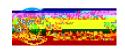
Automated Theorem Proving in First-Order and Higher-Order Logic

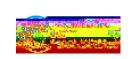
Christ ph B³nzmüll³r

Department of Computer Science, Saarland University

Lecture Course

Saarbrücken, Germany

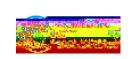




Module Outline (To be discussed) _____ ATP in FOL and HOL

Take a sheet of paper and try to answer the following questions:

1. Encode the following statement in a set of propositional logic formulas S:



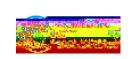
Gottfr

History (Cont'd) _____

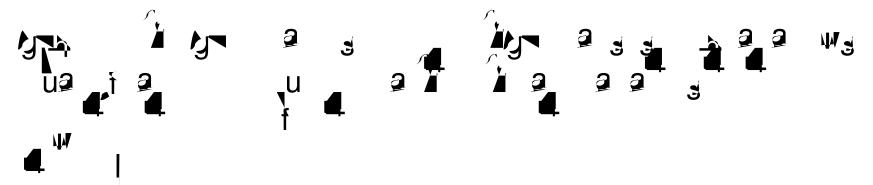
Hilbert's progr

History (Cont'd) _____

History (Cont'

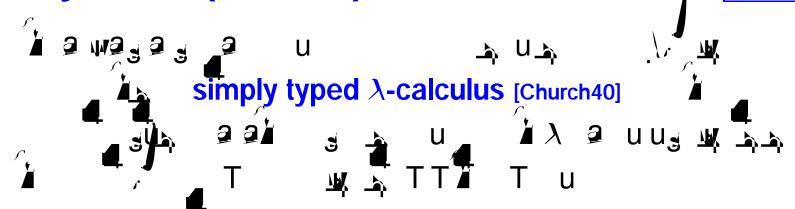


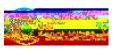
ATP in FOL and HOL



History HOL (Cont'd) _

ATP in FOL and HOL



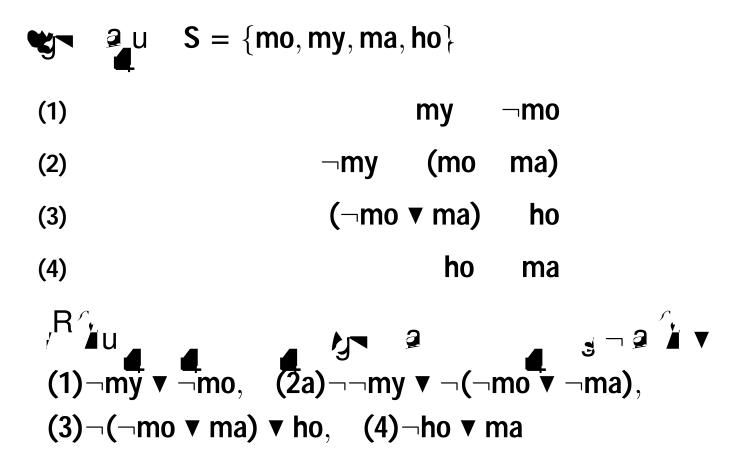


History HOL (Cont'd) _____

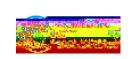
Propositional Logic (\mathcal{P}): Syntax ____

\mathcal{P} : Syntax (Cont'd)

If the unicorn is mythical, then it is immortal, but if it is not mythical, then it is a mortal mammal. If the unicorn is either immortal or a mammal, then it is horned. The unicorn is mammal if it is horned.



\mathcal{P} : Structural Induction



\mathcal{P} : Semantics (Cont'd) _____

ATP in

\mathcal{P} : Semantics (Cont'd) ____

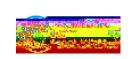
ATP in FOL and HOL

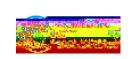
Remark 1.11 Iv is a total, terminating, and wd (tot 32 44 0 Td ell-de ned,)Tj 4885659 0 Td ft

De nition 1.13 (Satis ability and Validity) A formula

\mathcal{P} : Semantics (Cont'd) _____

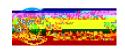
A





\mathcal{P} : Resolution (Cont'd) _____

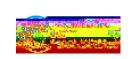
ATP in FOL and HOL



\mathcal{P} : Resolution (Cont'd)

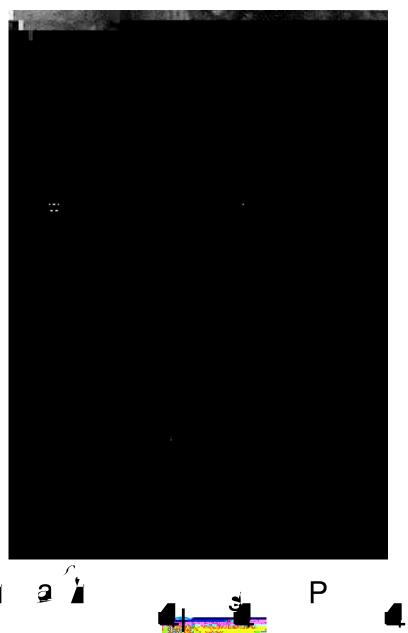
\mathcal{P} : Resolution (Cont'd) _____

ATP in FOL and HOL



Sidetrack: Kurt Gödel

ATP in FOL and HOL



c B nz u 2 004

www.ltn.lv/~podnieks/

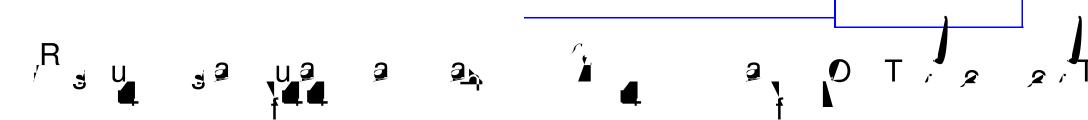
ki I by. stanford. edu/~rvg/154/handouts/i ncompl eteness. html en. wi ki pedi a. org/wi ki /Tal k:

\mathcal{P} : Resolution (Cont'd) _____

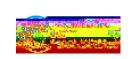
A

\mathcal{P} : Resolution (Cont'd)

ATP in FOL and HOL



\mathcal{P} :



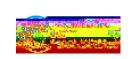
P 23

Presentation by Ruzica Piskac

The Saturate System See extr

Abstract Consistency: History ______ ATP in FOL and HOL

Abstract Consistency

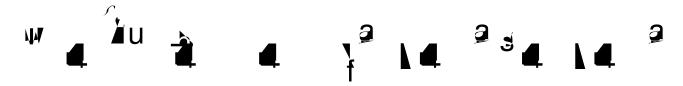


Abstract Consistency (Cont'd) _____

ATP in FOL and HOL

Abstract Consistency (Cont'd) ____

ATP in FOL and HOL



Abstract Consistenc

Abstract Consistency (Cont'd) ____

ATP in FOL and HOL

Lemma 1.66 (Hintikka Extension Lemma) Let be a compact abstract consistency class and let an element of this class. Then there exists a Hintikka set H for , such that H.

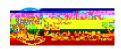
Proof: For a given ϕ we construct H according to the following de nition:

Н

Abstract Consistency (Cont'd) ____

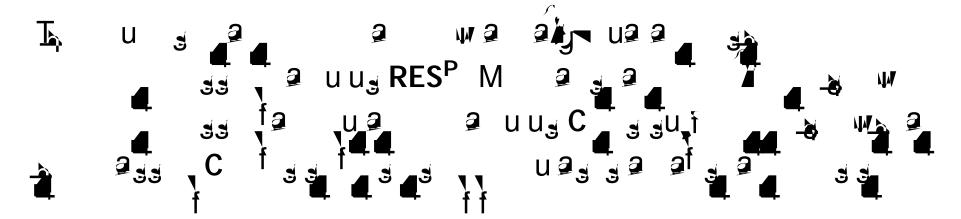
ATP in FOL and HOL

Theorem 1.67 (Model Existence Theorem) Let be a saturated propositional abstract consistency class and



Abstract Consistency (Cont'd) __

ATP in FOL and HOL



Abstract Consistency (Cont'd) _____ ATP in FOL and HOL

Abstract Consistency (Cont'd)

Presentation by Andrey Shadrin

Isabelle-HOL

See extra slides

