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Overview MEGA

� Mathematical Assistant Environments

� The ΩMEGA Project

I Mathematical Assistant In-the-small
– research directions since early 90s –

I Mathematical Assistant In-the-large
– novel research directions –

I Lessons Learned
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Mathematical Assistant MEGA

CALCULEMUS-II illustration of MAs

Mathematical Assistant (MA)

� Integrated computer-based support
for most work tasks of a
mathematician

� After enthusiasm of the 50s and 60s
deduction systems area fragmented
into subfields (similar to AI)

� Driving forces in reverting this trend:

I MKM: top-down

I CALCULEMUS: bottom-up
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Mathematical Assistant MEGA

versus

Mathematics

− Mathematics research
− Mathematics education

Applications

Join of ressources necessary
− System level

− Networks

Coq, NuPrl, Isabelle/HOL, PVS,
Theorema, OMEGA, Clam, ... 
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Mathematical Assistant In-the-small

Research directions in the ΩMEGA project
since the early 90s
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Proof Planning MEGA

Methode1 Methode2 Methode3

ΩMEGA born in early 90s; inspired by [Bundy88]

� paradigm shift from classical FOL ATP to proof planning in HOL

ΩMEGA aspects:

� declarative, domain specific control layer

� strategy = domain specific instantiation of a general proof search
algorithm with set of proof methods and control information

� multi-strategy proof planning
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Proof Planning MEGA

Methode1 Methode2 Methode3

ΩMEGA aspects (cont’d):

� explicit representation of proof plans

� under-specification of
pre-conditions: potentially
non-sound proof plans

� soundness guaranteed via . . .
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Proof Planning MEGA

Methode2 Methode3

� . . . proof (plan) expansion over . . .
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Proof Planning MEGA

Methode2 Methode3

� . . . over different levels of
granularity

� expansion = local proof search /
proof construction problem

� may employ external reasoners
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Proof Planning MEGA

Methode2 Methode3

� . . . final verification in OMEGAs base
calculus (a higher-order ND variant)

� expansion typically fails early!
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Proof Planning MEGA

Main References

[MelisSiekmann-AIJ-99] Knowledge-based proof planning

[Meier-Diss-03] Multi-strategy proof planning

[MeierETAL-JSC-02, CohenEtAl-CADE-03, SiekmannEtAl-35yAutomath-03]

Proof planning with external specialist reasoners

Discussion

+ problem classes in specific domains; coordination of systems

− Brittleness and logic layer dependency; mixed-iniative PP

New Directions

⇒ Proof planning based on CORE (see 2nd part of talk)

September 25th, 2003 – p.5



Source: Autexier, Benzmüller

Interactive Proof MEGA

modus ponens
A     A=> B

B +

A => B        B => C
A => C

modus tollens
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V−Introduction Rules
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R2

Induction A => B        B => C
A => C

modus tollens

Tactics
Expansion Expansion

T2

modus ponens
A     A=> B

B

Differences to LCF: explicit representation (delayed expansion), po-

tentially non-sound tactics and methods, verification via expansion
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Interactive Proof MEGA

Theorem:
√

2 is irrational.

Proof: (by contradiction)
Assume

√
2 is rational, that is, there

exist natural numbers m, n with no
common divisor such that

√
2 =

m/n. Then n
√

2 = m, and thus
2n2 = m2. Hence m2 is even and,
since odd numbers square to odds,
m is even; say m = 2k. Then 2n2 =

(2k)2 = 4k2, that is, n2 = 2k2. Thus,
n2 is even too, and so is n. That
means that both n and m are even,
contradicting the fact that they do not
have a common divisor.

� declarative style of argumentation:
from assertions A and B follows C

� logic layer (e.g. a la ND- or
Sequent-Calculus) treated implicit

⇒ mismatch between procedural style
logic-level reasoning as employed in
todays theorem provers and declara-
tive assertion level reasoning as typi-
cal for mathematical texts
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Interactive Proof MEGA

Declarative approach versus procedural approach

Network of proof ‘islands’

2 ∗ n2 = m2

Even(m2)
Island

Even(m)
Island

....

� Islands structure the proof in natural form

� Islands provide no argument for soundness

⇒ Verification: expansion of island steps (automated, interactive,
recursive island approach)
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Proof Data Structure MEGA

ΩMEGA PDS

Expansion

Ab
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Abstract Proof Plan

Higher Order Natural Deduction
Proof Object

� Maintenance of proof
developments at

� different layers of granularity
which are

� connected to each other
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Proof Data Structure MEGA

Main References

[CheikhrouhouSorge-ACIDCA-00] Overview on PDS

[SiekmannEtAl-35yAutomath] Working with PDS

Discussion

+ Support for proof development at different levels of granularity,
proof expansion and contraction, non-soundness and
verification

− Missing: support for change of representation language

New Directions

⇒ A PDS for different levels of granularity and representational
abstraction [AutexierBenmüllerHutter-SEKI-03]
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Proof Verbalization MEGA

P.REX (successor of PROVERB):

� lifting of proofs in the PDS to
assertion level

� macro-planning text structure

� micro-planning sentence
structure and linguistic
realization

� generation of natural language
representation

� pre-required: linguistic
knowledge

� user-adaptive proof explanation
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Proof Verbalization MEGA

Main References

[Huang-CADE-94] PROVERB, Assertion Level

[Fiedler-IJCAR-01, Fiedler-PhD-01] P.REX, proof explanation

Discussion

+ Flexible, adaptable, non-template based proof verbalization

− Missing: Full natural language DIALOG at assertion level

New Directions

⇒ DIALOG project (see 2nd part of talk and talk on ’Assertion
level proofs with under-specification’)
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User Interface MEGA
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User Interface MEGA

Main References

[SiekmannEtAl-99] LOUI: Lovely OMEGA User Interface

Discussion

+ Support for different (connected) views on proof developments:
linearized ND style, proof tree (PDS), natural language

−What do users really want to see? Which users?

− Missing: optimal, integrated support for other mathematical
activities such as publication, authoring, modeling, etc.
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Mathematical Knowledge MEGA
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Mathematical Knowledge MEGA

Main References

[FrankeKohlhase-CADE-00] MBASE mathematical knowledge base

[Kohlhase-AISC-00,Kohlhase-03] OMDoc

Discussion

+ first step towards system independence

− still dependable on logic context

− version control: concurrent, joint development of mathematical
knowledge

− system independent representation formats for proof rules,
tactics, methods, and control knowledge
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External Specialist Reasoners MEGA

Usually required in OMEGA:

� white box integration of external specialist reasoners

� tools for extraction and transformation of results

Expansion
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problem

proof (e.g. ND)

Transformation Tool

Proof Transformation
Proof Reconstruction
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problem’

result (cryptic)
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Specialist
Reasoner
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External Specialist Reasoners MEGA

Main References

[Meier-CADE-00] TRAMP: Integration of FOL ATPs into OMEGA

[Sorge-FROCOS-00] SAPPER: Integration of CAS into OMEGA

[BenzmüllerEtAl-99] Integration of TPS into OMEGA

[MelisEtAl-00] Integration of constraint solving into OMEGA

Discussion

+ White-box integration achieved for heterogenous specialist
reasoning systems

− Not reached yet: flexible coordination of specialist reasoning
systems

September 25th, 2003 – p.11



Source: Autexier, Benzmüller

Modularization MEGA
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Modularization MEGA
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Modularization MEGA

Main References

[KohlhaseZimmer-CADE-02] MathWeb Software Bus

[Kohlhase-AISC-00,Kohlhase-03] OMDoc

Discussion

+ Modular system design supports better maintenance and reuse
of system components

+ Better join of resources achieved

− Missing: Intelligent brokering of systems, coordination of
systems, . . . , exploitation of and cooperation with QPQ
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Agent-based Theorem Proving MEGA

User

Planer

Ω-ANTS

Kontrolle Kommandos

Kontrolle

Interaktion

� pro-active support
versus passive support

� concurrent versus se-
quential
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Agent-based Theorem Proving MEGA
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Agent-based Theorem Proving MEGA
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Agent-based Theorem Proving MEGA

Main References

[BenzmüllerSorge-AIMSA-98, BenzmüllerSorge-EPIA-99, Sorge-PhD-01]

OANTS suggestion mechanism

[BenzmüllerSorge-CALCULEMUS-00, BenzmüllerEtAl-KI-01]

Agent-based reasoning with external specialist reasoners

[BenzmüllerEtAl-MKM-01] Agent-based search in Knowledge bases

[PolletEtAl] OANTS in interactive proof planning

Discussion

+ Suggestion mechanism useful for interactive theorem proving

+ Looking aside and concurrent search

− Resource-guided agent-based reasoning not fully developed yet
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Novel Research Directions

Mathematical Assistant In-the-Large
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Current & Future Developments MEGA

Theme: Towards a smoother integration into spectrum of
typical mathematical activities

� Mathematical Knowledge Management

� Proof development in-the-large
I Lifting the level of proof construction

I Combination/Integration of proof search paradigms

I Integration of structured mathematical knowledge

� Towards typical mathematical activities
I Writing mathematical publications

I Tutoring for mathematics students
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Mathematical Knowledge Management MEGA

1. Types of knowledge

� Formalized mathematical theories

� Structured

� Domain specific proof knowledge
tactics, proof-planning methods, sym-
bol orderings, . . .

− Methods
− Tactics

− Symbol Orderings

− Methods
− Tactics

− Symbol Orderings

− Methods
− Tactics

− Symbol Orderings
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Mathematical Knowledge Management MEGA

1. Types of knowledge

2. Distributed over different physical loca-
tions

� Origin tracking, remote access, . . .
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Mathematical Knowledge Management MEGA

1. Types of knowledge

2. Distributed over different physical loca-
tions

3. Evolution of mathematical knowledge

� Management of change
Benefit from experience with MAYA

� Versioning

Maintenance

Reuse

Analysis

in−the−large

in−the−small

Verification
+

Development Graph

Proof

Diff.

NATLISTLISTSTACK NATSTACK

<list> , <nil, cons> <Nlist> , <Nnil, Ncons><stack> , <empty, ...> <Nstack> , <Nempty, ...>

idid id id

<elem> , <>

ELEM

list −> Nlist,...

stack −> Nstack,...

elem −> nat

Nstack −> Nlist,...

<nat> , <0, succ>

NAT

stack −> list,...
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In-the-large Proof Development MEGA

1. Lifting the level of proof construction

� Support proof development directly on the Assertion Level

� CORE-proof calculus [PhD-Autexier-03]

I Supports determination of assertions for subformulas
I Supports application of assertion to subformulas
I New logic engine for ΩMEGA
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In-the-large Proof Development MEGA

1. Lifting the level of proof construction

2. Combination/Integration of proof search paradigms

� Procedural Tactics, declarative proof-planning, distributed
ΩANTS

Develop heterogenous paradigm [AutexierBenmuellerHutter-SEKI-03]

� All work on the new proof calculus provided by CORE

� Common, paradigm-independent proof object eases
combination

� Adaptation of ΩANTS to new interface [MsC-Thesis-Hübner]
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In-the-large Proof Development MEGA

1. Lifting the level of proof construction

2. Combination/Integration of proof search paradigms

3. Integration of structured mathematical knowledge

� Search for appropriate assertions in structured
mathematical theories [Vo-Autexier-Benzmüller-IJCAI-03]

� Redesign of MATHWEB-SB [PhD J. Zimmer]

I Accommodate existing Multi-Agent-System description
and communication standards

I Integrate automated problem solving capabilities
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Supporting Mathematical Publications MEGA

� Writing mathematical papers in publishable format

� Relate parts in paper to formally defined objects in MBASE

(theories, symbols, definitions, lemmas, proofs)
I Initialize paper wrt. background theory in MBASE

I Writing definitions and lemmas gives (automatically) rise to
formal counter-parts in MBASE

I Written proofs give rise to formal proof objects in ΩMEGA

� Vision: Certified mathematical publications
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System Architecture MEGA

1 Introduction

Freek Wiedijk proposed the well-known theorem about the irrationality of
√

2 as a case study and
used this theorem for a comparison of fifteen (interactive) theorem proving systems, which were
asked to present their solution (see [?]).

This represents an important shift of emphasis in the field of automated deduction away from
the somehow artificial problems of the past as represented, for example, in the test set of the
TPTP library [?] back to real mathematical challenges.

The structure of this report is as follows: We first present an overview of the Ωmega system
as far as it is relevant for the purpose of this report in Section 2 and describe the central data
structure for proof objects in Section 3. Section 4 presents our proof of choice for the irrationality
of

√
2 problem. The formalization of the problem in Ωmega is then described in Section 5

and the interactive proof is given in Section 6. The subsequent sections address the aspects
proof presentation (Section 7) and external reasoning systems (Section 8). Finally, Section 9
briefly sketches a related case study before a summarizing discussion of the features of Ωmega in
Section 10 concludes the report. The appendix contains several detailed protocols and documents
that illustrate various aspects that have been addressed in the main part of the report.

2 Questionnaire on Ωmega

1. Where is the home page of the system?

The homepage of Ωmega can be accessed at http://www.ags.uni-sb.de/~omega. There,
the system and its components are described in some detail. Moreover, the current imple-
mentation can be accessed and literature about the system can be retrieved.

2. Are there any books about the system?

There is no book available yet, but there are several journal and conference publications.
An overview on recent publications is provided by the Ωmega system description at CADE
2002 [?] and in [?] as well as on the home page (see 1).

3. What is the logic of the system?

The inference mechanism at the lowest level of abstraction is an interactive theorem prover
based on a higher-order natural deduction (ND) variant of a soft-sorted version of Church’s
simply typed λ-calculus [?]. Higher levels of abstraction are defined in terms of steps at
lower levels.

Ωmega’s main focus is on knowledge-based proof planning [?, ?], where proofs are not con-
ceived in terms of low-level calculus rules but at a higher level of abstraction that highlights
the main ideas and de-emphasizes minor logical or mathematical manipulations on formulae.
This viewpoint is realized in the system by proof tactics and abstract proof methods. In
contrast to, for instance, the LCF philosophy, our tactics and methods are not necessarily
always correct as they have heuristic elements incorporated that account for their strength,
such that an informed use of these methods is unlikely to run into failures too often. Since
an abstract proof plan may be incorrect for a specific case, its correctness has to be tested
by refining it into a logical ND proof in Ωmega’s core calculus. The ND proof can then be
verified by Ωmega’s proof checker.

4. What is the implementation architecture of the system?

Figure 1 illustrates the basic architecture of Ωmega: the previously monolithic system, as
it was described in [?], has been split up and separated into several independent modules.
These modules are connected via the mathematical software bus MathWeb-SB [?]. Dif-
ferent modules are written in different programming languages (e.g., the Ωmega kernel and
the proof planner are written in Lisp, the graphical user interface is written in Oz). An
important benefit is that MathWeb modules can be distributed over the Internet and are
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it was described in [?], has been split up and separated into several independent modules.
These modules are connected via the mathematical software bus MathWeb-SB [?]. Dif-
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Source: Autexier, Benzmüller

Supporting Mathematical Publications MEGA

� Scenario: Students develop proofs in a natural language dialog
and are advised by the system

� Linguistic analysis of student utterances

� Reconstruction of probable proof

� Comparison to tutor proof results in advise for student
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� Activemath ⇒ Talk E. Melis

� Underspecification of Proofs ⇒ Talk A. Fiedler
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Source: Autexier, Benzmüller

Lessons learned. . . MEGA

� Modularization was important for ΩMEGA-system and
-research group

I work on clear interfaces and interface/communication
languages OMDOC

I eases reuse and join of resources MBASE, MATHWEB-SB

� Don’t fight over proof search paradigms
Concentrate on joining strengths of each to finally build a MA

� System-stability would highly benefit from

I having long-term employed software engineer (Funding
problem)

I applying high-qualitty software development principles

� System development and stability depends on teamwork spirit
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