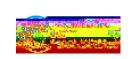
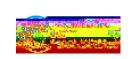

Automated Theorem Proving in First-Order and Higher-Order Logic


Christ ph B³nzmüll³r

Department of Computer Science, Saarland University

Lecture Course

Saarbrücken, Germany


Module Outline (To be discussed) _____ ATP in FOL and HOL

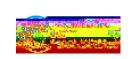
Take a sheet of paper and try to answer the following questions:

1. Encode the following statement in a set of propositional logic formulas S:

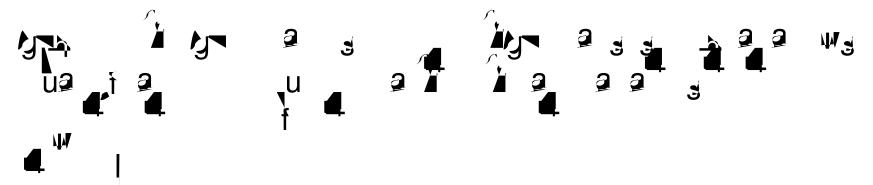
Gottfr

History (Cont'd) _____

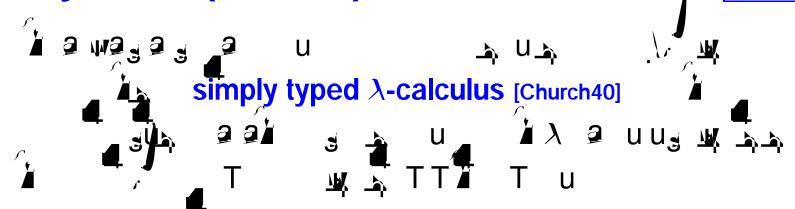
Hilbert's progr



History (Cont'd) _____



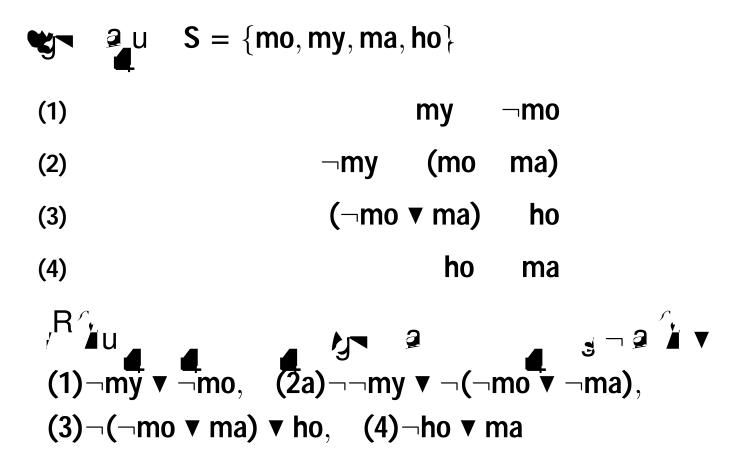
History (Cont'


ATP in FOL and HOL

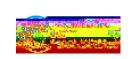
History HOL (Cont'd) _

ATP in FOL and HOL

History HOL (Cont'd) _____


Propositional Logic (\mathcal{P}): Syntax ____

\mathcal{P} : Syntax (Cont'd)



If the unicorn is mythical, then it is immortal, but if it is not mythical, then it is a mortal mammal. If the unicorn is either immortal or a mammal, then it is horned. The unicorn is mammal if it is horned.

\mathcal{P} : Structural Induction

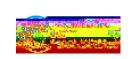
\mathcal{P} : Semantics (Cont'd) _____

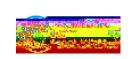
ATP in

\mathcal{P} : Semantics (Cont'd) ____

ATP in FOL and HOL

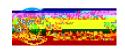
Remark 1.11 Iv is a total, terminating, and wd (tot 32 44 0 Td ell-de ned,)Tj 4885659 0 Td ft


De nition 1.13 (Satis ability and Validity) A formula



\mathcal{P} : Semantics (Cont'd) _____

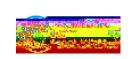
A



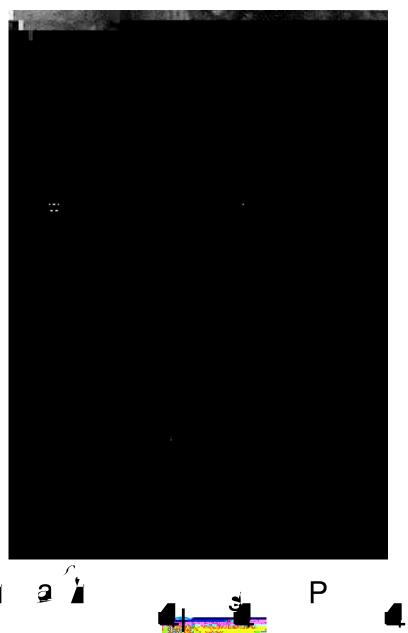
\mathcal{P} : Resolution (Cont'd) _____

ATP in FOL and HOL

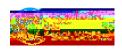
\mathcal{P} : Resolution (Cont'd)



\mathcal{P} : Resolution (Cont'd) _____


ATP in FOL and HOL

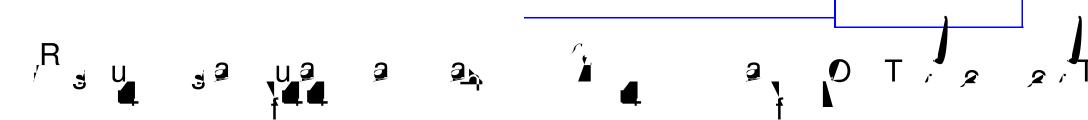
Sidetrack: Kurt Gödel


ATP in FOL and HOL

c B nz u 2 004

www.ltn.lv/~podnieks/

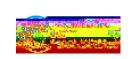
ki I by. stanford. edu/~rvg/154/handouts/i ncompl eteness. html en. wi ki pedi a. org/wi ki /Tal k:


\mathcal{P} : Resolution (Cont'd) _____

A

\mathcal{P} : Resolution (Cont'd)

ATP in FOL and HOL

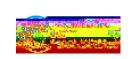


\mathcal{P} :

P 23

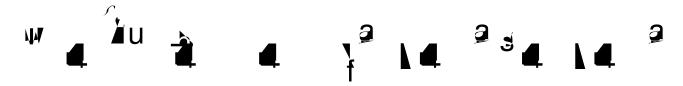
Presentation by Ruzica Piskac

The Saturate System See extr



Abstract Consistency: History ______ ATP in FOL and HOL

Abstract Consistency


Abstract Consistency (Cont'd) _____

ATP in FOL and HOL

Abstract Consistency (Cont'd) ____

ATP in FOL and HOL

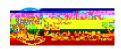
Abstract Consistenc

Abstract Consistency (Cont'd) ____

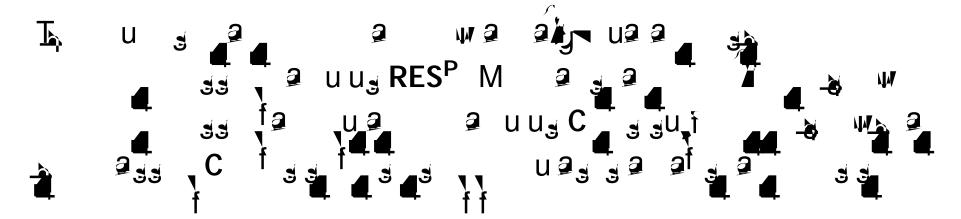
ATP in FOL and HOL

Lemma 1.66 (Hintikka Extension Lemma) Let be a compact abstract consistency class and let an element of this class. Then there exists a Hintikka set H for , such that H.

Proof: For a given ϕ we construct H according to the following de nition:


Н

Abstract Consistency (Cont'd) ____


ATP in FOL and HOL

Theorem 1.67 (Model Existence Theorem) Let be a saturated propositional abstract consistency class and

Abstract Consistency (Cont'd) __

ATP in FOL and HOL

Abstract Consistency (Cont'd) _____ ATP in FOL and HOL

Abstract Consistency (Cont'd)

Presentation by Andrey Shadrin

Isabelle-HOL

See extra slides

