp,[a/X] (G)@gcp,[a/X] (X) forall a € D,.
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Extensionality and Leibniz Equality

Thm.: (Extensionality in X-models)
Let M = (D, @, £, v) be a X-model.

3. If M satisfies q and f, then M |= EXT.

Proof: Let » be any assignment into M.
From v(&E, (VXa.FX = GX)) = T we know v(&,, ,/x (FX = GX)) = T holds for all
aecD,.

By Lemma ’'Leibniz Equality in >-models(2.)’ we can conclude that
Ep la/x](FX) = &, 1a/x1(GX) for all a € D, and hence
Ep la/x](F)QE, 12 /x1(X) = &y 1a/x1(G)QE, [a/x1(X) for all a € D
Thatis, £, ,/x)(F)@a = &, ,/x(G)@a for all a € D
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Extensionality and Leibniz Equality

Thm.: (Extensionality in X-models)
Let M = (D, @, £, v) be a X-model.

3. If M satisfies q and f, then M |= EXTZ".

Proof: Let » be any assignment into M.
From v(&E, (VXa.FX = GX)) = T we know v(&,, ,/x (FX = GX)) = T holds for all
aecD,.

By Lemma ’'Leibniz Equality in >-models(2.)’ we can conclude that
Ep la/x](FX) = &, 1a/x1(GX) for all a € D, and hence

ggo,[a/X] (F)@gqp,[a/x] (X) - gcp,[a/X] (G)@gcp,[a/X] (X) foralla € D,.
That is, gcp,[a/X] (F)@a = 590,[3/)(] (G)@a foralla € D,.

Since X does not occur free in F or G, by property f and Definition of
¥ -evaluations we obtain £, (F) = £, (G).
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Extensionality and Leibniz Equality

Thm.: (Extensionality in X-models)
Let M = (D, @, £, v) be a X-model.

3. If M satisfies q and f, then M |= EXTZ".

Proof: Let » be any assignment into M.
From v(&E, (VXa.FX = GX)) = T we know v(&,, ,/x (FX = GX)) = T holds for all
aecD,.

By Lemma ’'Leibniz Equality in >-models(2.)’ we can conclude that

Ep la/x](FX) = &, 1a/x1(GX) for all a € D, and hence

€ la/x1(F) @80 ax) (X) = €q a3 (G) Q¢ 15/ (X) Tor all a € D

That is, 590,[3/)(] (F)@a = 590,[3/)(] (G)@a foralla € D,.

Since X does not occur free in F or G, by property f and Definition of

¥ -evaluations we obtain £, (F) = £, (G).

This finally gives us that v(€,(F =" G)) = T with Lemma ’Leibniz Equality in
> -models(1.)’.
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Extensionality and Leibniz Equality

Thm.: (Extensionality in X-models)
Let M = (D, @, £, v) be a X-model.
3. If M satisfies q and f, then M |= EXTZ".

Proof: Let » be any assignment into M.
From v(&E, (VXa.FX = GX)) = T we know v(&,, ,/x (FX = GX)) = T holds for all
aecD,.

By Lemma ’'Leibniz Equality in >-models(2.)’ we can conclude that

Ep la/x](FX) = &, 1a/x1(GX) for all a € D, and hence

ggo,[a/X] (F)@gqp,[a/x] (X) - gcp,[a/X] (G)@gcp,[a/X] (X) foralla € D,.

That is, 590,[3/)(] (F)@a = 590,[3/)(] (G)@a foralla € D,.

Since X does not occur free in F or G, by property f and Definition of

¥ -evaluations we obtain £, (F) = £, (G).

This finally gives us that v(€,(F =" G)) = T with Lemma ’Leibniz Equality in
> -models(1.)’.

It follows that M = EXT® " and M = EXT T, since a and 3 were chosen
arbitrarily. B N
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Extensionality and Leibniz Equality

Thm.: (Extensionality in X-models)
Let M = (D, @, £, v) be a X-model.
4. If M satisfies b, then M = EXTS..

Proof: Let Ao, Bo € V, be distinct variables and ¢ be any assignment into M.
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Extensionality and Leibniz Equality

Thm.: (Extensionality in X-models)
Let M = (D, @, £, v) be a X-model.
4. If M satisfies b, then M |= EXTC..

Proof: Let Ao, Bo € V), be distinct variables and ¢ be any assignment into M.
Since property b holds, we can assume D, = {T,F} and v is the identity function.
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Extensionality and Leibniz Equality

Thm.: (Extensionality in X-models)
Let M = (D, @, £, v) be a X-model.

4. If M satisfies b, then M |= EXTC..

Proof: Let Ao, Bo € V), be distinct variables and ¢ be any assignment into M.
Since property b holds, we can assume D, = {T,F} and v is the identity function.

Suppose v(E,(A = B)) =T.
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Extensionality and Leibniz Equality

Thm.: (Extensionality in X-models)
Let M = (D, @, £, v) be a X-model.

4. If M satisfies b, then M |= EXTC..

Proof: Let Ao, Bo € V), be distinct variables and ¢ be any assignment into M.
Since property b holds, we can assume D, = {T,F} and v is the identity function.
Suppose v(E,(A = B)) =T.
By Lemma ’Equivalence’, we have £, (A) = v(E,(A)) = v(E,(B)) = E,(B).
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Extensionality and Leibniz Equality

Thm.: (Extensionality in X-models)
Let M = (D, @, £, v) be a X-model.

4. If M satisfies b, then M |= EXTC..

Proof: Let Ao, Bo € V), be distinct variables and ¢ be any assignment into M.
Since property b holds, we can assume D, = {T,F} and v is the identity function.
Suppose v(E,(A = B)) =T.
By Lemma ’Equivalence’, we have £, (A) = v(E,(A)) = v(E,(B)) = E,(B).
By Lemma ’Leibniz Equality in X-models(1.)’, we have v(E,(A =° B)) = T.
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Extensionality and Leibniz Equality

Thm.: (Extensionality in X-models)
Let M = (D, @, £, v) be a X-model.

1. If M satisfies q but not property f, then M [= EXT.
2. If M satisfies q but not property b, then M = EXTC.
3. If M satisfies q and f, then M |= EXTZ".

4. If M satisfies b, then M |= EXTC..

Proof: g.e.d.
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Extensionality and Leibniz Equality

Thm.: (Trivial Extensionality Directions in ¥-Models)
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Extensionality and Leibniz Equality

Thm.: (Trivial Extensionality Directions in ¥-Models)
1. If M satisfies q, then M = VA,.VB..A =° B = (A & B).
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Extensionality and Leibniz Equality

Thm.: (Trivial Extensionality Directions in ¥-Models)

1. If M satisfies q, then M = VA,.VB..A =° B = (A & B).

2. It M satisfies q, then
M E VFa_3VGargF =77 G = (VXaFX =7 GX)
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Extensionality and Leibniz Equality

Thm.: (Trivial Extensionality Directions in ¥-Models)

1. If M satisfies q, then M = VA,.VB..A =° B = (A & B)
2. It M satisfies q, then
M E VFa_3VGargF =77 G = (VXaFX =7 GX)

Proof: (1.)
V(Ep(VAVBo.A =° B = (A& B))) =T
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Extensionality and Leibniz Equality

Thm.: (Trivial Extensionality Directions in ¥-Models)

1. If M satisfies q, then M = VA,.VB..A =° B = (A & B)
2. It M satisfies q, then
M E VFa_3VGargF =77 G = (VXaFX =7 GX)

Proof: (1.)
V(Ep(VAVBo.A =° B = (A& B))) =T
iff (for all a, b € Dy)
V(Epia/ab/B] (A =" B) =Forv(€,p/ap/e] (A< B)) =T
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Extensionality and Leibniz Equality

Thm.: (Trivial Extensionality Directions in ¥-Models)

1. If M satisfies q, then M = VA,.VB..A =° B = (A & B)
2. It M satisfies q, then
M E VFa_3VGargF =77 G = (VXaFX =7 GX)
Proof: (1.)
V(Ep(VAVBo.A =° B = (A& B))) =T
iff (for all a, b € Do)

V(Epia/ab/B] (A =" B) =Forv(€,p/ap/e] (A< B)) =T
assume v(E,(,/ab/B] (A ="B)) =T
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Extensionality and Leibniz Equality

Thm.: (Trivial Extensionality Directions in ¥-Models)

1. If M satisfies q, then M = VA,.VB..A =° B = (A & B)

2. It M satisfies q, then
M E VFa_3VGargF =77 G = (VXaFX =7 GX)

Proof: (1.)
V(Ep(VAVBo.A =° B = (A& B))) =T
ff(for all 2, b € Da)
V(Epla/albyB] (A =" B) =Foru(& /A][b/B] (A<B)) =T
assume v (€, /a]b/B] (A =" B)) =
then by Lemma ’Leibniz Equality in X-models(2.)’:
Eola/Allb/B](A) = Eyla/alb/B) (B)
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Extensionality and Leibniz Equality

Thm.: (Trivial Extensionality Directions in ¥-Models)

1. If M satisfies q, then M = VA,.VB..A =° B = (A & B)

2. It M satisfies q, then
M E VFa_3VGargF =77 G = (VXaFX =7 GX)

Proof: (1.)
V(Ep(VAVBo.A =° B = (A& B))) =T
iff (for all a,b € D,, )
V(Eya/Alb/B] (A = °B)=For v(Ey /A][b/B] (A B)) =T
assume v (€, /a]b/B] (A =" B)) =
then by Lemma ’Leibniz Equality in X-models(2.)’:
Eola/Allb/B](A) = Eyla/alb/B) (B)
then by Lemma 'Equivalence’ v(E,a/ab/B) (A < B)) =
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Extensionality and Leibniz Equality

Thm.: (Trivial Extensionality Directions in ¥-Models)

1. If M satisfies q, then M = VA,.VB..A =° B = (A & B)

2. It M satisfies q, then
M E VFa_3VGargF =77 G = (VXaFX =7 GX)

Proof: (1.)
V(Ep(VAVBo.A =° B = (A& B))) =T
iff (for all a,b € D,, )
V(Eya/Alb/B] (A = °B)=For v(Ey /A][b/B] (A B)) =T
assume v (€, /a]b/B] (A =" B)) =
then by Lemma ’Leibniz Equality in X-models(2.)’:
Eola/Allb/B](A) = Eyla/alb/B) (B)
then by Lemma 'Equivalence’ v(E,a/ab/B) (A < B)) =

g.e.d.
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Extensionality and Leibniz Equality

Thm.: (Trivial Extensionality Directions in ¥-Models)

1. If M satisfies q, then M = VA,.VB..A =° B = (A & B)

2. It M satisfies q, then
M E VFa_3VGargF =77 G = (VXaFX =7 GX)

Proof: (2.) (e, (vFu_5¥Ga_sF =278 G = (WXaFX =% GX))) = T
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Extensionality and Leibniz Equality

Thm.: (Trivial Extensionality Directions in ¥-Models)

1. If M satisfies q, then M = VA,.VB..A =° B = (A & B)
2. It M satisfies q, then
M E VFa_3VGargF =77 G = (VXaFX =7 GX)

Proot: (2.) (e, (vFu _ 5¥Gu  sF 2978 G = (WXaFX =% GX))) = T
iff (for all f,g € D,_.3)
’U(ggo[f/F][g/G](F ia_)ﬁ G)) =For U<gcp[f/F][g/G] (VXQ.FX iﬁ GX)) =T
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Extensionality and Leibniz Equality

Thm.: (Trivial Extensionality Directions in ¥-Models)

1. If M satisfies q, then M = VA,.VB..A =° B = (A & B)

2. It M satisfies q, then
M E VFa_3VGargF =77 G = (VXaFX =7 GX)

Proot: (2.) (e, (vFu _ 5¥Gu  sF 2978 G = (WXaFX =% GX))) = T
iff (for all f,g € D,_.3)
’U(ggo[f/F][g/G](F ia_)ﬁ G)) =For U<gcp[f/F][g/G] (VXQ.FX iﬁ GX)) =T

assume U(gcp[f/F] [g/G] (F —a—p G) =T
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Extensionality and Leibniz Equality

Thm.: (Trivial Extensionality Directions in ¥-Models)

1. If M satisfies q, then M = VA,.VB..A =° B = (A & B)

2. It M satisfies q, then
M E VFa_3VGargF =77 G = (VXaFX =7 GX)

Proot: (2.) (e, (vFu _ 5¥Gu  sF 2978 G = (WXaFX =% GX))) = T
iff (for all f,g € D,_.3)
’U(ggo[f/F][g/G](F ia_)ﬁ G)) =For U<gcp[f/F][g/G] (VXQ.FX iﬁ GX)) =T

assume U(gcp[f/F] [g/G] (F —a—p G) =T
by Lemma ’Leibniz Equality in >-models(2.)": ¢ /F1[g /6] (F) = Euif/F)1e/61(G)
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Extensionality and Leibniz Equality

Thm.: (Trivial Extensionality Directions in ¥-Models)

1. If M satisfies q, then M = VA,.VB..A =° B = (A & B)

2. It M satisfies q, then
M E VFa_3VGargF =77 G = (VXaFX =7 GX)

Proof: (2.) (e, (vF 596 5F 2978 G = (¥Xa.FX =7 GX))) = T
iff (for all f,g € D,_.3)
V(€ /Re/a) (F =77 G)) = For u(E, ¢ /mg/q) (WXa-FX =7 GX)) =T
assume v(E,(f/F)[g/c) (F =P G) =T
by Lemma ’Leibniz Equality in >-models(2.)": ¢ /F1[g /6] (F) = Euif/F)1e/61(G)
X not free in G or F (for any a € Da): €yt /F1(g/6]1a/X] (F) = Euff/Fg/G[ayx] (G)
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Extensionality and Leibniz Equality

Thm.: (Trivial Extensionality Directions in ¥-Models)

1. If M satisfies q, then M = VA,.VB..A =° B = (A & B)

2. It M satisfies q, then
M E VFa_3VGargF =77 G = (VXaFX =7 GX)

Proof: (2.) (e, (vF 596 5F 2978 G = (¥Xa.FX =7 GX))) = T
iff (for all f,g € D,_.3)
V(€ /Re/a) (F =77 G)) = For u(E, ¢ /mg/q) (WXa-FX =7 GX)) =T
assume v(E,(f/F)[g/c) (F =P G) =T
by Lemma ’Leibniz Equality in >-models(2.)": ¢ /F1[g /6] (F) = Euif/F)1e/61(G)
X not free in G or F (for any a € Da): €yt /F1(g/6]1a/X] (F) = Euff/Fg/G[ayx] (G)
furthermore
Eolt/Flle/Glla/x1 (F) Qs /Flg/G11a/x1 (X) = Eqir/F1e/ 61 (G)QE 1/l /Gla /X1 (X)
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Extensionality and Leibniz Equality

Thm.: (Trivial Extensionality Directions in ¥-Models)

If M satisfies g, then M |= VA..VB..A =° B = (A & B)

If M satisfies ¢, then
M E VFa_3VGargF =77 G = (VXaFX =7 GX)

Proot: (2.) (e, (vFu  5¥Gu  5F 2978 G = (¥XaFX =7 GX))) =
iff (for all f,g € D,_.3)
V(€ /Re/al (F =77 G)) = For u(E, ¢ /mg/q) (WXa-FX =7 GX)) =
assume v(E,(f/F)[g/c) (F =P G) =T
by Lemma ’Leibniz Equality in >-models(2.)": £ /F] [g/G](F) = E,1f/Fe/6](G)

X notfree in G or F (for any a € Da): € ¢ /F)[g/Gl(a /X (F) = Eulf/F11e/61a/x1(G)
furthermore

Eolf /F)[g/Gl[a/X] (F)QE [t /F [g/G][ /x1(X) = e /F11g/61 (G)QE ¢ /7[5 /6] a/x] (X)
thus Eof¢ /(g /Gl 1a/x1 (FX) = Eglt/F1g/61a/x) (GX)
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Extensionality and Leibniz Equality

Thm.: (Trivial Extensionality Directions in ¥-Models)

If M satisfies g, then M |= VA..VB..A =° B = (A & B)

If M satisfies ¢, then
M E VFa_3VGargF =77 G = (VXaFX =7 GX)

Proot: (2.) (e, (vFu  5¥Gu  5F 2978 G = (¥XaFX =7 GX))) =
iff (for all f,g € D,_.3)
V(€ /Re/al (F =77 G)) = For u(E, ¢ /mg/q) (WXa-FX =7 GX)) =
assume v(E,(f/F)[g/c) (F =P G) =T
by Lemma ’Leibniz Equality in >-models(2.)": £ /F] [g/G](F) = E,1f/Fe/6](G)

X notfree in G or F (for any a € Da): € ¢ /F)[g/Gl(a /X (F) = Eulf/F11e/61a/x1(G)
furthermore

Eolf /F)[g/Gl[a/X] (F)QE [t /F [g/G][ /x1(X) = e /F11g/61 (G)QE ¢ /7[5 /6] a/x] (X)
thus Eof¢ /(g /Gl 1a/x1 (FX) = Eglt/F1g/61a/x) (GX)

thus 'U(ggo[f/F] [g/G][a/X] (FX = GX)) = Tby Lemma...
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Extensionality and Leibniz Equality

Thm.: (Trivial Extensionality Directions in ¥-Models)

If M satisfies g, then M |= VA..VB..A =° B = (A & B)

If M satisfies ¢, then

M E VFa_3VGargF =77 G = (VXaFX =7 GX)

Proof: (2.) (e, (vFu_5¥Ga_ sF =277 G = (WXaFX =% GX))) =
iff (for all f,g € D,_.3)

’U(ggo[f/F][g/G](F ia_)ﬁ G)) =For U<gcp[f/F][g/G] (VXQ.FX iﬁ GX)) =

assume v(E,(f/F)[g/c) (F =P G) =T

by Lemma ’Leibniz Equality in X-models(2.)": ¢ /r[g /] (F)
X notfree in GorF (forany a € Da): E ¢ /F)[g/6)[a/x] (F) =
furthermore

Eplf/Flle/Gl[a/x] (F)QE, [f/F][g/G][ /x1(X) = Euit/R1e/6] (G)QE [t /FI[g /G ay/x] (X)

thus Eo1t/Fe/G1a/x1 (FX) = Epe/Rig/clia/x1 (GX)
thus 'U(ggo[f/F] [g/G][a/X] (FX = GX)) = Tby Lemma...
thus 'U(gcp[f/F] lg/G] (VX q-FX ~F GX)) =T
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= &1 /Flg/c1(G)
o[f/Flle/Gl[a/x](G)

g.e.d.
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Leibniz Equality in 2-Models

= is equivalence relation

VXX = X

Proof:

V(Ep (VXX =X)) =T

iff U(E,a/x) (X = X)) =Tforalla € D,
holds by Lemma ’Leibniz Equality in 2-

models(1.)’
since ggo[a/X] (X) = ggo[a/X] (X) foralla €
D..
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= is equivalence relation

VXaX = X
YXa,YauX =Y = Y = X

Proof:

0(Ep(WXa, YaX =Y &Y =X)) =T
iff U(gcp[a/X] b /X] (X = Y)) = F or
U(gcp[a/X][b/X] (Y = X)) — Tforalla,b €
D.

assume ’U((C;(p[a/x] b /X] (X = Y)) =T

by Lemma ’Leibniz Equality in 2 -models(2.)’
gcp[a/X] (X) = 5()0 [a/X] (Y)foralla,b € D,
hence E,1,/x1(Y) = & pa/x(X) for all
a,b e D,

hence ’U(g(p [a/X][b/X] (X = Y)) = T for all
a, b € D, by Lemma ’Leibniz Equality in >_-
models(2.)’
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Leibniz Equality in 2-Models

/ n = is equivalence relation
v VXa:X =X

VXa, YauX =Y = Y = X
VXa, Yo, Za(X =YAY = Z) = X = Z

Proof:

analogous with

Epla/X1[b/Y]e/z](X) = Epta/x)b/Y)e/z1 (Y)
and

Eola/XIb/Y1Ie/21(Y) = Epla/XIb/Y1[e/2) (£)

implies

Eola/Xb/Y][c/2](X) = Epla/Xb/Y][e/2) ()

(©Benzmiiller, 2007 SEMHOL[2] - p.84



in 2_-Models

n = is equivalence relation
/ v S\ VXX = X

Mg (2) f Mg, (X) My (X) YXa,YaX =Y = Y =X

VXa,Ya,Zas(X =YAY =Z) = X =Z

|—
D,
o
>,
N
m

o
C
D
=5

<

n
v = is congruence relation

YXa, Ya, FagX =Y = (FX) = (FY)
g Proof:

b
f
/ analogous with
Eota/x1b/ Y11 /F] (X)) = Eplayxqb/ve/F(Y)

implies
. Epla/x1b/YIF/F (F)QE /R(X) =
full Epla/X|b/Y ][/ ](F>@<‘5 [/ /r(Y)
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Leibniz Equality in 2-Models

Mg ()
¢ 7/ | \ = is equivalence relation
n
/ v b * VXX = X
YXa,YauX =Y = Y = X
| g / N b g / |
n n » .
b — is congruence relation
V A V ¥Xa, Ya, FagX = Y = (FX) = (FY)
Mgy Mige VXa,Ya, Pa—oX =Y A (PX) = (PY)

Proof:

analogous

(©Benzmiiller, 2007 SEMHOL[2] - p.84



|—
D,
o
=,
N
m

o
C
D
=5

<
=
N
=
o
Q
D
»

M (%)
yd | = is equivalence relation
y g \ VXX = X
/ v b\ VXa, YaX=Y =Y =X
f Mg, (X) Mg (X) VXo, Yo, Zar(X=YAY =2Z) = X =Z
3 - hE ¢ -

|
n = is congruence relation

v VXa,Ya,FapgX =Y = (FX) = (FY)
VXa, Ya, Pa—soX =Y A (PX) = (PY)

f
\ n § Trivial directions of Boolean and functional exten-
b : v / sionality
VAo, Bo.A =B = (A & B)
' Proof:
full
\/ by Theorem ’Trivial Extensionality Directions’
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in 2_-Models

|—
D,
o
=,
N
m

o
C
D
=5

<

Msz(X) = is equivalence relation
: /| VXX = X
g YXo, YaX =Y = Y = X
/ V b\ VXa, Yo, Zas(X =YAY = Z) = X = Z

Mgp ()

| = is congruence relation
n VXa,Ya,FapgX =Y = (FX) = (FY)
v VXa, Yo, Pa—soX =Y A (PX) = (PY)

Trivial directions of Boolean and functional exten-

sionality
VAo, Bo-A =B = (A < B)
VFa—g,Ga—pF = G = (VXa.FX =

GX)
full
\J Proof:
G(Z(Z) by Theorem ’Trivial Extensionality Directions’

(©Benzmiiller, 2007 SEMHOL2}—p-84



Leibniz Equality in 2-Models

Ms(X)

: -/ \

" Non-trivial direction of Boolean extensionality

v b

A VAo, Bo(A < B) = A = B
Mige (X) f Mgy (X) Mige ()
N / Proof:

¢ "¢

by Theorem ’Extensionality in 2 -Models’
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Leibniz Equality in 2-Models

VFO{_>5, Gaﬁg.(VXQ.FX = GX) = F =

/ § n \ Non-trivial direct. of functional extensionality
f

Proof:

by Theorem ’Extensionality in 2 -Models’
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Further Examples

VXYY XVY &Y VX
VXYW XVY =Y VX
AXAY X VY = AXAY.Y Vv X
V = 2AXAY.Y VX

validity requires b and f

Proof:

Exercise

(©Benzmiiller, 2007 SEMHOL[2] - p.87
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Calculi: ND for HOL
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Semantics - Calculi - Abstract Consistency

Semantics:
Model Classes (Extensionality)
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Semantics - Calculi - Abstract Consistency

Semantics: Reference Calculi:
Model Classes (Extensionality) ND (and others)
/0.-| / | \
/5 ! \b ni¢) /TR0 ()
Y A s Y \
. IR
\ 774N R \ 774N Y
T4 N | -
\ noo 3 S MA(E)
N 77 N\774
Mapo (X)
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Semantics - Calculi - Abstract Consistency

Semantics: Reference Calculi:
Model Classes (Extensionality) ND (and others)
o POANRN
/5 n \b nae) /TR (o)
S A y’s \
R - . [T
7|7 g/ \b E/ 7|7 m;() m(g)/ \m(b) m(&)/ |
. 2\ MA(b) &)
\ 774N N \ 774N Y
. .. IRl
| -7 N | ‘
. 13 MA(E)
\ I MA(b) NA(n)
N7V N\774
Migie (T)

Abstract Consistency / Unifying Principle:
Extensions of Smullyan-63 and Andrews-71

7N
£ /v "\
\4
§
| / N /|
u \ % V%

n V V"1
Y '\ \/
5

pd
\Vb J}/v&
77

(©Benzmiiller, 2007 SEMHOL[3] - p.89



10H

ND for HOL: Base Calculus Ji5;

y'd \ NN
TR ? RUEY QLT
| 7 >, 27/

? ?
\ ‘A /% \/
TRy RICHIS ? RICTIT

Benzmdiller, 2007 SEMHOL[3] - p.90



ND for HOL: Base Calculus 911 &

Base Calculus 9183

— NR(Hyp) — NKR(B)

— MA(-I) — NA(-E)

— MNR(VIL) — NR(VIR)

— NR(VE)

— MR

— NR(IIE) — NR(Contr)

(©Benzmiiller, 2007 SEMHOL[3] - p.90



ND for HOL: Base Calculus Ji5;

‘)‘tﬁﬁ:

10H

Aco
b A

NR(Hyp)

PxA:=0U{A}

(©Benzmiiller, 2007
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ND for HOL: Base Calculus Ji5;

‘)‘tﬁﬁ:

Aco
b A

NR(Hyp)

A=;B o A

B

MR(S)

PxA:=0U{A}

(©Benzmiiller, 2007
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ND for HOL: Base Calculus Ji5;

‘J‘tﬁﬁ:

o
10H

Aco
b A
¢+ AF,

d - -A

NR(Hyp)

NR(~1)

A=;B o A

B

MR(S)

PxA:=0U{A}

(©Benzmiiller, 2007
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%1
ND for HOL: Base Calculus 9i8; g =
TWRy! A—.B OF A
A€ P () ’ NR(H)
o+ A B
(D*AH_Fom(ﬁ]) o+ -A (DH_AUIR(—.E)
oI -A oI+ C

PxA:=0U{A}
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'S'G@
10H

ND for HOL: Base Calculus Ji5;

‘ﬁﬁ@:

Acod A=3B oI A
NR(Hyp) NR(B)
b+ A B
bxAlF, dPH-A O A
MR(—1) MR(—-F)
b - -A ¢+ C
b+ A
MR(VIL)
oH+AVB

PxA:=0U{A}
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ND for HOL: Base Calculus i5; g2

T Acod A=—;B oF A
NR(Hyp) MNR(B)
Ok A A
®x Ak Fy dF-A Ok A
NR(—1) NR(-E)
O —A e
Ok A o+ B
NA(VIL) NA(VIR)
O AVB dAVB

PxA:=0U{A}

(©Benzmiiller, 2007 SEMHOL[3] - p.91



ND for HOL: Base Calculus Ji5;

‘ﬁﬁ@:

-5'5@
10H

Acod A=3B oI A
NR(Hyp) NR(B)
b+ A B
bxAlF, dPH-A O A
MR(—1) MR(—-F)
b -A ¢+ C
b+ A é+B
MR(VIL) MR(VIR)
P-AVDB oH+AVB
¢ xBI-
PHFAVB ¢xAl-C * C‘ﬁﬁ(\/E)
o C

PxA:=0U{A}

(©Benzmiiller, 2007
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ND for HOL: Base Calculus Ji5;

‘ﬁﬁ@:

-5‘5@
10H

Acod Ang o A
NR(Hyp) NR(S)
o+ A oH+B

®x A= F, d-A It A
MR(—T) MR(—-F)

® A o C
o A o B

MA(VI;) NR(VIR)
dAVB o AVB

d-FAVB ¢xAFC oxBi-C
o= C

o = Gw, w new parameter
o NG

MNR(VE)

NR(I )™

PxA:=0U{A}

(©Benzmiiller, 2007
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ND for HOL: Base Calculus Ji5;

‘ﬁﬁ@:

-5‘5@
10H

Acod A=3B oI A
MNR(Hyp) MR(B)
o A B
dxAtF, ot -A Pt A
MR(—1) MR(—-F)
¢+ —-A o C
o A B
MR(VIL) MR(VIR)
d+-AVDB o-AVDB
dH-AVB oOxAl- o x Bt
V * C * C‘)‘tﬁ(\/E)
d - C
o = Gw, w new parameter "
MR(IIT)
o NG
o = M*
S a(E)
o+ GA

PxA:=0U{A}

(©Benzmiiller, 2007
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ND for HOL: Base Calculus Ji5;

‘ﬁﬁ@:

-5‘5@
10H

Acod A=3B oI A
MNR(Hyp) MR(B)
o A B
dxAtF, ot -A Pt A
MR(—1) MR(—-F)
¢+ —-A o C
o A B
MR(VIL) MR(VIR)
d+-AVDB o-AVDB
dH-AVB oOxAl- o x Bt
V * C * C‘)‘tﬁ(\/E)
d - C
o = Gw, w new parameter "
MR(IIT)
o NG
o ¢ x-AtF,
il GW(HE) MR(Contr)
o+ GA O A

PxA:=0U{A}

(©Benzmiiller, 2007
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ND for HOL: Rules for Richer Signatures

Inference rules for 9133 (for richer signatures)

o-AANDB

MR(AEL)
S A

(©Benzmiiller, 2007 SEMHOL[3] - p.92



ND for HOL: Rules for Richer Signatures

Inference rules for 9133 (for richer signatures)

SO AAB S AAB
"B y&(nEL) NA(AER)
O A o+ B
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ND for HOL: Rules for Richer Signatures

Inference rules for 9133 (for richer signatures)

o-AANDB

A

MR(NEL)

o-AANDB

B

NR(AER)

P-A o+ B

o-AANDB

MR(NT)

(©Benzmiiller, 2007
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ND for HOL: Rules for Richer Signatures

Inference rules for 9133 (for richer signatures)

- AANDB - AANDB oA OB
MNR(AEL) MNR(AER) MR(AT)
O A o-B - AANDB

d-FA=DB oA
B

NR(= F)

(©Benzmiiller, 2007 SEMHOL[3] - p.92



ND for HOL: Rules for Richer Signatures

Inference rules for 9133 (for richer signatures)

- AANDB - AANDB oA OB
MNR(AEL) MNR(AER) MR(AT)
O A o-B - AANDB

d-FA=B oI A ¢, A-B
= NA(= E) N&(= 1)
oI B o A=B
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ND for HOL: Rules for Richer Signatures

Inference rules for 9133 (for richer signatures)

o-AANDB o-AANDB P-A o+ B

MNR(AEL) MNR(AER) MR(AT)
o A o B o AAB
d-HA=B oA ¢, Ar-B
= NA(= E) N&(= 1)
oI B o A=B
o GT,
NR(XT)
o YG

(©Benzmiiller, 2007 SEMHOL[3] - p.92



ND for HOL: Rules for Richer Signatures

Inference rules for 9133 (for richer signatures)

o-AANDB

MR(AEL)
S A

o-AANDB

B

d-FA=DB oA

P-A o+ B
o-AANDB

o AlFB

NRA(ANER) NR(AT)

NR(= F)

NR(= 1)

B

¢ GT,
NR(ZT)

P3G dxGw,  C wnew parameter

oA =DB

NR(ZE)

o 2XG

o= C

(©Benzmiiller, 2007
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ND for HOL: Rules for Richer Signatures

Inference rules for 9133 (for richer signatures)

o-AANDB

MR(AEL)
S A

o-AANDB

B

d-FA=DB oA
B

NR(= F)

P-A o+ B
o-AANDB

o AlFB
dFA=B

NRA(ANER) NR(AT)

NR(= 1)

¢ - GT,
o 2XG

NA(ZT)

P3G dxGw,  C wnew parameter

o= C

ST ="W & A[T]

MR(= Subst)

® - A[W]

NR(ZE)

(©Benzmiiller, 2007
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ND for HOL: Rules for Richer Signatures

Inference rules for 9133 (for richer signatures)

o-AANDB

o-AANDB

P-A o+ B

MR(AEL)
S A ¢t B

dFA=B ok A
= NA(= E)

NR(AER)

MR(AT)
- AAB

. Al-B
NR(= 1)

B

oA =DB

¢ - GT,
o 2XG

NA(ZT)

P3G dxGw,  C wnew parameter

o= C

NR(ZE)

ST ="W & A[T]

MR(= Subst)
O - A[W]

NA(= Refl)

di-A=A

(©Benzmiiller, 2007
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ND for HOL: Rules for Richer Signatures

Inference rules for 9133 (for richer signatures)

- AANDB - AANDB oA OB
MNR(AEL) MNR(AER) MR(AT)
O A o-B - AANDB

dFA=B oI A O A-B
- NA(= E) NA(= 1)
oI B oA =B

o GT, O3X*G éxGw, - C wnew parameter
MR(XT) MR(LFE)

o 2XG o= C

GFT="W & A[T]
MR(= Subst) MR(= Refl)
O A[W] GFA=A

Here: we define logical constants A, =, %, etc. in terms of —, \, 1 as usual
and strictly use Leibniz equality instead of primitive equality; then the

above rules are not needed
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ND for HOL: Extensionality Rules

Base Calculus 9183

— NR(Hyp) — NR(B)

— YR(~I) — NR(—E)

— NRA(VIL) — NR(VIR)

— NR(VE)

— MR(III)™

— NR(IIE) — NR(Contr)
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ND for HOL: Extensionality Rules

Optional Extensionality Rules
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ND for HOL: Extensionality Rules

Optional Extensionality Rules
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ND for HOL: Extensionality Rules

Optional Extensionality Rules
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ND for HOL: Extensionality Rules

Optional Extensionality Rules

7

?

MR NA(F) MRy
| yd
?
?
Y A
NA g NARaet
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ND for HOL: Extensionality Rules

Optional Extensionality Rules

PxAF-B oxBi A

dH-A="B
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ND Calculi for HOL

Defn.: The Calculi 918,
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ND Calculi for HOL

Defn.: The Calculi 918,

The calculus 91533 consists of the inference rules for 9183 for
the provability judgment # between sets of sentences ¢
and sentences A.
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ND Calculi for HOL

Defn.: The Calculi 918,

The calculus 91533 consists of the inference rules for 9183 for
the provability judgment # between sets of sentences ¢
and sentences A.

We write + A for ) + A.
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ND Calculi for HOL

Defn.: The Calculi 918,

The calculus 91533 consists of the inference rules for 9183 for
the provability judgment # between sets of sentences ¢
and sentences A.

We write + A for ) + A.

For x € {3n, B, Bf, Bb, Bnb, BEb, Bfb} we obtain the calculus
MR, by adding the respective extensionality rules when
specified in x:

YiRg),), MRae, TRy, NRgp, TRp, TRsep, NRsr
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ND for HOL: The Complete Picture

Base Calculus 9133
AN
sm(g) MRM)  na(n) — NA(Hyp) — NR(H)
V \ — NA(-I) — NA(-E)

m(f — MR(VIL) — NR(VIR)

%m@) NA(b) NAE), — (vE)
‘m(n)

V — MR(II)"
nb

b MRA(F) @ — NRIIE) — NR(Contr)

RUGTE:
\ v / Optional Extensionality Rules
be

— NR(n) — NR(E)

full __MA(f) — MA(b)
\/
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10H

ND Example Proof in 91R;

Derivation of:
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10H

ND Example Proof in 91R;

NA(II)

o, (A ="A):=N*AP(=(PA) Vv (PA)))

Derivation of:
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ND Example Proof in 91R;

MNR(S)

Fow, ((AP(=(PA) V (PA)))q)
g, (A =%A):=N%\P(=(PA) V (PA)))

Derivation of:

Benzmuiller, 2007

NA(II)

o
10H
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o
10H

ND Example Proof in 91R;

MR(Contr)

o, —(aA) V (qA) NA(B)

Fow, ((AP(=(PA) V (PA)))q)
g, (A =%A):=N%\P(=(PA) V (PA)))

NA(II)

Derivation of:
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o
10H

ND Example Proof in 91R;

NR(-F)
¢! = {~(=(qA) V (aA))} Fow, Fo
MR (Contr)
o, —(aA) V (qA) 3
o, ((AP(=(PA) V (PA)))aq)
NAR(ITT)

o, (A ="A):=N*AP(=(PA) Vv (PA)))

Derivation of:
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o
10H

ND Example Proof in 91R;

®' g, —(qA) V (qA)

NR(-F)
¢! = {~(=(qA) V (aA))} Fow, Fo
MR (Contr)
o, —(aA) V (qA) 3
o, ((AP(=(PA) V (PA)))aq)
NAR(ITT)

o, (A ="A):=N*AP(=(PA) Vv (PA)))

Derivation of:
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o
10H

ND Example Proof in 91R;

NKR(Hyp)

O o, ~(qA) V (qA) - O qg, {=(—(qA) V (qA))
d! = {=(=(qA) V (qA))} o, Fo
o, —(qA) V (qA)
o, ((AP(=(PA) Vv (PA)))q)
Fow, (A =% A) == N*(AP(=(PA) v (PA)))

NA(-E)

MR(Contr)
MNR(5)

NA(II)

Derivation of:
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o
10H

ND Example Proof in 91R;

NKR(Hyp)

O o, ~(qA) V (qA) - O qg, {=(—(qA) V (qA))
d! = {=(=(qA) V (qA))} o, Fo
o, —(qA) V (qA)
o, ((AP(=(PA) Vv (PA)))q)
Fow, (A =% A) == N*(AP(=(PA) v (PA)))

NA(-E)

MR(Contr)
MNR(5)

NA(II)

Derivation of:

Benzmdiller, 2007 SEMHOL[3] - p.96



o
10H

ND Example Proof in 91R;

See Next Slide m(Hyp)
! g, ~(qA) V (qA) ! g, {—(—(qA) V (qA))

o1 = {=(=(qA) V (4A))} ko, Fo
e, —(aA) V (gA)
Fow, (AP(=(PA) V (PA)))a)
Fow, (A =% A) := N%(AP(—(PA) V (PA)))

NA(-E)

MR (Contr)
MR(B)

NAR(II])

Derivation of:
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10H

ND Example Proof in 91R;

Derivation of:

{=(=pVp)} o, 7PVP
resp. {—(=(qA) V (qA))} g, —(qA) V (qA)
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10H

ND Example Proof in 91R;

‘ﬁﬁ(\/IL)

{=(=pVp)}ow, PVP

Derivation of:

{=(=pVp)} o, 7PVP
resp. {—(=(qA) V (qA))} g, —(aA) V (qA)

(©Benzmiiller, 2007 SEMHOL[3] - p.97



10H

ND Example Proof in 91R;

NA(—1)

{=(=pVp)}tos, P
‘ﬁﬁ(\/IL)

{=(=pVp)}ow, PVP

Derivation of:

{=(=pVp)} o, 7PVP
resp. {—(=(qA) V (qA))} g, —(aA) V (qA)
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10H

ND Example Proof in 91R;

NR(-E)
&% := {~(=pV p),p} o Fo

{=(=pVp)}tos, P
{=(=pVp)}ow, PVP

NR(—1)
‘ﬁﬁ(\/IL)

Derivation of:

{=(=pVp)} o, 7PVP
resp. {—(=(qA) V (qA))} g, —(aA) V (qA)
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10H

ND Example Proof in 91R;

Derivation of:

{=(=pVp)} o, 7PVP
resp. {—(=(qA) V (qA))} g, —(aA) V (qA)
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o
10H

ND Example Proof in 91R;

Derivation of:

{=(=pVp)} o, 7PVP
resp. {—(=(qA) V (qA))} g, —(aA) V (qA)
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o
10H

ND Example Proof in 91R;

Derivation of:

{=(=pVp)} o, 7PVP
resp. {—(=(qA) V (qA))} g, —(aA) V (qA)
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Soundness of )R,

Thm.: 98, is sound for M, (X) for « € {3, Bn, B, Bf, Bb, Bib, B<b, Bib}.
That is, if  -yng C is derivable, then M = C for all models
M = (D,Q E v)in M. (X) such that M = o.
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Soundness of )R,

Thm.: 98, is sound for M, (X) for « € {3, Bn, B, Bf, Bb, Bib, B<b, Bib}.
That is, if  -yng C is derivable, then M = C for all models
M= (D,@, & v)in M. (X) such that M = o.

Proof: By induction on the derivation of ¢ gz C
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Soundness of )R,

Thm.: 98, is sound for M, (X) for « € {3, Bn, B, Bf, Bb, Bib, B<b, Bib}.
That is, if  -yng C is derivable, then M = C for all models
M= (D,@, & v)in M. (X) such that M = o.

Proof: (base case)

Aco

NK(Hyp
O A (Hyp)
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Soundness of )R,

Thm.: 98, is sound for M, (X) for « € {3, Bn, B, Bf, Bb, Bib, B<b, Bib}.
That is, if  -yng C is derivable, then M = C for all models
M= (D,@, & v)in M. (X) such that M = o.

Proof: (base case)

Ceo

NR(Hyp)
o C

M = C whenever M = ® and C € ¢.
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Soundness of )R,

Thm.: 98, is sound for M, (X) for « € {3, Bn, B, Bf, Bb, Bib, B<b, Bib}.
That is, if  -yng C is derivable, then M = C for all models
M= (D,@, & v)in M. (X) such that M = o.

Proof: (step cases)

A=3C Ok A
d I C

NR(S)
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Soundness of )R,

Thm.: 98, is sound for M, (X) for « € {3, Bn, B, Bf, Bb, Bib, B<b, Bib}.
That is, if  -yng C is derivable, then M = C for all models
M= (D,@, & v)in M. (X) such that M = o.

Proof: (step cases)

A=3C Ok A

oi-C TR(P)

Suppose ¢ - C follows from ¢ - A and A=3C. Let
M € 9. (L) be a model of ¢.
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Soundness of K.

Thm.: 98, is sound for M, (X) for « € {3, Bn, B, Bf, Bb, Bib, B<b, Bib}.
That is, if  -yng C is derivable, then M = C for all models
M= (D,@, & v)in M. (X) such that M = o.

Proof: (step cases)

A=3C Ok A

oi-C TR(P)

Suppose ¢ - C follows from ¢ - A and A=3C. Let
M € M, (X) be a model of . By induction, we know M = A
and so M = C since X-evaluations respect (-equality.
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Soundness of )R,

Thm.: 98, is sound for M, (X) for « € {3, Bn, B, Bf, Bb, Bib, B<b, Bib}.
That is, if  -yng C is derivable, then M = C for all models
M= (D,@, & v)in M. (X) such that M = o.

Proof: (step cases)

® x -C - F,

MR(Contr)
o - C
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Soundness of K.

Thm.: 98, is sound for M, (X) for « € {3, Bn, B, Bf, Bb, Bib, B<b, Bib}.
That is, if  -yng C is derivable, then M = C for all models
M= (D,@, & v)in M. (X) such that M = o.

Proof: (step cases)

® x -C - F,

MR(Contr)
o - C

Suppose M € M. (¥), M = ¢ and ¢ + C follows from
o x -C I F,.
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Soundness of K.

Thm.: 98, is sound for M, (X) for « € {3, Bn, B, Bf, Bb, Bib, B<b, Bib}.
That is, if  -yng C is derivable, then M = C for all models
M= (D,@, & v)in M. (X) such that M = o.

Proof: (step cases)

® x -C - F,

MR(Contr)
o - C

Suppose M € M. (¥), M = ¢ and ¢ + C follows from
¢« —-C t F,. By a previous Lemma, M }~ F,.
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Soundness of K.

Thm.: 98, is sound for M, (X) for « € {3, Bn, B, Bf, Bb, Bib, B<b, Bib}.
That is, if  -yng C is derivable, then M = C for all models
M= (D,@, & v)in M. (X) such that M = o.

Proof: (step cases)

® x -C - F,

MR(Contr)
o - C

Suppose M € M. (¥), M = ¢ and ¢ + C follows from
¢ « =C I~ F,. By a previous Lemma, M ~= F,. So, we must
have M ~ —C and, hence, M = C.
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Soundness of )R,

Thm.: 98, is sound for M, (X) for « € {3, Bn, B, Bf, Bb, Bib, B<b, Bib}.
That is, if  -yng C is derivable, then M = C for all models
M= (D,@, & v)in M. (X) such that M = o.

Proof: (step cases)

b x At F,

MR(—T)
o - -A
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Soundness of )R,

Thm.: 98, is sound for M, (X) for « € {3, Bn, B, Bf, Bb, Bib, B<b, Bib}.
That is, if  -yng C is derivable, then M = C for all models
M= (D,@, & v)in M. (X) such that M = o.

Proof: (step cases)

b x At F,

MR(—T)
o - -A

Analogous to MKR(Contr)
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Soundness of K.

Thm.: 98, is sound for M, (X) for « € {3, Bn, B, Bf, Bb, Bib, B<b, Bib}.
That is, if  -yng C is derivable, then M = C for all models
M= (D,@, & v)in M. (X) such that M = o.

Proof: (step cases)

o--A dF A

MR(-F)
Oi-C

Suppose ¢ + C follows from ¢ - —-A and ¢ i+ A.
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Soundness of K.

Thm.: 98, is sound for M, (X) for « € {3, Bn, B, Bf, Bb, Bib, B<b, Bib}.
That is, if  -yng C is derivable, then M = C for all models
M= (D,@, & v)in M. (X) such that M = o.

Proof: (step cases)

o--A dF A

MR(-F)
Oi-C

Suppose ¢ + C follows from ¢ + —-A and ¢ + A. By induction,
any model in M, (X) of & would have to model both A and —A.
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Soundness of K.

Thm.: 98, is sound for M, (X) for « € {3, Bn, B, Bf, Bb, Bib, B<b, Bib}.
That is, if  -yng C is derivable, then M = C for all models
M= (D,@, & v)in M. (X) such that M = o.

Proof: (step cases)

o--A dF A

MR(-F)
Oi-C

Suppose ¢ + C follows from ¢ + —-A and ¢ + A. By induction,
any model in M, (X) of & would have to model both A and —A.
So, there is no such model of ® and we are done.
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Soundness of )R,

Thm.: 98, is sound for M, (X) for « € {3, Bn, B, Bf, Bb, Bib, B<b, Bib}.
That is, if  -yng C is derivable, then M = C for all models
M= (D,@, & v)in M. (X) such that M = o.

Proof: (step cases)

- A

‘ﬁﬁ(\/[L)
P+ AVB
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Soundness of )R,

Thm.: 98, is sound for M, (X) for « € {3, Bn, B, Bf, Bb, Bib, B<b, Bib}.
That is, if  -yng C is derivable, then M = C for all models
M= (D,@, & v)in M. (X) such that M = o.

Proof: (step cases)

- A

‘ﬁﬁ(\/[L)
P+ AVB

Suppose M € M, (X), M = é,and ¢ + (A v B) follows from
o = A.
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Soundness of K.

Thm.: 98, is sound for M, (X) for « € {3, Bn, B, Bf, Bb, Bib, B<b, Bib}.
That is, if  -yng C is derivable, then M = C for all models
M= (D,@, & v)in M. (X) such that M = o.

Proof: (step cases)

- A

‘ﬁﬁ(\/[L)
P+ AVB

Suppose M € M.(¥), M = b, and ¢ + (A Vv B) follows from
¢ - A. By induction, M = A and so M = (A Vv B).
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Soundness of )R,

Thm.: 98, is sound for M, (X) for « € {3, Bn, B, Bf, Bb, Bib, B<b, Bib}.
That is, if  -yng C is derivable, then M = C for all models
M= (D,@, & v)in M. (X) such that M = o.

Proof: (step cases)

oi-B

‘IU%(\/[R)
o AvVB
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Soundness of )R,

Thm.: 98, is sound for M, (X) for « € {3, Bn, B, Bf, Bb, Bib, B<b, Bib}.
That is, if  -yng C is derivable, then M = C for all models
M= (D,@, & v)in M. (X) such that M = o.

Proof: (step cases)

oi-B

‘IU%(\/[R)
o AvVB

Analogous to MR(VI})
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Soundness of K.

Thm.: 98, is sound for M, (X) for « € {3, Bn, B, Bf, Bb, Bib, B<b, Bib}.
That is, if  -yng C is derivable, then M = C for all models
M= (D,@, & v)in M. (X) such that M = o.

Proof: (step cases)

P-AVB ¢xAFC oxBi-C

MR(VE)
o C
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Soundness of K.

Thm.: 98, is sound for M, (X) for « € {3, Bn, B, Bf, Bb, Bib, B<b, Bib}.
That is, if  -yng C is derivable, then M = C for all models
M= (D,@, & v)in M. (X) such that M = o.

Proof: (step cases)

Oi-rAVB ¢xAFC ¢xBi-C
Oi-C

MR(VE)

Suppose ¢ - C follows from ¢ + (A v B), ® x A i~ C and
¢« Bt C.
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Soundness of K.

Thm.: 98, is sound for M, (X) for « € {3, Bn, B, Bf, Bb, Bib, B<b, Bib}.
That is, if  -yng C is derivable, then M = C for all models
M= (D,@, & v)in M. (X) such that M = o.

Proof: (step cases)

Oi-rAVB ¢xAFC ¢xBi-C
Oi-C

MR(VE)

Suppose ¢ - C follows from ¢ + (A v B), ® x A i~ C and
¢« Bt C. Let M € 91, (X) be a model of ¢.
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Soundness of K.

Thm.: 98, is sound for M, (X) for « € {3, Bn, B, Bf, Bb, Bib, B<b, Bib}.
That is, if  -yng C is derivable, then M = C for all models
M= (D,@, & v)in M. (X) such that M = o.

Proof: (step cases)

Oi-rAVB ¢xAFC ¢xBi-C
Oi-C

MR(VE)

Suppose ¢ - C follows from ¢ - (A v B), ¢« A + C and
¢« B C. Let M € 91,.(X) be a model of . By induction,
M E AV B.
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Soundness of K.

Thm.: 98, is sound for M, (X) for « € {3, Bn, B, Bf, Bb, Bib, B<b, Bib}.
That is, if  -yng C is derivable, then M = C for all models
M= (D,@, & v)in M. (X) such that M = o.

Proof: (step cases)

Oi-rAVB ¢xAFC ¢xBi-C
Oi-C

MR(VE)

Suppose ¢ - C follows from ¢ - (A v B), ¢« A + C and
¢« B C. Let M € 91,.(X) be a model of . By induction,
M= AVB. If M A, then by induction M = C since
dx At C.
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Soundness of K.

Thm.: 98, is sound for M, (X) for « € {3, Bn, B, Bf, Bb, Bib, B<b, Bib}.
That is, if  -yng C is derivable, then M = C for all models
M= (D,@, & v)in M. (X) such that M = o.

Proof: (step cases)

Oi-rAVB ¢xAFC ¢xBi-C
Oi-C

MR(VE)

Suppose ¢ - C follows from ¢ - (A v B), ¢« A + C and
¢« B C. Let M € 91,.(X) be a model of . By induction,
M= AVB. If M A, then by induction M = C since

¢ x A+ C. If M E B, then by induction M = C since

o x B I C.
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Soundness of K.

Thm.: 7R, is sound for M..(X) for « € {5, On, B¢, Bf, Bb, Bnb, 5<b, 5fb}.

That is, if  -yng C is derivable, then M = C for all models
M = (D,Q, &, v) in M, (X) such that M = o.

Proof: (step cases)

Oi-rAVB ¢xAFC ¢xBi-C
Oi-C

MR(VE)

Suppose ¢ - C follows from ¢ - (A v B), ¢« A + C and
¢« B C. Let M € 91,.(X) be a model of . By induction,
ME AVB. If M[E A, then by induction M = C since

¢ x A+ C. If M E B, then by induction M = C since

® x B + C. In either case, ¢ + C.
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Soundness of K.

Thm.: 98, is sound for M, (X) for « € {3, Bn, B, Bf, Bb, Bib, B<b, Bib}.
That is, if  -yng C is derivable, then M = C for all models
M= (D,@, & v)in M. (X) such that M = o.

Proof: (step cases) o - Gw, w new parameter
o+ NG

MA(IIT)"
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Soundness of K.

Thm.: 98, is sound for M, (X) for « € {3, Bn, B, Bf, Bb, Bib, B<b, Bib}.
That is, if  -yng C is derivable, then M = C for all models
M= (D,@, & v)in M. (X) such that M = o.

Proof: (step cases) o - Gw, w new parameter
o+ NG

MA(IIT)"

Suppose ¢ - (MN*G) follows from & = Gw where w,, is a fresh
parameter.
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Soundness of K.

Thm.: 98, is sound for M, (X) for « € {3, Bn, B, Bf, Bb, Bib, B<b, Bib}.
That is, if  -yng C is derivable, then M = C for all models
M= (D,@, & v)in M. (X) such that M = o.

Proof: (step cases) o - Gw, w new parameter
o+ NG

MA(IIT)"

Suppose ¢ - (MN*G) follows from & = Gw where w,, is a fresh
parameter. Let M = (D,Q, &, v) € M, (X) be a model of ¢.
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Soundness of K.

Thm.: 98, is sound for M, (X) for « € {3, Bn, B, Bf, Bb, Bib, B<b, Bib}.
That is, if  -yng C is derivable, then M = C for all models
M= (D,@, & v)in M. (X) such that M = o.

Proof: (step cases) o - Gw, w new parameter
o+ NG

MA(IIT)"

Suppose ¢ - (MN*G) follows from & = Gw where w,, is a fresh
parameter. Let M = (D,Q, &, v) € M, (X) be a model of ¢.
Assume M [~ M°YG.
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Soundness of K.

Thm.: 98, is sound for M, (X) for « € {3, Bn, B, Bf, Bb, Bib, B<b, Bib}.
That is, if  -yng C is derivable, then M = C for all models
M= (D,@, & v)in M. (X) such that M = o.

Proof: (step cases) o - Gw, w new parameter

MR ()™
¢ N°G

Suppose ¢ - (MN*G) follows from & = Gw where w,, is a fresh
parameter. Let M = (D,Q, &, v) € M, (X) be a model of ¢.
Assume M £ M*G. Then there must be some a € D,, such
that v(£(G)@a) =F.
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Soundness of K.

Thm.: 98, is sound for M, (X) for « € {3, Bn, B, Bf, Bb, Bib, B<b, Bib}.
That is, if  -yng C is derivable, then M = C for all models
M= (D,@, & v)in M. (X) such that M = o.

Proof: (step cases) o - Gw, w new parameter

MR ()™
¢ N°G

Suppose ¢ - (MN*G) follows from & = Gw where w,, is a fresh
parameter. Let M = (D,Q, &, v) € M, (X) be a model of ¢.
Assume M £ M*G. Then there must be some a € D,, such
that v(£(G)@a) = F. From &, one can define £’ such that
E'(w) =aand £,(A,) = E,(A,) if w does not occur in A.
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Soundness of K.

Thm.: 98, is sound for M, (X) for « € {3, Bn, B, Bf, Bb, Bib, B<b, Bib}.
That is, if  -yng C is derivable, then M = C for all models
M= (D,@, & v)in M. (X) such that M = o.

Proof: (step cases) o - Gw, w new parameter

MR ()™
¢ N°G

Suppose ¢ - (MN*G) follows from & = Gw where w,, is a fresh
parameter. Let M = (D,Q, &, v) € M, (X) be a model of ¢.
Assume M £ M*G. Then there must be some a € D,, such
that v(£(G)@a) = F. From &, one can define £’ such that
E'(w) =aand £ ,(A,) = E,(A,) if w does not occur in A. Let
M= (D,Q, &, v). One can check M’ € M, (X) using the fact
that M € M. (X).
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Soundness of K.

Thm.: 98, is sound for M, (X) for « € {3, Bn, B, Bf, Bb, Bib, B<b, Bib}.
That is, if  -yng C is derivable, then M = C for all models
M= (D,@, & v)in M. (X) such that M = o.

Proof: (step cases) o - Gw, w new parameter

MR ()™
¢ N°G

Suppose ¢ - (MN*G) follows from & = Gw where w,, is a fresh
parameter. Let M = (D, @, £, v) € M. (X) be a model of ¢.
Assume M £ M*G. Then there must be some a € D,, such
that v(£(G)@a) = F. From &, one can define £’ such that
E'(w) =aand £ ,(A,) = E,(A,) if w does not occur in A. Let
M= (D,Q, &, v). One can check M’ € M, (X) using the fact
that M € 91,.(X). Since M’ = ¢, by induction we have

M = Gw.
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Soundness of K.

Thm.: 98, is sound for M, (X) for « € {3, Bn, B, Bf, Bb, Bib, B<b, Bib}.
That is, if  -yng C is derivable, then M = C for all models
M= (D,@, & v)in M. (X) such that M = o.

Proof: (step cases) o - Gw, w new parameter

MR ()™
¢ N°G

Suppose ¢ - (MN*G) follows from & = Gw where w,, is a fresh
parameter. Let M = (D,Q, &, v) € M, (X) be a model of ¢.
Assume M £ M*G. Then there must be some a € D,, such
that v(£(G)@a) = F. From &, one can define £’ such that
E'(w) =aand £ ,(A,) = E,(A,) if w does not occur in A. Let
M= (D,Q, &, v). One can check M’ € M, (X) using the fact
that M € 91,.(X). Since M’ = ¢, by induction we have

M’ = Gw. This contradicts v(£/(G)@a) = v(E(G)@Qa) = F.
Thus, M = MN*G.
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Soundness of )R,

Thm.: 98, is sound for M, (X) for « € {3, Bn, B, Bf, Bb, Bib, B<b, Bib}.
That is, if  -yng C is derivable, then M = C for all models
M= (D,@, & v)in M. (X) such that M = o.

Proof: (step cases)

o NG

NA(IIE)
d - GA
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Soundness of K.

Thm.: 98, is sound for M, (X) for « € {3, Bn, B, Bf, Bb, Bib, B<b, Bib}.
That is, if  -yng C is derivable, then M = C for all models
M= (D,@, & v)in M. (X) such that M = o.

Proof: (step cases)

o NG

NA(IIE)
d - GA

Suppose Cis (GA) and ¢ i+ C follows from ¢ - (MN*G).
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Soundness of K.

Thm.: 98, is sound for M, (X) for « € {3, Bn, B, Bf, Bb, Bib, B<b, Bib}.
That is, if  -yng C is derivable, then M = C for all models
M= (D,@, & v)in M. (X) such that M = o.

Proof: (step cases)

o NG

NA(IIE)
d - GA

Suppose C is (GA) and ¢ t C follows from ¢ # (M“G). Let
M= (D,Q, & v) € M. (L) be amodel of P.
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Soundness of K.

Thm.: 98, is sound for M, (X) for « € {3, Bn, B, Bf, Bb, Bib, B<b, Bib}.
That is, if  -yng C is derivable, then M = C for all models
M= (D,@, & v)in M. (X) such that M = o.

Proof: (step cases)

o NG

NA(IIE)
d - GA

Suppose C is (GA) and ¢ t C follows from ¢ # (M“G). Let
M= (D,Q, & v) € M.(L) be amodel of ¢. By induction,
M = (M*G) and thus v(£(G))@Qa = T for every a € D,,.
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Soundness of K.

Thm.: 98, is sound for M, (X) for « € {3, Bn, B, Bf, Bb, Bib, B<b, Bib}.
That is, if  -yng C is derivable, then M = C for all models
M= (D,@, & v)in M. (X) such that M = o.

Proof: (step cases)

o NG

NA(IIE)
d - GA

Suppose C is (GA) and ¢ t C follows from ¢ # (M“G). Let
M= (D,Q, & v) € M.(L) be amodel of ¢. By induction,
M = (M“G) and thus v(£(G))@a = T for every a € D,,. In
particular, M = GA.

g.e.d.
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Soundness of K.

Thm.: 98, is sound for M, (X) for « € {3, Bn, B, Bf, Bb, Bib, B<b, Bib}.
That is, if  -yng C is derivable, then M = C for all models
M= (D,@, & v)in M. (X) such that M = o.

Proof: (step cases)

AZB oF A
o B

NR(n)

(In this case * contains property n)
Analogous to 91R(3) using property 7
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Soundness of K.

Thm.: 98, is sound for M, (X) for « € {3, Bn, B, Bf, Bb, Bib, B<b, Bib}.
That is, if  -yng C is derivable, then M = C for all models
M= (D,@, & v)in M, (X) such that M = o

Proof: (step cases)

® I VxoM =" N
® 1 (AxaeM) =% (Ax0.N)

MA(E)

(In this case * contains property &)

Let M = (D, @, &,v) € M,(X) be a model of . By induction,
we have M = VX, .M = =P N. So, for any assignment ¢ and
aE€EDy, M=, xy M= ~% N. Since property g holds, by a
previous Lemma we have &, ,/x (M) = &, 12/x](N). By
property &, £,(AXqM) = E,(AX,.N) and thus M = C by a
previous Lemma.
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Soundness of K.

Thm.: 98, is sound for M, (X) for « € {3, Bn, B, Bf, Bb, Bib, B<b, Bib}.
That is, if  -yng C is derivable, then M = C for all models
M= (D,@, & v)in M. (X) such that M = o.

Proof: (step cases)

® I Vx,..Gx =" Hx
G ="*H

MA()

(In this case * contains property f)
Let M € 901,.(X) be a model of ®. By induction, we know

M = VX,.GX =% HX. Note that property q holds for M since
M e 9, (X). By a previous theorem, we must have

M E (G =" H).
g.e.d.
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Soundness of K.

Thm.: 98, is sound for M, (X) for « € {3, Bn, B, Bf, Bb, Bib, B<b, Bib}.
That is, if  -yng C is derivable, then M = C for all models
M= (D,@, & v)in M. (X) such that M = o.

Proof: (step cases)

PxAtF-FB oxBi A

MNR(b)
oH-A="B

(In this case * contains property b)

Let M = (D, @, &,v) € M, (X) be amodel of d. If M = A,
then M & B by induction. If M = B, then M = A by
induction. These facts imply v(£(A)) = v(£(B)). By a previous
lemma, we have M = (A < B). By a previous theorem, we
must have M = (A =° B).

g.e.d.
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Completeness of 1R,

Thm.: Let ® be a sufficiently X-pure set of sentences, A be a

sentence, and x € {3, 8n, B¢, 31, Bb, Bnb, 5<b, Bib}. If A is valid in
all models M € 9. (¥) that satisfy @, then ® gz A.
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Completeness of 91R.

Thm.: Let ® be a sufficiently X-pure set of sentences, A be a

sentence, and x € {3, 8n, B¢, 31, Bb, Bnb, 5<b, Bib}. If A is valid in
all models M € 9. (¥) that satisfy @, then ® gz A.

Proof:

How can we easily prove this?
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Completeness (of J1R.)

Completeness can be proven rather easily for propositional
logic calculi.
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logic calculi.

For first-order and especially higher-order logic completeness
proofs become increasingly difficult and technical.

Here we will introduce a strong proof tool that uniformly
supports completeness proofs (and many other things):
abstract consistency.
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proofs become increasingly difficult and technical.
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HOL Test Problems

Recommendation:

if you develop provers/calculi for simple type theory then
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HOL Test Problems

Recommendation:
if you develop provers/calculi for simple type theory then

first empirically analyse soundness and completeness wrt to
our model classes

with the help of examples (published in [TPHOLs-05])
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HOL Test Problems

Recommendation:
if you develop provers/calculi for simple type theory then

first empirically analyse soundness and completeness wrt to
our model classes

with the help of examples (published in [TPHOLs-05])
before you formally analyse them

with the help of the abstract consistency proof method
(published in [JsL-04] and [Unpublished-04])
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HOL Test Problems (from before)

VXWX Vy &y V X

valid for all model classes
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HOL Test Problems (from before)

VXYW XVY &Y VX
VXYY XVY =Y VX

validity requires b
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HOL Test Problems (from before)

VXYW XVY &Y VX
VXYY XVY =Y VX
AXAY X VY = AXAY.Y V X

validity requires b and &

(©Benzmiiller, 2007 SEMHOL[3] - p.104



HOL Test Problems (from before)

Mg (X)
/|
3 n YXVY.X VY < Y Vv X
/ v "\ VXYY X VY =Y VX
Mse (X) f My, () Mgp () AXAY. X VY = AXAY.Y Vv X
/ AN 6 / V = AXAY.Y Vv X
§ §

validity requires b and f
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Other HOL Test Problems: /3

yd | = is equivalence relation
¢ " VXX 2= X
v b* vxo&aYoz-X;YDY;X

YXa, Yo, Za(X=YAY =Z) DX =7Z
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Other HOL Test Problems: /3

/| = is equivalence relation
‘ f VXX = X
/ v "\ VXe, YaX ZY DY £ X
ize () f Mgy (T) Mo (E) WX, Yo, ZaX ZYAY 22) 5 X 2 Z

= is congruence relation
¥Xa, Ya,Faa:X = Y D (FX) = (FY)
YXa, Ya, Poa:X = Y A (PX) D (PY)
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Other HOL Test Problems: /3

/ | = is equivalence relation
S/ \ oK = X
/ v "\ VX, YaX ZY O Y £ X
Mge (X) f My, () YXa, Yo, Zad( X ZEYAY Z2Z) DX 2 Z
3 / ) b § / = is congruence relation

|

y
v ¥Xa, Ya, FaaX 2= Y D (FX) 2 (FY)
YXa, Yo, PoarX = Y A (PX) D (PY)

13 Trivial directions of Boolean and functional exten-

|
\ ,
b * v / sionality
VAo, Bo-A =B D (A < B)

VF 50, Gga-F = G D (VXa.FX = GX)
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Other HOL Test Problems: b $

Non-trivial direction of Boolean extensionality

VAo, Bo.(A < B) DA =B
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Other HOL Test Problems: f g

/ | Non-trivial direct. of functional extensionality
// n \ VF5a, Gaa-(¥Xa-FX = GX) DF = G
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Other HOL Test Problems: 7

Example requiring property 7
(pO(LL) ()‘bebbx)) ) (p f)
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Other HOL Test Problems: ¢

Example requiring property & (and ')

(VXea(FLeX) = X) A Po(ii) (AXeX)
D p(AX,.fX)
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Other HOL Test Problems: f g

Example requiring property { (and (!)
(VX (FLeX) = X) A Po(i0) (AXeX)
D (pf)
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Other HOL Test Problems: b

¢ e 7|7 \ Examples requiring property b
/ v bA (poo ao) N (P bO) = (P (a A b))

—(a=-a) (in particular ~(a = —a))

(heo((hT) = (hL))) = (hL)
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Abstract Consistency
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Semantics - Calculi - Abstract Consistency

Semantics:
Model Classes (Extensionality)

(©Benzmiiller, 2007 SEMHOL[4] - p.114



Semantics - Calculi - Abstract Consistency

Semantics: Reference Calculi:
Model Classes (Extensionality) ND (and others)
/0.-| / | \
/5 ! \b ni¢) /TR0 ()
Y A s Y \
. IR
\ 774N R \ 774N Y
T4 N | -
\ noo 3 S MA(E)
N 77 N\774
Mapo (X)
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Semantics - Calculi - Abstract Consistency

Semantics: Reference Calculi:
Model Classes (Extensionality) ND (and others)
o POANRN
/5 n \b nae) /TR (o)
S A y’s \
R - . [T
7|7 g/ \b E/ 7|7 m;() m(g)/ \m(b) m(&)/ |
. 2\ MA(b) &)
\ 774N N \ 774N Y
. .. IRl
| -7 N | ‘
. 13 MA(E)
\ I MA(b) NA(n)
N7V N\774
Migie (T)

Abstract Consistency / Unifying Principle:
Extensions of Smullyan-63 and Andrews-71

7N
£ /v "\
\4
§
| / N /|
u \ % V%

n V V"1
Y '\ \/
5

pd
\Vb J}/v&
77
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Abstract Consistency: History

Technique was developed for first-order logic by Jaakko
Hintikka and Raymond Smullyan [Hintikka55,Smullyan63,Smullyan6s]. It
Is well explained in Fitting’s textbook [Fitting9e.
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Model Existence Theorem before presented by Henkin.
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Abstract Consistency: History

Technique was developed for first-order logic by Jaakko
Hintikka and Raymond Smullyan [Hintikka55,Smullyan63,Smullyan6s]. It
Is well explained in Fitting’s textbook [Fitting9e.

Model Existence Theorem before presented by Henkin.

The technique has been (partly) extended to higher-order logic
by Peter Andrews’ in [Andrews71]; he only achieves a
generalization for a rather weak notion od semantics
(corresponding to our Mig(X)).
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Abstract Consistency: History

Technique was developed for first-order logic by Jaakko
Hintikka and Raymond Smullyan [Hintikka55,Smullyan63,Smullyan6s]. It
Is well explained in Fitting’s textbook [Fitting9e.

Model Existence Theorem before presented by Henkin.

The technique has been (partly) extended to higher-order logic
by Peter Andrews’ in [Andrews71]; he only achieves a
generalization for a rather weak notion od semantics
(corresponding to our Mig(X)).

The technique has been extended to our landscape of HOL
model classes in [Chris-PhD-99,Chad-PhD-04,JSL-04].
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Abstract Consistency: Idea

A model existence theorem for a logical system (i.e., a logical
language L together with a consequence relation =) is a
theorem of the form:
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Abstract Consistency: Idea

A model existence theorem for a logical system (i.e., a logical
language L together with a consequence relation =) is a
theorem of the form:

If a set of sentences & of L is a member of an
(saturated) abstract consistency class I', then there
exists a model for ®.
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Abstract Consistency: Idea

Employing the model existence theorem we can prove
completeness of a calculus C (i.e., the derivability rel. -¢) by
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Abstract Consistency: Idea

Employing the model existence theorem we can prove
completeness of a calculus C (i.e., the derivability rel. ¢) by

proving that the class I of sets of sentences ¢ that are
C-consistent (i.e., cannot be refuted in C: {®|® t/c F,})
IS an (saturated) abstract consistency class.

Gller, 2007
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bstract Consistency: Idea

Employing the model existence theorem we can prove
completeness of a calculus C (i.e., the derivability rel. -¢) by

proving that the class I' of sets of sentences ¢ that are
C-consistent (i.e., cannot be refuted in C: {®|® t/c F,})
IS an (saturated) abstract consistency class.

Why does this work?

The model existence theorem tells us that C-consistent sets
of sentences are satisfiable.

Now we assume that a sentence A is valid, so —A does not
have a model and is therefore C-inconsistent.

Hence, —A is refutable in C.
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Abstract Consistency: Idea

Employing the model existence theorem we can prove
completeness of a calculus C (i.e., the derivability rel. -¢) by

proving that the class I' of sets of sentences ¢ that are
C-consistent (i.e., cannot be refuted in C: {®|® t/c F,})
IS an (saturated) abstract consistency class.

Why does this work?

The model existence theorem tells us that C-consistent sets
of sentences are satisfiable.

Now we assume that a sentence A is valid, so —A does not
have a model and is therefore C-inconsistent.

Hence, —A is refutable in C.
This shows refutation completeness of C.

For many calculi C, this also shows A is provable, thus
establishing completeness of C.
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Def.: Closed under Subsets / Compact g

Defn.: Let C be a class of sets then C is called closed under subset if
for all sets S and T it holds that
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Def.: Closed under Subsets / Compact g

Defn.: Let C be a class of sets then C is called closed under subset if
for all sets S and T it holds that

fromS CTandT e Citfollows that S € C.
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Def.: Closed under Subsets / Compact g

Defn.: Let C be a class of sets then C is called closed under subset if
for all sets S and T it holds that

fromS CTandT e Citfollows that S € C.

Defn.: Let C be a class of sets. C is called compact or of finite
character if and only if for every set S holds:
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Def.: Closed under Subsets / Compact g

Defn.: Let C be a class of sets then C is called closed under subset if
for all sets S and T it holds that

fromS CTandT e Citfollows that S € C.

Defn.: Let C be a class of sets. C is called compact or of finite
character if and only if for every set S holds:

S € Cif and only if every finite subset of S is a member of C.
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Ex.: Closed under Subsets / Compact

not closed under subsets: {{—~(AV B),—-A,C},{-A}}
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Ex.: Closed under Subsets / Compact

not closed under subsets: {{—~(AV B),—-A,C},{-A}}

closed under subsets: {{-(AV B),-A,C},{=(AV
B)v _'A}> {_'(A \ B)? C}v {_'A7 C}v {_'(A N B>}7 {_'A}v {C}7 {}}
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Ex.: Closed under Subsets / Compact

not closed under subsets: {{—~(AV B),—-A,C},{-A}}

closed under subsets: {{-(AV B),-A,C},{=(AV
B)v _'A}7 {_'(A \ B)? C}v {_'A7 C}v {_'(A N B)}7 {_'A}v {C}> {}}

We define two classes of sets
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Ex.: Closed under Subsets / Compact

not closed under subsets: {{—~(AV B),—-A,C},{-A}}

closed under subsets: {{-(AV B),-A,C},{=(AV
B)v _'A}7 {_'(A \ B)? C}v {_'A7 C}v {_'(A N B)}7 {_'A}v {C}> {}}

We define two classes of sets
C:={¢ | pis finite subset of N }
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Ex.: Closed under Subsets / Compact

not closed under subsets: {{—~(AV B),—-A,C},{-A}}

closed under subsets: {{-(AV B),-A,C},{=(AV
B), "ALA~(AVB), C}, {=A, C;, {=(AV B)}, {~A}{Ch, {}}
We define two classes of sets

C:={¢ | pis finite subset of N }

D :=2N
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Ex.: Closed under Subsets / Compact

not closed under subsets: {{—~(AV B),—-A,C},{-A}}
closed under subsets: {{-(AV B),-A,C},{=(AV
B)v _'A}7 {_'(A \ B)? C}v {_'A7 C}v {_'(A \ B>}> {_'A}v {C}> {}}

We define two classes of sets
C:={¢ | pis finite subset of N }
D :=2N
C is closed under subsets but not compact.

(©Benzmiiller, 2007
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Ex.: Closed under Subsets / Compact

not closed under subsets: {{—~(AV B),—-A,C},{-A}}
closed under subsets: {{-(AV B),-A,C},{=(AV
B), ~A}{=(AVB),C}L{-A C}{~(AVB)},{-A}{C} {}}
We define two classes of sets

C:={¢ | pis finite subset of N }

D.=2N

C is closed under subsets but not compact.

D is closed under subsets and compact.
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Closed under Subsets / Compact

Lemma:

If C is compact then C is closed under subsets.
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Closed under Subsets / Compact

Lemma:
If C is compact then C is closed under subsets.

Proof:
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Closed under Subsets / Compact

Lemma:

If C is compact then C is closed under subsets.
Proof:

LletT e CandS C T.
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Closed under Subsets / Compact

Lemma:
If C is compact then C is closed under subsets.
Proof:

let T e Cand S C T.
We have to show that S € C.
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Closed under Subsets / Compact

Lemma:
If C is compact then C is closed under subsets.
Proof:

letTeCandS CT.
We have to show that S € C.
Every finite subset A of S is also a finite subset of T.
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Closed under Subsets / Compact

Lemma:
If C is compact then C is closed under subsets.

Proof:

letTeCandS CT.

We have to show that S € C.

Every finite subset A of S is also a finite subset of T.
Since Cis compact and T € C we get that all A € C.
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Closed under Subsets / Compact

Lemma:
If C is compact then C is closed under subsets.

Proof:

LetT € CandS C T.

We have to show that S € C.

Every finite subset A of S is also a finite subset of T.
Since Cis compact and T € C we get that all A € C.
Thus, S € C by compactness.
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Basic Abstract Consistency Properties |

Accge

Qlccﬁf

Benzmuiller, 2007
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Basic Abstract Consistency Properties

Defn.: Let I be a class of sets of > -sentences. We define (where
bely,a,peT, A BEeccw(X), F € cwif, o,(X) are arbitrary):
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Basic Abstract Consistency Properties

Defn.: Let I be a class of sets of > -sentences. We define (where
bely,a,peT, A BEeccw(X), F € cwif, o,(X) are arbitrary):

Ve If A is atomic, then A ¢ ® or —A ¢ o.
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Basic Abstract Consistency Properties

Defn.: Let I be a class of sets of > -sentences. We define (where
bely,a,peT, A BEeccw(X), F € cwif, o,(X) are arbitrary):

Ve If A is atomic, then A ¢ ® or —A ¢ o.
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Basic Abstract Consistency Properties

Defn.: Let I be a class of sets of > -sentences. We define (where
bely,a,peT, A BEeccw(X), F € cwif, o,(X) are arbitrary):

Ve If A is atomic, then A ¢ ® or —A ¢ o.

Vo f—-——Acd, thendx A € ls.

Vs IfA=gBand A € ¢,then ® «B c Is.

Vo FAVBed, thendxAclsordxB cly.

Vi If=(AVB)ed thendx-Ax-BEc€ls.

Vo IfN°F € &, then & « FW ¢ [y for each W € cwff, (X).
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Defn.: Let I be a class of sets of > -sentences. We define (where
bely,a,peT, A BEeccw(X), F € cwif, o,(X) are arbitrary):

Ve If A is atomic, then A ¢ ® or —A ¢ o.

Vo f—-——Acd, thendx A € ls.

Vs IfA=gBand A € ¢,then ® «B c Is.

Vo FAVBed, thendxAclsordxB cly.

Vi If=(AVB)ed thendx-Ax-BEc€ls.

Vo IfN°F € &, then & « FW ¢ [y for each W € cwff, (X).

V5 I =M°F € ¢, then ® « =(Fw) € [y for any parameter
W, € 2, Which does not occur in any sentence of .
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Basic Abstract Consistency Properties |

Defn.: Let [ be a class of sets of >-sentences. We define (where
bely,a,peT, A BEeccw(X), F € cwif, o,(X) are arbitrary):

Ve If A is atomic, then A ¢ ® or —A ¢ o.

Vo f—-——Acd, thendx A € ls.

Vs IfA=gBand A € ¢,then ® «B c Is.

Vo FAVBed, thendxAclsordxB cly.

Vi If=(AVB)ed thendx-Ax-BEc€ls.

Vo IfN°F € &, then & « FW ¢ [y for each W € cwff, (X).

V5 I =M°F € ¢, then ® « =(Fw) € [y for any parameter
w, € 2, Which does not occur in any sentence of ¢.

(These properties are going back to Hintikka, Smullyan, and
Andrews)
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Defn.: Let > be a signature and [y be a class of sets of > -sentences
that is closed under subsets.
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Abstract Consistency Class 2lcc;

Defn.: Let > be a signature and [y be a class of sets of > -sentences
that is closed under subsets.

If Ve, V., Vi, W, Vi, Y and V3 are valid for [, then [x is called
an abstract consistency class for >-models.
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Abstract Consistency Class 2lcc;

Defn.: Let > be a signature and [y be a class of sets of > -sentences
that is closed under subsets.

If Ve, V., Vi, W, Vi, Y and V3 are valid for [, then [x is called
an abstract consistency class for >-models.

We will denote the collection of abstract consistency classes
by 2lccg.
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Basic Abstract Consistency Properties

Accge

Q(ccﬁ,c

(©Benzmiiller, 2007
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Properties for 2lccg

If A is atomic, then A ¢ & or
—A ¢ o],
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Basic Abstract Consistency Properties

Q[c% Properties for 2ccg

\ \VA If A is atomic, then A ¢ ® or
? A ¢ D
/ V \ If -—A € &, then P+ A € Iy

Accge Acegy,
| N
f)
? : :
\ A
Acegs Accsep _
\ | . e
SN774
Acessp
full
\/
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Basic Abstract Consistency Properties

Q[c% Properties for 2ccg

\ If A is atomic, then A ¢ & or
? ~A ¢ o.
/ v \ If ——A € &, then & x A ¢

Accge Aceay, [s.
| A If A=3B and A € o, then
? ? ' dxBcls.
Y N
Acegs Accsep _
\ | . e
ENE774
Acessp

full
\j
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Basic Abstract Consistency Properties

Q[c% Properties for 2ccg

\ If A is atomic, then A ¢ & or
? ~A ¢ o.
/ v \ If ——A € &, then & x A ¢

Accge Aceay, [s.
| A If A=3B and A € o, then
? ? ' dxBcls.
v ? 3 f AVB € &, then %A € &
ordxB € [y.
Acegs Accsep _
\ | . S
ENE774
Acessp
full
\j
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Basic Abstract Consistency Properties

Q[c% Properties for 2ccg

\ If A is atomic, then A ¢ & or
? ~A ¢ o.
/ v \ If ——A € &, then & x A ¢

Accge Aceay, [s.
| A If A=3B and A € o, then
’ ? : bxBel.
v ? ) If AVB € &, then dx A € ¢
3 o ordxB € [y.
cC CChep !
Gl o If =(A Vv B) € o, then ® x
\ | / . ~Ax-Be€k.
I? H
777
QlCCgf[,
full
v
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Basic Abstract Consistency Properties

Q[c% Properties for 2ccg

\ If A is atomic, then A ¢ & or
? ~A ¢ o.
/ v \ If ——A € &, then & x A ¢

Accge Qlc%? [s.
| A If A=3B and A € o, then
v ? ) If AVB € &, then dxA € [
3 o ordxB € [y.
cC CChep !
Gl o If =(A Vv B) € o, then ® x
\ | . ~Ax-Be€k.
? H
? / If IOF € &, then & « FW ¢
\ v ;- for each W € cwif,, (X).
QlCCgf[,
full
\/
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Basic Abstract Consistency Properties

Q[c% Properties for 2ccg

\ If A is atomic, then A ¢ & or
? ~A ¢ o.
/ v \ If ——A € &, then & x A ¢

Accge Aceay, [s.
| A If A=3B and A € o, then
’ ? : bxBel.
v ? ) fAVB € &, then d*xA € Ix
2 ordxB € [y.
cc CCaeh :
Gl o If =(A Vv B) € o, then ® x
\ | . ~Ax-Be€k.
? H
? / If IOF € &, then & « FW ¢
\ v ;- for each W € cwif,, (X).
QlCCgf[, If —MN“F € o, then ¢ x
—(Fw) € [¢ for any parame-
full ter wo, € 2, Which does not
\j

occur in any sentence of .
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Extens. Abstract Consistency Properties %

Let - be a class of sets of > -sentences. We define (where ¢ € Iy,
a,3€T,A B e cnffh,(X), G,H, (AXpM), (AX,.N) € ewff,,_5(X)
are arbitrary):
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Extens. Abstract Consistency Properties __

Let - be a class of sets of > -sentences. We define (where ¢ € Iy,
a,3€T,A B e cnffh,(X), G,H, (AXpM), (AX,.N) € ewff,,_5(X)
are arbitrary):

Vo F-(A="B)cd,thendxAx-Beclrordx-AxBcls.
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Extens. Abstract Consistency Properties %

Let - be a class of sets of > -sentences. We define (where ¢ € Iy,
a,3€T,A B e cnffh,(X), G,H, (AXpM), (AX,.N) € ewff,,_5(X)
are arbitrary):

Vo F-(A="B)cd,thendxAx-Beclrordx-AxBcls.
V, fAZBandA c o, thend«Bely.
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Extens. Abstract Consistency Properties %

Let - be a class of sets of > -sentences. We define (where ¢ € Iy,
a,3€T,A B e cnffh,(X), G,H, (AXpM), (AX,.N) € ewff,,_5(X)
are arbitrary):

Vo F-(A="B)cd,thendxAx-Beclrordx-AxBcls.
V, fAZBandA c o, thend«Bely.

Ve I =(AX0M =277 AX,.N) € &, then
® * =(jw/X]M =" [w/X|N) € [+ for any parameter w,, € ¥,
which does not occur in any sentence of ©.
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Extens. Abstract Consistency Properties %

Let - be a class of sets of > -sentences. We define (where ¢ € Iy,
a,3€T,A B e cnffh,(X), G,H, (AXpM), (AX,.N) € ewff,,_5(X)
are arbitrary):

Vo F-(A="B)cd,thendxAx-Beclrordx-AxBcls.
V, IfA=ZBandA €, thendx«B € l;.
Ve I =(AX0M =277 AX,.N) € &, then

® * =(jw/X]M =" [w/X|N) € [+ for any parameter w,, € ¥,
which does not occur in any sentence of ©.

Vi If=(G =*"F H) € ¢, then ® « —(Gw =" Hw) € Iy for any
parameter w, € X, which does not occur in any sentence of o.
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Extens. Abstract Consistency Properties %

Let - be a class of sets of > -sentences. We define (where ¢ € Iy,
a,3€T,A B e cnffh,(X), G,H, (AXpM), (AX,.N) € ewff,,_5(X)
are arbitrary):

Vo F-(A="B)cd,thendxAx-Beclrordx-AxBcls.
V, IfA=ZBandA €, thendx«B € l;.

Ve I =(AX0M =277 AX,.N) € &, then
® * =(jw/X]M =" [w/X|N) € [+ for any parameter w,, € ¥,
which does not occur in any sentence of ©.

Vi If=(G =*"F H) € ¢, then ® « —(Gw =" Hw) € Iy for any
parameter w, € X, which does not occur in any sentence of o.

(These properties are new in [Chris-PhD-99,Chad-PhD-04,JSL-04])
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Extens. Abstract Consistency Properties __

Basic AC Properties for 2Accg

SN

£ /v T\

Accge ? Acegy, Accgp

N
| ? - Vb ? ¢ |
? 2 If -(A =° B) € ®, then ¢
v \ i v Ax—B € [y orox—AxB € I5.

Acegs Accsep ? Acegnp

N l/?/
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Acessp

full
\
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Extens. Abstract Consistency Properties __

Basic AC Properties for 2lccg

e O\

Accge ?

|
s

Q(ccﬁ,c

Extens. AC Properties
\VA If -(A =° B) € ¢, then ¢
Ax—B € Fordx—AxB ¢ .

VvV, IfAZ BandA € o, then
bxBcls.
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Extens. Abstract Consistency Properties __

Q[CCg Basic AC Properties for 2lccg
Accge Acegy,
| v ~
3 .
?
" \VA If -(A =° B) € ¢, then ¢
v * Ax—B € [y or®ox—AxB € I5.
2ecsy Rlecaey If A Z Band A € ¢, then

\ | v dxB el
V;
? ? ¢ [ —=(XeeM =P
& v / AXq.N) = ®, then

&« —([w/X]M =" [w/X|N) €
[ for any new w,, € X.

Acessp
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Extens. Abstract Consistency Properties __

Basic AC Properties for 2lccg
/ | \
/ ? & ?

QlccBg Acegy,
N
E( \VA If -(A =° B) € ¢, then ¢
v * Ax—B € [y or®ox—AxB € I5.
Rlecsy Rlecgeo f A2 Band A € o, then

bxBcls.

| ) e
? ? | I —=(A\Xa.M o
& v AXq-N) S o, then

N

&« —([w/X]M =" [w/X|N) €

AAecore [ for any new w,, € X.
ful It ~(G =~ H) € o, then
\ o x =(Gw =P Hw) € [z for

S%(Y) any new wy € 2 ,.
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Extens. Abstract Consistency Properties __

Basic AC Properties for 2lccg

</ % N

/ V N\
2[cc55 Qlcc[gn

v
v v/ | |
% N % I -(A =° B) € &, then ® «
v * v Ax—B € [y or »x—AxB € [5.

Qlccm Qlcc@g[, \Y%:

IfA@BandAecb,then

\ | “ bxBcls.
\ _
\ { I —(AXaM =
X\ v / MXa.N) € @&, then
o &« —([w/X]M =" [w/X|N) €
[ for any new w,, € X.

full If ~(G =*"F H) € &, then
o x =(Gw =P Hw) € [z for
S%(Y) any new wy € 2 ,.
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Abstract Consistency Class 2lcc; §

Defn.: (Contd.) Let X be a signature and [s be a class of sets of
> -sentences that is closed under subsets.
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Abstract Consistency Class 2lcc;

Defn.: (Contd.) Let X be a signature and [s be a class of sets of
> -sentences that is closed under subsets.

If Ve, V., Vi, W, Vi, Y and V3 are valid for [, then [x is called
an abstract consistency class for >-models.
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Defn.: (Contd.) Let X be a signature and [s be a class of sets of
> -sentences that is closed under subsets.

If Ve, V., Vi, W, Vi, Y and V3 are valid for [, then [x is called
an abstract consistency class for >-models.

We will denote the collection of abstract consistency classes
by 2lccg.
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Abstract Consistency Class 2lcc;

Defn.: (Contd.) Let ¥ be a signature and [x be a class of sets of
> -sentences that is closed under subsets.

If Ve, V., Vi, W, Vi, Y and V3 are valid for [, then [x is called
an abstract consistency class for >-models.

We will denote the collection of abstract consistency classes
by 2lccg.

Similarly, we introduce the following collections of specialized
abstract consistency classes (with primitive equality):

ccg,, Accge, Accgy, Acegy, Accgyp, 2ccgep, Acegsp, where we
indicate by indices which additional properties from

{Vi, Ve, Vi, Vi | are required.
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Ex.: Abstract Consistency Class

not an abstract consistency class:

H(AVB), AL {~(AVB)}, {-A} {1}

(©Benzmiiller, 2007 SEMHOL[4] - p.128



Ex.: Abstract Consistency Class

not an abstract consistency class:
{{~(AVB),=A}, {=(AVB)},{-A}, {}}

still not:
{{=(AVB),=A, =B}, {=(AVB),-A}, {=(AVB)},{-A},{}}
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Ex.: Abstract Consistency Class

not an abstract consistency class:
{{~(AVB),=A}, {=(AVB)},{-A}, {}}

still not:
{{=(AVB),=A, =B}, {=(AVB),-A}, {=(AVB)},{-A},{}}

how about this one:
[ ={{-(AVB),-A,-B},{=~(AVB),-A},{=(AV
B)v _'B}> {_'Av _'B}7 {_'(A \ B)}v {_'A}7 {_'B}v {}}



Ex.: Abstract Consistency Class

not an abstract consistency class:
{{~(AVB),=A}, {=(AVB)},{-A}, {}}

still not:
{{=(AVB),=A, =B}, {=(AVB),-A}, {=(AVB)},{-A},{}}

how about this one:

.= {{=(AVvB),-A,-B},{-(AVB),-A}, {=(AV
B)v _'B}7 {_'Av _'B}7 {_'(A \% B)}v {_'A}7 {_'B}v {}}

and how about this:

[o:=1T

PecliNAECcPAB=3, ANBAAN(®P*xB) ¢l —
[i11 := close-under-subsets([; « (¢ x B))

[ =T
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Rem.: Possible Generalization

The work presented here is based on the choice of the primitive
logical connectives —, Vv and 1.
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Rem.: Possible Generalization

The work presented here is based on the choice of the primitive
logical connectives —, Vv and 1*. A means to generalize the
framework over the concrete choice of logical primitives is provided
by the uniform notation approach as, for instance, given in [Fitting96].
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Rem.: Possible Generalization

The work presented here is based on the choice of the primitive
logical connectives —, Vv and 1*. A means to generalize the
framework over the concrete choice of logical primitives is provided
by the uniform notation approach as, for instance, given in [Fitting96].
This can be done in straightforward manner: V, becomes an
a-property, W, becomes a g-property, &, becomes a ~-property,
and V5 becomes a J-property.
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Rem.: Possible Generalization

The work presented here is based on the choice of the primitive
logical connectives —, Vv and 1*. A means to generalize the
framework over the concrete choice of logical primitives is provided
by the uniform notation approach as, for instance, given in [Fitting96].
This can be done in straightforward manner: V, becomes an
a-property, W, becomes a g-property, &, becomes a ~-property,
and V5 becomes a J-property.  Thus they will have the following
form:
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Rem.: Possible Generalization

The work presented here is based on the choice of the primitive
logical connectives —, Vv and 1*. A means to generalize the
framework over the concrete choice of logical primitives is provided
by the uniform notation approach as, for instance, given in [Fitting96].
This can be done in straightforward manner: V, becomes an
a-property, W, becomes a g-property, &, becomes a ~-property,
and V5 becomes a J-property.  Thus they will have the following
form:

a-case If € ¢, then & x a1 x ar € [5.
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Rem.: Possible Generalization

The work presented here is based on the choice of the primitive
logical connectives —, Vv and 1*. A means to generalize the
framework over the concrete choice of logical primitives is provided
by the uniform notation approach as, for instance, given in [Fitting96].
This can be done in straightforward manner: V, becomes an
a-property, W, becomes a g-property, &, becomes a ~-property,
and V5 becomes a J-property.  Thus they will have the following
form:

a-case If € ¢, then & x a1 x ar € [5.
p-case If 0 € &, then dx 31 €l ord « 3 € Iy.
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Rem.: Possible Generalization

The work presented here is based on the choice of the primitive
logical connectives —, Vv and 1*. A means to generalize the
framework over the concrete choice of logical primitives is provided
by the uniform notation approach as, for instance, given in [Fitting96].
This can be done in straightforward manner: V, becomes an
a-property, W, becomes a g-property, &, becomes a ~-property,
and V5 becomes a J-property.  Thus they will have the following
form:

a-case If € ¢, then & x a1 x ar € [5.
p-case If 0 € &, then dx 31 €l ord « 3 € Iy.
v-case If v € &, then ® xyW € [y for each W € cwiff, (X).
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Rem.: Possible Generalization

The work presented here is based on the choice of the primitive
logical connectives —, Vv and 1*. A means to generalize the
framework over the concrete choice of logical primitives is provided
by the uniform notation approach as, for instance, given in [Fitting96].
This can be done in straightforward manner: V, becomes an
a-property, W, becomes a g-property, &, becomes a ~-property,
and V5 becomes a J-property.  Thus they will have the following
form:

a-case If € ¢, then & x a1 x ar € [5.
p-case If 0 € &, then dx 31 €l ord « 3 € Iy.
v-case If v € &, then ® xyW € [y for each W € cwiff, (X).

o-case If 6 € &, then ¢ x dw € [y for any parameter w, € X~ which
does not occur in any sentence of o.
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Def.: Sufficiently > -Pure

We introduce a technical side-condition that ensures that we
always have enough witness constants.
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Def.: Sufficiently > -Pure

We introduce a technical side-condition that ensures that we
always have enough witness constants.

Let X be a signature and ¢ be a set of 2 -sentences. ¢ is
called sufficiently >-pure if for each type « there is a set
P. C ¥, of parameters with equal cardinality to wff, (%),
such that the elements of P, do not occur in the
sentences of ¢.
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Def.: Sufficiently > -Pure

We introduce a technical side-condition that ensures that we
always have enough witness constants.

Let X be a signature and ¢ be a set of 2 -sentences. ¢ is
called sufficiently >-pure if for each type « there is a set
P. C ¥, of parameters with equal cardinality to wff, (%),
such that the elements of P, do not occur in the
sentences of ¢.

This can be obtained in practice by enriching the signature with
spurious parameters.

(©Benzmiiller, 2007
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Saturation

Defn.: Consider the following property (where ® € [y, A € cwffy(X)):
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Saturation

Defn.: Consider the following property (where ® € [y, A € cwffy(X)):
Vit Elther ® x A e[y or ® x —A € [s.
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Saturation

Defn.: Consider the following property (where ® € [y, A € cwffy(X)):
Vit Elther ® x A e[y or ® x —A € [s.

We call an abstract consistency class [y saturated if Vi, holds
for all A.
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Ex.: Saturated

consider I (and I'*) from before:
{{-(AVvB),-A,-B},{=(AVB),-A}, {=(AV
B)v _'B}> {_'Av _'B}7 {_'(A \% B)}v {_'A}7 {_'B}v {}}
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Ex.: Saturated

consider I (and I'*) from before:
{{-(AVvB),-A,-B},{=(AVB),-A}, {=(AV
B)v _'B}7 {_'Av _'B}7 {_'(A \% B)}v {_'A}7 {_'B}v {}}

[ (and ") is not saturated: for instance, it does not provide
information on the formulas (—A Vv B) V A and N°(AX.X)
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Def.: Saturated Extension

Def.: (Saturated Extension)
Let [+, [ € 2cc, be abstract consistency classes. We say [ is
an extension of [ if € [{ for every (sufficiently >-pure)
® e [x. We say [{ is a saturated extension of I if [ is
saturated and an extension of Is.
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Ex.: ACC without Saturated Extension

There exist abstract consistency classes I' in 2lccgg which have no
saturated extension.
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Ex.: ACC without Saturated Extension

There exist abstract consistency classes I' in 2lccgg which have no
saturated extension.

Example:
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Ex.: ACC without Saturated Extension

There exist abstract consistency classes I' in 2lccgg which have no
saturated extension.

Example:

Let a5, bo,go—0 €  and & := {a, b, (qa), ~(gb)}. We construct an
abstract consistency class I from ¢ by first building the closure ¢’
of ® under relation =3 and then taking the power set of . Itis
easy to check that this [x is in 2lccgy,.
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Ex.: ACC without Saturated Extension

There exist abstract consistency classes I' in 2lccgg which have no
saturated extension.

Example:

Let a5, bo,go—0 €  and & := {a, b, (qa), ~(gb)}. We construct an
abstract consistency class I from ¢ by first building the closure ¢’
of ® under relation =3 and then taking the power set of . Itis
easy to check that this I is in 2Accg. Suppose we have a
saturated extension [y of I in 2Accsy.
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saturated extension [y of Iz in Acczg.  Then @ € [ since @ is finite
(hence sufficiently pure) .
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Ex.: ACC without Saturated Extension

There exist abstract consistency classes I' in 2lccgg which have no
saturated extension.

Example:

Let a5, bo,go—0 €  and & := {a, b, (qa), ~(gb)}. We construct an
abstract consistency class I from ¢ by first building the closure ¢’
of ® under relation =3 and then taking the power set of . Itis
easy to check that this I is in 2Accg. Suppose we have a
saturated extension [y of Iz in Acczg.  Then @ € [ since @ is finite
(hence sufficiently pure) . By saturation, ® « (a =° b) € [{ or

P x ﬂ(a =0 b) S Fz’
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Ex.: ACC without Saturated Extension

There exist abstract consistency classes I' in 2lccgg which have no
saturated extension.

Example:

Let a5, bo,go—0 €  and & := {a, b, (qa), ~(gb)}. We construct an
abstract consistency class I from ¢ by first building the closure ¢’
of ® under relation =3 and then taking the power set of . Itis
easy to check that this I is in 2Accg. Suppose we have a
saturated extension [y of Iz in Acczg.  Then @ € [ since @ is finite
(hence sufficiently pure) . By saturation, ® « (a =° b) € [{ or
®x—-(a="b) el{L. Inthe first case, applying W, with the constant
q, Vg, iy and V. contradicts (qa), =(gb) € .
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Ex.: ACC without Saturated Extension

There exist abstract consistency classes I' in 2lccgg which have no
saturated extension.

Example:

Let a5, bo,go—0 €  and & := {a, b, (qa), ~(gb)}. We construct an
abstract consistency class I from ¢ by first building the closure ¢’
of ® under relation =3 and then taking the power set of . Itis
easy to check that this I is in 2Accg. Suppose we have a
saturated extension [y of Iz in Acczg.  Then @ € [ since @ is finite
(hence sufficiently pure) . By saturation, ® « (a =° b) € [{ or
®x—-(a="b) el{L. Inthe first case, applying W, with the constant
q, Vs, W, and V. contradicts (qa), —~(qb) € ®. In the second case,
Vy and V. contradict a,b € 9.
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Model Existence Theorem $

Thm.: Let [y be a saturated abstract consistency class and let ¢ € [y
be a sufficiently X -pure set of sentences.

For all « € {5, Bn, B¢, Bf, b, fnb, BEb, Bfb } we have:
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Model Existence Theorem

Thm.: Let [y be a saturated abstract consistency class and let ¢ € [y
be a sufficiently X -pure set of sentences.

For all « € {5, Bn, B¢, Bf, b, fnb, BEb, Bfb } we have:

If [ is an 2Acc,, then there exists a model M € 9, that
satisfies ¢.
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Model Existence Theorem

Thm.: Let [y be a saturated abstract consistency class and let ¢ € [y
be a sufficiently X -pure set of sentences.

For all « € {5, Bn, B¢, Bf, b, fnb, BEb, Bfb } we have:

If [ is an 2Acc,, then there exists a model M € 9, that
satisfies ¢.

Furthermore, each domain of M has cardinality at most N,
(where ¥, is the cardinality of wff,(¥) and wff, (X))
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Model Existence Theorem $

Thm.: Let [y be a saturated abstract consistency class and let ¢ € [y
be a sufficiently X -pure set of sentences.

For all « € {5, Bn, B¢, Bf, b, fnb, BEb, Bfb } we have:

If [ is an 2Acc,, then there exists a model M € 9, that
satisfies ¢.

Furthermore, each domain of M has cardinality at most N,
(where ¥, is the cardinality of wff,(¥) and wff, (X))

Proof: (Sketch)
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Model Existence Theorem $

Thm.: Let [y be a saturated abstract consistency class and let ¢ € [y
be a sufficiently X -pure set of sentences.

For all « € {5, Bn, B¢, Bf, b, fnb, BEb, Bfb } we have:

If [ is an 2Acc,, then there exists a model M € 9, that
satisfies ¢.

Furthermore, each domain of M has cardinality at most N,
(where ¥, is the cardinality of wff,(¥) and wff, (X))

Proof: (Sketch)
...nhotyet...
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Model Existence for Henkin Models

Thm.: Let [y be a saturated abstract consistency class in 2lccgy and
let ® € [y be a sufficiently > -pure set of sentences.
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Model Existence for Henkin Models

Thm.: Let [y be a saturated abstract consistency class in 2lccgy and
let ® € [y be a sufficiently > -pure set of sentences.

Then there is a Henkin Model that satisfies .
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Model Existence for Henkin Models

Thm.: Let [y be a saturated abstract consistency class in 2lccgy and
let ® € [y be a sufficiently > -pure set of sentences.

Then there is a Henkin Model that satisfies .

Furthermore, each domain of the model has cardinality at most
Ns (where X is the cardinality of wrf, (¥ ) and wff,(X)).
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Furthermore, each domain of the model has cardinality at most
Ns (where X is the cardinality of wrf, (¥ ) and wff,(X)).
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Model Existence for Henkin Models

Thm.: Let [y be a saturated abstract consistency class in 2lccgy and
let ® € [y be a sufficiently > -pure set of sentences.

Then there is a Henkin Model that satisfies .

Furthermore, each domain of the model has cardinality at most
Ns (where X is the cardinality of wrf, (¥ ) and wff,(X)).

Proof: (Sketch)

...hotyet...
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Completeness of 91K, via
Abstract Consistency
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MR.-Consistent/Inconsistent

Def.. A set of sentences ¢ is 91R.-inconsistent if ® gz F,, and
JR.-consistent otherwise.
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MR.-Consistent/Inconsistent

Def.. A set of sentences ¢ is 91R.-inconsistent if ® gz F,, and
JR.-consistent otherwise.

We will now consider the class

[ = {P C cwif,(X) | ® is MR,-consistent}
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MR.-Consistent/Inconsistent

Def.. A set of sentences ¢ is 91R.-inconsistent if ® gz F,, and
JR.-consistent otherwise.

We will now consider the class
[ = {P C cwif,(X) | ® is MR,-consistent}

l.e.
[y = {® C ewfly(X) | ® tpg Fol
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Class of Sets of 9)iR.-consistent Formulas _|

Lemma: [ = {® C cwffo(X) | ¢ g Fo} is a saturated cc,..
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Class of Sets of 9)iR.-consistent Formulas _|

Lemma: [ = {® C cwffo(X) | ¢ g Fo} is a saturated cc,..

Proof: (We first show: [ is closed under subsets)
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Class of Sets of 9)iR.-consistent Formulas _|

Lemma: [ = {® C cwffo(X) | ¢ g Fo} is a saturated cc,..

Proof: (We first show: [ is closed under subsets)

Obviously [ is closed under subsets, since any subset of an
MR.-consistent set is J1R,.-consistent. (If ¥V C & and V gz F,

then clearly ¢ gnq Fo)
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Class of Sets of 9)iR.-consistent Formulas _|

Lemma: [ = {® C cwffo(X) | ¢ g Fo} is a saturated cc,..
Proof: (We now show: V¢, V., V3, Vo, VA, M, Vi, Ve, Vi, Ve, Viat)
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Class of Sets of 9)iR.-consistent Formulas _|

Lemma: [ = {® C cwffo(X) | ¢ g Fo} is a saturated cc,..
Proof: (We now show: V¢, V., V3, Vo, VA, M, Vi, Ve, Vi, Ve, Viat)

We now check the remaining conditions. We prove all the
properties by proving their contrapositive.
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Class of Sets of 9)iR.-consistent Formulas _|

Lemma: [ = {® C cwffo(X) | ¢ g Fo} is a saturated cc,..
Proof: (We show: V)
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Class of Sets of 9)iR.-consistent Formulas _|

Lemma: [ = {® C cwffo(X) | ¢ g Fo} is a saturated cc,..

Proof: (We show: V)
Ve If Ais atomic, then A ¢ ® or -A ¢ o.
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Class of Sets of 9)iR.-consistent Formulas _|

Lemma: [ = {® C cwffo(X) | ¢ g Fo} is a saturated cc,..

Proof: (We show: V)
Ve If Ais atomic, then A ¢ ® or -A ¢ o.

Suppose A, —-A € O.
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Class of Sets of 9)iR.-consistent Formulas _|

Lemma: [ = {® C cwffo(X) | ¢ g Fo} is a saturated cc,..

Proof: (We show: V)
Ve If Ais atomic, then A ¢ ® or -A ¢ o.

Suppose A, —-A € O.

NR(Hyp)
O F,

Oi- A
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Class of Sets of 9)iR.-consistent Formulas _|

Lemma: [ = {® C cwffo(X) | ¢ g Fo} is a saturated cc,..

Proof: (We show: V)
Ve If Ais atomic, then A ¢ ® or -A ¢ o.

Suppose A, —-A € O.

NA(H
¢+ﬂAgm@%?

NR(Hyp)
O F,

Oi- A

Hence ¢ is 9tR.-inconsistent.
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Class of Sets of 9)iR.-consistent Formulas _|

Lemma: [ = {® C cwffo(X) | ¢ g Fo} is a saturated cc,..
Proof: (We show: Vj)
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Class of Sets of 9)iR.-consistent Formulas _|

Lemma: [ = {® C cwffo(X) | ¢ g Fo} is a saturated cc,..

Proof: (We show: Vj)
Vs IfA=gBand A € ¢,then® «B c [5.
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Class of Sets of 9)iR.-consistent Formulas _|

Lemma: [ = {® C cwffo(X) | ¢ g Fo} is a saturated cc,..

Proof: (We show: Vj)
Vs IfA=gBand A € ¢,then® «B c [5.

Let A € &, A=;3B and ¢ x B be 918.-inconsistent.
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Class of Sets of 9)iR.-consistent Formulas _|

Lemma: [ = {® C cwffo(X) | ¢ g Fo} is a saturated cc,..

Proof: (We show: Vj)
Vs IfA=gBand A € ¢,then® «B c [5.

Let A € &, A=;3B and ¢ x B be 911.-inconsistent. That is,
bxBI-F,.
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Class of Sets of 9)iR.-consistent Formulas _|

Lemma: [ = {® C cwffo(X) | ¢ g Fo} is a saturated cc,..

Proof: (We show: Vj)
Vs IfA=gBand A € ¢,then® «B c [5.

Let A € &, A=;3B and ¢ x B be 911.-inconsistent. That is,
bxBI-F,.
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Class of Sets of 9)iR.-consistent Formulas _|

Lemma: [ = {® C cwffo(X) | ¢ g Fo} is a saturated cc,..
Proof: (We show: V)
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Class of Sets of 9)iR.-consistent Formulas _|

Lemma: [ = {® C cwffo(X) | ¢ g Fo} is a saturated cc,..

Proof: (We show: V)
V- |f—|—|A€¢,then¢*AErz*.
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Class of Sets of 9)iR.-consistent Formulas _|

Lemma: [ = {® C cwffo(X) | ¢ g Fo} is a saturated cc,..

Proof: (We show: V)
V- |f—|—|A€¢,then¢*AErz*.

Suppose ——A € ¢ and ¢ x A is 91R.-inconsistent.
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Class of Sets of 9)iR.-consistent Formulas _|

Lemma: [ = {® C cwffo(X) | ¢ g Fo} is a saturated cc,..

Proof: (We show: V)
V- |f—|—|A€¢,then¢*AErz*.

Suppose ——A € ¢ and ¢ x A is 91R.-inconsistent.
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Class of Sets of 9)iR.-consistent Formulas _|

Lemma: [ = {® C cwffo(X) | ¢ g Fo} is a saturated cc,..
Proof: (We show: V%)
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Class of Sets of 9)iR.-consistent Formulas _|

Lemma: [ = {® C cwffo(X) | ¢ g Fo} is a saturated cc,..

Proof: (We show: V%)
Vw FAVBed, thendxAclyordxBely.

(©Benzmiiller, 2007 SEMHOL[5] - p.143



Class of Sets of 9)iR.-consistent Formulas _|

Lemma: [ = {® C cwffo(X) | ¢ g Fo} is a saturated cc,..

Proof: (We show: V%)
Vw FAVBed, thendxAclyordxBely.

Suppose (A VvV B) € ¢ and both ¢ « A and ¢ « B are
MNR.-Inconsistent.
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Class of Sets of 9)iR.-consistent Formulas _|

Lemma: [ = {® C cwffo(X) | ¢ g Fo} is a saturated cc,..

Proof: (We show: V%)
Vw FAVBed, thendxAclyordxBely.

Suppose (A VvV B) € ¢ and both ¢ « A and ¢ « B are
MNR.-Inconsistent.
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Class of Sets of 9)iR.-consistent Formulas _|

Lemma: [ = {® C cwffo(X) | PPz Fo} is a saturated 2cc,.
Proof: (We show: V,)
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Class of Sets of 9)iR.-consistent Formulas _|

Lemma: [ = {® C cwffo(X) | PPz Fo} is a saturated 2cc,.

Proof: (We show: V,)
Vi f=(AVB)e®d then ®+x-A«-B e [f.
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Class of Sets of 9)iR.-consistent Formulas _|

Lemma: [ = {® C cwffo(X) | PPz Fo} is a saturated 2cc,.

Proof: (We show: V,)
Vi f=(AVB)e®d then ®+x-A«-B e [f.
Suppose —=(A VB) € ® and ¢ x = A x -B is 91R,-inconsistent.
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Class of Sets of 9)iR.-consistent Formulas _|

Lemma: [ = {® C cwffo(X) | PPz Fo} is a saturated 2cc,.

Proof: (We show: V,)
Vi f=(AVB)e®d then ®+x-A«-B e [f.
Suppose (A VvV B) € ® and ¢ « A x =B is 91R,-inconsistent.

{{{{{{{
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Class of Sets of 9)iR.-consistent Formulas _|

Lemma: [ = {® C cwffo(X) | ¢ g Fo} is a saturated cc,..
Proof: (We show: V%)
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Class of Sets of 9)iR.-consistent Formulas _|

Lemma: [ = {® C cwffo(X) | ¢ g Fo} is a saturated cc,..

Proof: (We show: V%)
Vo IfN°F € &, then & « FW ¢ [ for each W € cwff, (X).
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Class of Sets of 9)iR.-consistent Formulas _|

Lemma: [ = {® C cwffo(X) | ¢ g Fo} is a saturated cc,..
Proof: (We show: V%)
Vo IfN°F € &, then & « FW ¢ [ for each W € cwff, (X).

Suppose (MG) € ® and ¢ « (GA) is DR,-inconsistent.
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Class of Sets of 9)iR.-consistent Formulas _|

Lemma: [ = {® C cwffo(X) | ¢ g Fo} is a saturated cc,..

Proof: (We show: V%)
Vo IfN°F € &, then & « FW ¢ [ for each W € cwff, (X).

Suppose (MG) € ® and ¢ « (GA) is DR,-inconsistent.
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Class of Sets of 9)iR.-consistent Formulas _|

Lemma: [ = {® C cwffo(X) | ¢ g Fo} is a saturated cc,..
Proof: (We show: V5)
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Class of Sets of 9)iR.-consistent Formulas _|

Lemma: [ = {® C cwffo(X) | ¢ g Fo} is a saturated cc,..

Proof: (We show: V5)

Vi If —M°F € &, then ¢ « -(Fw) € [ for any parameter
W, € 2, Which does not occur in any sentence of .
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Class of Sets of 9)iR.-consistent Formulas _|

Lemma: [ = {® C cwffo(X) | ¢ g Fo} is a saturated cc,..

Proof: (We show: V5)

Vi If —M°F € &, then ¢ « -(Fw) € [ for any parameter
W, € 2, Which does not occur in any sentence of .

Suppose —(MN*G) € ¢, w, is a parameter which does not occur
in ®, and ¢ x =(Gw) is JMR.-inconsistent.
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Class of Sets of 9)iR.-consistent Formulas _|

Lemma: [ = {® C cwffo(X) | ¢ g Fo} is a saturated cc,..

Proof: (We show: V5)

Vi If —M°F € &, then ¢ « -(Fw) € [ for any parameter
W, € 2, Which does not occur in any sentence of .

Suppose —(MN*G) € ¢, w, is a parameter which does not occur
in ®, and ¢ x =(Gw) is JMR.-inconsistent.
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Class of Sets of 9)iR.-consistent Formulas _|

Lemma: [ = {® C cwffo(X) | ¢ g Fo} is a saturated cc,..
Proof: (We show: Vi,:)
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Class of Sets of 9)iR.-consistent Formulas _|

Lemma: [ = {® C cwffo(X) | ¢ g Fo} is a saturated cc,..

Proof: (We show: Vi,:)
Veat Either ®x A clfordx-Acly.
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Class of Sets of 9)iR.-consistent Formulas _|

Lemma: [ = {® C cwffo(X) | ¢ g Fo} is a saturated cc,..

Proof: (We show: Vi,:)
Veat Either ®x A clfordx-Acly.

Let ® x A and ® x = A be 91R.-inconsistent.
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Class of Sets of 9)iR.-consistent Formulas _|

Lemma: [ = {® C cwffo(X) | ¢ g Fo} is a saturated cc,..

Proof: (We show: Vi,:)
Veat Either ®x A clfordx-Acly.

Let ® x A and ® x = A be 91R.-inconsistent.
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Class of Sets of 9)iR.-consistent Formulas _|

Lemma: [ = {® C cwffo(X) | ¢ g Fo} is a saturated cc,..
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Class of Sets of 9)iR.-consistent Formulas _|

Lemma: [ = {® C cwffo(X) | ¢ g Fo} is a saturated cc,..

Proof: Thus we have shown that I” is saturated and in 2ccg.
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Class of Sets of 9)iR.-consistent Formulas _|

Lemma: [ = {® C cwffo(X) | ¢ g Fo} is a saturated cc,..

Proof: Thus we have shown that I” is saturated and in 2ccg.

Now let us check the conditions for the additional properties 7,
&, f,and b.
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Class of Sets of 9)iR.-consistent Formulas _|

Lemma: [ = {® C cwffo(X) | ¢ g Fo} is a saturated cc,..

Proof: Thus we have shown that I” is saturated and in 2ccg.

Now let us check the conditions for the additional properties 7,
&, f,and b.
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Class of Sets of 9)iR.-consistent Formulas _|

Lemma: [ = {® C cwffo(X) | ¢ g Fo} is a saturated cc,..
Proof: (We show: V)
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Class of Sets of 9)iR.-consistent Formulas _|

Lemma: [ = {® C cwffo(X) | ¢ g Fo} is a saturated cc,..
Proof: (We show: V)
V, IfA=ZBandA € ®,thend«Bely,
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Class of Sets of 9)iR.-consistent Formulas _|

Lemma: [ = {® C cwffo(X) | ¢ g Fo} is a saturated cc,..

Proof: (We show: V)
V, IfA=ZBandA € ®,thend«Bely,

Suppose = includes n, and let A € », A Z B and ¢ « B be
MNR.-Inconsistent.
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Class of Sets of 9)iR.-consistent Formulas _|

Lemma: [ = {® C cwffo(X) | ¢ g Fo} is a saturated cc,..

Proof: (We show: V)
V, IfA=ZBandA € ®,thend«Bely,

Suppose = includes n, and let A € », A Z B and ¢ « B be
MNR.-Inconsistent.
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Class of Sets of 9)iR.-consistent Formulas _|

Lemma: [ = {® C cwffo(X) | ¢ g Fo} is a saturated cc,..
Proof: (We show: V)
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Class of Sets of 9)iR.-consistent Formulas _|

Lemma: [ = {® C cwffo(X) | ¢ g Fo} is a saturated cc,..
Proof: (We show: V)

Ve I =(OX0M =" AX,.N) € &, then
& 5 —([w/XIM =" [w/X]N) € [ for any parameter w, € X,
which does not occur in any sentence of ¢.
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Class of Sets of 9)iR.-consistent Formulas _|

Lemma: [ = {® C cwffo(X) | ¢ g Fo} is a saturated cc,..
Proof: (We show: V)

Ve I =(OX0M =" AX,.N) € &, then
& 5 —([w/XIM =" [w/X]N) € [ for any parameter w, € X,
which does not occur in any sentence of ¢.

Suppose x includes

&, (XM =P

AX.N) € o, and

® x —(w/XM =

w/X|N) is  R,-

inconsistent for some

parameter w, which

does not occur in any
sentence of .
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Class of Sets of 9)iR.-consistent Formulas _|

Lemma: [ = {® C cwffo(X) | ¢ g Fo} is a saturated cc,..
Proof: (We show: V)
Ve I =(OX0M =" AX,.N) € &, then
& 5 —([w/XIM =" [w/X]N) € [ for any parameter w, € X,
which does not occur in any sentence of ¢.
Suppose x includes

&, -OXM =277 Gaa(mdds D) e
)\X.N) c ¢, and > | _, = [uf¥ |
© x S(w/ XM = e s

w/X|N) is  MNR,-
inconsistent for some ., |
parameter w, which 4\ (v iy o0 o rh{fy)
does not occur in any : ’ ol ol
sentence of ®.
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Lemma: [ = {® C cwffo(X) | ¢ g Fo} is a saturated cc,..
Proof: (We show: V)

(©Benzmiiller, 2007 SEMHOL[5] - p.151



Class of Sets of 9)iR.-consistent Formulas _|

Lemma: [ = {® C cwffo(X) | ¢ g Fo} is a saturated cc,..
Proof: (We show: V)

Vi f~(G =""" H) e d, then d » =(Gw =" Hw) € [* for any
parameter w,, € X, which does not occur in any sentence
of &.
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Class of Sets of 9)iR.-consistent Formulas _|

Lemma: [ = {® C cwffo(X) | ¢ g Fo} is a saturated cc,..
Proof: (We show: V)

Vi f~(G =""" H) e d, then d » =(Gw =" Hw) € [* for any
parameter w,, € X, which does not occur in any sentence
of &.

Suppose * includes f,
(G =*77 H) € ¢,
and ¢ x ~(Gw =" Hw)
IS DMR.-inconsistent for
some parameter w,
which does not occur
in any sentence of ¢.
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Class of Sets of 9)iR.-consistent Formulas _|

Lemma: [ = {® C cwffo(X) | ¢ g Fo} is a saturated cc,..
Proof: (We show: V)

Vi f~(G =""" H) e d, then d » =(Gw =" Hw) € [* for any
parameter w,, € X, which does not occur in any sentence
of &.

Suppose x includes §, (g = o) LT
(G =" H) € ¢, el
and ¢« +(Gw =" Hw) ———

is MA,-inconsistent for

some parameter w, -~ \ORGAERO :
which does not occur &= &=}
in any sentence of ®. '
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Class of Sets of 9)iR.-consistent Formulas _|

Lemma: [ = {® C cwffo(X) | ¢ g Fo} is a saturated cc,..
Proof: (We show: V)
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Lemma: [ = {® C cwffo(X) | ¢ g Fo} is a saturated cc,..

Proof: (We show: V)

Vo If-(A="B)ecd,thendxAx—-Beclor
CD*ﬂA*BErZ*
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Class of Sets of 9)iR.-consistent Formulas _|

Lemma: [ = {® C cwffo(X) | ¢ g Fo} is a saturated cc,..

Proof: (We show: V)
Vo If-(A="B)ecd,thendxAx—-Beclor
CD b S —lA x B - rz*

Suppose * includes b.
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Class of Sets of 9)iR.-consistent Formulas _|

Lemma: [ = {® C cwffo(X) | ¢ g Fo} is a saturated cc,..

Proof: (We show: V)

Vo If-(A="B)ecd,thendxAx—-Beclor
CD*ﬂA*BErZ*

Suppose * includes b. Assume that =(A =° B) € ¢ and that
both & x —A « B and ® « A x =B are 91R.-inconsistent.
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Lemma: [ = {® C cwffo(X) | ¢ g Fo} is a saturated cc,..
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Class of Sets of 9)iR.-consistent Formulas _|

Lemma: [ = {® C cwffo(X) | ¢ g Fo} is a saturated cc,..

Proof: Thus, for all x we have [ is a saturated 2cc.,.
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Class of Sets of 9)iR.-consistent Formulas _|

Lemma: [ = {® C cwffo(X) | ¢ g Fo} is a saturated cc,..

Proof: Thus, for all x we have [ is a saturated 2cc.,.

This completes the proof of the lemma. g.e.d.
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Class of Sets of 9)iR.-consistent Formulas _|

Lemma: [ = {® C cwffo(X) | ¢ g Fo} is a saturated cc,..

Proof: Thus, for all x we have [ is a saturated 2cc.,.

This completes the proof of the lemma. g.e.d.
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Henkin’s Theorem for 918, g

Thm.: Let x € {3, On, B¢, Bf, b, Bnb, BEb, Bfb}. Every sufficiently ¥ -pure
OR.-consistent set of sentences has an 1. (X )-model.
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Thm.: Let x € {3, On, B¢, Bf, b, Bnb, BEb, Bfb}. Every sufficiently ¥ -pure
OR.-consistent set of sentences has an 1. (X )-model.

Proof: Let ® be a sufficiently X-pure 91R.-consistent set of sentences.
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Henkin’s Theorem for 918, g

Thm.: Let x € {3, On, B¢, Bf, b, Bnb, BEb, Bfb}. Every sufficiently ¥ -pure
OR.-consistent set of sentences has an 1. (X )-model.

Proof: Let ® be a sufficiently X-pure 91R.-consistent set of sentences.
By the previous lemma we know that the class of sets of
MR.-consistent sentences constitute a saturated 2cc,,
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Henkin’s Theorem for 918, g

Thm.: Let x € {3, On, B¢, Bf, b, Bnb, BEb, Bfb}. Every sufficiently ¥ -pure
OR.-consistent set of sentences has an 1. (X )-model.

Proof: Let ® be a sufficiently X-pure 91R.-consistent set of sentences.
By the previous lemma we know that the class of sets of
NR.-consistent sentences constitute a saturated 2cc,, thus the
Model Existence Theorem guarantees an 91, () model for ¢.
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Completeness Theorem for 91K,

Thm.: Let ® be a sufficiently >-pure set of sentences, A be a

sentence, and x € {3, 8n, B¢, 31, Bb, Bnb, 5<b, Bib}. If A is valid in
all models M € 9. (¥) that satisfy @, then ® gz A.
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Completeness Theorem for )R,

Thm.: Let ® be a sufficiently >-pure set of sentences, A be a

sentence, and x € {3, 8n, B¢, 31, Bb, Bnb, 5<b, Bib}. If A is valid in
all models M € 9. (¥) that satisfy @, then ® gz A.

Proof: Let A be given such that A is valid in all 91, (X) models that
satisfy o.
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Completeness Theorem for )R,

Thm.: Let ® be a sufficiently >-pure set of sentences, A be a

sentence, and x € {3, 8n, B¢, 31, Bb, Bnb, 5<b, Bib}. If A is valid in
all models M € 9. (¥) that satisfy @, then ® gz A.

Proof: Let A be given such that A is valid in all 91, (X) models that
satisfy ®. So, ¢ « - A is unsatisfiable in 1. (X).
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Completeness Theorem for )R,

Thm.: Let ® be a sufficiently >-pure set of sentences, A be a

sentence, and x € {3, 8n, B¢, 31, Bb, Bnb, 5<b, Bib}. If A is valid in
all models M € 9. (¥) that satisfy @, then ® gz A.

Proof: Let A be given such that A is valid in all 91, (X) models that
satisfy . So, ¢ « —A is unsatisfiable in 2t.(¥X). Since only
finitely many constants occur in —A, ® x —A is sufficiently
2 -pure.
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Completeness Theorem for )R,

Thm.: Let ® be a sufficiently >-pure set of sentences, A be a

sentence, and x € {3, 8n, B¢, 31, Bb, Bnb, 5<b, Bib}. If A is valid in
all models M € 9. (¥) that satisfy @, then ® gz A.

Proof: Let A be given such that A is valid in all 91, (X) models that
satisfy . So, ¢ « —A is unsatisfiable in 2t.(¥X). Since only
finitely many constants occur in —A, ® x —A is sufficiently
Y -pure. So,  x = A must be H1R.-inconsistent by Henkin’s
theorem above.
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Completeness Theorem for )R,

Thm.: Let ® be a sufficiently >-pure set of sentences, A be a

sentence, and x € {3, 8n, B¢, 31, Bb, Bnb, 5<b, Bib}. If A is valid in
all models M € 9. (¥) that satisfy @, then ® gz A.

Proof: Let A be given such that A is valid in all 91, (X) models that
satisfy . So, ¢ « —A is unsatisfiable in 2t.(¥X). Since only
finitely many constants occur in —A, ® x —A is sufficiently
Y -pure. So,  x = A must be H1R.-inconsistent by Henkin’s
theorem above. Thus, ® gz A by MKR( Contr).
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Compactness Theorem for 91K,

We can use the completeness theorems obtained so far to prove a
compactness theorem for 1R,

Thm.: Let & be a sufficiently >-pure set of sentences and

« € {8, 0n, B, Bf, Bb, Bnb, BEb, Bfb }. ® has an M. (X )-model iff
every finite subset of ® has an 91, (X )-model.
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Compactness Theorem for 1R, g

We can use the completeness theorems obtained so far to prove a
compactness theorem for 1R,

Thm.: Let & be a sufficiently >-pure set of sentences and

« € {8, 0n, B, Bf, Bb, Bnb, BEb, Bfb }. ® has an M. (X )-model iff
every finite subset of ® has an 91, (X )-model.

Proof: (interesting direction by contraposition)
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Compactness Theorem for 91K,

We can use the completeness theorems obtained so far to prove a
compactness theorem for 1R,

Thm.: Let & be a sufficiently >-pure set of sentences and

« € {8, 0n, B, Bf, Bb, Bnb, BEb, Bfb }. ® has an M. (X )-model iff
every finite subset of ® has an 91, (X )-model.

Proof: (interesting direction by contraposition)
If & has no 91, (X)-model, then by the previous Henkin

Theorem & is 9tR,.-inconsistent.
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Compactness Theorem for 1R, g

We can use the completeness theorems obtained so far to prove a
compactness theorem for 1R,

Thm.: Let & be a sufficiently >-pure set of sentences and

« € {8, 0n, B, Bf, Bb, Bnb, BEb, Bfb }. ® has an M. (X )-model iff
every finite subset of ® has an 91, (X )-model.

Proof: (interesting direction by contraposition)
If & has no 9M..(X)-model, then by the previous Henkin
Theorem ¢ is 91R.-inconsistent. Since every Y1R.-proof is
finite, this means some finite subset W of ¢ is
MR.-Inconsistent.
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Compactness Theorem for 1R, g

We can use the completeness theorems obtained so far to prove a
compactness theorem for 1R,

Thm.: Let & be a sufficiently >-pure set of sentences and

« € {8, 0n, B, Bf, Bb, Bnb, BEb, Bfb }. ® has an M. (X )-model iff
every finite subset of ® has an 91, (X )-model.

Proof: (interesting direction by contraposition)
If & has no 9M..(X)-model, then by the previous Henkin
Theorem ¢ is 91R.-inconsistent. Since every Y1R.-proof is
finite, this means some finite subset W of ¢ is
OR.-inconsistent. Hence, ¥ has no M. (X )-model.

(©Benzmiiller, 2007 SEMHOL[5] - p.156



Note on the Saturation Condition

it may be hard to prove saturation (Viat)
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Note on the Saturation Condition

it may be hard to prove saturation (Viat)

in fact, as we show in [Unpublished-04] and [IJCAR-06], proving Vi, iS
as hard as showing admissibility of cut
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Note on the Saturation Condition

it may be hard to prove saturation (Viat)

in fact, as we show in [Unpublished-04] and [IJCAR-06], proving Vi, iS
as hard as showing admissibility of cut

if time permits, we will hear more about this later
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Model Existence Theorems
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Model Existence Theorem

Thm.: Let [y be a saturated ACC and let ¢ € [s be a sufficiently
2 -pure set of sentences. For all x € {...} we have:
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Model Existence Theorem

Thm.: Let [+ be a saturated ACC and let ® < [y be a sufficiently
2 -pure set of sentences. For all x € {...} we have:

If [+ is an 2Acc,, then there exists a M € i, that satisfies ¢.
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Model Existence Theorem

Thm.: Let [+ be a saturated ACC and let ® < [y be a sufficiently
2 -pure set of sentences. For all x € {...} we have:

If [+ is an 2Acc,, then there exists a M € i, that satisfies ¢.

Furthermore, each domain of M has cardinality at most N,
(where N is the cardinality of wff, (X))
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Model Existence Theorem

Thm.: Let [+ be a saturated ACC and let ® < [y be a sufficiently
2 -pure set of sentences. For all x € {...} we have:

If [+ is an 2Acc,, then there exists a M € i, that satisfies ¢.

Furthermore, each domain of M has cardinality at most N,
(where N is the cardinality of wff, (X))

Proof: The proof combines the following three ingredients:
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Model Existence Theorem

Thm.: Let [+ be a saturated ACC and let ® < [y be a sufficiently
2 -pure set of sentences. For all x € {...} we have:

If [+ is an 2Acc,, then there exists a M € i, that satisfies ¢.

Furthermore, each domain of M has cardinality at most N,
(where N is the cardinality of wff, (X))
Proof: The proof combines the following three ingredients:

Lemma (Compactness of ACC’s): For each ACC Is there exists a
compact ACC [{ satisfying the same V, properties such
that [y C Fz’.
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Model Existence Theorem

Thm.: Let [+ be a saturated ACC and let ® < [y be a sufficiently
2 -pure set of sentences. For all x € {...} we have:

If [+ is an 2Acc,, then there exists a M € i, that satisfies ¢.

Furthermore, each domain of M has cardinality at most N,
(where X is the cardinality of wff, (X))
Proof: The proof combines the following three ingredients:
Lemma (Compactness of ACC’s):

Lemma (Abstract Extension Lemma): Let X~ be a sighature, [s be a
compact ACC in 2cc,, and let ® € [x be sufficiently pure.
Then there exists a X-Hintikka set H € $int,, such that
¢ C H. Furthermore, if s is saturated, then H is saturated.
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Model Existence Theorem

Thm.: Let [+ be a saturated ACC and let ® < [y be a sufficiently
2 -pure set of sentences. For all x € {...} we have:

If [+ is an 2Acc,, then there exists a M € i, that satisfies ¢.

Furthermore, each domain of M has cardinality at most N,
(where N is the cardinality of wff, (X))

Proof: The proof combines the following three ingredients:
Lemma (Compactness of ACC’s):

Lemma (Abstract Extension Lemma):

Thm (Model Existence Theorem for Saturated Hintikka Sets):
For all « we have: If H is a saturated Hintikka set in $int,,
then there exists a model M < 91, that satisfies H.
Furthermore, each domain D, of M has cardinality at most
Ne.
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Model Existence Theorem

Thm.: Let [+ be a saturated ACC and let ® < [y be a sufficiently
2 -pure set of sentences. For all x € {...} we have:

If [+ is an 2Acc,, then there exists a M € i, that satisfies ¢.

Furthermore, each domain of M has cardinality at most N,
(where N is the cardinality of wff, (X))

Proof: The proof combines the following three ingredients:
Lemma (Compactness of ACC’s):
Lemma (Abstract Extension Lemma):
Thm (Model Existence Theorem for Saturated Hintikka Sets):

... how we sketch the proofs of these ingredients . ..
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Compactness od ACC’s g

Lemma: For each abstract consistency class [y there exists a compact
abstract consistency class [y satisfying the same V, properties
such that [ C [.
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Compactness od ACC'’s

Lemma: For each abstract consistency class [y there exists a compact
abstract consistency class [y satisfying the same V, properties

such that [ C [.

Proof: (following and extending [Andrews-BlackBook])
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Compactness od ACC'’s

Lemma: For each abstract consistency class [y there exists a compact
abstract consistency class [y satisfying the same V, properties

such that [ C [.

Proof: (following and extending [Andrews-BlackBook])
[ = {® C cwif,(X) | every finite subset of ¢ isin I}
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Compactness od ACC'’s

Lemma: For each abstract consistency class [y there exists a compact
abstract consistency class [y satisfying the same V, properties

such that [ C [.
Proof: (following and extending [Andrews-BlackBook])
[ = {® C cwif,(X) | every finite subset of ¢ isin I}

Show [y C [£: Suppose ¢ < [x. [ is closed under subsets,
so every finite subset of ¢ is in [z and thus ¢ < [{.
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Lemma: For each abstract consistency class [y there exists a compact
abstract consistency class [y satisfying the same V, properties
such that [ C [.

Proof: (following and extending [Andrews-BlackBook])

(©Benzmiiller, 2007

[ = {® C cwif,(X) | every finite subset of ¢ isin I}

Show [y C FZ’:

Show [{ is compact: Suppose ¢ < [ and W is an arbitrary
finite subset of ®. By definition of [ all finite subsets of ¢
are in [z and therefore W € [{. Thus all finite subsets of ¢
are in [ whenever ® isin [y.

On the other hand, suppose all finite subsets of ¢ are in [5.
Then by the definition of [ the finite subsets of ¢ are also
inly,so ¢ e [{.

Thus [ is compact (and closed under subsets).
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Compactness od ACC'’s

Lemma: For each abstract consistency class [y there exists a compact
abstract consistency class [y satisfying the same V, properties

such that [ C [.
Proof: (following and extending [Andrews-BlackBook])
[ = {® C cwif,(X) | every finite subset of ¢ isin I}
Show Iy C [:
Show [{ is compact:
Show that [ satisfies V. whenever [y satisfies V,:
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Compactness od ACC’s g

Lemma: For each abstract consistency class [y there exists a compact
abstract consistency class [y satisfying the same V, properties
such that [ C [.

Proof: (following and extending [Andrews-BlackBook])
[ = {® C cwif,(X) | every finite subset of ¢ isin I}
Show Iy C [:
Show [{ is compact:
Show that [ satisfies V. whenever [y satisfies V,:

Ve Let ® € [ and suppose there is an atom A, such that
{A,-A} C . {A,—-A} is clearly a finite subset of ¢ and
hence {A,—A} € [y contradicting V. for [x.
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Compactness od ACC’s g

Lemma: For each abstract consistency class [y there exists a compact
abstract consistency class [y satisfying the same V, properties
such that [ C [.

Proof: (following and extending [Andrews-BlackBook])
[ = {® C cwif,(X) | every finite subset of ¢ isin I}
Show Iy C [:
Show [{ is compact:
Show that [ satisfies V. whenever [y satisfies V,:

V. Letd e [, -—A € &, ¥ be any finite subset of ¢ x A, and
©:=(V\{A})x—-—A. ©is a finite subset of , s0 © € [5.
Since [y is an abstract consistency class and ——A € ©, we
get©x A €Iy by V., for [x. We know that W C © x A and Iy
IS closed under subsets, so V € [5-. Thus every finite subset
W of ® + A is in [z and therefore by definition ¢ = A € [{.
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Compactness od ACC'’s

Lemma: For each abstract consistency class [y there exists a compact
abstract consistency class [y satisfying the same V, properties
such that [ C [.

Proof: (following and extending [Andrews-BlackBook])
[ = {® C cwif,(X) | every finite subset of ¢ isin I}
Show Iy C [:
Show [{ is compact:
Show that [ satisfies V. whenever [y satisfies V,:
For Vi, Vi), Vo, Vi, Wy, V3, Ve, Vi, Ve, Viar See the lecture
notes.

(©Benzmiiller, 2007 SEMHOL[6] — p.160



Abstract Extension Lemma $

Lemma: Let X be a signature, [y be a compact ACC in 2cc,, where

x € {0, 0n, B, Bf, Bb, Bnb, 5&b, Bfb}, and let ® € [y be sufficiently
pure. Then there exists a > -Hintikka set 'H € $Hint,, such that

¢ C 'H. Furthermore, if [s is saturated, then H is saturated.
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Abstract Extension Lemma $

Lemma: Let X be a signature, [y be a compact ACC in 2cc,, where

x € {0, 0n, B, Bf, Bb, Bnb, 5&b, Bfb}, and let ® € [y be sufficiently
pure. Then there exists a > -Hintikka set 'H € $Hint,, such that

¢ C 'H. Furthermore, if [s is saturated, then H is saturated.

Proof: (We only give the simplified idea; see lecture notes for details)
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Abstract Extension Lemma $

Lemma: Let X be a signature, [y be a compact ACC in 2cc,, where

x € {0, 0n, B, Bf, Bb, Bnb, 5&b, Bfb}, and let ® € [y be sufficiently
pure. Then there exists a > -Hintikka set 'H € $Hint,, such that

¢ C 'H. Furthermore, if [s is saturated, then H is saturated.

Proof: (We only give the simplified idea; see lecture notes for details)
Construct H as follows: H := (J,-o H".
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Abstract Extension Lemma $

Lemma: Let X be a signature, [y be a compact ACC in 2cc,, where

x € {0, 0n, B, Bf, Bb, Bnb, 5&b, Bfb}, and let ® € [y be sufficiently
pure. Then there exists a > -Hintikka set 'H € $Hint,, such that

¢ C 'H. Furthermore, if [s is saturated, then H is saturated.

Proof: (We only give the simplified idea; see lecture notes for details)

Construct H as follows: H := (J,-o H".
HO = o.
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Abstract Extension Lemma $

Lemma: Let X be a signature, [y be a compact ACC in 2cc,, where

x € {0, 0n, B, Bf, Bb, Bnb, 5&b, Bfb}, and let ® € [y be sufficiently
pure. Then there exists a > -Hintikka set 'H € $Hint,, such that

¢ C 'H. Furthermore, if [s is saturated, then H is saturated.

Proof: (We only give the simplified idea; see lecture notes for details)

Construct H as follows: H := (J,-o H".
HO = o.
If H" « A" ¢ Ix, we let HM L .= H".
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Abstract Extension Lemma $

Lemma: Let X be a signature, [y be a compact ACC in 2cc,, where

x € {0, 0n, B, Bf, Bb, Bnb, 5&b, Bfb}, and let ® € [y be sufficiently
pure. Then there exists a > -Hintikka set 'H € $Hint,, such that

¢ C 'H. Furthermore, if [s is saturated, then H is saturated.

Proof: (We only give the simplified idea; see lecture notes for details)

Construct H as follows: H := [ J,~o H".
HO = o.
If H" « A" ¢ Ix, we let HM L .= H".
If H" « A" € [y, then H"T1 .= H" « A" « E" « X", where
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Abstract Extension Lemma $

Lemma: Let X be a signature, [y be a compact ACC in 2cc,, where

x € {0, 0n, B, Bf, Bb, Bnb, 5&b, Bfb}, and let ® € [y be sufficiently
pure. Then there exists a > -Hintikka set 'H € $Hint,, such that

¢ C 'H. Furthermore, if [s is saturated, then H is saturated.

Proof: (We only give the simplified idea; see lecture notes for details)

Construct H as follows: 'H := J,,~o H".
HO = .
If H" % A" ¢ [y, we let K" .= H",
If H" « A" € Iy, then H" ™1 .= H" « A" « E" « X", where
E": E" := —(Bw}) if A" is of the orm —(I1*“B), and let
E" := A" otherwise
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Abstract Extension Lemma $

Lemma: Let X be a signature, [y be a compact ACC in 2cc,, where

x € {0, 0n, B, Bf, Bb, Bnb, 5&b, Bfb}, and let ® € [y be sufficiently
pure. Then there exists a > -Hintikka set 'H € $Hint,, such that

¢ C 'H. Furthermore, if [s is saturated, then H is saturated.

Proof: (We only give the simplified idea; see lecture notes for details)
Construct H as follows: H := |J,~o H".
HO = o, )
If H” * A" ¢ Iy, we let H" T .= H".
If H" % A" € [y, then H"t! .= H"« A" « E" « X", where
X" If x € {5f, 86} and A" is of the form —(F =*"" G), let
X" = = (Fw) =7 Gw" o).
If «+ € {6, B¢b} and A" is of the form
~((AX@M) =277 (AX.N)), let
X" = —([w" /X]M = [w" /X]N). Otherwise, let
XM= A",
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Abstract Extension Lemma $

Lemma: Let X be a signature, [y be a compact ACC in 2cc,, where

x € {0, 0n, B, Bf, Bb, Bnb, 5&b, Bfb}, and let ® € [y be sufficiently
pure. Then there exists a > -Hintikka set 'H € $Hint,, such that

¢ C 'H. Furthermore, if [s is saturated, then H is saturated.

Proof: (We only give the simplified idea; see lecture notes for details)

Construct H as follows: H := |J,~o H".
HY = .
If H" x A" ¢ [y, we let H" T .= H".
If H" « A" € [y, then H"T1 .= H" « A" « E" « X", where
params w!: need to prove that always fresh parameters exists
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Abstract Extension Lemma $

Lemma: Let X be a signature, [y be a compact ACC in 2cc,, where

x € {0, 0n, B, Bf, Bb, Bnb, 5&b, Bfb}, and let ® € [y be sufficiently
pure. Then there exists a > -Hintikka set 'H € $Hint,, such that

¢ C 'H. Furthermore, if [s is saturated, then H is saturated.

Proof: (We only give the simplified idea; see lecture notes for details)

Construct H as follows: H := [ J,~o H".
HO .= o.
If H" x A" ¢ [y, we let H" T .= H".
If H" « A" € [y, then H"T1 .= H" « A" « E" « X", where
generalize: the above only works for the countable case; in the
lecture notes we use transfinite induction for the general
case
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Abstract Extension Lemma $

Lemma: Let X be a signature, [y be a compact ACC in 2cc,, where

x € {0, 0n, B, Bf, Bb, Bnb, 5&b, Bfb}, and let ® € [y be sufficiently
pure. Then there exists a > -Hintikka set 'H € $Hint,, such that

¢ C 'H. Furthermore, if [s is saturated, then H is saturated.

Proof: (We only give the simplified idea; see lecture notes for details)

Construct H as follows: H := [ J,~o H".
HY = .
If H" x A" ¢ [y, we let H" T .= H".
If H" « A" € [y, then H"T1 .= H" « A" « E" « X", where
Then we show by induction that H" € [s for all n.
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Abstract Extension Lemma $

Lemma: Let X be a signature, [y be a compact ACC in 2cc,, where

x € {0, 0n, B, Bf, Bb, Bnb, 5&b, Bfb}, and let ® € [y be sufficiently
pure. Then there exists a > -Hintikka set 'H € $Hint,, such that

¢ C 'H. Furthermore, if [s is saturated, then H is saturated.

Proof: (We only give the simplified idea; see lecture notes for details)

Construct H as follows: H := [ J,~o H".
HO .= .
If H" x A" ¢ [y, we let H" T .= H".
If H" « A" € [y, then H"T1 .= H" « A" « E" « X", where
Then we show by induction that H" € [s for all n.
Since [y is compact, we also have H € [s.

(©Benzmiiller, 2007 SEMHOL[6] — p.161



Abstract Extension Lemma $

Lemma: Let X be a signature, [y be a compact ACC in 2cc,, where

x € {0, 0n, B, Bf, Bb, Bnb, 5&b, Bfb}, and let ® € [y be sufficiently
pure. Then there exists a > -Hintikka set 'H € $Hint,, such that

¢ C 'H. Furthermore, if [s is saturated, then H is saturated.

Proof: (We only give the simplified idea; see lecture notes for details)

Construct H as follows: H := [ J,~o H".
HO .= .
If H" x A" ¢ [y, we let H" T .= H".
If H" « A" € [y, then H"T1 .= H" « A" « E" « X", where
Then we show by induction that H" € [s for all n.
Since [y is compact, we also have H € [s.
Hence ® C 'H and H € Is.

(©Benzmiiller, 2007 SEMHOL[6] — p.161



=
o
=

Abstract Extension Lemma $

Lemma: Let X be a signature, [y be a compact ACC in 2cc,, where
x € {0, 0n, B, Bf, Bb, Bnb, 5&b, Bfb}, and let ® € [y be sufficiently
pure. Then there exists a > -Hintikka set 'H € $Hint,, such that
¢ C 'H. Furthermore, if [s is saturated, then H is saturated.

Proof: (We only give the simplified idea; see lecture notes for details)

Construct H as follows: H := [ J,~o H".
HY = .
If H" x A" ¢ [y, we let H" T .= H".
If H" « A" € [y, then H"T1 .= H" « A" « E" « X", where
Then we show by induction that H" € [s for all n.
Since [y is compact, we also have H € [s.
Hence ® C 'H and H € Is.
Remains to show that H is (subset) maximal in [y and
that H is indeed a Hintikka set.
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Hintikka Sets

Hintikka sets connect syntax with semantics as they provide
the basis for the model constructions in the model existence
theorem(s).
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Hintikka Sets

Hintikka sets connect syntax with semantics as they provide
the basis for the model constructions in the model existence

theorem(s).
We have defined eight different notions of abstract consistency

classes by first defining properties V,, then specifying which
should hold in 2cc,.
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Hintikka Sets

Hintikka sets connect syntax with semantics as they provide
the basis for the model constructions in the model existence
theorem(s).

We have defined eight different notions of abstract consistency

classes by first defining properties V,, then specifying which
should hold in 2cc,.

Similarly, we define Hintikka sets by first defining the desired
properties.
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Hintikka Properties &

Defn.: Let H be a set of sentences. We define the following properties
which H may satisfy, where A, B € cwff,(¥X), C,D € cwify(X),
F € cewffy_o(X), and (AXp-M), (AXN), G, H € cwff,_3(X):
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Hintikka Properties &

Defn.: Let H be a set of sentences. We define the following properties
which H may satisfy, where A, B € cwff,(¥X), C,D € cwify(X),
F € cewffy_o(X), and (AXp-M), (AXN), G, H € cwff,_3(X):

Ve A ¢ Hor-A¢H.
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Hintikka Properties &

Defn.: Let H be a set of sentences. We define the following properties
which H may satisfy, where A, B € cwff,(¥X), C,D € cwify(X),
F € cewffy_o(X), and (AXp-M), (AXN), G, H € cwff,_3(X):

Vo A ¢ Hor—A¢H.
V. If ~—A ¢ H, then A € H.
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Hintikka Properties &
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Defn.: Let H be a set of sentences. We define the following properties

which H may satisfy, where A, B € cwff,(¥X), C,D € cwify(X),
F € cewffy_o(X), and (AXp-M), (AXN), G, H € cwff,_3(X):

Ve A ¢ Hor—A ¢ H.
V. If =—A € H,then A € H.
Vs If A e Hand A=3B, then B € H.
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ntikka Properties g

Defn.: Let H be a set of sentences. We define the following properties

which H may satisfy, where A, B € cwff,(¥X), C,D € cwify(X),
F € cewffy_o(X), and (AXp-M), (AXN), G, H € cwff,_3(X):

Ve A ¢ Hor-A¢H.

V. If =——A € H, then A € H.
Vs If A e Hand A=3B, then B € H.

—

Vo fAVBeH,then A cHorB < H.
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ntikka Properties g

Defn.: Let H be a set of sentences. We define the following properties

which H may satisfy, where A, B € cwff,(¥X), C,D € cwify(X),
F € cewffy_o(X), and (AXp-M), (AXN), G, H € cwff,_3(X):

<

c A¢dHor—-A¢H.
If -——A € H, then A € H.
If A ¢ Hand A=3B , then B € H.

Vo fAVBeH,then A cHorB < H.
Vi If=(A VvV B) e H, then -A € Hand =B € H.

iQ1J<ll

l
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Defn.: Let H be a set of sentences. We define the following properties

which H may satisfy, where A, B € cwff,(¥X), C,D € cwify(X),
F € cewffy_o(X), and (AXp-M), (AXN), G, H € cwff,_3(X):

<

c A¢dHor—-A¢H.

If -——A € H, then A € H.

If A ¢ Hand A=3B , then B € H.

If AvB¢c H,then A € Hor B € H.

If -(A v B) € H,then -A € H and =B € H.

If NM°F € 'H, then FW € 'H for each W € cwif, (X).

5]1><11<1Q<]1J<]1
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Defn.: Let H be a set of sentences. We define the following properties

which H may satisfy, where A, B € cwff,(¥X), C,D € cwify(X),
F € cewffy_o(X), and (AXp-M), (AXN), G, H € cwff,_3(X):

<

c A¢dHor—-A¢H.
If -——A € H, then A € H.
If A ¢ Hand A=3B , then B € H.

Vo, fAVBEcH, then AcHorB cH.
V. If =(A Vv B) e H, then -A € H and —-B € H.

—

VW IFN*F € H, then FW < H for each W < cwff, ().

—

V5 If =[1°F € 'H, then there is a parameter w,, € X, such that
-(Fw) € H.

tb1J<]1
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Hintikka Properties &

Defn.: Let H be a set of sentences. We define the following properties
which H may satisfy, where A, B € cwff,(¥X), C,D € cwify(X),
F € cewffy_o(X), and (AXp-M), (AXN), G, H € cwff,_3(X):

(©Benzmiiller, 2007 SEMHOL[6] - p.164



=
o
=

Hintikka Properties &

Defn.: Let H be a set of sentences. We define the following properties
which H may satisfy, where A, B € cwff,(¥X), C,D € cwify(X),
F € cewffy_o(X), and (AXp-M), (AXN), G, H € cwff,_3(X):

Ve If 7(A =° B) € H, then {A,-B} C H or {—A,B} C H.
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Hintikka Properties &

Defn.: Let H be a set of sentences. We define the following properties
which H may satisfy, where A, B € cwff,(¥X), C,D € cwify(X),
F € cewffy_o(X), and (AXp-M), (AXN), G, H € cwff,_3(X):

Vi If 7(A =° B) € H, then {A,-B} C Hor {-A,B} C H.
V, fAcHand AZB,then B € H.
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Hintikka Properties &

Defn.: Let H be a set of sentences. We define the following properties
which H may satisfy, where A, B € cwff,(¥X), C,D € cwify(X),
F € cewffy_o(X), and (AXp-M), (AXN), G, H € cwff,_3(X):

Vi If 7(A =° B) € H, then {A,-B} C Hor {-A,B} C H.
V, fAcHand AZB,then B € H.

Ve If =2(AXo0M =" AX.N) € H, then there is a parameter
wa € ¥, such that —([w/X]M =" [w/X]N) € H.
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Hintikka Properties &

Defn.: Let H be a set of sentences. We define the following properties
which H may satisfy, where A, B € cwff,(¥X), C,D € cwify(X),
F € cewffy_o(X), and (AXp-M), (AXN), G, H € cwff,_3(X):

Ve If 7(A =° B) € H, then {A,-B} C H or {—A,B} C H.

V, fAcHand AZB,then B € H.

Ve If =2(AXo0M =" AX.N) € H, then there is a parameter
wa € ¥, such that —([w/X]M =" [w/X]N) € H.

ﬁf If -(G ~a—h H) € H, then there is a parameter w, € ¥,
such that —-(Gw =" Hw) € H.
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Hintikka Properties &

Defn.: Let H be a set of sentences. We define the following properties
which H may satisfy, where A, B € cwff,(¥X), C,D € cwify(X),
F € cewffy_o(X), and (AXp-M), (AXN), G, H € cwff,_3(X):

Ve If 7(A =° B) € H, then {A,-B} C H or {—A,B} C H.

V, fAcHand AZB,then B € H.

Ve If =2(AXo0M =" AX.N) € H, then there is a parameter
wa € ¥, such that —([w/X]M =" [w/X]N) € H.

ﬁf If -(G ~a—h H) € H, then there is a parameter w, € ¥,
such that —-(Gw =" Hw) € H.

V..t Either A € H or —A € H.

(©Benzmiiller, 2007 SEMHOL[6] — p.164



=
o
=

Y -Hintikka Set $

Defn.: A set H of sentences is called a ¥-Hintikka set if it satisfies V,
6—., ﬁﬁ, 6\/, 6/\, ﬁv and 63.
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Y -Hintikka Set $

Defn.: A set H of sentences is called a ¥-Hintikka set if it satisfies V,
v, %, ﬁv, @, ﬁv and V5.
We define the following collections of Hintikka sets: ©intgs,
Hintg,), Nintge, HNHintgs, Hintgy, Hintg e, Hintsep, and Hintss, where
we indicate by indices which additional properties from {V,, Vz,
Vi, Vi } are required.
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2 -Hintikka Sets
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Model Ex. Thm for Saturated H.-Sets

Thm.: (Model Existence Theorem for Saturated Hintikka Sets)
For all « € {...} we have: If H is a saturated Hintikka set in
$Hint,, then there exists a model M < 91, that satisfies H.
Furthermore, each domain D, of M has cardinality at most X..
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Model Ex. Thm for Saturated H.-Sets

Thm.: (Model Existence Theorem for Saturated Hintikka Sets)
For all « € {...} we have: If H is a saturated Hintikka set in
$Hint,, then there exists a model M < 91, that satisfies H.
Furthermore, each domain D, of M has cardinality at most X..

Proof: (we only sketch the idea)
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Model Ex. Thm for Saturated H.-Sets

Thm.: (Model Existence Theorem for Saturated Hintikka Sets)
For all « € {...} we have: If H is a saturated Hintikka set in
$Hint,, then there exists a model M < 91, that satisfies H.
Furthermore, each domain D, of M has cardinality at most X..

Proof: (we only sketch the idea)
We construct Z-model Mi* := (cwff(L)| ., @” &8 v) for H
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Model Ex. Thm for Saturated H.-Sets

Thm.: (Model Existence Theorem for Saturated Hintikka Sets)
For all « € {...} we have: If H is a saturated Hintikka set in
$Hint,, then there exists a model M < 91, that satisfies H.
Furthermore, each domain D, of M has cardinality at most X..

Proof: (we only sketch the idea)
We construct Z-model Mi* := (cwff(L)| ., @” &8 v) for H

M1t is based on term evaluation

TE(X)” = (owt(¥)] ,, @7, €7) where

- cwff(Z)lﬁ: closed well-formed formulae in 3-normal form
- A@"B = (AB)|,

_ gﬁ lﬁ
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Model Ex. Thm for Saturated H.-Sets

Thm.: (Model Existence Theorem for Saturated Hintikka Sets)
For all « € {...} we have: If H is a saturated Hintikka set in
$Hint,, then there exists a model M < 91, that satisfies H.
Furthermore, each domain D, of M has cardinality at most X..

Proof: (we only sketch the idea)
We construct Z-model Mi* := (cwff(L)| ., @” &8 v) for H

U(A):_{T ffAeH
F ifA¢H
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Model Ex. Thm for Saturated H.-Sets

Thm.: (Model Existence Theorem for Saturated Hintikka Sets)
For all « € {...} we have: If H is a saturated Hintikka set in
$Hint,, then there exists a model M < 91, that satisfies H.
Furthermore, each domain D, of M has cardinality at most X..

Proof: (we only sketch the idea)
We construct Z-model Mi* := (cwff(L)| ., @” &8 v) for H

M7t = H since v(A) = T for every A € H by definition
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Model Ex. Thm for Saturated H.-Sets

Thm.: (Model Existence Theorem for Saturated Hintikka Sets)
For all « € {...} we have: If H is a saturated Hintikka set in
$Hint,, then there exists a model M < 91, that satisfies H.
Furthermore, each domain D, of M has cardinality at most X..

Proof: (we only sketch the idea)
We construct Z-model Mi* := (cwff(L)| ., @” &8 v) for H

M7t = H since v(A) = T for every A € H by definition
may hold: M} ¢ 91, as it may not satisfy property q
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Model Ex. Thm for Saturated H.-Sets

Thm.: (Model Existence Theorem for Saturated Hintikka Sets)

For all « € {...} we have: If H is a saturated Hintikka set in
$Hint,, then there exists a model M < 91, that satisfies H.
Furthermore, each domain D, of M has cardinality at most X..

Proof: (we only sketch the idea)

Gller, 2007

We construct Z-model Mi* := (cwff(L)| ., @” &8 v) for H

M7t = H since v(A) = T for every A € H by definition
may hold: M} ¢ 91, as it may not satisfy property q
way out: use congruence relation ~ on M7

A, ~B,iffv(,(A=B))=T

to construct M = Mt/
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Model Ex. Thm for Saturated H.-Sets

Thm.: (Model Existence Theorem for Saturated Hintikka Sets)
For all « € {...} we have: If H is a saturated Hintikka set in
$Hint,, then there exists a model M < 91, that satisfies H.
Furthermore, each domain D, of M has cardinality at most X..

Proof: (we only sketch the idea)
We construct Z-model Mi* := (cwff(L)| ., @” &8 v) for H

M7t = H since v(A) = T for every A € H by definition
may hold: M} ¢ 91, as it may not satisfy property q
way out: use congruence relation ~ on M7

A, ~B,iffv(,(A=B))=T

to construct M = Mt/
then show that M ’does the job’
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Further Reading

[Chris-PhD-99] C. Benzmdiller: Equality and Extensionality in Higher-Order Theorem
Proving. Doctoral Thesis, Computer Science, Saarland University, 1999.
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Thank You!
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