

From Proof Planning towards Mathematical Knowledge Management

Serge Autexier 1,2 and Christoph Benzmüller 1

¹ Saarland University, Saarbrücken, Germany

² German Research Center for Artificial Intelligence (DFKI), Saarbrücken, Germany

September 25th, 2003

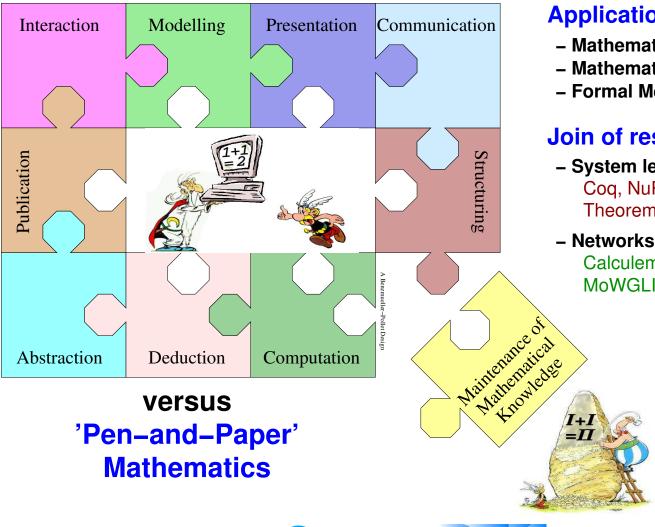
MKM Symposium, Heriot-Watt University, Edinburgh, Scottland


- Mathematical Assistant Environments
- The ΩMEGA Project
 - Mathematical Assistant In-the-small
 research directions since early 90s –
 - Mathematical Assistant In-the-large
 - novel research directions -
 - Lessons Learned

Mathematical Assistant _

CALCULEMUS-II illustration of MAs

Mathematical Assistant (MA)


- Integrated computer-based support for most work tasks of a mathematician
- After enthusiasm of the 50s and 60s deduction systems area fragmented into subfields (similar to AI)
- Driving forces in reverting this trend:
 - MKM: top-down
 - CALCULEMUS: bottom-up

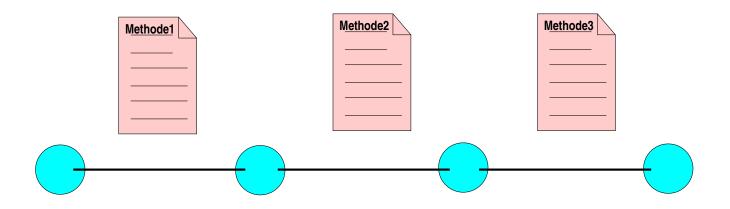
Integrated **Mathematical Assistance Environment**

Applications

- Mathematics research
- Mathematics education
- Formal Methods, Bio-Informatics

Join of ressources necessary

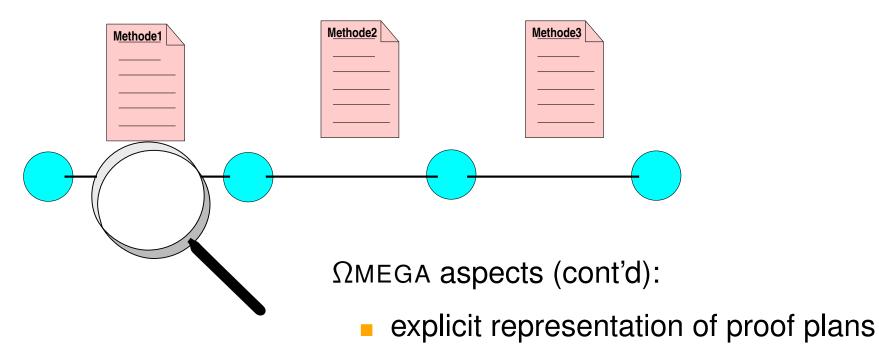
- System level Cog, NuPrl, Isabelle/HOL, PVS, Theorema, OMEGA, Clam, ...
 - Calculemus, MKM, Monet, MoWGLI, ...


Mathematical Assistant In-the-small

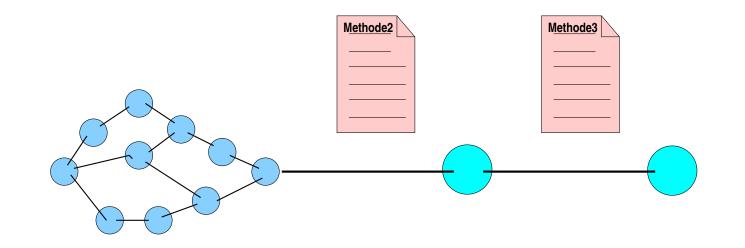
Research directions in the ΩMEGA project since the early 90s

ΩMEGA born in early 90s; inspired by [Bundy88]

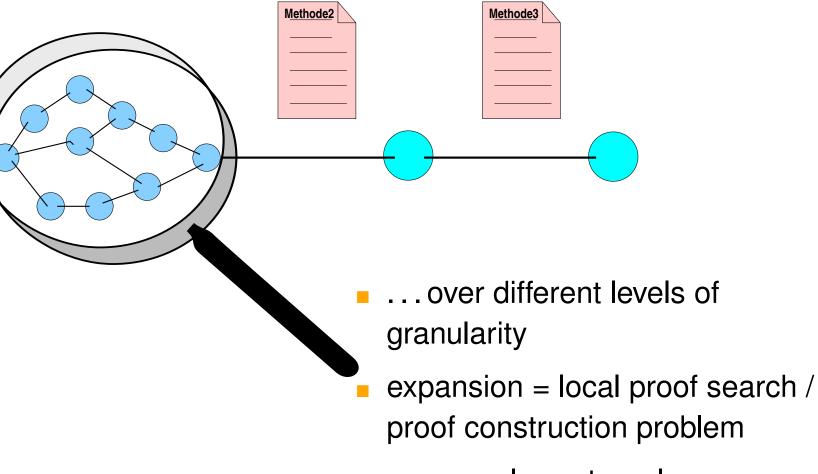
paradigm shift from classical FOL ATP to proof planning in HOL


 Ω MEGA aspects:

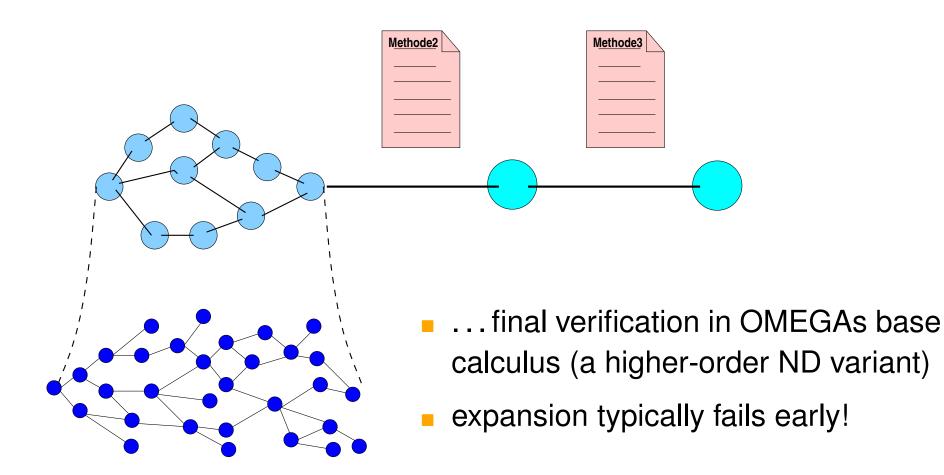
- declarative, domain specific control layer
- strategy = domain specific instantiation of a general proof search algorithm with set of proof methods and control information
- multi-strategy proof planning



- under-specification of pre-conditions: potentially non-sound proof plans
- soundness guaranteed via ...



proof (plan) expansion over ...



may employ external reasoners

Main References

[MelisSiekmann-AIJ-99]

Knowledge-based proof planning

[Meier-Diss-03]

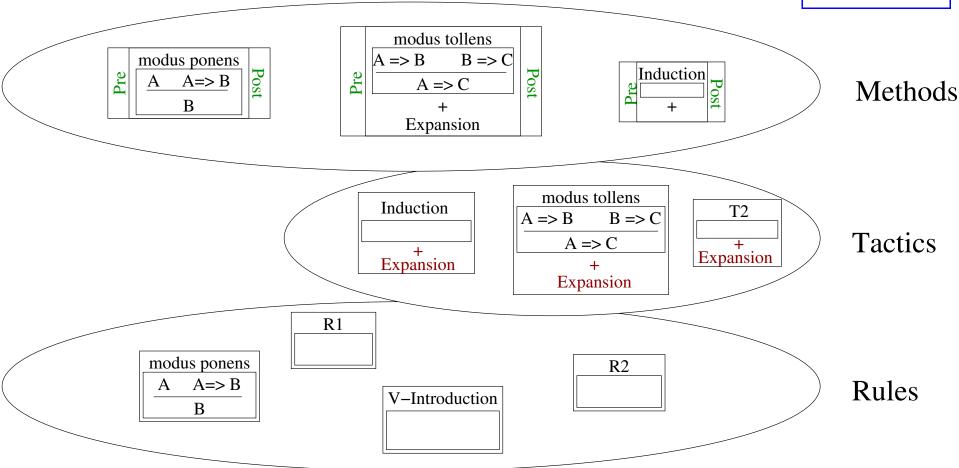
Multi-strategy proof planning

[MeierETAL-JSC-02, CohenEtAl-CADE-03, SiekmannEtAl-35yAutomath-03]

Proof planning with external specialist reasoners

Discussion

- + problem classes in specific domains; coordination of systems
- Brittleness and logic layer dependency; mixed-iniative PP


New Directions

 \Rightarrow Proof planning based on CORE (see 2nd part of talk)

Interactive Proof

Differences to LCF: explicit representation (delayed expansion), po-

tentially non-sound tactics and methods, verification via expansion

MEGA

Interactive Proof

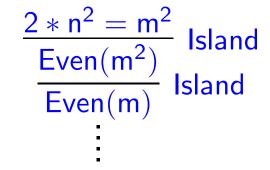
Theorem: $\sqrt{2}$ is irrational.

Proof: (by contradiction) Assume $\sqrt{2}$ is rational, that is, there exist natural numbers m, n with no common divisor such that $\sqrt{2}$ = m/n. Then $n\sqrt{2} = m$, and thus $2n^2 = m^2$. Hence m^2 is even and, since odd numbers square to odds, m is even; say m = 2k. Then $2n^2 =$ $(2k)^2 = 4k^2$, that is, $n^2 = 2k^2$. Thus, n^2 is even too, and so is n. That means that both n and m are even. contradicting the fact that they do not have a common divisor.

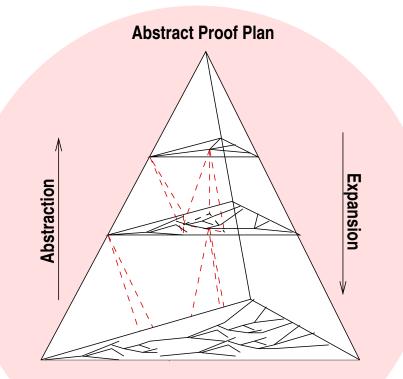
- declarative style of argumentation:
 from assertions A and B follows C
- logic layer (e.g. a la ND- or Sequent-Calculus) treated implicit
- ⇒ mismatch between procedural style logic-level reasoning as employed in todays theorem provers and declarative assertion level reasoning as typical for mathematical texts

Interactive Proof

Declarative approach versus procedural approach


Network of proof 'islands'

- Islands structure the proof in natural form
- Islands provide no argument for soundness
- ⇒ Verification: expansion of island steps (automated, interactive, recursive island approach)



Proof Data Structure

Ωmega PDS

Higher Order Natural Deduction Proof Object

- Maintenance of proof developments at
- different layers of granularity which are
- connected to each other

Main References

[CheikhrouhouSorge-ACIDCA-00]

[SiekmannEtAl-35yAutomath]

Overview on PDS Working with PDS

Discussion

- + Support for proof development at different levels of granularity, proof expansion and contraction, non-soundness and verification
- Missing: support for change of representation language

New Directions

⇒ A PDS for different levels of granularity and representational abstraction [AutexierBenmüllerHutter-SEKI-03]

Proof Verbalization

File	wser				
\$					
Location:		-			
		he av in 7 such th			
Theorem:	Let there	we wy as a sach as	at there exists	azinL	
	y = z and	there is no d in Z s ul x in Q. Therefore	uch that d is a c		

Proof:

Let there be a y in Z such that there exists	a z in Z suc	h that
$x^*y = z$ and there is no d in Z such that d is	a common	divisor of
y and z for all x in Q.		

We prove that sqrt(2) isn't rational by a contradiction. Let sqrt(2) be rational.

Let n in Z and let there be a dc_251 in Z such that $sqrt(2)*n = dc_251$ and there is no dc_255 in Z such that dc_255 is a common divisor of n and dc_251. Let m in Z, let sqrt(2)*n = m and let there be no dc_255 in Z such that dc_255 is a common divisor of n and m. N in Z, m in Z and sqrt(2)*n = m lead to $2*n^2 = m^2$. Therefore m²2 is even because n in Z and m in Z. That implies that m is even because m in Z. That implies that there is a dc_263 in Z such that m = $2*dc_263$.

Let k in Z and let m = 2*k. $n^2 = 2*k^2$ since n in Z, m in Z, k in Z, m = 2*k and $2*n^2 = m^2$. That implies that n^2 is even since n in Z and k in Z. That leads to even n because n in Z. Hence 2 is a common divisor of n and m since m is even, n in Z and m in Z. Thus we have a contradiction because there is no dc_255 in Z such that dc_255 is a common divisor of n and m.

P.REX (successor of PROVERB):

- lifting of proofs in the PDS to assertion level
- macro-planning text structure
- micro-planning sentence structure and linguistic realization
- generation of natural language representation
- pre-required: linguistic knowledge
- user-adaptive proof explanation

- D × Help

Main References

[Huang-CADE-94]

[Fiedler-IJCAR-01, Fiedler-PhD-01]

Discussion

PROVERB, Assertion Level P.REX, proof explanation

- + Flexible, adaptable, non-template based proof verbalization
- Missing: Full natural language DIALOG at assertion level

New Directions

⇒ DIALOG project (see 2nd part of talk and talk on 'Assertion level proofs with under-specification')

User Interface

S Lovely Omega User Interface@brandt (Proof Plan: SQRT2-NOT-RAT-1) - 0 × File Presentation Edit View Go Theories Planner Agents Misc Presentation Examples Omega Extern Analogy Omega Basic Tactics Verify Ibas Options Help \bigcirc Ê 5 +++ ٩ Hypothesis Мар Label Term Method Premises L1 HYP L1 rat (sqrt 2) L2 L1 RAT-CRITE 1 Existse-Sort L3 L10 RAT-CRITERIO RAT-CRITERIO forall-sort (λx.(exists-sor THM L4 L4 (int n) Λ (exists-sort (λdc HYP L6 L4 int n ANDEL L4 L5 L5 (int m) ∧ ((((sqrt 2) * n) : HYP L17 L17 $(int k) \land (m = (2 * k))$ HYP L17 L18 int k ANDEL L17 ANDER L19 L17 m = (2 * k)L17 L20 L17 L4 L5 L1 L ISLAND-TACTI L12 L24 L8 <u>L5</u> ANDEL L5 int m L5 L5 L9 $(((sqrt 2) * n) = m) \land (ex.ANDER)$ L5 ~(exists-sort (λdc-255,(comrANDE L9 L12 L11 L5 ((sart 2) * n) = mANDE L9 L13 (2 * (power n 2)) = (power rISLAND-TACTI L11 L6 L8 L4 L5 L21 L4 L5 L17 (power n 2) = (2 * (power k ISLAND-TACTI <u>L19</u> <u>L13</u> <u>L6</u> <u>L8</u> <u>L18</u> L22 L5 L4 L17 evenp (power n 2) ISLAND-TACTI L21 L6 L18 L23 L17 L5 L4 evenp n ISLAND-TACTI L22 L6 L4 L5 ISLAND-TACTI L13 L6 L8 L14 evenp (power m 2) L15 L4 L5 evenp m ISLAND-TACTI L14 L8 L24 L17 L4 L5 common-divisor n m 2 ISLAND-TACTI L15 L23 L6 L8 L4 L5 L15 L16 exists-sort (λdc-263.(m = (:DefnE 110 1/ 15 11 POT 1 Fuistes-Cont 116 190 Pretty Term $(\lambda dc-251.((((sqrt 2) * dc-248) = dc-251))$ ∧ ~(exists-sort (λdc-255.(common-divisor dc-248 dc-251 dc-255)) Error Warning Trace Output Message int))) int)) int forall-sort (λx.(exists-sort (λy.(exists-sort $(\lambda z, (((x * y) = z) \land "(exists-sort (\lambda d, (common-divisor y z d)) int)))$ int)) int)) rat 📕 0 🔶 0 🔘 13 🔘 0 🔵 7 🛕 4 🛕 1 🛕 0 🖓 0 Total: 25 Depth: 0 Command: Show-Original-Proof Time: 230ms

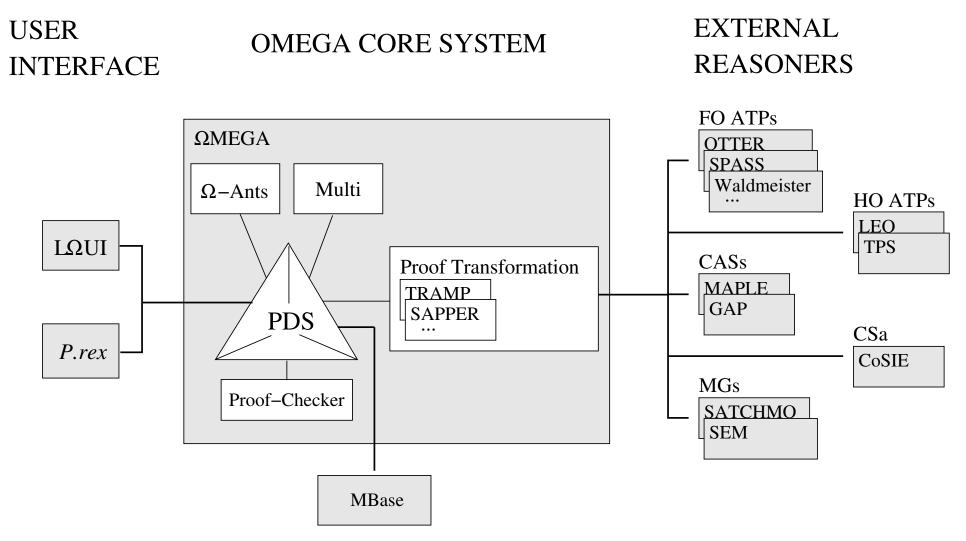
Main References

[SiekmannEtAI-99]

LOUI: Lovely OMEGA User Interface

Discussion

- + Support for different (connected) views on proof developments: linearized ND style, proof tree (PDS), natural language
- What do users really want to see? Which users?
- Missing: optimal, integrated support for other mathematical activities such as publication, authoring, modeling, etc.



Mathematical Knowledge

MATHEMATICAL DATABASE

Main References

[FrankeKohlhase-CADE-00]

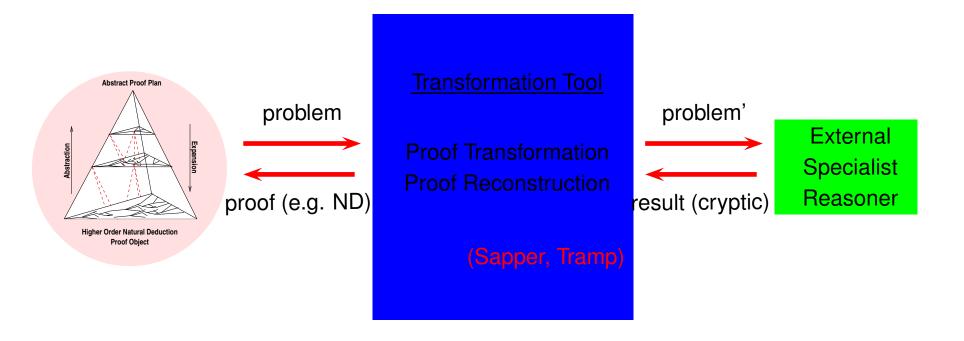
[Kohlhase-AISC-00,Kohlhase-03]

OMDoc

MBASE mathematical knowledge base

Discussion

- + first step towards system independence
- still dependable on logic context
- version control: concurrent, joint development of mathematical knowledge
- system independent representation formats for proof rules, tactics, methods, and control knowledge



External Specialist Reasoners_

Usually required in OMEGA:

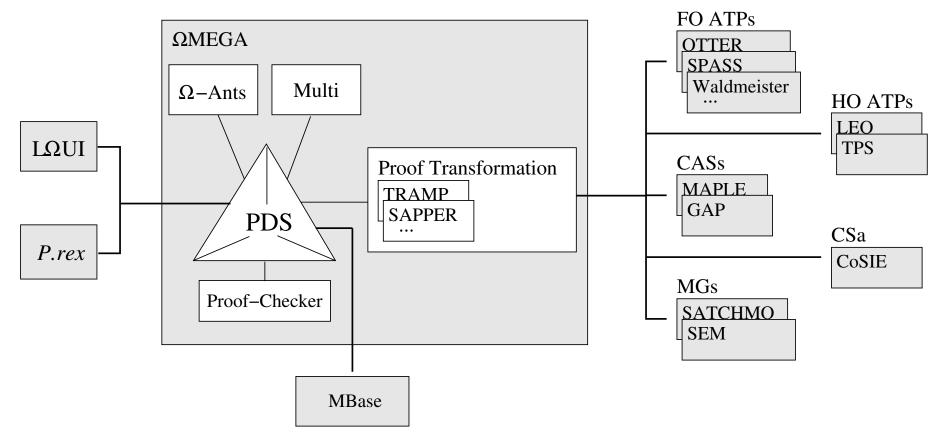
- white box integration of external specialist reasoners
- tools for extraction and transformation of results

Main References

[Meier-CADE-00]	TRAMP: Integration of FOL ATPs into OMEGA
[Sorge-FROCOS-00]	SAPPER: Integration of CAS into OMEGA
[BenzmüllerEtAI-99]	Integration of TPS into OMEGA
[MelisEtAl-00]	Integration of constraint solving into OMEGA

Discussion

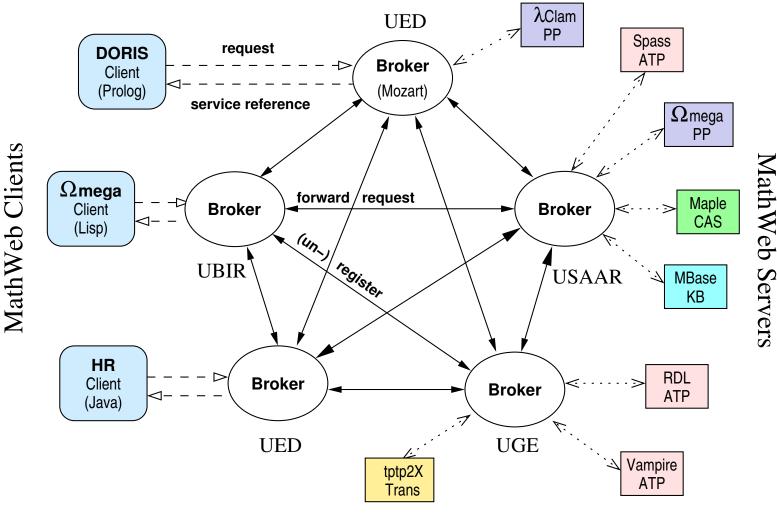
- + White-box integration achieved for heterogenous specialist reasoning systems
- Not reached yet: flexible coordination of specialist reasoning systems


Modularization

USER INTERFACE

OMEGA CORE SYSTEM

EXTERNAL REASONERS


MATHEMATICAL DATABASE

Modularization

- broker to broker communication
- - -> client to broker communication (Mozart, XMLRPC, HTTP)
- $<\cdots$ server to broker communication (service offers/requests)

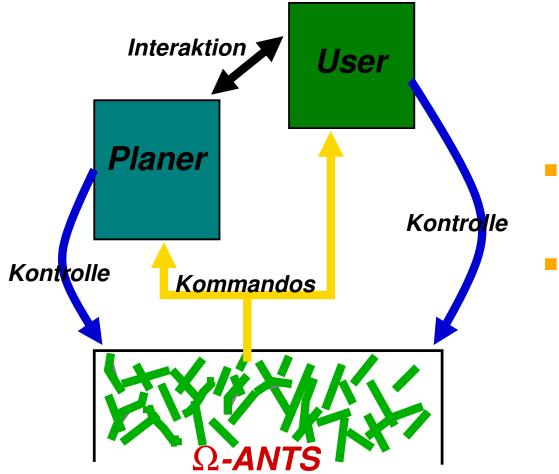
Main References

[KohlhaseZimmer-CADE-02]

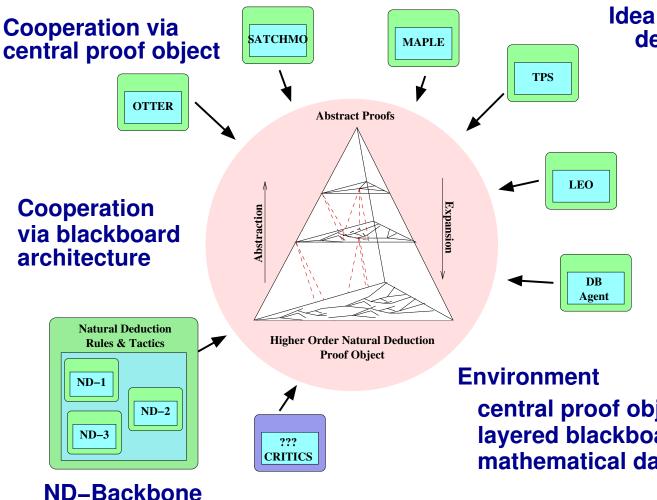
[Kohlhase-AISC-00,Kohlhase-03]

MathWeb Software Bus OMDoc

Discussion


- + Modular system design supports better maintenance and reuse of system components
- + Better join of resources achieved
- Missing: Intelligent brokering of systems, coordination of systems, ..., exploitation of and cooperation with QPQ

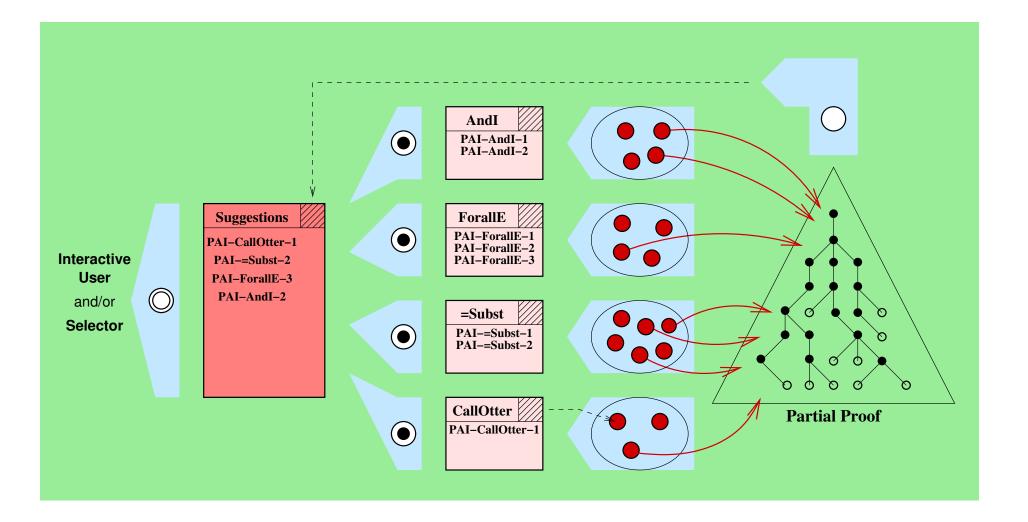
Agent-based Theorem Proving


- pro-active support
 versus passive support
- concurrent versus sequential

Agent-based Theorem Proving

decentralised control

Agents reactive proactive heterogenous simple & complex cooperative & competetive distributed via MathWeb run-time definable resource adapted


central proof object layered blackboards (local communication) mathematical database

Agent-based Theorem Proving

Main References

[BenzmüllerSorge-AIMSA-98, BenzmüllerSorge-EPIA-99, Sorge-PhD-01] OANTS suggestion mechanism

[BenzmüllerSorge-CALCULEMUS-00, BenzmüllerEtAl-KI-01]

Agent-based reasoning with external specialist reasoners

[BenzmüllerEtAI-MKM-01] Agent-based search in Knowledge bases

OANTS in interactive proof planning

Discussion

[PolletEtAl]

- + Suggestion mechanism useful for interactive theorem proving
- + Looking aside and concurrent search
- Resource-guided agent-based reasoning not fully developed yet

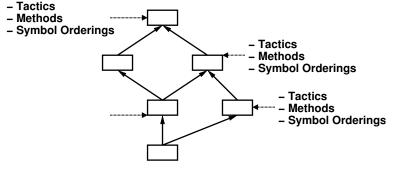
Novel Research Directions

Mathematical Assistant In-the-Large

Current & Future Developments

Theme: Towards a smoother integration into spectrum of typical mathematical activities

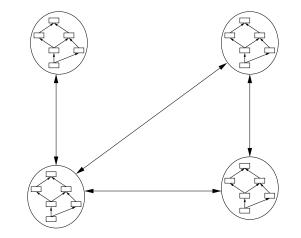
- Mathematical Knowledge Management
- Proof development in-the-large
 - Lifting the level of proof construction
 - Combination/Integration of proof search paradigms
 - Integration of structured mathematical knowledge
- Towards typical mathematical activities
 - Writing mathematical publications
 - Tutoring for mathematics students



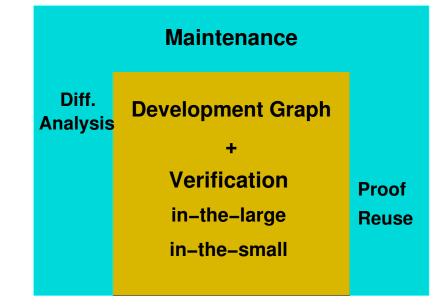
- 1. Types of knowledge
 - Formalized mathematical theories
 - Structured

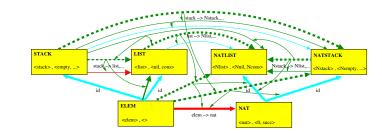
Source: Autexier. Benzmüller

 Domain specific proof knowledge tactics, proof-planning methods, symbol orderings, ...



- 1. Types of knowledge
- 2. Distributed over different physical locations
 - Origin tracking, remote access, ...





September 25th, 2003 - p.16

- 1. Types of knowledge
- 2. Distributed over different physical locations
- 3. Evolution of mathematical knowledge
 - Management of change
 Benefit from experience with MAYA
 - Versioning

In-the-large Proof Development _____

- 1. Lifting the level of proof construction
 - Support proof development directly on the Assertion Level
 - CORE-proof calculus

- [PhD-Autexier-03]
- Supports determination of assertions for subformulas
- Supports application of assertion to subformulas
- **New logic engine for** Ω MEGA

In-the-large Proof Development _

- **1. Lifting the level of proof construction**
- 2. Combination/Integration of proof search paradigms
 - Procedural Tactics, declarative proof-planning, distributed
 ΩANTS

Develop heterogenous paradigm [AutexierBenmuellerHutter-SEKI-03]

- All work on the new proof calculus provided by CORE
- Common, paradigm-independent proof object eases combination
- Adaptation of ΩANTS to new interface

[MsC-Thesis-Hübner]

In-the-large Proof Development _

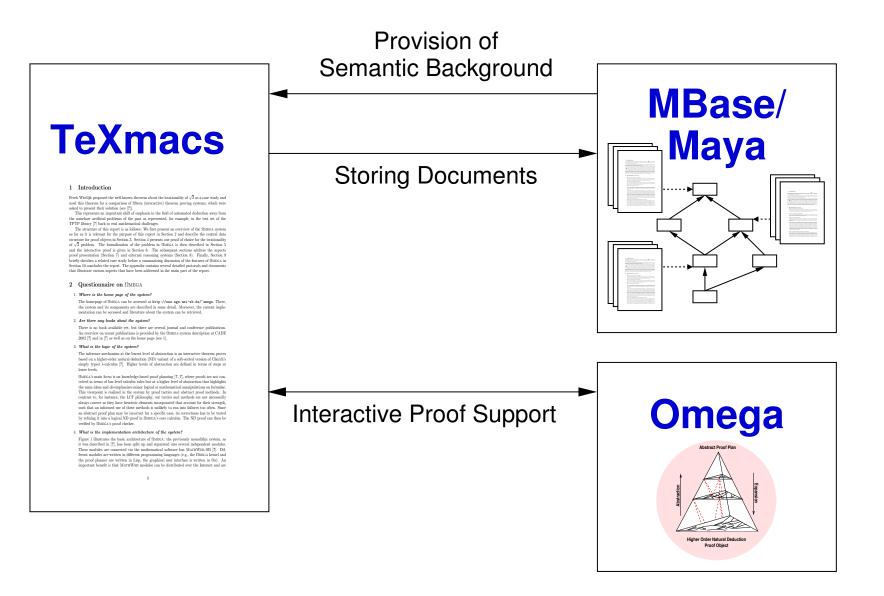
[PhD J. Zimmer]

- **1. Lifting the level of proof construction**
- 2. Combination/Integration of proof search paradigms
- 3. Integration of structured mathematical knowledge
 - Search for appropriate assertions in structured mathematical theories [Vo-Autexier-Benzmüller-IJCAI-03]
 - Redesign of MATHWEB-SB
 - Accommodate existing Multi-Agent-System description and communication standards
 - Integrate automated problem solving capabilities

UNIVERSITÄT DES

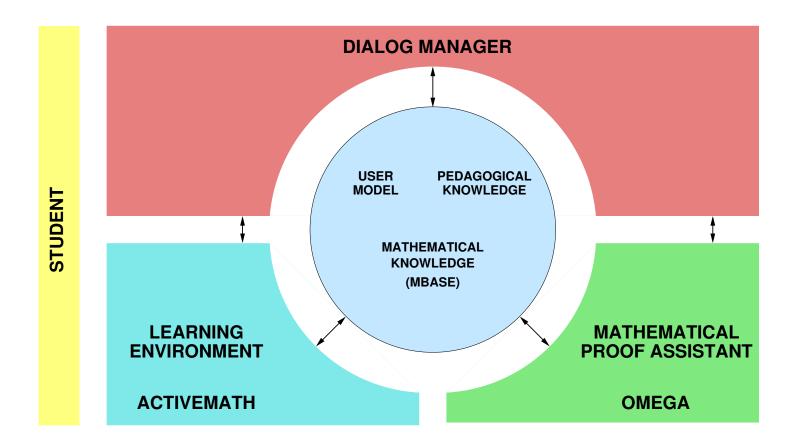
SAARLANDES

Supporting Mathematical Publications

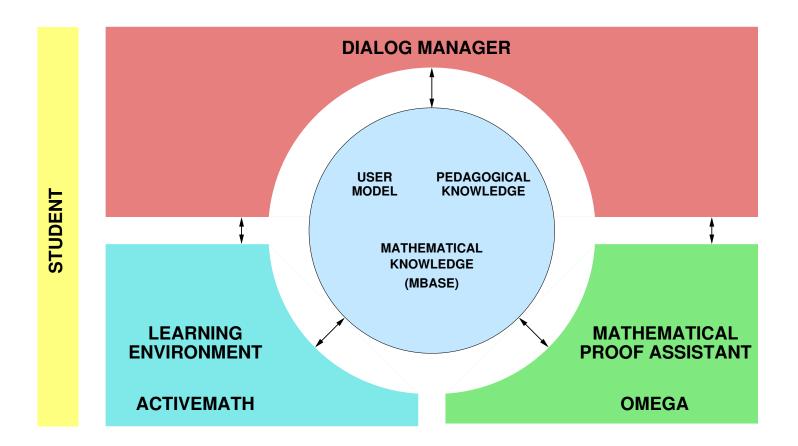

- Writing mathematical papers in publishable format
- Relate parts in paper to formally defined objects in MBASE (theories, symbols, definitions, lemmas, proofs)
 - Initialize paper wrt. background theory in MBASE
 - Writing definitions and lemmas gives (automatically) rise to formal counter-parts in MBASE
 - Written proofs give rise to formal proof objects in ΩMEGA
- Vision: Certified mathematical publications

System Architecture

Supporting Mathematical Publications


- Scenario: Students develop proofs in a natural language dialog and are advised by the system
- Linguistic analysis of student utterances
- Reconstruction of probable proof
- Comparison to tutor proof results in advise for student

DIALOG-System Architecture



DIALOG-System Architecture

Activemath

Underspecification of Proofs

 \Rightarrow Talk E. Melis \Rightarrow Talk A. Fiedler

Lessons learned...

- Modularization was important for ΩMEGA-system and -research group
 - work on clear interfaces and interface/communication languages
 ОмDос
 - ▶ eases reuse and join of resources MBASE, MATHWEB-SB
- Don't fight over proof search paradigms
 Concentrate on joining strengths of each to finally build a MA
- System-stability would highly benefit from
 - having long-term employed software engineer (Funding problem)
 - applying high-quality software development principles
- System development and stability depends on teamwork spirit

