

Agent-based Proof Search with Indexed Formulas

Malte Hübner, Serge Autexier, and Christoph Benzmüller

with thanks to Volker Sorge

Saarland University, Saarbrücken, Germany

What is the talk about?

CORE: A new basic inference system for ΩMEGA that is based on a (dynamic) rewriting approach (developed by Serge Autexier)

Adapting the suggestion mechanism \O-ANTS to support proof search in CORE

This is work in progress

CORE: A new basis for ΩMEGA

- Rewriting and focus placement as basic constructs
- Set of rewrite rules dynamically created for each focus
- Overall goal: rewrite problem formalization to ⊤ or ⊥

Strong support by simplification; e.g., $\bot\Rightarrow a\lor b$ simplifies to \top

- Our motivation: better suited for practical reasoning than conventional
- treats (propositional) logical aspects implicit; e.g, unwrapping of hypothesis
- no constraints on the order of quantifier elimination
- System recently applied to interactive proof of $\sqrt{2}$

How does it work?

Example: $\neg(\neg A \lor \neg B) \land (A \Rightarrow (B \Rightarrow C)) \Rightarrow C \lor D$

Proof of $A \land B \land (\neg A \lor (B \Rightarrow C)) \Rightarrow C \lor D$ is different!

Malte Hübner, Serge Autexier, and Christoph Benzmüller

How does it work?

Internal representation: Indexed formula tree

$$\neg(\neg A \lor \neg B) \land (A \Rightarrow (B \Rightarrow C)) \Rightarrow C \lor D$$

$$\boxed{C \to \top}$$

$$\top \qquad \qquad \downarrow B \to \top$$

Simplification: $\neg(\neg A \lor \neg B) \land (A \Rightarrow (B \Rightarrow C)) \Rightarrow \top \lor D$ simplifies to \top

Note: Identical proof for $A \wedge B \wedge (\neg A \vee (B \Rightarrow C)) \Rightarrow C \vee D$.

Indexed formula tree

$$(\neg(\neg A \lor \neg B) \land (A \Rightarrow (B \Rightarrow C)) \Rightarrow^{\alpha} C \lor D)^{+}$$

$$(\neg(\neg A \lor \neg B) \land^{\alpha} (A \Rightarrow (B \Rightarrow C)))^{-} \qquad (C \lor^{\beta} D)^{+}$$

$$(\neg(\neg A \lor \neg B))^{+} \qquad (A \Rightarrow (B \Rightarrow C))^{-} \qquad C^{+} \qquad D^{+}$$

$$\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

lpha-related subformulas belong to the same context r rewriting

Properties of CORE

- focus) New system well suited for interaction with humans (but take care with
- Search Space:
- Challenge: choice of focus
- Rules of the form $[\Phi]$ $u o v_1 \dots v_n$ are generated **dynamically**
- Focus choice and rule selection are interdependent
- Backtracking
- Advantages for proof search:
- big steps rather than reasoning about logical details
- more information is available in each proof state

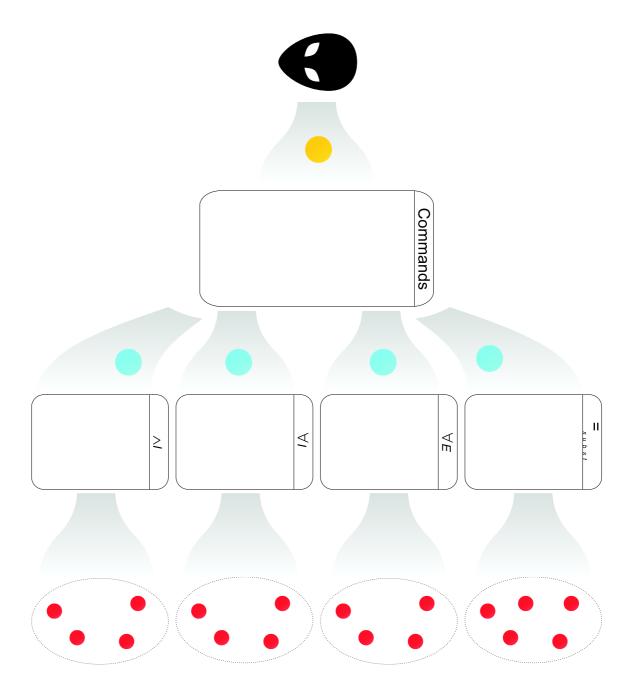
Proof Search

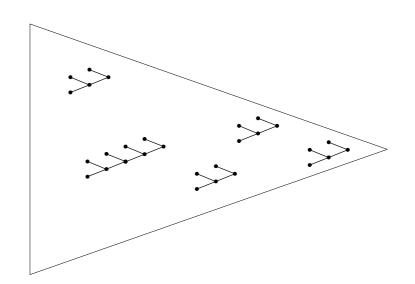
To support interactive and automated proof search we want a mechanism

- makes suggestions on how to place focus
- computes instances of applicable rewrite rules
- computes instances of additional tactics and methods
- filters and heuristically orders the instances of applicable rules
- ⇒Adapt and employ sugggestion mechanism Ω-ANTS

STNA-()

Key idea:


$$\frac{p_1 \dots p_m}{c} \ name(t_1, \dots, t_n)$$


- Distributed search for instantiations of p_1, \ldots, p_m, c in partial proof; distributed computation of instantiations for t_1,\dots,t_m
- Communication (about dependencies between parameters) via blackboards
- Certain patterns of instantiations are considered to be applicable
- Heuristically order applicable rules

Approach for Rewrite Rules

- Rewriting with dynamically generated rewrite rules instead of ND
- Needed: suggestion of applicable rewrite rule instances for current focus
- How to search for applicable instances in formula tree?
- Model all (dynamic) rewrite rules as agents in $\Omega extst{-Ants}$:
- dynamic creation of agents for each rule
- + distribution of search for instances
- Model one generic rewrite agent that handles all rules sequentially:
- no dynamic creation of agents
- no distribution of complex instantiation criteria (HO-unification)
- Proposal is to split work
- one agent that employs FO-unification
- one or several working with HO-unification

Approach for Tactics/Methods

Static tactics/methods still specified and modeled as before:

$$\frac{p_1,p_2,p_3,p_4,p_5\ldots,p_n}{c}$$
 $name(t_1,\ldots,t_m)$

application in the system Applicable *partial argument instantiations* have to be cast into rewrite rules for

- Use Ω -ANTS as it is
- Agents have to search for instantiations in indexed formula tree
- Transform each applicable instantiation pattern in rewrite rule: If c, p_1, p_3 is the set of parameters for which instantiations were found

$$c \to p_2 \wedge p_4 \wedge \ldots \wedge p_n$$

Approach for Tactics/Methods

$$\frac{p_1: A \Rightarrow B \quad p_2: B \Rightarrow C}{c: A \Rightarrow C} \quad ModusBarbara$$

Example:
$$(P(a) \Rightarrow Q(a)) \land A(f(g)) \land R(y) \Rightarrow (P(a) \Rightarrow R(a))$$

$$\frac{p_1: P(a) \Rightarrow Q(a) \quad p_2: \emptyset}{c: P(a) \Rightarrow R(a)} \quad ModusBarbara$$

Focusing on $P(a) \Rightarrow R(a)$ should yield the following rewrite rules:

$$(P(a) \Rightarrow R(a)) \rightarrow (Q(a) \Rightarrow R(a))$$

 $[Q(a) \Rightarrow R(a)] P(a) \rightarrow R(a)$

Approach for Focus Placement

Focus Agent:

- Suggests to consider certain foci and excludes other foci from the search
- Criteria from theoretical investigations for heuristics/strategies
- Criteria of human mathematicians
- Problem: focus placement can easily become to complicate for humans
- user model needed for optimal support ?

Winding up

- Adaptation of Ω -Ants to support interactive proof search in CORE
- Difficulty: interplay between focus placement, dynamic generated rewrite rules, tactics/methods, and backtracking
- Current focus of work: Interactive theorem proving Possible evaluation:
- adequately and as comfortably as possible mathematical problem such as irrationnality of $\sqrt{2}$ in the system as Get a novice user (e.g. maths student) to replay his blackboard proof of a
- Future work: Automation of proof search based on Ω -ANTS and mixed-initiative proof search

