Semantics and Atomation of Higher-Order Logic – Some Remarks –

Christoph Benzmüller

Workshop on Logic, Proofs and Programs

17-18 June 2004, Nancy

First-order Logic

Higher-Order Logic

ATP in FOL and HOL

Motivation for Talk

Is the situation really hopeless?

Is it justi able that the deduction botton (19) To RG(0 edu / 19 0 /

HOL: Classical Type Theory

HOL: Semantics

Sidetrack: Logical Frameworks _

ATP in FOL and HOL

Presentation by

Marc Wagner

Logical Frameworks

Exercise Sheet III

HOL Semantics: Applications

Henkin semantics

Mathematics

Without Boolean extensionality

Linguistics, intensional contexts

"I believe

HOL: Problems __

Problem 2elln2suita(lem)Tj /R8941 0 Td (lems)Tj29063 0 Td proofPr

Completeness proofs in HOL much harder than in FOL Direct semantical arguments are too complicate Abstract consistency proof

Abstract Consistency _____

Α

ND Calculi: Completeness

Excerpt from completeness proof ... \mathbf{r}_{β} : Let A 2 and $A\dot{\mathbf{y}}_{\beta}$ be NK -inconsistent. That is, $A\dot{\mathbf{y}}_{\beta}$ $\dot{\mathbf{u}} \mathbf{I} \mathbf{E}_{0} / \mathbf{R} \mathbf{1} \mathbf{V} \mathbf{1}$ $\mathbf{v}_{\beta} \dot{\mathbf{v}} \mathbf{v}_{\beta} \dot{\mathbf{v}} \mathbf{I} \mathbf{E}_{0} / \mathbf{R} \mathbf{1} \mathbf{V} \mathbf{1}$ $\mathbf{v}_{\beta} \dot{\mathbf{v}} \mathbf{v}_{\beta} \dot{\mathbf{v}} \mathbf{v}_{\beta} \dot{\mathbf{v}} \mathbf{v}_{\beta} \dot{\mathbf{v}}_{\beta} \dot{\mathbf$ NK Hyp /R179 ET Q 1 0 0 RG 1 0 0 rg q 10 0 0 10 0 cm BT /R298 1 Tf 0 20

Saturation and Cut ____

Saturation condition r sat is a challenge for machine-oriented calculi:

- as hard as cut-elimination
- therefore development of alternative, weaker conditions in [BenzmüllerBrownKohlhase-Draft03] which are

Problem 3:

The two crucial challenges for automation of HOL

- treatment of equality and extensionality
- instantiation of set variables

are too hard to control successfully.

Really?

Extensional Resolution

ATP in FOL and HOL

Further small examples

Sidetrack: Lambda Cube _

ATP in FOL and HOL

Presentation by Matthias Berg

Lambda Cube

See extra

Sidetrack: New Foundations _____

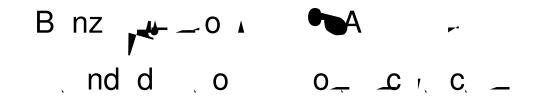
Difference Reduction

Extensional RUE-resolution

[Benzmüller-PhD-99]

Difference reduction matrix calculus

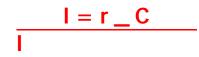
[Brown-PhD-04]


Alcrules for extensional resolution

Positive extensionality rules, but no paramodulation rule

New: Resolution and factorization allowed on uni cation constraints

Prover LEO _____



 \cap

Superposition with Equivalences

Remark

More useful as restricted extensions of FOL approaches: Embedding/Implementation of FOL approaches in HOL context?

Very important: Extension of CASC competition and TPTP library in order to avoid isolated analysis of FOL approaches.

ATP in FOL and HOL

Example: As an exampleHOL

