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Introduction

From 1679 onwards Leibniz developed a modal
Logic of Concepts. Concepts play the role of
predicates in ordinary predicate logic.
Wolfgang Lenzen showed [2]| that one can eas-
ily apply Leibniz own logic to formalise a fa-
mous ontological argument by Leibniz in his
own logic. From this starting point we formu-
lated Lenzen formalisation in the proof assis-
tant Isabelle/HOL and conducted (semi-) em-
piric experiments using Isabelle’s automation
tools.

Leibniz’ Axioms
Leibniz defines three primitive operations on
concepts.

e Concept Containment: &
"Blue” contains “colored”
e (Concept Conjunction: +
Combines two concepts into a composite
concept
e (Concept Negation: ~
Returns the “opposite concept”

The embedding of concepts, its primitive and
definable operations, and Lenzen's axiomati-
zation in Isabelle can be seen in Figure 1.

Ol
' O AoC_Implication.thy (~/GITHUBS/GoedelGod/Formalizations/Isabelle/Leibniz/)

© 1|theory AoC_Implication
2|imports Main

|
|
i

3
4]begin
5|typedecl ¢ (* Type for concepts *)
6
7|consts contains :: "c = ¢ = bool" (infix "3" 65)
8|consts conjunction :: "¢ = ¢ = c¢" (infixr"+" 70)
9|consts not :: "c = c" ("~ _" 75)
10
© 1ljdefinition notcontains :: "c = c = bool" (infix "g¢" 65) where
L 12 "notcontains AB = - (A JB) "
© 13|definition equal :: "c = c¢ = bool" (infixr "=" 40) where
L 14 "equal AB=AIJB AB OA"
© 15|definition notequal :: "c = ¢ = bool" (infixr "#" 40) where
. 16 "notequal AB = — (A=B)"
17| (* Note that possible does not mean possible propositions but possible concepts *)
© 18|definition possible :: "c = bool" ("P _" 74) where
L 19 "PB=VA. B¢gA+ ~A"
© 20|definition disjunction :: "c = ¢ = c¢" (infixr "V" 71) where
L 21 "AVB= ~ ((~A) + ~B)"
22| (* Note that implication is not introduced by Leibniz or Lenzen *)
© 23 definition implication :: "c = ¢ = c¢" (infixr "—" 74) where
L 24 "A — B = ((~ A) V B)"
© 25|definition indconcept :: "c = bool" ("Ind _" 75) where
. 26 "indconcept A = (P A) A (VY. (P (A +Y)) — AOY)"
© 27|definition indexists :: "(c = bool) = bool" (binder "3" 10) where
. 28 "Ix. A x = I(X::c). (Ind X) A A X"
© 29|definition indforall :: "(c = bool) = bool" (binder "V" 10) where
L 30 "Vx. A x = V(X::c). (Ind X) — A X"

© 32|axiomatization where

33| IDEN2: "/\A B. A=B — (Voo. « A «— « B)" and

34| (* Lenzen uses conjunction here. For computational reasons implications are used *)
35| CONT2: "AABC. AdJB — B J3C = A 1C" and

36| CONJ1: "AABC. AdJB +C=A3dB A A C" and

37| NEG1: "AA. (~ ~ A) = A" and

38| NEG2: "AAB. A OB = (~B) O~ A" and

39| (*NEG3 is, contrary to Lenzens paper, not a theorem*)

40| NEG3: "AA. A # ~ A" and
41| P0SS2: "AAB. AJB = - P(A + ~ B)" and

42| (* MAX is an axiom which does not occur in Lenzens paper.

43| It turns out to be equivalent to P0OSS3 and can thus, in principle, be replaced by it *)
44| MAX: "AB. P B = 3C. VA. ((B O A) — (C OAAC & ~A))

45 A (B IO~A) —(CgAANCO~A))

Preliminaries to the Divine
Leibniz’' ontological argument deals with nec-

essary, possible and existence. These three
terms have to be defined before we start the
proof itself.

e [Existence is just a special concept "E".
From today's perspective this seems inap-
propriate.

e Possibility “P" is a derived notion; it at-
taches to concepts not propositions.
PC) VA (C¢ A+~ A))

e |eibniz proposed several notions of neces-
sity over the course of his life. We use the
straightforward interpretation here.

N((C) & -P(~ C)

e Counterintuitively, Leibniz’ modal logic is

extensional.

O
[J God_Implication.thy (~/GITHUBS/GoedelGod/Formalizations /Isabelle/Leibniz/)
© 1|theory God Implication

2|imports AoC_Implication

3
L 4|begin
© 5|consts

6] E :: "c" ("E")
L 7] G :: "c" ("G")

8|l

9|definition N :: "c = bool" where "N A = - P (~ A) "
@10 axiomatization where
' 11| GnotE: "G # E" and
' 12| GnotnotE: "G # ~E" and
113| NG: "N(G — E)"

14

15](* 2) For whatever doesn’t exist, for it is possible not to exist. *)

16|lemma L2': "(X € E) — (P (X + ~E))" by (simp add: P0SS2 notcontains_def)

17](* 3) For whatever it’s possible not to exist, of it it’'s false to say that

18|it cannot not exist. *)

19|lemma L3': "(P (X + ~E)) — ——(P (X + ~E))" by simp

20| (* 4) Of whatever it is false to say that it is not possible not to exist, of

21|it’'s false to say that it is necessary. (For necessary is what cannot not exist.) *)
©22 lemma L4': "-—(P (X + ~E)) — —(N (X — E))" by (smt CONJ1 CONJ4 CONJ5 CONT2 IDEN2
23| NEG1 N_def P0SS1 disjunction_def equal_def implication_def)

24| (* 5) Therefore, of the necessary being it’'s false to say it is necessary. *)

25|lemma L5': "(G ¢ E) — —(N (G — E))" using L2' L4' by auto

26| (* 6) This conclusion is either true or false. *)

27|lemma L6': "=(N (G — E)) V =——(N (G — E))" by simp

28|(* 7) If it is true, it follows that the necessary being contains a contradiction, i.e.

29|is impossible, because contradictory assertions have been proved about it, namely that it

30|is not necessary. For a contradictory conclusion can only be shown about a thing which

31|contains a contradiction. *)

32|lemma L7': "-(N (G — E)) — —(P G)" by (simp add: NG)

33|(* 8) If it is false, necessarily one of the premises must be false. But the only premise

34|that might be false is the hypothesis that the necessary being doesn’t exist. *)

35|lemma L8': "-—(N (G — E)) — —(G € E)" using L5' by blast

36|(* 9) Hence we conclude that the necessary being either is impossible, or exists. *)
37|lemma L9': "=(P G) V (G O E)" using L6' L7' L8' notcontains_def by metis

38|(* 10) So if we define God as an “Ens a se”, i.e. a being from whose essence its existence
39|follows, i.e. a necessary being, it follows that God, if It is possible, actually exists. *)
40|lemma L10': "(P G) — (G O E)" wusing L9' by auto

41| (* Note that impossible objects contain any property. Therefore, any impossible object
42|contains existence *)

43|lemma God: "(G 3 E)" using L5' NG notcontains_def by auto
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Proving God

Having defined the logic and basic concepts

we can now sate what it means for god to be

necessary.

e Theterm “being god(ly)" is identified with
a concept G.

e T[he desired conclusion “god exists s
identified with G € E — the concept of
god is contained in the concept of exis-
tence.

e Interestingly (see the paragraph below) the
only working axiomatization for god as the
necessary being seems to be N(~ GV FE)
or with “Concept Implication”

N(G — E) not N(G)

Results and Conclusion

In our work we were able to

e confirm that Leibniz" axiom system is con-
sistent.

e computationally verifty and improve upon
Lenzen's formalisation.

e easily prove some worrying statements us-
ing Leibniz" system (e.g. Whatever possi-
bly exists, exists actually).

We also found novel and perhaps philosoph-
ically interesting facts about Leibniz’' onto-
logical argument.

Leibniz uses “ens necessarium’ and “ens ex cu-
jus essentia sequitur existentia’ interchange-
ably. In his own system however, there is pro-
found difference between N((G) and

N(G — FE). If we use the former, the proof
fails and Isabelle’s nitpick routine quickly finds

he latter works as adver-

a countermodel.
tised. Our results, especially the countermod-
els, will be published soon as a book chapter

1]
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