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! How to prove completeness?
! Completeness can be proven rather easily for propositional
logic calculi.

! For first-order and especially higher-order logic completeness
proofs become increasingly difficult and technical.

! Here we will introduce a strong proof tool that uniformly
supports completeness proofs (and many other things):
abstract consistency.

! This proof tool is based on a strong theorem which connects
syntax and semantics: model existence theorem.
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Hintikka and Raymond Smullyan [Hintikka55,Smullyan63,Smullyan68]. It
is well explained in Fitting’s textbook [Fitting96].
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Hintikka and Raymond Smullyan [Hintikka55,Smullyan63,Smullyan68]. It
is well explained in Fitting’s textbook [Fitting96].

! The technidue has been (partly) extended to higher-order logic
by Peter Andrews’ in [Andrews71]; Peter Andrews only achieves a
generalization for his rather weak semantical v-complexes
(corresponding to our Mβ(Σ)) and not, for instance, for Henkin
Semantics. This extension is well explained in Peter Andrews’s
textbook [Andrews02].

ATPHOL’06-[11] – p.280



c©Benzmüller, 2006

Abstract Consistency: History
HO

L

AT
Pλ

! Technique was developed for first-order logic by Jaakko
Hintikka and Raymond Smullyan [Hintikka55,Smullyan63,Smullyan68]. It
is well explained in Fitting’s textbook [Fitting96].

! The technidue has been (partly) extended to higher-order logic
by Peter Andrews’ in [Andrews71]; Peter Andrews only achieves a
generalization for his rather weak semantical v-complexes
(corresponding to our Mβ(Σ)) and not, for instance, for Henkin
Semantics. This extension is well explained in Peter Andrews’s
textbook [Andrews02].

! The technique has been extended to our landscape of HOL
model classes in [Benzmueller-PhD-99,JSL04].
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! A model existence theorem for a logical system (i.e., a logical
language L together with a consequence relation |=) is a
theorem of the form:

If a set of sentences Φ of L is a member of an
(saturated) abstract consistency class Γ, then there
exists a model for Φ.
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! Employing the model existence theorem we can prove
completeness of a calculus C (i.e., the derivability rel. "C) by

proving that the class Γ of sets of sentences Φ that are
C-consistent (i.e., cannot be refuted in C) is an
(saturated) abstract consistency class.

! Why does this work?
" The model existence theorem tells us that C-consistent sets
of sentences are satisfiable.

" Now we assume that a sentence A is valid, so ¬A does not
have a model and is therefore C-inconsistent.

" Hence, ¬A is refutable in C.
" This shows refutation completeness of C.
" For many calculi C, this also shows A is provable, thus
establishing completeness of C.
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Let C be a class of sets then C is called closed under subset if for
all sets S and T it holds that

from S ⊆ T and T ∈ C it follows that S ∈ C.

Let C be a class of sets. C is called compact or of finite character if
and only if for every set S holds:

S ∈ C if and only if every finite subset of S is a member of
C.
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! not closed under subsets: {{¬(A ∨ B),¬A,C}, {¬A}}

! closed under subsets: {{¬(A ∨ B),¬A,C}, {¬(A ∨
B),¬A}, {¬(A ∨ B),C}, {¬A,C}, {¬(A ∨ B)}, {¬A}, {C}, {}}

! We define two classes of sets
" C := {ϕ | ϕ is finite subset of N }
" D := 2N

" C is closed under subsets but not compact.
" D is closed under subsets and compact.
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Lemma:
If C is compact then C is closed under subsets.

Proof:
Let T ∈ C and S ⊆ T.
We have to show that S ∈ C.
Every finite subset A of S is also a finite subset of T.
Since C is compact and T ∈ C we get that all A ∈ C.
Thus, S ∈ C by compactness.

ATPHOL’06-[11] – p.285



c©Benzmüller, 2006

Def.: Sufficiently Σ-Pure
HO

L

AT
Pλ

We introduce a technical side-condition that ensures that we
always have enough witness constants.

ATPHOL’06-[11] – p.286



c©Benzmüller, 2006

Def.: Sufficiently Σ-Pure
HO

L

AT
Pλ

We introduce a technical side-condition that ensures that we
always have enough witness constants.

Let Σ be a signature and Φ be a set of Σ-sentences. Φ is
called sufficiently Σ-pure if for each type α there is a set
Pα ⊆ Σα of parameters with equal cardinality to wffα(Σ),
such that the elements of Pα do not occur in the
sentences of Φ.
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We introduce a technical side-condition that ensures that we
always have enough witness constants.

Let Σ be a signature and Φ be a set of Σ-sentences. Φ is
called sufficiently Σ-pure if for each type α there is a set
Pα ⊆ Σα of parameters with equal cardinality to wffα(Σ),
such that the elements of Pα do not occur in the
sentences of Φ.

This can be obtained in practice by enriching the signature with
spurious parameters.
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! signature Σ contains only the logical constants ¬,∨,Πα unless
stated otherwise
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Remember the conventions for this part of the lecture:
! signature Σ contains only the logical constants ¬,∨,Πα unless
stated otherwise

! as a matter of convenience we will write ϕ ∗ A for ϕ ∪ {A}.
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Let ΓΣ be a class of sets of Σ-sentences. We define (where Φ ∈ ΓΣ,
α,β ∈ T , A,B ∈ cwffo(Σ), F ∈ cwffα→o(Σ) are arbitrary):
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Let ΓΣ be a class of sets of Σ-sentences. We define (where Φ ∈ ΓΣ,
α,β ∈ T , A,B ∈ cwffo(Σ), F ∈ cwffα→o(Σ) are arbitrary):
∇c If A is atomic, then A /∈ Φ or ¬A /∈ Φ.
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Let ΓΣ be a class of sets of Σ-sentences. We define (where Φ ∈ ΓΣ,
α,β ∈ T , A,B ∈ cwffo(Σ), F ∈ cwffα→o(Σ) are arbitrary):
∇c If A is atomic, then A /∈ Φ or ¬A /∈ Φ.
∇¬ If ¬¬A ∈ Φ, then Φ ∗A ∈ ΓΣ.
∇β If A=βB and A ∈ Φ, then Φ ∗B ∈ ΓΣ.
∇∨ If A ∨B ∈ Φ, then Φ ∗A ∈ ΓΣ or Φ ∗B ∈ ΓΣ.
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Let ΓΣ be a class of sets of Σ-sentences. We define (where Φ ∈ ΓΣ,
α,β ∈ T , A,B ∈ cwffo(Σ), F ∈ cwffα→o(Σ) are arbitrary):
∇c If A is atomic, then A /∈ Φ or ¬A /∈ Φ.
∇¬ If ¬¬A ∈ Φ, then Φ ∗A ∈ ΓΣ.
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∇∨ If A ∨B ∈ Φ, then Φ ∗A ∈ ΓΣ or Φ ∗B ∈ ΓΣ.
∇∧ If ¬(A ∨B) ∈ Φ, then Φ ∗ ¬A ∗ ¬B ∈ ΓΣ.
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Let ΓΣ be a class of sets of Σ-sentences. We define (where Φ ∈ ΓΣ,
α,β ∈ T , A,B ∈ cwffo(Σ), F ∈ cwffα→o(Σ) are arbitrary):
∇c If A is atomic, then A /∈ Φ or ¬A /∈ Φ.
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∇β If A=βB and A ∈ Φ, then Φ ∗B ∈ ΓΣ.
∇∨ If A ∨B ∈ Φ, then Φ ∗A ∈ ΓΣ or Φ ∗B ∈ ΓΣ.
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∇∀ If ΠαF ∈ Φ, then Φ ∗ FW ∈ ΓΣ for each W ∈ cwffα(Σ).
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Let ΓΣ be a class of sets of Σ-sentences. We define (where Φ ∈ ΓΣ,
α,β ∈ T , A,B ∈ cwffo(Σ), F ∈ cwffα→o(Σ) are arbitrary):
∇c If A is atomic, then A /∈ Φ or ¬A /∈ Φ.
∇¬ If ¬¬A ∈ Φ, then Φ ∗A ∈ ΓΣ.
∇β If A=βB and A ∈ Φ, then Φ ∗B ∈ ΓΣ.
∇∨ If A ∨B ∈ Φ, then Φ ∗A ∈ ΓΣ or Φ ∗B ∈ ΓΣ.
∇∧ If ¬(A ∨B) ∈ Φ, then Φ ∗ ¬A ∗ ¬B ∈ ΓΣ.
∇∀ If ΠαF ∈ Φ, then Φ ∗ FW ∈ ΓΣ for each W ∈ cwffα(Σ).
∇∃ If ¬ΠαF ∈ Φ, then Φ ∗ ¬(Fw) ∈ ΓΣ for any parameter wα ∈ Σα

which does not occur in any sentence of Φ.
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Let ΓΣ be a class of sets of Σ-sentences. We define (where Φ ∈ ΓΣ,
α,β ∈ T , A,B ∈ cwffo(Σ), F ∈ cwffα→o(Σ) are arbitrary):
∇c If A is atomic, then A /∈ Φ or ¬A /∈ Φ.
∇¬ If ¬¬A ∈ Φ, then Φ ∗A ∈ ΓΣ.
∇β If A=βB and A ∈ Φ, then Φ ∗B ∈ ΓΣ.
∇∨ If A ∨B ∈ Φ, then Φ ∗A ∈ ΓΣ or Φ ∗B ∈ ΓΣ.
∇∧ If ¬(A ∨B) ∈ Φ, then Φ ∗ ¬A ∗ ¬B ∈ ΓΣ.
∇∀ If ΠαF ∈ Φ, then Φ ∗ FW ∈ ΓΣ for each W ∈ cwffα(Σ).
∇∃ If ¬ΠαF ∈ Φ, then Φ ∗ ¬(Fw) ∈ ΓΣ for any parameter wα ∈ Σα

which does not occur in any sentence of Φ.

(These properties are going back to Hintikka, Smullyan, and An-

drews)
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Let ΓΣ be a class of sets of Σ-sentences. We define (where Φ ∈ ΓΣ,
α,β ∈ T , A,B ∈ cwffo(Σ), G,H, (λXα M), (λXα N) ∈ cwffα→β(Σ)

are arbitrary):
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Let ΓΣ be a class of sets of Σ-sentences. We define (where Φ ∈ ΓΣ,
α,β ∈ T , A,B ∈ cwffo(Σ), G,H, (λXα M), (λXα N) ∈ cwffα→β(Σ)

are arbitrary):
∇b If ¬(A

.
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B) ∈ Φ, then Φ ∗A ∗ ¬B ∈ ΓΣ or Φ ∗ ¬A ∗B ∈ ΓΣ.
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Let ΓΣ be a class of sets of Σ-sentences. We define (where Φ ∈ ΓΣ,
α,β ∈ T , A,B ∈ cwffo(Σ), G,H, (λXα M), (λXα N) ∈ cwffα→β(Σ)

are arbitrary):
∇b If ¬(A

.
=o

B) ∈ Φ, then Φ ∗A ∗ ¬B ∈ ΓΣ or Φ ∗ ¬A ∗B ∈ ΓΣ.

∇η If A βη

= B and A ∈ Φ, then Φ ∗B ∈ ΓΣ.
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Let ΓΣ be a class of sets of Σ-sentences. We define (where Φ ∈ ΓΣ,
α,β ∈ T , A,B ∈ cwffo(Σ), G,H, (λXα M), (λXα N) ∈ cwffα→β(Σ)

are arbitrary):
∇b If ¬(A

.
=o

B) ∈ Φ, then Φ ∗A ∗ ¬B ∈ ΓΣ or Φ ∗ ¬A ∗B ∈ ΓΣ.

∇η If A βη

= B and A ∈ Φ, then Φ ∗B ∈ ΓΣ.

∇ξ If ¬(λXα M
.
=α→β λXα N) ∈ Φ, then

Φ ∗ ¬([w/X]M
.
=β [w/X]N) ∈ ΓΣ for any parameter wα ∈ Σα

which does not occur in any sentence of Φ.
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Let ΓΣ be a class of sets of Σ-sentences. We define (where Φ ∈ ΓΣ,
α,β ∈ T , A,B ∈ cwffo(Σ), G,H, (λXα M), (λXα N) ∈ cwffα→β(Σ)

are arbitrary):
∇b If ¬(A

.
=o

B) ∈ Φ, then Φ ∗A ∗ ¬B ∈ ΓΣ or Φ ∗ ¬A ∗B ∈ ΓΣ.

∇η If A βη

= B and A ∈ Φ, then Φ ∗B ∈ ΓΣ.

∇ξ If ¬(λXα M
.
=α→β λXα N) ∈ Φ, then

Φ ∗ ¬([w/X]M
.
=β [w/X]N) ∈ ΓΣ for any parameter wα ∈ Σα

which does not occur in any sentence of Φ.

∇f If ¬(G
.
=α→β

H) ∈ Φ, then Φ ∗ ¬(Gw
.
=β

Hw) ∈ ΓΣ for any
parameter wα ∈ Σα which does not occur in any sentence of Φ.
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Let ΓΣ be a class of sets of Σ-sentences. We define (where Φ ∈ ΓΣ,
α,β ∈ T , A,B ∈ cwffo(Σ), G,H, (λXα M), (λXα N) ∈ cwffα→β(Σ)

are arbitrary):
∇b If ¬(A

.
=o

B) ∈ Φ, then Φ ∗A ∗ ¬B ∈ ΓΣ or Φ ∗ ¬A ∗B ∈ ΓΣ.

∇η If A βη

= B and A ∈ Φ, then Φ ∗B ∈ ΓΣ.

∇ξ If ¬(λXα M
.
=α→β λXα N) ∈ Φ, then

Φ ∗ ¬([w/X]M
.
=β [w/X]N) ∈ ΓΣ for any parameter wα ∈ Σα

which does not occur in any sentence of Φ.

∇f If ¬(G
.
=α→β

H) ∈ Φ, then Φ ∗ ¬(Gw
.
=β

Hw) ∈ ΓΣ for any
parameter wα ∈ Σα which does not occur in any sentence of Φ.

(These properties are new in [Benzmueller-PhD-99,JSL04])
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Let Σ be a signature and ΓΣ be a class of sets of Σ-sentences that
is closed under subsets.
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Let Σ be a signature and ΓΣ be a class of sets of Σ-sentences that
is closed under subsets.

If ∇c,∇¬,∇β ,∇∨,∇∧,∇∀ and ∇∃ are valid for ΓΣ, then ΓΣ is
called an abstract consistency class for Σ-models.
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Let Σ be a signature and ΓΣ be a class of sets of Σ-sentences that
is closed under subsets.

If ∇c,∇¬,∇β ,∇∨,∇∧,∇∀ and ∇∃ are valid for ΓΣ, then ΓΣ is
called an abstract consistency class for Σ-models.

We will denote the collection of abstract consistency
classes by Accβ .
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Let Σ be a signature and ΓΣ be a class of sets of Σ-sentences that
is closed under subsets.

If ∇c,∇¬,∇β ,∇∨,∇∧,∇∀ and ∇∃ are valid for ΓΣ, then ΓΣ is
called an abstract consistency class for Σ-models.

We will denote the collection of abstract consistency
classes by Accβ .

Similarly, we introduce the following collections of
specialized abstract consistency classes (with primitive
equality): Accβη,Accβξ,Accβf,Accβb,Accβηb,Accβξb,Accβfb,
where we indicate by indices which additional properties
from {∇η,∇ξ,∇f,∇b} are required.
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ST(Σ)

Mβfb(Σ)'H(Σ)

Accβfb

Mβηb(Σ)

Accβηb
Mβξb(Σ)

Accβξb
Mβf(Σ)

Accβf

Mβξ(Σ)

Accβξ
Mβη(Σ)

Accβη
Mβb(Σ)

Accβb

Mβ(Σ)

Accβ
∇c,∇β ,∇¬,∇∨,∇∧,∇∀,∇∃

∇ξ

∇η

∇η

∇η∇ξ

∇f

∇ξ

∇f

∇b

∇b

∇b

∇b

∇ξ∇η

full
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! not an abstract consistency class:
{{¬(A ∨ B),¬A}, {¬(A ∨ B)}, {¬A}, {}}
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! not an abstract consistency class:
{{¬(A ∨ B),¬A}, {¬(A ∨ B)}, {¬A}, {}}

! still not:
{{¬(A ∨ B),¬A,¬B}, {¬(A ∨ B),¬A}, {¬(A ∨ B)}, {¬A}, {}}
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Ex.: Abstract Consistency Class
HO

L

AT
Pλ

! not an abstract consistency class:
{{¬(A ∨ B),¬A}, {¬(A ∨ B)}, {¬A}, {}}

! still not:
{{¬(A ∨ B),¬A,¬B}, {¬(A ∨ B),¬A}, {¬(A ∨ B)}, {¬A}, {}}

! how about this one:
Γ := {{¬(A ∨ B),¬A,¬B}, {¬(A ∨ B),¬A}, {¬(A ∨
B),¬B}, {¬A,¬B}, {¬(A ∨ B)}, {¬A}, {¬B}, {}}
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! not an abstract consistency class:
{{¬(A ∨ B),¬A}, {¬(A ∨ B)}, {¬A}, {}}

! still not:
{{¬(A ∨ B),¬A,¬B}, {¬(A ∨ B),¬A}, {¬(A ∨ B)}, {¬A}, {}}

! how about this one:
Γ := {{¬(A ∨ B),¬A,¬B}, {¬(A ∨ B),¬A}, {¬(A ∨
B),¬B}, {¬A,¬B}, {¬(A ∨ B)}, {¬A}, {¬B}, {}}

! and how about this:
Γ0 := Γ

Φ ∈ Γi ∧ A ∈ Φ ∧ B =βη A ∧ B )= A ∧ (Φ ∗ B) /∈ Γi −→
Γi+1 := close-under-subsets(Γi ∗ (Φ ∗ B))

Γ∗ := Γ∞
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The work presented here is based on the choice of the primitive
logical connectives ¬,∨ and Πα.
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The work presented here is based on the choice of the primitive
logical connectives ¬,∨ and Πα. A means to generalize the
framework over the concrete choice of logical primitives is provided
by the uniform notation approach as, for instance, given in [Fitting96].
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The work presented here is based on the choice of the primitive
logical connectives ¬,∨ and Πα. A means to generalize the
framework over the concrete choice of logical primitives is provided
by the uniform notation approach as, for instance, given in [Fitting96].
This can be done in straightforward manner: ∇∧ becomes an
α-property, ∇∨ becomes a β-property, ∇∀ becomes a γ-property,
and ∇∃ becomes a δ-property.
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Rem.: Possible Generalization
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The work presented here is based on the choice of the primitive
logical connectives ¬,∨ and Πα. A means to generalize the
framework over the concrete choice of logical primitives is provided
by the uniform notation approach as, for instance, given in [Fitting96].
This can be done in straightforward manner: ∇∧ becomes an
α-property, ∇∨ becomes a β-property, ∇∀ becomes a γ-property,
and ∇∃ becomes a δ-property. Thus they will have the following
form:
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Rem.: Possible Generalization
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The work presented here is based on the choice of the primitive
logical connectives ¬,∨ and Πα. A means to generalize the
framework over the concrete choice of logical primitives is provided
by the uniform notation approach as, for instance, given in [Fitting96].
This can be done in straightforward manner: ∇∧ becomes an
α-property, ∇∨ becomes a β-property, ∇∀ becomes a γ-property,
and ∇∃ becomes a δ-property. Thus they will have the following
form:
α-case If α ∈ Φ, then Φ ∗ α1 ∗ α2 ∈ ΓΣ.
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Rem.: Possible Generalization
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The work presented here is based on the choice of the primitive
logical connectives ¬,∨ and Πα. A means to generalize the
framework over the concrete choice of logical primitives is provided
by the uniform notation approach as, for instance, given in [Fitting96].
This can be done in straightforward manner: ∇∧ becomes an
α-property, ∇∨ becomes a β-property, ∇∀ becomes a γ-property,
and ∇∃ becomes a δ-property. Thus they will have the following
form:
α-case If α ∈ Φ, then Φ ∗ α1 ∗ α2 ∈ ΓΣ.
β-case If β ∈ Φ, then Φ ∗ β1 ∈ ΓΣ or Φ ∗ β2 ∈ ΓΣ.
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Rem.: Possible Generalization
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The work presented here is based on the choice of the primitive
logical connectives ¬,∨ and Πα. A means to generalize the
framework over the concrete choice of logical primitives is provided
by the uniform notation approach as, for instance, given in [Fitting96].
This can be done in straightforward manner: ∇∧ becomes an
α-property, ∇∨ becomes a β-property, ∇∀ becomes a γ-property,
and ∇∃ becomes a δ-property. Thus they will have the following
form:
α-case If α ∈ Φ, then Φ ∗ α1 ∗ α2 ∈ ΓΣ.
β-case If β ∈ Φ, then Φ ∗ β1 ∈ ΓΣ or Φ ∗ β2 ∈ ΓΣ.
γ-case If γ ∈ Φ, then Φ ∗ γW ∈ ΓΣ for each W ∈ cwffα(Σ).
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Rem.: Possible Generalization
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The work presented here is based on the choice of the primitive
logical connectives ¬,∨ and Πα. A means to generalize the
framework over the concrete choice of logical primitives is provided
by the uniform notation approach as, for instance, given in [Fitting96].
This can be done in straightforward manner: ∇∧ becomes an
α-property, ∇∨ becomes a β-property, ∇∀ becomes a γ-property,
and ∇∃ becomes a δ-property. Thus they will have the following
form:
α-case If α ∈ Φ, then Φ ∗ α1 ∗ α2 ∈ ΓΣ.
β-case If β ∈ Φ, then Φ ∗ β1 ∈ ΓΣ or Φ ∗ β2 ∈ ΓΣ.
γ-case If γ ∈ Φ, then Φ ∗ γW ∈ ΓΣ for each W ∈ cwffα(Σ).
δ-case If δ ∈ Φ, then Φ ∗ δw ∈ ΓΣ for any parameter wα ∈ Σ which

does not occur in any sentence of Φ.
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Consider the following property (where Φ ∈ ΓΣ, A ∈ cwffo(Σ)):
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Consider the following property (where Φ ∈ ΓΣ, A ∈ cwffo(Σ)):
∇sat Either Φ ∗A ∈ ΓΣ or Φ ∗ ¬A ∈ ΓΣ.
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Consider the following property (where Φ ∈ ΓΣ, A ∈ cwffo(Σ)):
∇sat Either Φ ∗A ∈ ΓΣ or Φ ∗ ¬A ∈ ΓΣ.

We call an abstract consistency class ΓΣ atomically saturated if ∇sat

holds for all atomic A.
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Consider the following property (where Φ ∈ ΓΣ, A ∈ cwffo(Σ)):
∇sat Either Φ ∗A ∈ ΓΣ or Φ ∗ ¬A ∈ ΓΣ.

We call an abstract consistency class ΓΣ atomically saturated if ∇sat

holds for all atomic A.

We call an abstract consistency class ΓΣ saturated if ∇sat holds for
all A.
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! consider Γ (and Γ∗) from before:
{{¬(A ∨ B),¬A,¬B}, {¬(A ∨ B),¬A}, {¬(A ∨
B),¬B}, {¬A,¬B}, {¬(A ∨ B)}, {¬A}, {¬B}, {}}
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Ex.: Saturated
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! consider Γ (and Γ∗) from before:
{{¬(A ∨ B),¬A,¬B}, {¬(A ∨ B),¬A}, {¬(A ∨
B),¬B}, {¬A,¬B}, {¬(A ∨ B)}, {¬A}, {¬B}, {}}

! Γ (and Γ∗) is atomically saturated in case our signature
contains no further constants besides Ao and Bo and the
logical connectives.
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Ex.: Saturated
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! consider Γ (and Γ∗) from before:
{{¬(A ∨ B),¬A,¬B}, {¬(A ∨ B),¬A}, {¬(A ∨
B),¬B}, {¬A,¬B}, {¬(A ∨ B)}, {¬A}, {¬B}, {}}

! Γ (and Γ∗) is atomically saturated in case our signature
contains no further constants besides Ao and Bo and the
logical connectives.

! if there is another symbol Co in the signature, then Γ (and Γ∗) is
not atomically saturated anymore
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! consider Γ (and Γ∗) from before:
{{¬(A ∨ B),¬A,¬B}, {¬(A ∨ B),¬A}, {¬(A ∨
B),¬B}, {¬A,¬B}, {¬(A ∨ B)}, {¬A}, {¬B}, {}}

! Γ (and Γ∗) is atomically saturated in case our signature
contains no further constants besides Ao and Bo and the
logical connectives.

! if there is another symbol Co in the signature, then Γ (and Γ∗) is
not atomically saturated anymore

! Γ (and Γ∗) is not saturated: for instance, it does not provide
information on the formulas (¬A ∨ B) ∨ A and Πo(λXo X)
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Let ΓΣ be a saturated abstract consistency class and let Φ ∈ ΓΣ be a
sufficiently Σ-pure set of sentences.
For all ∗ ∈ {β,βη,βξ,βf,βb,βηb,βξb,βfb} we have:
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Let ΓΣ be a saturated abstract consistency class and let Φ ∈ ΓΣ be a
sufficiently Σ-pure set of sentences.
For all ∗ ∈ {β,βη,βξ,βf,βb,βηb,βξb,βfb} we have:

If ΓΣ is an Acc∗, then there exists a modelM ∈M∗ that
satisfies Φ.
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Thm.: Model Existence Theorem
HO

L

AT
Pλ

Let ΓΣ be a saturated abstract consistency class and let Φ ∈ ΓΣ be a
sufficiently Σ-pure set of sentences.
For all ∗ ∈ {β,βη,βξ,βf,βb,βηb,βξb,βfb} we have:

If ΓΣ is an Acc∗, then there exists a modelM ∈M∗ that
satisfies Φ.

Furthermore, each domain ofM has cardinality at most ℵs.
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HO

L

AT
Pλ

Let ΓΣ be a saturated abstract consistency class and let Φ ∈ ΓΣ be a
sufficiently Σ-pure set of sentences.
For all ∗ ∈ {β,βη,βξ,βf,βb,βηb,βξb,βfb} we have:

If ΓΣ is an Acc∗, then there exists a modelM ∈M∗ that
satisfies Φ.

Furthermore, each domain ofM has cardinality at most ℵs.

Proof: . . . we are not yet ready for this . . .
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Let ΓΣ be a saturated abstract consistency class in Accβfb and let
Φ ∈ ΓΣ be a sufficiently Σ-pure set of sentences.
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Let ΓΣ be a saturated abstract consistency class in Accβfb and let
Φ ∈ ΓΣ be a sufficiently Σ-pure set of sentences.

Then there is a Henkin Model that satisfies Φ.
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Let ΓΣ be a saturated abstract consistency class in Accβfb and let
Φ ∈ ΓΣ be a sufficiently Σ-pure set of sentences.

Then there is a Henkin Model that satisfies Φ.
Furthermore, each domain of the model has cardinality at most ℵs.
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Let ΓΣ be a saturated abstract consistency class in Accβfb and let
Φ ∈ ΓΣ be a sufficiently Σ-pure set of sentences.

Then there is a Henkin Model that satisfies Φ.
Furthermore, each domain of the model has cardinality at most ℵs.

Proof: . . . we are not yet ready for this . . .
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Completeness of NK∗ via
Abstract Consistency
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A set of sentences Φ is NK∗-inconsistent if Φ ""NK∗
Fo, and

NK∗-consistent otherwise.
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The class Γ∗Σ := {Φ ⊆ cwffo(Σ) | Φ is NK∗-consistent} is a saturated
Acc∗.

ATPHOL’06-[11] – p.300



c©Benzmüller, 2006

Lemma: Saturated Acc∗
HO

L

AT
Pλ

The class Γ∗Σ := {Φ ⊆ cwffo(Σ) | Φ is NK∗-consistent} is a saturated
Acc∗.

Proof: Obviously Γ∗
Σ is closed under subsets, since any subset of an

NK∗-consistent set is NK∗-consistent.
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The class Γ∗Σ := {Φ ⊆ cwffo(Σ) | Φ is NK∗-consistent} is a saturated
Acc∗.

Proof: Obviously Γ∗
Σ is closed under subsets, since any subset of an

NK∗-consistent set is NK∗-consistent. We now check the remaining
conditions. We prove all the properties by proving their contrapositive.
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The class Γ∗Σ := {Φ ⊆ cwffo(Σ) | Φ is NK∗-consistent} is a saturated
Acc∗.

Proof: Obviously Γ∗
Σ is closed under subsets, since any subset of an

NK∗-consistent set is NK∗-consistent. We now check the remaining
conditions. We prove all the properties by proving their contrapositive.

ATPHOL’06-[11] – p.300



c©Benzmüller, 2006

Lemma: Saturated Acc∗
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The class Γ∗Σ := {Φ ⊆ cwffo(Σ) | Φ is NK∗-consistent} is a saturated
Acc∗.

Proof: Obviously Γ∗
Σ is closed under subsets, since any subset of an

NK∗-consistent set is NK∗-consistent. We now check the remaining
conditions. We prove all the properties by proving their contrapositive.

∇c Suppose A,¬A ∈ Φ.
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Lemma: Saturated Acc∗
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The class Γ∗Σ := {Φ ⊆ cwffo(Σ) | Φ is NK∗-consistent} is a saturated
Acc∗.

Proof: Obviously Γ∗
Σ is closed under subsets, since any subset of an

NK∗-consistent set is NK∗-consistent. We now check the remaining
conditions. We prove all the properties by proving their contrapositive.

∇c Suppose A,¬A ∈ Φ. We have Φ "" Fo by NK(Hyp) and NK(¬E ).
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Lemma: Saturated Acc∗
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The class Γ∗Σ := {Φ ⊆ cwffo(Σ) | Φ is NK∗-consistent} is a saturated
Acc∗.

Proof: Obviously Γ∗
Σ is closed under subsets, since any subset of an

NK∗-consistent set is NK∗-consistent. We now check the remaining
conditions. We prove all the properties by proving their contrapositive.

∇c Suppose A,¬A ∈ Φ. We have Φ "" Fo by NK(Hyp) and NK(¬E ).
Hence Φ is NK∗-inconsistent.
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The class Γ∗Σ := {Φ ⊆ cwffo(Σ) | Φ is NK∗-consistent} is a saturated
Acc∗.

Proof: Obviously Γ∗
Σ is closed under subsets, since any subset of an

NK∗-consistent set is NK∗-consistent. We now check the remaining
conditions. We prove all the properties by proving their contrapositive.

∇c Suppose A,¬A ∈ Φ. We have Φ "" Fo by NK(Hyp) and NK(¬E ).
Hence Φ is NK∗-inconsistent.
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The class Γ∗Σ := {Φ ⊆ cwffo(Σ) | Φ is NK∗-consistent} is a saturated
Acc∗.

Proof: Obviously Γ∗
Σ is closed under subsets, since any subset of an

NK∗-consistent set is NK∗-consistent. We now check the remaining
conditions. We prove all the properties by proving their contrapositive.

∇c Suppose A,¬A ∈ Φ. We have Φ "" Fo by NK(Hyp) and NK(¬E ).
Hence Φ is NK∗-inconsistent.

∇β Let A ∈ Φ, A=βB and Φ ∗B be NK∗-inconsistent.
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Lemma: Saturated Acc∗
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The class Γ∗Σ := {Φ ⊆ cwffo(Σ) | Φ is NK∗-consistent} is a saturated
Acc∗.

Proof: Obviously Γ∗
Σ is closed under subsets, since any subset of an

NK∗-consistent set is NK∗-consistent. We now check the remaining
conditions. We prove all the properties by proving their contrapositive.

∇c Suppose A,¬A ∈ Φ. We have Φ "" Fo by NK(Hyp) and NK(¬E ).
Hence Φ is NK∗-inconsistent.

∇β Let A ∈ Φ, A=βB and Φ ∗B be NK∗-inconsistent. That is,
Φ ∗B "" Fo.
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The class Γ∗Σ := {Φ ⊆ cwffo(Σ) | Φ is NK∗-consistent} is a saturated
Acc∗.

Proof: Obviously Γ∗
Σ is closed under subsets, since any subset of an

NK∗-consistent set is NK∗-consistent. We now check the remaining
conditions. We prove all the properties by proving their contrapositive.

∇c Suppose A,¬A ∈ Φ. We have Φ "" Fo by NK(Hyp) and NK(¬E ).
Hence Φ is NK∗-inconsistent.

∇β Let A ∈ Φ, A=βB and Φ ∗B be NK∗-inconsistent. That is,
Φ ∗B "" Fo. By NK(¬I ), we know Φ "" ¬B.
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The class Γ∗Σ := {Φ ⊆ cwffo(Σ) | Φ is NK∗-consistent} is a saturated
Acc∗.

Proof: Obviously Γ∗
Σ is closed under subsets, since any subset of an

NK∗-consistent set is NK∗-consistent. We now check the remaining
conditions. We prove all the properties by proving their contrapositive.

∇c Suppose A,¬A ∈ Φ. We have Φ "" Fo by NK(Hyp) and NK(¬E ).
Hence Φ is NK∗-inconsistent.

∇β Let A ∈ Φ, A=βB and Φ ∗B be NK∗-inconsistent. That is,
Φ ∗B "" Fo. By NK(¬I ), we know Φ "" ¬B. Since A ∈ Φ, we know
Φ "" B by NK(Hyp) and NK(β).
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The class Γ∗Σ := {Φ ⊆ cwffo(Σ) | Φ is NK∗-consistent} is a saturated
Acc∗.

Proof: Obviously Γ∗
Σ is closed under subsets, since any subset of an

NK∗-consistent set is NK∗-consistent. We now check the remaining
conditions. We prove all the properties by proving their contrapositive.

∇c Suppose A,¬A ∈ Φ. We have Φ "" Fo by NK(Hyp) and NK(¬E ).
Hence Φ is NK∗-inconsistent.

∇β Let A ∈ Φ, A=βB and Φ ∗B be NK∗-inconsistent. That is,
Φ ∗B "" Fo. By NK(¬I ), we know Φ "" ¬B. Since A ∈ Φ, we know
Φ "" B by NK(Hyp) and NK(β). Using NK(¬E ), we know Φ "" Fo.
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The class Γ∗Σ := {Φ ⊆ cwffo(Σ) | Φ is NK∗-consistent} is a saturated
Acc∗.

Proof: Obviously Γ∗
Σ is closed under subsets, since any subset of an

NK∗-consistent set is NK∗-consistent. We now check the remaining
conditions. We prove all the properties by proving their contrapositive.

∇c Suppose A,¬A ∈ Φ. We have Φ "" Fo by NK(Hyp) and NK(¬E ).
Hence Φ is NK∗-inconsistent.

∇β Let A ∈ Φ, A=βB and Φ ∗B be NK∗-inconsistent. That is,
Φ ∗B "" Fo. By NK(¬I ), we know Φ "" ¬B. Since A ∈ Φ, we know
Φ "" B by NK(Hyp) and NK(β). Using NK(¬E ), we know Φ "" Fo.
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The class Γ∗Σ := {Φ ⊆ cwffo(Σ) | Φ is NK∗-consistent} is a saturated
Acc∗.

Proof: Obviously Γ∗
Σ is closed under subsets, since any subset of an

NK∗-consistent set is NK∗-consistent. We now check the remaining
conditions. We prove all the properties by proving their contrapositive.

∇c Suppose A,¬A ∈ Φ. We have Φ "" Fo by NK(Hyp) and NK(¬E ).
Hence Φ is NK∗-inconsistent.

∇β Let A ∈ Φ, A=βB and Φ ∗B be NK∗-inconsistent. That is,
Φ ∗B "" Fo. By NK(¬I ), we know Φ "" ¬B. Since A ∈ Φ, we know
Φ "" B by NK(Hyp) and NK(β). Using NK(¬E ), we know Φ "" Fo.

∇¬ Suppose ¬¬A ∈ Φ and Φ ∗A is NK∗-inconsistent.

ATPHOL’06-[11] – p.300



c©Benzmüller, 2006

Lemma: Saturated Acc∗
HO

L

AT
Pλ

The class Γ∗Σ := {Φ ⊆ cwffo(Σ) | Φ is NK∗-consistent} is a saturated
Acc∗.

Proof: Obviously Γ∗
Σ is closed under subsets, since any subset of an

NK∗-consistent set is NK∗-consistent. We now check the remaining
conditions. We prove all the properties by proving their contrapositive.

∇c Suppose A,¬A ∈ Φ. We have Φ "" Fo by NK(Hyp) and NK(¬E ).
Hence Φ is NK∗-inconsistent.

∇β Let A ∈ Φ, A=βB and Φ ∗B be NK∗-inconsistent. That is,
Φ ∗B "" Fo. By NK(¬I ), we know Φ "" ¬B. Since A ∈ Φ, we know
Φ "" B by NK(Hyp) and NK(β). Using NK(¬E ), we know Φ "" Fo.

∇¬ Suppose ¬¬A ∈ Φ and Φ ∗A is NK∗-inconsistent. From Φ ∗A "" Fo

and NK(¬I ), we have Φ "" ¬A.
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The class Γ∗Σ := {Φ ⊆ cwffo(Σ) | Φ is NK∗-consistent} is a saturated
Acc∗.

Proof: Obviously Γ∗
Σ is closed under subsets, since any subset of an

NK∗-consistent set is NK∗-consistent. We now check the remaining
conditions. We prove all the properties by proving their contrapositive.

∇c Suppose A,¬A ∈ Φ. We have Φ "" Fo by NK(Hyp) and NK(¬E ).
Hence Φ is NK∗-inconsistent.

∇β Let A ∈ Φ, A=βB and Φ ∗B be NK∗-inconsistent. That is,
Φ ∗B "" Fo. By NK(¬I ), we know Φ "" ¬B. Since A ∈ Φ, we know
Φ "" B by NK(Hyp) and NK(β). Using NK(¬E ), we know Φ "" Fo.

∇¬ Suppose ¬¬A ∈ Φ and Φ ∗A is NK∗-inconsistent. From Φ ∗A "" Fo

and NK(¬I ), we have Φ "" ¬A. Since ¬¬A ∈ Φ, we can apply
NK(Hyp) and NK(¬E ) to obtain Φ "" Fo.

ATPHOL’06-[11] – p.300



c©Benzmüller, 2006

Lemma: Saturated Acc∗
HO

L

AT
Pλ

ATPHOL’06-[11] – p.301



c©Benzmüller, 2006

Lemma: Saturated Acc∗
HO

L

AT
Pλ

∇∨ Suppose (A∨B) ∈ Φ and both Φ ∗A and Φ ∗B are NK∗-inconsistent.
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∇∨ Suppose (A∨B) ∈ Φ and both Φ ∗A and Φ ∗B are NK∗-inconsistent.
By NK(Hyp) and NK(∨E ), we have Φ "" Fo.
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∇∨ Suppose (A∨B) ∈ Φ and both Φ ∗A and Φ ∗B are NK∗-inconsistent.
By NK(Hyp) and NK(∨E ), we have Φ "" Fo.
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∇∨ Suppose (A∨B) ∈ Φ and both Φ ∗A and Φ ∗B are NK∗-inconsistent.
By NK(Hyp) and NK(∨E ), we have Φ "" Fo.

∇∧ Suppose ¬(A ∨B) ∈ Φ and Φ ∗ ¬A ∗ ¬B is NK∗-inconsistent.
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∇∨ Suppose (A∨B) ∈ Φ and both Φ ∗A and Φ ∗B are NK∗-inconsistent.
By NK(Hyp) and NK(∨E ), we have Φ "" Fo.

∇∧ Suppose ¬(A ∨B) ∈ Φ and Φ ∗ ¬A ∗ ¬B is NK∗-inconsistent. By
NK(Contr) and NK(∨IR), we have Φ,¬A "" A ∨B.
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∇∨ Suppose (A∨B) ∈ Φ and both Φ ∗A and Φ ∗B are NK∗-inconsistent.
By NK(Hyp) and NK(∨E ), we have Φ "" Fo.

∇∧ Suppose ¬(A ∨B) ∈ Φ and Φ ∗ ¬A ∗ ¬B is NK∗-inconsistent. By
NK(Contr) and NK(∨IR), we have Φ,¬A "" A ∨B. Using NK(¬E )

with ¬(A ∨B) ∈ Φ, we have Φ,¬A "" Fo.
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∇∨ Suppose (A∨B) ∈ Φ and both Φ ∗A and Φ ∗B are NK∗-inconsistent.
By NK(Hyp) and NK(∨E ), we have Φ "" Fo.

∇∧ Suppose ¬(A ∨B) ∈ Φ and Φ ∗ ¬A ∗ ¬B is NK∗-inconsistent. By
NK(Contr) and NK(∨IR), we have Φ,¬A "" A ∨B. Using NK(¬E )

with ¬(A ∨B) ∈ Φ, we have Φ,¬A "" Fo. By NK(Contr) and
NK(∨IL), we have Φ "" A ∨B.
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∇∨ Suppose (A∨B) ∈ Φ and both Φ ∗A and Φ ∗B are NK∗-inconsistent.
By NK(Hyp) and NK(∨E ), we have Φ "" Fo.

∇∧ Suppose ¬(A ∨B) ∈ Φ and Φ ∗ ¬A ∗ ¬B is NK∗-inconsistent. By
NK(Contr) and NK(∨IR), we have Φ,¬A "" A ∨B. Using NK(¬E )

with ¬(A ∨B) ∈ Φ, we have Φ,¬A "" Fo. By NK(Contr) and
NK(∨IL), we have Φ "" A ∨B. Using NK(¬E ) with ¬(A ∨B) ∈ Φ, Φ
is NK∗-inconsistent.
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∇∨ Suppose (A∨B) ∈ Φ and both Φ ∗A and Φ ∗B are NK∗-inconsistent.
By NK(Hyp) and NK(∨E ), we have Φ "" Fo.

∇∧ Suppose ¬(A ∨B) ∈ Φ and Φ ∗ ¬A ∗ ¬B is NK∗-inconsistent. By
NK(Contr) and NK(∨IR), we have Φ,¬A "" A ∨B. Using NK(¬E )

with ¬(A ∨B) ∈ Φ, we have Φ,¬A "" Fo. By NK(Contr) and
NK(∨IL), we have Φ "" A ∨B. Using NK(¬E ) with ¬(A ∨B) ∈ Φ, Φ
is NK∗-inconsistent.
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∇∨ Suppose (A∨B) ∈ Φ and both Φ ∗A and Φ ∗B are NK∗-inconsistent.
By NK(Hyp) and NK(∨E ), we have Φ "" Fo.

∇∧ Suppose ¬(A ∨B) ∈ Φ and Φ ∗ ¬A ∗ ¬B is NK∗-inconsistent. By
NK(Contr) and NK(∨IR), we have Φ,¬A "" A ∨B. Using NK(¬E )

with ¬(A ∨B) ∈ Φ, we have Φ,¬A "" Fo. By NK(Contr) and
NK(∨IL), we have Φ "" A ∨B. Using NK(¬E ) with ¬(A ∨B) ∈ Φ, Φ
is NK∗-inconsistent.

∇∀ Suppose (ΠαG) ∈ Φ and Φ ∗ (GA) is NK∗-inconsistent.
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∇∨ Suppose (A∨B) ∈ Φ and both Φ ∗A and Φ ∗B are NK∗-inconsistent.
By NK(Hyp) and NK(∨E ), we have Φ "" Fo.

∇∧ Suppose ¬(A ∨B) ∈ Φ and Φ ∗ ¬A ∗ ¬B is NK∗-inconsistent. By
NK(Contr) and NK(∨IR), we have Φ,¬A "" A ∨B. Using NK(¬E )

with ¬(A ∨B) ∈ Φ, we have Φ,¬A "" Fo. By NK(Contr) and
NK(∨IL), we have Φ "" A ∨B. Using NK(¬E ) with ¬(A ∨B) ∈ Φ, Φ
is NK∗-inconsistent.

∇∀ Suppose (ΠαG) ∈ Φ and Φ ∗ (GA) is NK∗-inconsistent. By NK(¬I ),
Φ "" ¬(GA).
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∇∨ Suppose (A∨B) ∈ Φ and both Φ ∗A and Φ ∗B are NK∗-inconsistent.
By NK(Hyp) and NK(∨E ), we have Φ "" Fo.

∇∧ Suppose ¬(A ∨B) ∈ Φ and Φ ∗ ¬A ∗ ¬B is NK∗-inconsistent. By
NK(Contr) and NK(∨IR), we have Φ,¬A "" A ∨B. Using NK(¬E )

with ¬(A ∨B) ∈ Φ, we have Φ,¬A "" Fo. By NK(Contr) and
NK(∨IL), we have Φ "" A ∨B. Using NK(¬E ) with ¬(A ∨B) ∈ Φ, Φ
is NK∗-inconsistent.

∇∀ Suppose (ΠαG) ∈ Φ and Φ ∗ (GA) is NK∗-inconsistent. By NK(¬I ),
Φ "" ¬(GA). By NK(Hyp) and NK(ΠE ), Φ "" GA.
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∇∨ Suppose (A∨B) ∈ Φ and both Φ ∗A and Φ ∗B are NK∗-inconsistent.
By NK(Hyp) and NK(∨E ), we have Φ "" Fo.

∇∧ Suppose ¬(A ∨B) ∈ Φ and Φ ∗ ¬A ∗ ¬B is NK∗-inconsistent. By
NK(Contr) and NK(∨IR), we have Φ,¬A "" A ∨B. Using NK(¬E )

with ¬(A ∨B) ∈ Φ, we have Φ,¬A "" Fo. By NK(Contr) and
NK(∨IL), we have Φ "" A ∨B. Using NK(¬E ) with ¬(A ∨B) ∈ Φ, Φ
is NK∗-inconsistent.

∇∀ Suppose (ΠαG) ∈ Φ and Φ ∗ (GA) is NK∗-inconsistent. By NK(¬I ),
Φ "" ¬(GA). By NK(Hyp) and NK(ΠE ), Φ "" GA. Finally, NK(¬E )

implies Φ "" Fo.
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∇∨ Suppose (A∨B) ∈ Φ and both Φ ∗A and Φ ∗B are NK∗-inconsistent.
By NK(Hyp) and NK(∨E ), we have Φ "" Fo.

∇∧ Suppose ¬(A ∨B) ∈ Φ and Φ ∗ ¬A ∗ ¬B is NK∗-inconsistent. By
NK(Contr) and NK(∨IR), we have Φ,¬A "" A ∨B. Using NK(¬E )

with ¬(A ∨B) ∈ Φ, we have Φ,¬A "" Fo. By NK(Contr) and
NK(∨IL), we have Φ "" A ∨B. Using NK(¬E ) with ¬(A ∨B) ∈ Φ, Φ
is NK∗-inconsistent.

∇∀ Suppose (ΠαG) ∈ Φ and Φ ∗ (GA) is NK∗-inconsistent. By NK(¬I ),
Φ "" ¬(GA). By NK(Hyp) and NK(ΠE ), Φ "" GA. Finally, NK(¬E )

implies Φ "" Fo.

∇∃ Suppose ¬(ΠαG) ∈ Φ, wα is a parameter which does not occur in Φ,
and Φ ∗ ¬(Gw) is NK∗-inconsistent.
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∇∨ Suppose (A∨B) ∈ Φ and both Φ ∗A and Φ ∗B are NK∗-inconsistent.
By NK(Hyp) and NK(∨E ), we have Φ "" Fo.

∇∧ Suppose ¬(A ∨B) ∈ Φ and Φ ∗ ¬A ∗ ¬B is NK∗-inconsistent. By
NK(Contr) and NK(∨IR), we have Φ,¬A "" A ∨B. Using NK(¬E )

with ¬(A ∨B) ∈ Φ, we have Φ,¬A "" Fo. By NK(Contr) and
NK(∨IL), we have Φ "" A ∨B. Using NK(¬E ) with ¬(A ∨B) ∈ Φ, Φ
is NK∗-inconsistent.

∇∀ Suppose (ΠαG) ∈ Φ and Φ ∗ (GA) is NK∗-inconsistent. By NK(¬I ),
Φ "" ¬(GA). By NK(Hyp) and NK(ΠE ), Φ "" GA. Finally, NK(¬E )

implies Φ "" Fo.

∇∃ Suppose ¬(ΠαG) ∈ Φ, wα is a parameter which does not occur in Φ,
and Φ ∗ ¬(Gw) is NK∗-inconsistent. By NK(Contr), Φ "" Gw.
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∇∨ Suppose (A∨B) ∈ Φ and both Φ ∗A and Φ ∗B are NK∗-inconsistent.
By NK(Hyp) and NK(∨E ), we have Φ "" Fo.

∇∧ Suppose ¬(A ∨B) ∈ Φ and Φ ∗ ¬A ∗ ¬B is NK∗-inconsistent. By
NK(Contr) and NK(∨IR), we have Φ,¬A "" A ∨B. Using NK(¬E )

with ¬(A ∨B) ∈ Φ, we have Φ,¬A "" Fo. By NK(Contr) and
NK(∨IL), we have Φ "" A ∨B. Using NK(¬E ) with ¬(A ∨B) ∈ Φ, Φ
is NK∗-inconsistent.

∇∀ Suppose (ΠαG) ∈ Φ and Φ ∗ (GA) is NK∗-inconsistent. By NK(¬I ),
Φ "" ¬(GA). By NK(Hyp) and NK(ΠE ), Φ "" GA. Finally, NK(¬E )

implies Φ "" Fo.

∇∃ Suppose ¬(ΠαG) ∈ Φ, wα is a parameter which does not occur in Φ,
and Φ ∗ ¬(Gw) is NK∗-inconsistent. By NK(Contr), Φ "" Gw. By
NK(ΠI )w, Φ "" (ΠαG).
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∇∨ Suppose (A∨B) ∈ Φ and both Φ ∗A and Φ ∗B are NK∗-inconsistent.
By NK(Hyp) and NK(∨E ), we have Φ "" Fo.

∇∧ Suppose ¬(A ∨B) ∈ Φ and Φ ∗ ¬A ∗ ¬B is NK∗-inconsistent. By
NK(Contr) and NK(∨IR), we have Φ,¬A "" A ∨B. Using NK(¬E )

with ¬(A ∨B) ∈ Φ, we have Φ,¬A "" Fo. By NK(Contr) and
NK(∨IL), we have Φ "" A ∨B. Using NK(¬E ) with ¬(A ∨B) ∈ Φ, Φ
is NK∗-inconsistent.

∇∀ Suppose (ΠαG) ∈ Φ and Φ ∗ (GA) is NK∗-inconsistent. By NK(¬I ),
Φ "" ¬(GA). By NK(Hyp) and NK(ΠE ), Φ "" GA. Finally, NK(¬E )

implies Φ "" Fo.

∇∃ Suppose ¬(ΠαG) ∈ Φ, wα is a parameter which does not occur in Φ,
and Φ ∗ ¬(Gw) is NK∗-inconsistent. By NK(Contr), Φ "" Gw. By
NK(ΠI )w, Φ "" (ΠαG). Using NK(¬E ) with ¬(ΠαG) ∈ Φ, Φ is
NK∗-inconsistent.
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∇sat Let Φ ∗A and Φ ∗ ¬A be NK∗-inconsistent.
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∇sat Let Φ ∗A and Φ ∗ ¬A be NK∗-inconsistent. We show that Φ is
NK∗-inconsistent.

ATPHOL’06-[11] – p.302



c©Benzmüller, 2006

Lemma: Saturated Acc∗
HO

L

AT
Pλ

∇sat Let Φ ∗A and Φ ∗ ¬A be NK∗-inconsistent. We show that Φ is
NK∗-inconsistent. Using NK(¬I ), we know Φ "" ¬A and Φ "" ¬¬A.
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∇sat Let Φ ∗A and Φ ∗ ¬A be NK∗-inconsistent. We show that Φ is
NK∗-inconsistent. Using NK(¬I ), we know Φ "" ¬A and Φ "" ¬¬A.
By NK(¬E ), we have Φ "" Fo.
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∇sat Let Φ ∗A and Φ ∗ ¬A be NK∗-inconsistent. We show that Φ is
NK∗-inconsistent. Using NK(¬I ), we know Φ "" ¬A and Φ "" ¬¬A.
By NK(¬E ), we have Φ "" Fo.

Thus we have shown that Γβ
Σ is saturated and in Accβ.
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∇sat Let Φ ∗A and Φ ∗ ¬A be NK∗-inconsistent. We show that Φ is
NK∗-inconsistent. Using NK(¬I ), we know Φ "" ¬A and Φ "" ¬¬A.
By NK(¬E ), we have Φ "" Fo.

Thus we have shown that Γβ
Σ is saturated and in Accβ.

Now let us check the conditions for the additional properties η, ξ, f, and b.
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∇sat Let Φ ∗A and Φ ∗ ¬A be NK∗-inconsistent. We show that Φ is
NK∗-inconsistent. Using NK(¬I ), we know Φ "" ¬A and Φ "" ¬¬A.
By NK(¬E ), we have Φ "" Fo.

Thus we have shown that Γβ
Σ is saturated and in Accβ.

Now let us check the conditions for the additional properties η, ξ, f, and b.
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∇sat Let Φ ∗A and Φ ∗ ¬A be NK∗-inconsistent. We show that Φ is
NK∗-inconsistent. Using NK(¬I ), we know Φ "" ¬A and Φ "" ¬¬A.
By NK(¬E ), we have Φ "" Fo.

Thus we have shown that Γβ
Σ is saturated and in Accβ.

Now let us check the conditions for the additional properties η, ξ, f, and b.

∇η If ∗ includes η, then the proof proceeds as in ∇β above, but with the
rule NK(η).
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∇sat Let Φ ∗A and Φ ∗ ¬A be NK∗-inconsistent. We show that Φ is
NK∗-inconsistent. Using NK(¬I ), we know Φ "" ¬A and Φ "" ¬¬A.
By NK(¬E ), we have Φ "" Fo.

Thus we have shown that Γβ
Σ is saturated and in Accβ.

Now let us check the conditions for the additional properties η, ξ, f, and b.

∇η If ∗ includes η, then the proof proceeds as in ∇β above, but with the
rule NK(η).
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∇sat Let Φ ∗A and Φ ∗ ¬A be NK∗-inconsistent. We show that Φ is
NK∗-inconsistent. Using NK(¬I ), we know Φ "" ¬A and Φ "" ¬¬A.
By NK(¬E ), we have Φ "" Fo.

Thus we have shown that Γβ
Σ is saturated and in Accβ.

Now let us check the conditions for the additional properties η, ξ, f, and b.
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∇f This case is analogous to the previous one, generalizing
λX M

.
= λX N to arbitrary G

.
= H and using the extensionality rule

NK(f) instead of NK(ξ).
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Let ∗ ∈ {β,βη,βξ,βf,βb,βηb,βξb,βfb}. Every sufficiently Σ-pure
NK∗-consistent set of sentences has an M∗(Σ)-model.

Proof:
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Let ∗ ∈ {β,βη,βξ,βf,βb,βηb,βξb,βfb}. Every sufficiently Σ-pure
NK∗-consistent set of sentences has an M∗(Σ)-model.

Proof: Let Φ be a sufficiently Σ-pure NK∗-consistent set of sentences. By
the previous lemma we know that the class of sets of NK∗-consistent
sentences constitute a saturated Acc∗, thus the Model Existence
Theorem guarantees an M∗(Σ) model for Φ.
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Let Φ be a sufficiently Σ-pure set of sentences, A be a sentence,
and ∗ ∈ {β,βη,βξ,βf,βb,βηb,βξb,βfb}. If A is valid in all models
M ∈M∗(Σ) that satisfy Φ, then Φ ""NK∗

A.

Proof:
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We can use the completeness theorems obtained so far to prove a
compactness theorem for our semantics:

Let Φ be a sufficiently Σ-pure set of sentences and
∗ ∈ {β,βη,βξ,βf,βb,βηb,βξb,βfb}. Φ has an M∗(Σ)-model
iff every finite subset of Φ has an M∗(Σ)-model.

Proof:
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