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Intuitionism
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Intuitionism is a philosophy of mathematics that was introduced by Luitzen Egbertus Jan 
Brouwer in 1908.



⇛ Intuitionism centers on proof rather than truth.

Intuitionism
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The truth of a mathematical statement can only be conceived via a mental construction 
(a proof or verification) that proves it to be true.

It does not make sense to think of truth or falsity of a mathematical statement  
independently of our knowledge concerning the statement.  

A statement is true if we have proof of it, and false if we can show that the assumption 
that there is a proof for the statement leads to a contradiction. 

A. S. Troelstra and D. van Dalen, Constructivism in Mathematics, 1988

“
“

Intuitionism is a philosophy of mathematics that was introduced by Luitzen Egbertus Jan 
Brouwer in 1908.



Intuitionistic Propositional Calculus (      )

Introduced by Arend Heyting in 1930.

A logical calculus describing rules for the derivation of  
propositions that are valid from the point of view of  
intuitionism.
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Intuitionistic logic is most easily described as classical  
logic without the principle of excluded middle.
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IPC

φ ∨ ¬φ



The negation of a formula     , denoted as         , is abbreviated by             .

Alphabet. Propositional variables (                  ), logical connectives                 and 
constant symbol     .

Syntax of 

⋅ , + , ⊃
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Formulas. The (well-formed) formulas of          are defined inductively as follows: 
- Each atomic formula is a well-formed formula. 
- If      and      are well-formed formulas, so are           ,             and            . 
- Nothing else is a well-formed formula.

IPC

A, B, C ⋯

φ ψ φ ⋅ ψ φ + ψ φ ⊃ ψ

Atomic Formulas. Any propositional variable or     is an atomic formula.
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⊥

⊥

φ φ ⊃ ⊥∼ φ

IPC



[                                                                                                                                               ]- A proof of           is a construction which, given a proof of     , would return a proof of     . 

Semantics of 
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- A proof of            consists of a proof of      and a proof of     . 
- A proof of              is given by presenting either a proof of      or a proof of     . 
- A proof of              is a construction which, given a proof of     , returns a proof of     . 
-     has no proof.

φ ⋅ ψ φ

                                                                                        states informally what is intended 
to be a proof of a given formula:      

ψ
φ + ψ
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φ ψ
φ ⊃ ψ φ ψ

∼ φ
⊥

φ ⊥

 where          are formulas in        .φ, ψ IPC

IPC

The Brouwer-Heyting-Kolmogorov (BHK) interpretation
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Proof system for IPC



Axiom schemes where              are formulas in        :
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1. φ ⊃ (ψ ⊃ φ)
2. (φ ⊃ (ψ ⊃ μ)) ⊃ ((φ ⊃ ψ) ⊃ (φ ⊃ μ))
3. (φ ⋅ ψ) ⊃ φ
4. (φ ⋅ ψ) ⊃ ψ
5. φ ⊃ (ψ ⊃ (φ ⋅ ψ))
6. φ ⊃ (φ + ψ)
7. ψ ⊃ (φ + ψ)
8. (φ ⊃ μ) ⊃ ((ψ ⊃ μ) ⊃ ((φ + ψ) ⊃ μ))
9. ⊥ ⊃ φ

φ, ψ, μ
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IPC

Hilbert-style system for IPC



9. ⊥ ⊃ φ
8. (φ ⊃ μ) ⊃ ((ψ ⊃ μ) ⊃ ((φ + ψ) ⊃ μ))
7. ψ ⊃ (φ + ψ)

         From      and             ,  conclude      . (Modus Ponens)

Inference rules where          are formulas in        :
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⋮

Axiom schemes where              are formulas in        :φ, ψ, μ IPC

1. φ φ ⊃ ψ ψ

φ, ψ IPC
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Hilbert-style system for IPC

1. φ ⊃ (ψ ⊃ φ)



Classical Propositional Logic (       )

Intuitionistic Logic    Classical Logic    Gödel’s Interpretation    Gödel’s Results
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CPL



The negation of a formula     , denoted as        , is abbreviated by              .φ φ → ⊥¬φ

Formulas. The (well-formed) formulas of           are defined inductively as follows: 
- Each atomic formula is a well-formed formula. 
- If      and      are well-formed formulas, so are            ,             and             . 
- Nothing else is a well-formed formula.

Atomic Formulas. Any propositional variable or     is an atomic formula.

Alphabet. Propositional variables (                  ), logical connectives                   and 
constant symbol     .

Syntax of
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∧ , ∨ , →

CPL

φ ∧ ψ φ ∨ ψ φ → ψ
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φ ψ

⊥

⊥

A, B, C ⋯

CPL



Semantics of
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-             is true if and only if      is true and      is true. 
-             is true if and only if      is true or      is true (or both). 
-              is false if and only if      is true and      is false. 
-     is false.

φ ∧ ψ

The semantics of          is subject to the usual conditions (“truth tables”):

ψ
φ ∨ ψ φ ψ
φ → ψ φ ψ
⊥

 where          are formulas in         .φ, ψ CPL

φ

CPL

[                                                                                                                                               ]-        is true if and only if      is false. ¬φ φ

CPL
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Proof system for CPL



Axiom schemes where              are formulas in         :
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1. φ → (ψ → φ)
2. (φ → (ψ → μ)) → ((φ → ψ) → (φ → μ))
3. (φ ∧ ψ) → φ
4. (φ ∧ ψ) → ψ
5. φ → (ψ → (φ ∧ ψ))
6. φ → (φ ∨ ψ)
7. ψ → (φ ∨ ψ)
8. (φ → μ) → ((ψ → μ) → ((φ ∨ ψ) → μ))
9. ⊥ → φ

φ, ψ, μ
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CPL

Hilbert-style system for

10. φ ∨ (φ → ⊥ )

CPL



Inference rules where          are formulas in         :

10. φ ∨ (φ → ⊥ )
9. ⊥ → φ
8. (φ → μ) → ((ψ → μ) → ((φ ∨ ψ) → μ))

Intuitionistic Logic    Classical Logic    Gödel’s Interpretation    Gödel’s Results

⋮

Axiom schemes where              are formulas in         :φ, ψ, μ CPL

φ, ψ CPL
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1. φ → (ψ → φ)

Hilbert-style system for CPL

         From      and              ,  conclude      . (Modus Ponens)1. φ φ → ψ ψ



Additional inference rules where          are formulas in     :

Additional axiom schemes where          are formulas in     :

Expansion of         into system 

𝒢
11. Bφ → φ
12. Bφ → (B(φ → ψ) → Bψ)
13. Bφ → BBφ

Additional concept ‘    is provable’ (denoted by        with an additional unary operator    ).φ Bφ B

𝒢

Intuitionistic Logic    Classical Logic    Gödel’s Interpretation    Gödel’s Results

𝒢φ, ψ

φ, ψ
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CPL

         From      conclude        .2. φ Bφ



         From      conclude        .2. φ Bφ

13. Bφ → BBφ
12. Bφ → (B(φ → ψ) → Bψ)
11. Bφ → φ

Hilbert-style system for

Intuitionistic Logic    Classical Logic    Gödel’s Interpretation    Gödel’s Results

⋮

Axiom schemes where              are formulas in     :φ, ψ, μ
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1. φ → (ψ → φ)

10. φ ∨ (φ → ⊥ )

𝒢

𝒢

Inference rules where          are formulas in     :φ, ψ 𝒢
         From      and              ,  conclude      . (Modus Ponens)1. φ φ → ψ ψ



g(φ ⋅ ψ) = g(φ) ∧ g(ψ)

[                                                                                                                                     ]

Interpretation function                             is defined as follows:

g(φ ⊃ ψ) = B g(φ) → B g(ψ)

Intuitionistic Logic    Classical Logic    Gödel’s Interpretation    Gödel’s Results

g(A) = A

g : IPC → 𝒢

g( ⊥ ) = ⊥

g(φ + ψ) = B g(φ) ∨ B g(ψ)
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g( ∼ φ) = ¬ B g(φ)

  where     is a propositional variable and          are formulas in        .φ, ψ IPCA

Interpretation



[                                                                                                                                     ]

Variant  
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g( ∼ φ) = B ¬ B g(φ)

g(φ ⋅ ψ) = B g(φ) ∧ B g(ψ)

Interpretation

Interpretation function                             is defined as follows:

g(φ ⊃ ψ) = B g(φ) → B g(ψ)

g(A) = A

g : IPC → 𝒢

g( ⊥ ) = ⊥

g(φ + ψ) = B g(φ) ∨ B g(ψ)

  where     is a propositional variable and          are formulas in        .φ, ψ IPCA



B g(A) ∨ B g(A ⊃ ⊥ )g(A + (A ⊃ ⊥ )) =

Interpretation function                        :

Exemplary 
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g : IPC → 𝒢
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g(φ + ψ) = B g(φ) ∨ B g(ψ)
g(φ ⊃ ψ) = B g(φ) → B g(ψ)

g(A) = A

⋮

= BA ∨ B g(A ⊃ ⊥ )

= BA ∨ B( B g(A) → B g( ⊥ ) )

= BA ∨ B( BA → B⊥ )

φ

g(φ) = ?

= A + (A ⊃ ⊥ )

Interpretation



Interpretation function                        :
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g : IPC → 𝒢
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g(φ + ψ) = B g(φ) ∨ B g(ψ)
g(φ ⊃ ψ) = B g(φ) → B g(ψ)

g(A) = A

⋮

= BA ∨ B g(A ⊃ ⊥ )

= BA ∨ B( B g(A) → B g( ⊥ ) )

= BA ∨ B( BA → B⊥ )

φ

g(φ) = BA ∨ B( BA → B⊥ )

= A + (A ⊃ ⊥ )

B g(A) ∨ B g(A ⊃ ⊥ )g(A + (A ⊃ ⊥ )) =

Exemplary Interpretation



Remarks

Intuitionistic Logic    Classical Logic    Gödel’s Interpretation    Gödel’s Results
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No formula                  is derivable from     , unless        or        is derivable from     .Bφ ∨ Bψ 𝒢 𝒢Bφ Bψ
⇛  The Law of Excluded Middle,                              , is not derivable from     .Bφ ∨ B(φ → ⊥ )

The operator     should be interpreted as ‘provable by any correct means’ and must not be 

interpreted as ‘provable in a given formal system’ because this would contradict Gödel’s 

second incompleteness theorem.

B

𝒢



If               , then                .

Gödel’s Results

Gödel claims that if a formula is derivable from intuitionistic logic, then its ‘translation’ is 
derivable from      , that is: 𝒢

⊢IPC φ

He conjectures that the converse also holds, and thus we should have:

Intuitionistic Logic    Classical Logic    Gödel’s Interpretation    Gödel’s Results
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⊢𝒢 g(φ)

             if, and only if                .⊢IPC φ ⊢𝒢 g(φ)
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Lewis Modal System S4
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The system       is a modal propositional logic.S4



Modal logic extends classical propositional logic to include operators expressing modality, 
namely       for necessity and      for possibility.
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What is Modal Logic?
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Modal logic describes the logical relations of modalities as necessities and possibilities.

□ ◊

    is true

¬ □ EarthHasExactlyOneMoon The Earth has exactly one moon.

φ
    is necessarily trueφ

φ

    is possibly true◊ φ φ
□ φ
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The system       is a modal propositional logicS4

Lewis Modal System S4

.



The system       is a modal propositional logic

        From    , conclude         . (Necessity Rule)

Additional inference rules where          are formulas in      :

φ □ φ

Additional axiom schemes where          are formulas in      :φ, ψ
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For     and                  we take the rules and axioms of classical propositional logic as before.

Intuitionistic Logic    Classical Logic    Gödel’s Interpretation    Gödel’s Results

□ φ → ( □ (φ → ψ) → □ ψ)
□ φ → □ □ φ

→ , ∧ , ∨⊥

□ φ → φ

S4

φ, ψ S4

□

Lewis Modal System S4

.with necessity operator      S4



φ, ψ
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□ φ → ( □ (φ → ψ) → □ ψ)
□ φ → □ □ φ

□ φ → φ

Additional axiom schemes where          are formulas in      :S4

Lewis Modal System S4

        From    , conclude         . (Necessity Rule)

Additional inference rules where          are formulas in      :

φ □ φ

φ, ψ S4



        From    , conclude         .φ □ φ

Additional axiom schemes where          are formulas in     :φ, ψ

Kurt Gödel - Selected Topics 
Intuitionistic Logic versus Classical Logic  

Irina Makarenko

System
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□ φ → ( □ (φ → ψ) → □ ψ)
□ φ → □ □ φ

□ φ → φB
B
B

B

B B
BB

𝒢

𝒢

𝒢

Additional inference rules where          are formulas in      :φ, ψ



Relation of       and𝒢

If        is understood as ‘    is necessary’ the expanded system      results as the Lewis 
modal system      , with     written for the necessity operator   ︎   .

Bφ φ
S4 B □

Hence, Gödel’s result shows that there is an embedding of the intuitionistic propositional 
logic         into the modal logic      . Therefore,S4

S4

Intuitionistic Logic    Classical Logic    Gödel’s Interpretation    Gödel’s Results
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             if, and only if                .⊢IPC φ ⊢S4
g(φ)

𝒢

IPC



Thank you
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