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“There is a scientific (exact) philosophy and theology,
which deals with concepts of the highest abstractness;
and this is also most highly fruitful for science.”
- Kurt Gédel (Wang, 1996)[p. 316]

Godel Workshop, 27 February 2019, FU Berlin (related talk: AISSQ-2018)
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Presentation Outline

A Ontological Argument of Gddel & Scott on the Computer
> Recap of Methodology and Main Findings

B Relevant Notions for this Talk:

> Intension vs. extension of properties (philosophy of language)
> Ultrafilter (mathematics)

C Comparative Analysis on the Computer:

> Gbdel/Scott (1972) variant
> Anderson’s (1990) variant
> Fitting’s (2002) variant

D Discussion: Metaphysics, Mathematics and Reality
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Part A
— Computational Metaphysics (recap) —
Ontological Argument by Gédel & Scott on the Computer

Related work:
> Ed Zalta (& co) with PROVERS9 at Stanford [AJP 2011, CADE 2015]
> John Rushby with PVS at SRl [CAV-WS 2013, JAL 2018]

C. Benzmidiller & D. Fuenmayor, 2018
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A Long and Continuing Tradition in Philosophy

In anotfier worfd

| i

15 WouLd BE WORsE

St. Anselm Descartes Leibniz

Types, Tableaus,
and Godel’s God

Melvin Fitting

C. Benzmidiller & D. Fuenmayor, 2018

OSTERREICH €0.55

Godel

Arguing
About

Gods




Computational Metaphysics: Kurt Gédel’s Ontological Argument (1970)
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Computational Metaphysics: Kurt Gédel’s Ontological Argument (1970)
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e
» Being Godlike is equivalent to having all positive properties

Note: this definition is “second-order”.
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Computational Metaphysics: Kurt Gédel’s Ontological Argument (1970)
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Computational Metaphysics: Godel’s (1970) and Scott’s Variants (1972)
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Computational Metaphysics: Godel’s (1970) and Scott’s Variants (1972)
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Godel: Property E is essence of x iff

L

(Main) Difference between Godel and Scott N

all of x’s properties are entailed by E.
Scott: Property E is essence of x iff x has E and all of x’s properties are entailed by E.
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(Higher-Order) Modal Logic

oP

P is necessary, P is obligatory, P is known/believed, ...
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(Higher-Order) Modal Logic

oP

P is necessary, P is obligatory, P is known/believed, ...

OP

P is possible, P is permissible, P is epistemically/doxastic. possible, . ..
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(Higher-Order) Modal Logic

aP

P is necessary, P is obligatory, P is known/believed, ...

OP

P is possible, P is permissible, P is epistemically/doxastic. possible, . ..

O and ¢ are not truth-functional
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(Higher-Order) Modal Logic

aP

P is necessary, P is obligatory, P is known/believed, ...

OP

P is possible, P is permissible, P is epistemically/doxastic. possible, . ..

O and ¢ are not truth-functional

Higher-Order Logic can be extended by oP and ¢P

C. Benzmidiller & D. Fuenmayor, 2018



(Higher-Order) Modal Logics: Kripke-style Semantics - Possible Worlds

C. Benzmidiller & D. Fuenmayor, 2018



Computational Metaphysics: Scott’s and Goédel’s Variants — Demo

Axiom
Axiom

Thm.
Def.
Axiom
Cor.
Axiom
Def.

Thm.
Def.

Axiom
Thm.

Either a property or its negation is positive, but not both: VP[P(~¢) & —P(d)]
A property necessarily implied by a positive property is positive:

YOVY[(P(d) A OVx[¢(x) — Y()]) = P)]
Positive properties are possibly exemplified: Vo[P(¢) — OTxp(x)]
A Godlike being possesses all positive properties: G(x) & Yo[P(¢) — ¢(x)]
The property of being Godlike is positive: P(G)
Possibly, God exists: OAxG(x)
Positive properties are necessarily positive: Vo[P(¢) — OP(¢)]
An essence of an individual is a property possessed by it and necessarily implying
any of its properties: ¢ ess. x & dp(x) A VY (x) — av¥y(e(y) — v()))
Being Godlike is an essence of any Godlike being: Vx[G(x) = G ess. x|
Necessary existence of an individual is the necessary exemplification of all its
essences: NE(x) & Voo ess. x — Odyd(y)]
Necessary existence is a positive property: P(NE)
Necessarily, God exists: OdxG(x)

C. Benzmidiller & D. Fuenmayor, 2018



Computational Metaphysics: Scott’s and Goédel’s Variants — Demo

Axiom YPIP(=¢) & =P(¢)]
Axiom

YOVY[(P() A OYx[$(x) = Y(x)]) = P)]

Thm. Vo[P(¢) — OTxep(x)]

Def. G(x) © Yg[P(p) = ¢(x)]

Axiom P(G)

Cor. SAxG(x)

Axiom Vo[P(¢) — OP(¢)]
Def.

¢ ess. x & ¢(x) A YY(x) - av¥y(g(y) = ¢(»)

Thm. Vx[G(x) = G ess. x]
Def.

NE(x) & Voo ess. x — Odyd(y)]

Axiom P(NE)

Thm. 0xG(x)
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Computational Metaphysics: Scott’s and Goédel’s Variants — Demo

Axiom VoLP(—¢) < —~P(¢)]

Axiom
YOVYL(P(¢) A OYx[p(x) = y(0)]) = PW)]

Def. G(x) © Y¢[P(p) — ¢(x)]
Axiom P(G)
Axiom Yo[P(¢) — OP($)]

Def.

¢ ess. x & p(x) A VY((x) = OVy(@() = ¥()))

Def.
NE(x) & Voo ess. x — Odyd(y)]

Axiom P(NE)
Thm. OdxG(x)
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Computational Metaphysics: Scott’s and Goédel’s Variants — Demo

O GoedelProof.thy (~/chrisGIT/tex/talks/2018-AISSQ/) <
1|theory GoedelProof imports IHOML (* This formalization follows Fitting's textbook *) a
2|begin -
3| (*Positiveness/perfection: uninterpreted constant symbol*)
4| consts positiveProperty::'(e=i=bool)=i=bool" ("P") g
5|(*Some auxiliary definitions needed to formalise A3*) g
6| definition hl ("pos") where "pos Z = VX. Z X — P X" s
7| definétion h2 (infix "N" 60) where "X N Z = O(Vx.(X x & (VY.(ZY) = (Y x))))" - g_
8| definition h3 (infix "=" 60) where "X = Y = O(¥¥z. X z = Y z)" S
9 N =
10| (**Part 1+%) 2
11] (*D1*) definition G ("G") where "G (Ax. W. PY —> Y x)" g
12| (*Al*) axiomatization where Ala: "[VX. P (—X) — —(P X) |" and Alb:"|VX. =(P X) — P (—X)]"
13| (*A2%) axiomatization where A2: "[VX Y. (P X A (X = Y)) — P Y]' £ 15
14| (*A3*) axiomatization where A3: "|VZ X. (pos Z A X N Z) — P X" = s
15| (*ﬁ*i theorem T1: "[VX. P X — O3F X|" by (metis Ala A2 h3_def) =l
16| (*T2%) theorem ¥2: "[P 6] proof - z
17| {have 1: "Ww.3Z X. (P GV pos Z A X N Z A =P X) w" by (metis(full_types) 6_def hl_def h2_def) = &
18] have 2: "[VZ X. (pos Z A XN Z) — P X| — |P G|" using 1 by auto}

19 thus ?thesis using A3 by blast ged

20| (*T3*) theorem T3: "[O3F G|" using T1 T2 by simp

21

22| (**Part IT*¥) :
~al ke VDY aviamasdansian ihavn cumme Bevmmadeda ADATH =

¥ 100% v

theorem U3: P' C P AP C
Undefined fact: "T6"a

B ¥ Output Query Sledgehammer Symbols

C. Benzmidiller & D. Fuenmayor, 2018



Universal (Meta-)Logical Reasoning Framework [Benzmiiller_SBMF 2017]
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Universal (Meta-)Logical Reasoning Framework [Benzmiiller_SBMF 2017]

HO Modal Logic(s)

—object logic—

unfolds

Metaphysics

interacts —application—
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Universal (Meta-)Logical Reasoning Framework [Benzmiiller_SBMF 2017]
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Universal (Meta-)Logical Reasoning Framework

[Benzmiiller_SBMF 2017]

UNIVERSITY OF
CAMBRIDGE
Computr Labor

Isabelle

—meta logic—

unfolds
into

embeds

HO Modal Logic(s)
—object logic—

unfolds

Metaphysics
—application—

interacts
with

hoso formuas n a logcal caculs. fsabolle was orgnaly developod ai the Unversdy of Cambrdoe and Tochnische Unvrsial
o o and ekl worws. S0 16 lsaballs el o bl

(Isabelle/HOL)
HOL 1

Minchen bt now incles numerous conutons

« Session-qualfied:

= Numerous HOL rary improvemenis.

« More material in HOL-Algebra, HOL-Compuational

= Improved Nunchaku model inder,now in main HOL-

+ SQL database support in Isabele/Scala.

oo also the cumuative NEWS.

Tho application bundies include source and binary packages and documentation, s0o the detaled Instalation insiructons. A vast
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Universal (Meta-)Logical Reasoning Framework [Benzmiiller_SBMF 2017]

(Isabelle/HOL)
HOL
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unfolds
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Universal (Meta-)Logical Reasoning Framework [Benzmiiller_SBMF 2017]

(Isabelle/HOL)
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Universal (Meta-)Logical Reasoning Framework [Benzmiiller_SBMF 2017]
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Universal (Meta-)Logical Reasoning Framework [Benzmiiller_SBMF 2017]
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Universal (Meta-)Logical Reasoning Framework [Benzmiiller_SBMF 2017]
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Results of our Experiments (jww B. Woltzenlogel-Paleo)
(see also [Savijnanam 2017] and [AISSQ 2015] talk)
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Results of our Experiments

Variant of Dana Scott (1972)
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> the premises are consistent
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Results of our Experiments

Variant of Dana Scott (1972)

> the premises are consistent
> all argument steps are logically correct
in (higher-order, extensional) modal logic
- correct in logic S5
- weaker logic KB is already sufficient
- philosophical critique about use of S5 not justfied
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Results of our Experiments

Variant of Dana Scott (1972)

> the premises are consistent
> all argument steps are logically correct
in (higher-order, extensional) modal logic
- correct in logic S5
- weaker logic KB is already sufficient
- philosophical critique about use of S5 not justfied

With our technology it is possible ...
... to verify (selected) masterpiece arguments in philosophy.
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Results of our Experiments

Variant of Kurt Godel (1970)

C. Benzmidiller & D. Fuenmayor, 2018



Results of our Experiments

Variant of Kurt Godel (1970)

> the premises are inconsistent/contradictory
» everything follows (ex false quod libet)!
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Results of our Experiments

Variant of Kurt Godel (1970)

> the premises are inconsistent/contradictory
» everything follows (ex false quod libet)!

> humans had not seen this before

> ... but my theorem prover LEO-II did
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Results of our Experiments

Variant of Kurt Godel (1970)

> the premises are inconsistent/contradictory
» everything follows (ex false quod libet)!

> humans had not seen this before
> ... but my theorem prover LEO-II did

Our technology ...
... can reveal flawed arguments and can even contribute new knowledge.

C. Benzmidiller & D. Fuenmayor, 2018



Results of our Analysis

... we continue with Scott’s version
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Results of our Analysis

... we continue with Scott’s version

Further corollaries we can prove
> Monotheism

> Gott is flawless (has only positive properties)
> ..
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Results of our Analysis

... we continue with Scott’s version

Further corollaries we can prove
> Monotheism

> Gott is flawless (has only positive properties)
> ..

> Modal Collapse: ¢ — O

» there are no contingent truths
> no alternative worlds

> everything is determined

> no free will

Challenge: Can the Modal Collapse be avoided (with minimal changes)?

C. Benzmidiller & D. Fuenmayor, 2018



¢ — 0Oy

— Can the modal collapse be avoided? —
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Remainder of this Talk

We will have a closer look at

> Godel/Scott (1972) modal collapse

» C. Anthony Anderson (1990) avoids modal collapse

» Melvin Fitting (2002) avoids modal collapse
Questions:

» How do Anderson and Fitting the avoid modal collapse?
> Are their solutions related?

To answer this questions we will apply some notions from
> mathematics: ultrafilters
» philosophy of language: extension and intension of predicates

C. Benzmidiller & D. Fuenmayor, 2018



Part B
Some Relevant Pillar Stones for this Talk
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Intension vs. Extension of a Predicate (Philosophy of Language)

Example predicate: IsChessGrandmaster

— Intensional Predicate IsChessGrandmaster (ICG)
— Extensions of ICG in possible worlds w1-w4:
ICG w1 = {b,c}
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Intension vs. Extension of a Predicate (Philosophy of Language)

Example predicate: IsChessGrandmaster

— Intensional Predicate IsChessGrandmaster (ICG)
— Extensions of ICG in possible worlds w1-w4:
ICG w1 ={b,c} ICGwW2={b,c,d}
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Intension vs. Extension of a Predicate (Philosophy of Language)

Example predicate: IsChessGrandmaster

— Intensional Predicate IsChessGrandmaster (ICG)
— Extensions of ICG in possible worlds w1-w4:
ICGw1={b,c} ICGw2={b,c,d} ICGw3-={b,c,e}
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Intension vs. Extension of a Predicate (Philosophy of Language)

Example predicate: IsChessGrandmaster

— Intensional Predicate IsChessGrandmaster (ICG)
— Extensions of ICG in possible worlds w1-w4:
ICGw1={b,c} ICGw2={b,cd} ICGw3={bc,e} ICGw4=1{b,cde}
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“Rigidly Intensionalised Extension” of a Predicate

Example predicate: IsChessGrandmaster

— Intensional Predicate IsChessGrandmaster (ICG)
— Rigidified extension of ICG in world w1:
ICG w1 = {b,c}
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“Rigidly Intensionalised Extension” of a Predicate

Example predicate: IsChessGrandmaster

— Intensional Predicate IsChessGrandmaster (ICG)
— Rigidified extension of ICG in world w1:
ICGw1={b,c} ICGw2=/{b,c}
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“Rigidly Intensionalised Extension” of a Predicate

Example predicate: IsChessGrandmaster

— Intensional Predicate IsChessGrandmaster (ICG)
— Rigidified extension of ICG in world w1:
ICGw1={b,c} ICGw2={b,c} ICGwW3={b,c}
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“Rigidly Intensionalised Extension” of a Predicate

Example predicate: IsChessGrandmaster

— Intensional Predicate IsChessGrandmaster (ICG)
— Rigidified extension of ICG in world w1:
ICGw1={b,c} ICGw2={b,c} ICGw3={b,c} ICGw4-={b,c}

C. Benzmiiller & D. Fuenmayor, 2018



Ultrafilter (Mathematics)

Definition of Ultrafilter:
Given an arbitrary set X. An ultrafilter U on the powerset P(X) is a subset of

P(X) such that (where A, B € P(X)):
1. 0 is not an element of U.
2. If A is subset of B and A is element of U, then B is also element of U.
3. If A and B are elements of U, then so is their intersection.
4. Either A or its relative complement X \ A is an element of U.
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Ultrafilter (Mathematics)

Definition of Ultrafilter:
Given an arbitrary set X. An ultrafilter U on the powerset P(X) is a subset of

P(X) such that (where A, B € P(X)):

1. Qis not an element of U.

2. If A is subset of B and A is element of U, then B is also element of U.
3. If A and B are elements of U, then so is their intersection.

4. Either A or its relative complement X \ A is an element of U.

Example:
X=1{1,2,3,4}
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Ultrafilter (Mathematics)

Definition of Ultrafilter:
Given an arbitrary set X. An ultrafilter U on the powerset P(X) is a subset of
P(X) such that (where A, B € P(X)):

1. 0 is not an element of U.

2. If A is subset of B and A is element of U, then B is also element of U.

3. If A and B are elements of U, then so is their intersection.

4. Either A or its relative complement X \ A is an element of U.

Example:

X =1{1,2,3,4}

PX) =1{0,{1}, {2}, {3}, {4}, {1, 2}, {1, ,
{1,2,3},{1,2,4},{1,3,4},{2,3,4},
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Ultrafilter (Mathematics)

Definition of Ultrafilter:
Given an arbitrary set X. An ultrafilter U on the powerset P(X) is a subset of
P(X) such that (where A, B € P(X)):

1. 0 is not an element of U.

2. If A is subset of B and A is element of U, then B is also element of U.

3. If A and B are elements of U, then so is their intersection.

4. Either A or its relative complement X \ A is an element of U.

Example:
={1,2,3,4}
PX) =1{0,{1}, {2}, {3}, {4}, {1, 2},{1, 3}, {1,4},{2,3},{2,4}, (3,4},
{1,2,3},{1,2,4},{L1,3,4},{2,3,4},{1,2, 3 41}

U'={ {1,4}, }
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Ultrafilter (Mathematics)

Definition of Ultrafilter:
Given an arbitrary set X. An ultrafilter U on the powerset P(X) is a subset of
P(X) such that (where A, B € P(X)):

1. 0 is not an element of U.

2. If A is subset of B and A is element of U, then B is also element of U.

3. If A and B are elements of U, then so is their intersection.

4. Either A or its relative complement X \ A is an element of U.

Example:
={1,2,3,4}
PX) =1{0,{1}, {2}, {3}, {4}, {1, 2},{1, 3}, {1,4},{2,3},{2,4}, (3,4},
{1,2,3},{1,2,4},{L1,3,4},{2,3,4},{1,2, 3 41}

U'={ {1,4}, }
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Ultrafilter (Mathematics)

Definition of Ultrafilter:
Given an arbitrary set X. An ultrafilter U on the powerset P(X) is a subset of
P(X) such that (where A, B € P(X)):
1. 0 is not an element of U.
2. If A is subset of B and A is element of U, then B is also element of U.
3. If A and B are elements of U, then so is their intersection.
4. Either A or its relative complement X \ A is an element of U.

Example:
={1,2,3,4}
PX) =1{0,{1}, {2}, {3}, {4}, {1, 2},{1, 3}, {1,4},{2,3},{2,4}, (3,4},
{1,2,3},{1,2,4},{L1,3,4},{2,3,4},{1,2, 3 41}

U'={ {1,4}, }
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Ultrafilter (Mathematics)

Definition of Ultrafilter:
Given an arbitrary set X. An ultrafilter U on the powerset P(X) is a subset of
P(X) such that (where A, B € P(X)):
1. 0 is not an element of U.
2. If A is subset of B and A is element of U, then B is also element of U.
3. If A and B are elements of U, then so is their intersection.
4. Either A or its relative complement X \ A is an element of U.

Example:
X=1{1,2,3,4}

PX) ={0,{1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {1, 4}, {2, 3}, (2,4}, {3, 4},
{1,2,3},{1,2,4),{1,3,4},{2,3,4},{1,2,3,4})

U'={ {1,4}, }

U? ={ {1,4}, {1,2,4},{1,3,4},{1,2,3,4}}
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Ultrafilter (Mathematics)

Definition of Ultrafilter:
Given an arbitrary set X. An ultrafilter U on the powerset P(X) is a subset of
P(X) such that (where A, B € P(X)):

1. 0 is not an element of U.

2. If A is subset of B and A is element of U, then B is also element of U.

3. If A and B are elements of U, then so is their intersection.

4. Either A or its relative complement X \ A is an element of U.

Example:
X=1{1,2,3,4}

AL 231,31, (1,41, {2, 31, (2,41, {3, 4),
{1,2,3},{1,2,4),{1,3,4},{2,3,4},{1,2,3,4})

U'={ {1,4}, }

U? ={ {1,4}, {1,2,4},{1,3,4},{1,2,3,4}}
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Ultrafilter (Mathematics)

Definition of Ultrafilter:
Given an arbitrary set X. An ultrafilter U on the powerset P(X) is a subset of
P(X) such that (where A, B € P(X)):

1. 0 is not an element of U.

2. If A is subset of B and A is element of U, then B is also element of U.

3. If A and B are elements of U, then so is their intersection.

4. Either A or its relative complement X \ A is an element of U.

Example:
X =1{1,2,3,4}

PX) =10,{1},{2}, {3}, {4}, {1, 2}, (1,3}, {1,4},{2,3}, (2,4}, (3,4},
{1,2,3},{1,2,4},{1,3,4},{2,3,4},{1,2,3,4}}

U'={ {1,4}, }

U? ={ {1,4}, {1,2,4},{1,3,4},{1,2,3,4}}
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Ultrafilter (Mathematics)

Definition of Ultrafilter:
Given an arbitrary set X. An ultrafilter U on the powerset P(X) is a subset of
P(X) such that (where A, B € P(X)):

1. 0 is not an element of U.

2. If A is subset of B and A is element of U, then B is also element of U.

3. If A and B are elements of U, then so is their intersection.

4. Either A or its relative complement X \ A is an element of U.

Example:
X =1{1,2,3,4}

PX) =10,{1},{2}, {3}, {4}, {1, 2}, (1,3}, {1,4},{2,3}, (2,4}, (3,4},
{1,2,3},{1,2,4},{1,3,4},{2,3,4},{1,2,3,4}}

U'={ {1,4}, }

U? ={ {1,4}, {1,2,4},{1,3,4},{1,2,3,4

U3 = {{1}, {1,4}, ,2,4},{1,3,4},{1,2,3,4
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Ultrafilter (Mathematics)

Definition of Ultrafilter:

Given an arbitrary set X. An ultrafilter U on the powerset P(X) is a subset of

P(X) such that (where A, B € P(X)):

1. 0 is not an element of U.

2. If A is subset of B and A is element of U, then B is also element of U.

3. If A and B are elements of U, then so is their intersection.
4. Either A or its relative complement X \ A is an element of U.

Example:
= {1,2,3,4}
PX) =1{0,{1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {1,4},{2,3},{2,4}, {3, 4}
{1,2,3},{1,2,4},{1,3,4},{2,3,4},{1,2, 3 4}}
U'={ {1,4}, }
U? = { {1,4}, {1,2,4},{1,3,4},{1,2,3,4}}
U? = {{1}, {1,4} 1,2,4},{1,3,4},{1,2,3,4}}
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Ultrafilter (Mathematics)

Definition of Ultrafilter:
Given an arbitrary set X. An ultrafilter U on the powerset P(X) is a subset of
P(X) such that (where A, B € P(X)):
1. 0 is not an element of U.
2. If A is subset of B and A is element of U, then B is also element of U.
3. If A and B are elements of U, then so is their intersection.
4. Either A or its relative complement X \ A is an element of U.

Example:
= {1,2,3,4}
PX) =1{0,{1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {1,4},{2,3},{2,4}, {3, 4}
{1,2,3},{1,2,4},{1,3,4},{2,3,4},{1,2, 3 4}}
U'={ {1,4}, }
U? = { {1,4}, {1,2,4},{1,3,4},{1,2,3,4}}
U? = {{1}, {1,4} 1,2,4},{1,3,4},{1,2,3,4}}
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Ultrafilter (Mathematics)

Definition of Ultrafilter:
Given an arbitrary set X. An ultrafilter U on the powerset P(X) is a subset of
P(X) such that (where A, B € P(X)):
1. 0 is not an element of U.
2. If A is subset of B and A is element of U, then B is also element of U.
3. If A and B are elements of U, then so is their intersection.
4. Either A or its relative complement X \ A is an element of U.

Example:
X=1{1,2,3,4}

PX) ={0,{1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {1, 4}, {2, 3}, (2,4}, {3, 4},
{1,2,3},{1,2,4),{1,3,4},{2,3,4},{1,2,3,4})

U'={ {1,4}, }

U? ={ {1,4}, 1,2,4},{1,3,4},{1,2,3,4}}

U? = ({1}, {1,4}, 1,2,4},{1,3,4},{1,2,3,4}}

U* = {{11,{1,2),{1,3},{1,4),{1,2,3}, {1,2,4},{1,3,4},{1,2,3,4}}
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Ultrafilter (Mathematics)

Definition of Ultrafilter:

Given an arbitrary set X. An ultrafilter U on the powerset P(X) is a subset of

P(X) such that (where A, B € P(X)):

1. 0 is not an element of U.

2. If A is subset of B and A is element of U, then B is also element of U.

3. If A and B are elements of U, then so is their intersection.
4. Either A or its relative complement X \ A is an element of U.

Example:
={1,2,3,4}
PX) =1{0,{1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {1,4},{2,3},{2,4}, {3, 4}
{1,2,3},{1,2,4},{1,3,4},{2,3,4},{1,2,3,4}}

U'={ {1,4}, }
U? = { {1,4}, 1,2,4},{1,3,4},{1,2,3,4}}
U? = {{1}, {1,4}, 1,2,4},{1,3,4},{1,2,3 4}}
U* = {{1},{1,2},{1,3},{1,4},{1,2,3}, {1,2,4},{1,3,4},{1,2,3,4}}
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Ultrafilter (Mathematics)

Definition of Ultrafilter:

Given an arbitrary set X. An ultrafilter U on the powerset P(X) is a subset of

P(X) such that (where A, B € P(X)):

1. 0 is not an element of U.

2. If A is subset of B and A is element of U, then B is also element of U.

3. If A and B are elements of U, then so is their intersection.
4. Either A or its relative complement X \ A is an element of U.

Example:
={1,2,3,4}
PX) =1{0,{1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {1,4},{2,3},{2,4}, {3, 4}
{1,2,3},{1,2,4},{1,3,4},{2,3,4},{1,2,3,4}}

U'={ {1,4}, }
U? = { {1,4}, 1,2,4},{1,3,4},{1,2,3,4}}
U? = {{1}, {1,4}, 1,2,4},{1,3,4},{1,2,3 4}}
U* = {{1},{1,2},{1,3},{1,4},{1,2,3}, {1,2,4},{1,3,4},{1,2,3,4}}
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Ultrafilter (Mathematics)

Definition of Ultrafilter:

Given an arbitrary set X. An ultrafilter U on the powerset P(X) is a subset of

P(X) such that (where A, B € P(X)):

1. 0 is not an element of U.
2.

If A is subset of B and A is element of U, then B is also element of U.

3. If A and B are elements of U, then so is their intersection.

4. Either A or its relative complement X \ A is an element of U.

Example:

X =1{1,2,3,4}

PX) =1{0,{1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {1,4},{2,3},{2,4}, {3, 4}
{1,2,3},{1,2,4},{1,3,4},{2,3,4},{1,2,3,4}}

U'={ {1,4}, }

U? = { {1,4}, {1,2,4},{1,3,4},{1,2,3,4}}

U3 = {{1}, {1,4}, ,2,4},(1,3,4},{1,2,3,4}}

U* = {{1},{1,2},{1,3},{1,4},{1,2,3}, {1,2,4},{1,3,4},{1,2,3,4}}
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Ultrafilter (Mathematics)

Definition of Ultrafilter:
Given an arbitrary set X. An ultrafilter U on the powerset P(X) is a subset of

P(X) such that (where A, B € P(X)):
1. 0 is not an element of U.
2. If A is subset of B and A is element of U, then B is also element of U.
3. If A and B are elements of U, then so is their intersection.
4. Either A or its relative complement X \ A is an element of U.

Example:

X={1,2,3,4}

PX) = 1423 (3% {4, {1, 23, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}
{1 2 31,{1,2,4},{1,3,4},{2,3,4},{1,2,3,4}}

U'={ {1,4}, }

U? = { {1,4}, {1,2,4},{1,3,4},{1,2,3,4}}

U3 = {{1}, {1,4}, ,2,4},(1,3,4},{1,2,3,4}}

U* = {{1},{1,2},{1,3},{1,4},{1,2,3}, {1,2,4},{1,3,4},{1,2,3,4}}
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Ultrafilter (Mathematics)

Definition of Ultrafilter:
Given an arbitrary set X. An ultrafilter U on the powerset P(X) is a subset of

P(X) such that (where A, B € P(X)):
1. 0 is not an element of U.
2. If A is subset of B and A is element of U, then B is also element of U.
3. If A and B are elements of U, then so is their intersection.
4. Either A or its relative complement X \ A is an element of U.

Example:
X={1,2,3,4}
PX) = 1423 (3% {4, {1, 23, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}
{1 2 31,{1,2,4},{1,3,4},{2,3,4},{1,2,3,4}}
U'={ {1,4}, }
U? = { {1,4}, {1,2,4},{1,3,4},{1,2,3,4}}
U3 = {{1}, {1,4}, ,2,4},(1,3,4},{1,2,3,4}}
U* = {{1},{1,2},{1,3},{1,4},{1,2,3}, {1,2,4},{1,3,4},{1,2,3,4}} = U
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Ultrafilter (Mathematics)

Definition of Ultrafilter:
Given an arbitrary set X. An ultrafilter U on the powerset P(X) is a subset of

P(X) such that (where A, B € P(X)):
1. 0 is not an element of U.
2. If A is subset of B and A is element of U, then B is also element of U.
3. If A and B are elements of U, then so is their intersection.
4. Either A or its relative complement X \ A is an element of U.

Example:
={1,2,3,4}
PX) =1{0,{1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {1,4},{2,3},{2,4}, {3, 4}
{1,2,3),(1,2,4},{1,3,4),{2,3,4},{1,2,3,4))
U'={ {1,4}, }
U? = { {1,4}, {1,2,4},{1,3,4},{1,2,3,4}}
U? = {{1}, {1,4}, {1,2,4},{1,3,4},{1,2,3,4}}
U* = {{1},{1,2},{1,3},{1,4},{1,2,3}, {1,2,4},{1,3,4},{1,2,3,4}} = U

1 is element of all sets in U (1 has all properties of U)
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Ultrafilter (Mathematics)
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From: Wikipedia (Jochen Burghardt) CC BY-SA
https://en.wikipedia.org/wiki/Ultrafilter
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Part C
— Comparative Analysis —
Variants of G6del/Scott, Anderson and Fitting
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Ontological Argument: Variant by Gédel/Scott

Part | - Proving that God’s existence is possible

D1 Being Godlike is equivalent to having all positive properties.
A1 Exactly one of a property or its negation is positive.

A2 Any property entailed by a positive property is positive.

A3 The combination of any collection of positive properties is itself positive.
From A1 and A2 follows theorem T1:

T1 Every positive property is possibly instantiated.
From D1 and A3 follows:

T2 Being Godlike is a positive property.
From T1 and T2 follows:

T3 Being Godlike is possibly instantiated.

C. Benzmidiller & D. Fuenmayor, 2018



Ontological Argument: Variant by Gédel/Scott

D1
A1
A2
A3
Fro
T1
Fro
T2
Fro
T3

Part | - Proving that God’s existence is possible

Part Il - Proving that God’s existence is nhecessary, if possible

D2 A property E is the essence of an individual x iff x has E and all of x’s
properties are entailed by E.2

A4 Positive properties are necessarily positive.
From A1 and A4 (using definitions D1 and D2) follows:
T4 Being Godlike is an essential property of any Godlike individual.

D3 Necessary existence of an individual is the necessary instantiation of all
its essences.

A5 Necessary existence is a positive property.
From T4 and A5 (using D1, D2, D3) follows:
T5 Being Godlike, if instantiated, is necessarily instantiated.

And finally from T3, T5 (together with some implicit modal axioms,
e.g. S5) the existence of (at least a) God follows:

T6 Being Godlike is necessarily instantiated.

aThe underlined part in definition D2 has been added by Scott. Gédel originally omitted this part.
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Ontological Argument: Variant by Gédel/Scott

Part | - Proving that God’s existence is possible

D1
A1
A2
A3
Fro
T1
Fro
T2
Fro
T3

Part Il - Proving that God’s existence is nhecessary, if possible

D2
“Modal Collapse” is implied by these axioms: (T D(,O
A4 > determinism
At “positive properties () are applied here to intensional properties.
T4 B we can prove:
D3 N » pisan ultrafilter all
i
A5 N Let # be the set of “rigidly intensionalised extensions” of positive
From properticlas. We car.1 prove:
T5 > Pis a,n ultrafilter
And 1 > P=r s,
e.g. S5) the existence of (at least a) God follows:
T6 Being Godlike is necessarily instantiated.
aThe underlined part in definition D2 has been added by Scott. Gédel originally omitted this part.
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Ontological Argument: Variant by Godel/Scott

1|theory GoedelProof imports IHOML (* This formalization follows Fitting's textbook *)
2|begin

3| (*Positiveness/perfection: uninterpreted constant symbol*)

4| consts positiveProperty::"(e=i=-bool)=i=bool" ("P")

5| (*Some auxiliary definitions needed to formalise E*]

6| definition hl ("pos") where "pos Z = VWX. Z X — P X"

7| definition h2 (infix "N" 60) where "X N Z = O(Vx.(X x & (VW.(ZY) = (Y x))))"

8| definition h3 (infix "=" 60) where "X = Y = O(V*z. X z - Y z)"

9

10| (**Part I**)

11| (*D1*) definition G ("G") where "G = (Ax. VY. PY = Y x)"

12| l*ﬁ*) axiomatization where Ala: "[VX. P (—X) — —(P X) |" and Alb:"|VX. =(P X) = P (—=X)]"
13| l*ﬁ*) axiomatization where A2: "[VX Y. (P X A (X = Y)) — P Y|"

14| l*E*) axiomatization where A3: "|VZ X. (pos Z A X N Z) —» P X|"

15| l*ﬁ*) theorem T1: "[VX. P X — ©3F X]" by (metis Ala A2 h3_def)

16 (*ﬁ*) theorem T2: "|P G|" proof -

17| {have 1: "ww.3Z X. (P GV pos ZA XN Z A -P X) w" by (metis(full_types) G_def hl_def h2_def)
18 have 2: "|VZ X. (pos Z A X N Z) = P X| — [P G|" using 1 by auto}

19 thus ?thesis using A3 by blast ged

20 (*T3*) theorem T3: "|O3 G|" sledgehammer using T1 T2 by simp

21
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Ontological Argument: Variant by Godel/Scott

(**Part II*¥)
*Logic KB*) axiomatization where symm: "symmetric aRel"

(

(*A4*) axiomatization where A4: "|VX. P X — O(P X)|"

l*ﬁ*) definition ess ("&") where "€ Y x = (Y x) A (VZ. Zx - Y = Z)"

l*ﬁ*) theorem T4: "|[Vx. G x — (£ G x)]" by (metis Alb A4 G_def h3_def ess_def)
l*ﬁ*) definition NE ("NE") where "NE x = (Aw. (VY. &Y x — OF Y) w)"
l*ﬁ*) axiomatization where A5: "|P NE|"

l*ﬁ*) theorem T5: "[(O3F G) — O3F G|" by (metis A5 G_def NE_def T4 symm)
l*E*) theorem T6: "[D3 G|" using T3 T5 by blast

(**Consistency**)
lemma True nitpick[satisfy] oops (*Model found by Nitpick: the axioms are consistent*)

(**Modal Collapse**)
lemma ModalCollapse: "|V®.(® — (O @))|" proof -

{fix w fix Q
have "¥x. G x w — (VZ. Z x — O(¥fz. G z — Z z)) w" by (metis Alb A4 G_def)
hence 1: "(3Ix. G x w) — ((Q — O(VEz. G z = Q)) w)" by force
have "3Ix. G x w" using T3 T6 symm by blast
hence "(Q — OQ) w" using 1 T6 by blast

} thus ?thesis by auto qed

(**Some Corollaries**)
(*C1*) theorem C1: "[VE P x. ((£Ex) A (Px)) — (E= P)|" by (metis ess_def)
(*C2*) theorem C2: "[VX. =P X — O(=P X)|" using A4 symm by blast
definition h4 ("A") where "N X =P X"
(*C3*) theorem C3: "[VX. A" X — O(N X)|" by (simp add: €2 h4_def)
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Ontological Argument: Variant by Godel/Scott

C. Benz

49,
50
51
52,
53]
54
> 55|
56
57,
58
59
60
61
62,
63|
64)

(**Positive Properties and Ultrafilters**)
abbreviation emptySet ("(") where "@ = Ax w. False"
abbreviation entails (infixr"C"51) where "9Ct¢0 = VX W. © X W — ) X W"
abbreviation andPred (infixr"mM"51) where "¢My = AX W. © X W A ¥ X w"
abbreviation negpred (" _"[52]153) where "7 = Axw., ) x w"

abbreviation "ultrafilter ¢ cw =
(D 0 cw)

A (Vo. V. (2 o aw A @ ¢ cw) — (D (¢ N ¥) cw))

A (Vp:i:ie=i=rbool. Vi::e=i=bool. (® ¢ cw V & (T¢) cw) A (P ¢ cw A @ (Tp) cw))

A (Vy:i:ie=i=bool. Vi::e=i=bool. (® ¢ cw A ¢ C ¢¥) — @ ¢ cw)"
lemma helpA: "Vw. —(P @ w)" using T1 by auto
lemma helpB: "Vo ¢ w. (P o w A P w) — (P (¢ M) w" by (smt Alb G_def T3 T6 symm)
lemma helpC: "V ¢ w. (P o wV P (T¢) w) A (P owA P (T¢) w" using Ala Alb by blast
lemma helpD: "V ¢ w. (P o w A (p € ¢)) — P & w" by (metis Alb A4 G_def T1 T6)

(*U1*) theorem Ul: "Vw. ultrafilter P w" using helpA helpB helpC helpD by simp

(*(|¢) converts an extensional object ¢ into “rigid' intensional one*)
abbreviation trivialConversion ("(_)") where "(o) = (Aw. ¢)"

(*Q ly: the extension of a (possibly) non-rigid predicate ¢ is turned into a rigid intensional one,
then Q is applied to the latter; |¢ can be read as "the rigidly intensionalised predicate "*
abbreviation mextPredArg (infix "|" 60) where "Q |y = Aw. Q (Ax. (p x w)) w"
lemma "VQ ¢. Q ¢ = Q ly" nitpick oops (*countermodel: the two notions are not the same*)

lemma helpE: "vw.—-((P |@) w)" using T1 by blast

lemma helpF: "Vo ¢ w.((P lp) w A (P [¢) w) — ((P (M) w)" by (smt Alb C2 G_def T3 symm)
lemma helpG: "Vw.((P lg) w Vv (P L(T¢)) w) A =((P lp) w A (P [(T¢)) w)" using Ala Alb by blast
lemma helpH: "Vw.((P lp) w A ¢C) — (P L) w" by (metis Alb A5 G_def NE_def T3 T4 symm)

abbreviation "P' ¢ = (P [p)" (*P': the set of all rigidly intensionalised positive properties*)

(*U2*) theorem U2: "Vw. ultrafilter P' w" using helpE helpF helpG helpH by simp
(*Q*) theorem U3: "(P' C P) A (P C P')" by (smt Alb G_def T1 T6 symm) (*‘71 and E are equal*)
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Ontological Argument: Variant by Gédel/Scott

[ GoedelProof.thy (~/chrisGIT/tex/talks/2018-AISSQ/) <
1|theory GoedelProof imports IHOML (* This formalization follows Fitting's textbook *) (x]
2|begin -
3| (*Positiveness/perfection: uninterpreted constant symbol*)

4] consts positiveProperty::"(e=-i=-bool)=-i=rbool" ("P") g
5| (*Some auxiliary definitions needed to formalise A3*) g
6| definition hl ("pos") where "pos Z = VX. Z X — P X" o
7 defi.ni';tion h2 (infix "N" 60) where "X N Z = O(Vx.(X x & (VY. (ZY) — (Y x))))" - g_
8| definition h3 (infix "=" 60) where "X = Y = O(Yfz. X z = Y z)" E
9 i
10| (**Part I**) &
11f (*D1*) definition G ("G") where "G = (Ax. VY. P Y = Y x)" 5
12| (*H*) axiomatization where Ala: "[VX. P (—X) — —=(P X) |" and Alb:"|VX. =(P X) — P (—=X)]" ~
13| (*E*) axiomatization where A2: "[VX Y. (P X A (X = Y)) — P Y]" = 5
14| (*A3*) axiomatization where A3: "[VZ X. (pos Z A X N Z) — P X|" N &
15| (*E*) theorem T1: "|[VX. P X — O3F X|" by (metis Ala A2 h3_def) =
16| (*T2*) theorem k2 "|P GJ" proof - 8
17| thave 1: "Ww.3Z X. (P GV pos Z A X N Z A =P X) w" by (metis(full_types) G_def hl_def h2_def) = 7
18 have 2: "|VZ X. (pos Z A XN Z) —» P X] — |P G|" using 1 by auto}
19| thus ?thesis using A3 by blast qed
20| (*T3*) theorem T3: "[O3® G|" using T1 T2 by simp
21
22| (**Part I1+¥) B
~al rwans o vosn ~paTn =

v 100% <

theorem U3: P’
Undefined fact:

B v Output Query Sledgehammer Symbols
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Ontological Argument: Variant by Anderson (1990)

SOME EMENDATIONS OF GODEL'S
ONTOLOGICAL PROOF

C. Anthony Anderson

Kurt Godel’s version of the ontological argument was shown by J. Howard
Sobel to be defective, but some plausible modifications in the argument result
in a version which is immune to Sobel’s objection. A definition is suggested
which permits the proof of some of Godel's axioms.

[Faith and Philosophy 1990]

C. Benzmidiller & D. Fuenmayor, 2018



Ontological Argument: Variant by Anderson

Part | - Proving that God’s existence is possible

D1 Being Godlike is equivalent to having all positive properties.
A1 Exactly one of a property or its negation is positive.

A2 Any property entailed by a positive property is positive.

A3 The combination of any collection of positive properties is itself positive.
From A1 and A2 follows theorem T1:

T1 Every positive property is possibly instantiated.
From D1 and A3 follows:

T2 Being Godlike is a positive property.
From T1 and T2 follows:

T3 Being Godlike is possibly instantiated.
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Ontological Argument: Variant by Anderson

Part | - Proving that God’s existence is possible
D1 Being Godlike is equivalent to having all positive properties.
Ala If a property is positive, then its negation is not positive.

A1b If the negation of a property is not positive, then the property is
positive.

A2 Any property entailed by a positive property is positive.

A3 The combination of any collection of positive properties is itself positive.
From A1 and A2 follows theorem T1:

T1 Every positive property is possibly instantiated.

From D1 and A3 follows:

T2 Being Godlike is a positive property.
From T1 and T2 follows:

T3 Being Godlike is possibly instantiated.
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Ontological Argument: Variant by Anderson

Part | - Proving that God’s existence is possible
D1 Being Godlike is equivalent to having all positive properties.
Ala If a property is positive, then its negation is not positive.
Atb 14 . ¢ . five, I .
A2 Any property entailed by a positive property is positive.
A3 The combination of any collection of positive properties is itself positive.
From A1 and A2 follows theorem T1:
T1 Every positive property is possibly instantiated.
From D1 and A3 follows:
T2 Being Godlike is a positive property.
From T1 and T2 follows:
T3 Being Godlike is possibly instantiated.
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Ontological Argument: Variant by Anderson

Part | - Proving that God’s existence is possible

D1’ Being Godlike is equivalent to having all and only the positive
properties as necessary properties.

A1a If a property is positive, then its negation is not positive.
Atb 4 . ¢ . itive, 4 | .
A2 Any property entailed by a positive property is positive.
A3 The combination of any collection of positive properties is itself positive.
From A1 and A2 follows theorem T1:
T1 Every positive property is possibly instantiated.
From D1 and A3 follows:
T2 Being Godlike is a positive property.
From T1 and T2 follows:
T3 Being Godlike is possibly instantiated.
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Ontological Argument: Variant by Anderson

Part | - Proving that God’s existence is possible

D71’

Ala
Atb

A2
A3
Fro
T
Fro
T2
Fro
T3

Part Il - Proving that God’s existence is necessary, if possible

D2 A property E is the essence of an individual x iff x has E and all of x’s
properties are entailed by E.

A4 Positive properties are necessarily positive.
From A1 and A4 (using definitions D1 and D2) follows:
T4 Being Godlike is an essential property of any Godlike individual.

D3 Necessary existence of an individual is the necessary instantiation of all
its essences.

A5 Necessary existence is a positive property.
From T4 and A5 (using D1, D2, D3) follows:
T5 Being Godlike, if instantiated, is necessarily instantiated.

And finally from T3, T5 (together with some implicit modal axioms,
e.g. S5) the existence of (at least a) God follows:

T6 Being Godlike is necessarily instantiated.
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Ontological Argument: Variant by Anderson

Part | - Proving that God’s existence is possible

D71’

Ala
Atb

A2
A3
Fro
T
Fro
T2
Fro
T3

Part Il - Proving that God’s existence is necessary, if possible

D2’ A property E is an essence (&) of an individual x if and only if all of
X’s necessary properties are entailed by E and (conversely) all
properties entailed by E are necessary properties of x.

A4 Positive properties are necessarily positive.
From A1 and A4 (using definitions D1 and D2) follows:
T4 Being Godlike is an essential property of any Godlike individual.

D3 Necessary existence of an individual is the necessary instantiation of all
its essences.

A5 Necessary existence is a positive property.
From T4 and A5 (using D1, D2, D3) follows:
T5 Being Godlike, if instantiated, is necessarily instantiated.

And finally from T3, T5 (together with some implicit modal axioms,
e.g. S5) the existence of (at least a) God follows:

T6 Being Godlike is necessarily instantiated.
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Ontological Argument: Variant by Anderson

Part | - Proving that God’s existence is possible

D1'I part Il - Proving that God’s existence is necessary, if possible
D2’ Il of
Ala “Modal Collapse” is *not* implied by these axioms
" @ D O (has countermodel)
A2] Froml * no determinism
A3l Tay “positive properties (P)” are applied here to intensional properties.
Fro p3 N We have: all
T il » #is*not* an ultrafilter  (has countermodel)
Frof A5 |} o . . . .
Let ¥’ be the set of all “rigidly intensionalised extensions” of posi-
T2] From tive properties. We can prove:
Frof TS 8 » o s an ultrafilter
T3] And > P ns,
e.g. S
T6 Being Godlike is necessarily instantiated.
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Ontological Argument: Variant by Anderson

1|theory AndersonProof imports IHOML

2|begin

3[(*Positiveness/perfection: uninterpreted constant symbol*)

4| consts positiveProperty::"(e=i=bool)=i=-bool" ("P")

5| (*Some auxiliary definitions*)

6| definition h3 (infix "=" 60) where "X = Y = O(Yfz. X z - Y z)"

7

8| (**Part I+

9| (*D1'*) definition GA ("G*") where "G* = Ax. VY. (P Y) e O(Y x)"
10| (*m*) axiomatization where Ala:"|VX. P (—X) — =(P X) |"

11| (*A2*) axiomatization where A2: "|[VX Y. (P X A (X = Y)) — P Y]"

12 (*i*) theorem T1: "[VX. P X — ©3F X|" using Ala A2 h3_def by metis
13| (*T2*) axiomatization where T2: "|P G*|" (*here we postulate T2 instead of proving it*)
14| (*T3*) theorem T3: "|O3FF G\|" using T1 T2 h3_def by blast -

15
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Ontological Argument: Variant by Anderson

1|theory AndersonProof imports IHOML

16
17,
18
19
20|
21
22]
23]
24
25

e

32]
33|
34

36|

(**Part IT**)

(*Logic KB*) axiomatization where symm: "symmetric aRel"

(*A4*) axiomatization where A4: "[VX. P X — O(P X)]"

l*ﬁ‘*] abbreviation essA ("&*") where "E* Y x = (VZ. O(Z x) & Y = 2)"

(*T4*) theorem T4: "|Vx. G* x — (&* G* x)|" by (metis A2 GA_def T2 symm h3_def)
l*ﬁ*i abbreviation NEA ("NEA") where "NE* x = (Aw. (VY. &Y x — OF Y) w)"
l*E*i axiomatization where A5: "[P NEA|"

l*ﬁ*i theorem T5: "[O3F GA| — [DO3F G*|" by (metis A2 GA_def T2 symm h3_def)

l*E*i theorem T6: "|O3F G*|" using T3 T5 by blast

(**Modal collapse is countersatisfiable**)
lemma "|V®.(® — (O @))]|" nitpick oops (*Countermodel found by Nitpick*)

(**Consistency**)
lemma True nitpick[satisfy] oops (*model found by Nitpick: the axioms are consistent*)

(**Some Corollaries**)
(*C1*) theorem Cl: "|VE P x. ((&" E x) A (P x)) — (E = P)|" nitpick oops (*countermodel*)
(*5*) theorem C2: "|[VX. =P X — O(=P X)|" using A4 symm by blast
definition h4 ("A") where "' X = -P X"
(*C3*) theorem C3: "|VX. A" X — O(N X)|" by (simp add: C2 h4_def)
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Ontological Argument: Variant by Anderson

1|theory AndersonProof imports IHOML I

e

IwawwwwwNNNNNNNNNN)—Ib—Ib—I

(**Positive Properties and Ultrafilters**)

abbreviation emptySet ("0") where "§ = Ax w. False"
abbreviation entails (infixr"C"51) where "oCt) = VX w. » X W — 2 X w"
abbreviation andPred (infixr"mM"51) where " "I'h =AW, o XxWAYPxw
abbreviation negpred (" _"[52153) where ""¢) = Ax w. ) X W"
abbreviation "ultrafilter & cw =
—~(d 0 cw)
A (V. V. (Do cw A Dy cw) — (D (o M) cw))
A —i=bool. V e=i=bool. (& o cw V & ("¢) cw) A (P ¢ cw A @ (T¢) cw))
A (Vp::e=i=bool. Vi::e=i=>bool. (¢ ¢ cw A ¢ C ¥) — & ¥ cw)"
(*U1*) theorem Ul: "Vw. ultrafilter P w" nitpick[user_axioms,format=2,show_alll oops (*counterm.*)

lemma helpC: "Vo ¢ w. (P o wV P (T¢) w) A =(PywA P (Tp) w" nitpick oops (*countermodel*)

(*(¢) converts an extensional object y into “rigid' intensional one*)
abbreviation trivialConversion ("(_)") where "(g) = (Aw. ¢)"

(*Q Jp: the extension of a (possibly) non-rigid predicate ¢ is turned into a rigid intensional one,
then Q is applied to the latter; |y can be read as "the rigidly intensionalised predicate ¢"*)
abbreviation mextPredArg (infix "|" 60) where "Q |y = Aw. Q (Ax. (¢ x w)) w"
lemma "VQ ¢. Q ¢ = Q ly" nitpick oops (*countermodel: the two notions are not the same*)

lemma helpE: "Vw.—((P |B) w)" using T1 by blast

Tlemma helpF: "V ¢ w.((P o) w A (P ly) w) — ((P L(eMy)) w)" by (smt GA_def T3 T5 symm)
Temma helpG: "Vw. ((P lo)w V (P L(T@))w) A =((P lo)w A (P L(T@))w)" by (smt GA_def T3 T5 symm)
lemma helpH: "Vw.((P lp) w A ¢C¢) — (P |¢) w" by (metis (no_types, lifting) A4 C2 GA_def T3)

abbreviation "P' ¢ = (P [p)" (*P': the set of all rigidly intensionalised positive properties*)

(*U2*) theorem U2: "Vw. ultrafilter P' w" using helpE helpF helpG helpH by simp
(*U3*) theorem U3: "(P' C P) A (P C P')" nitpick oops (*countermodel: P and P are not equal*)
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Ontological Argument: Variant by Fitting (2002)

TRENDS IN LOGIC - STUDIA LOGICA LIBRARY

Types, Tableaus,
and Godel’s God

Melvin Fitting

KLUWER ACADEMIC PUBLISHERS
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Ontological Argument: Variant by Fitting (2002)

Part | - Proving that God’s existence is possible

D1 Being Godlike is equivalent to having all positive properties.
A1 Exactly one of a property or its negation is positive.

A2 Any property entailed by a positive property is positive.

A3 The combination of any collection of positive properties is itself positive.
From A1 and A2 follows theorem T1:

T1 Every positive property is possibly instantiated.
From D1 and A3 follows:

T2 Being Godlike is a positive property.
From T1 and T2 follows:

T3 Being Godlike is possibly instantiated.

Fully analogous to Goédel/Scott.

But: “positive properties” applied to extensions of properties only!
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Ontological Argument: Variant by Fitting (2002)

Part | - Proving that God’s existence is possible |
D1| Part Il - Proving that God’s existence is necessary, if possible

A1] D2 A property E is the essence of an individual x iff x has E and all of x’s
A2 properties are entailed by E.?

A3] A4 Positive properties are necessarily positive.

Frof From A1 and A4 (using definitions D1 and D2) follows:

T1] T4 Being Godlike is an essential property of any Godlike individual.

Frol D3 Necessary existence of an individual is the necessary instantiation of all
T2 its essences.
Fro A5 Necessary existence is a positive property.

T From T4 and A5 (using D1, D2, D3) follows:

T5 Being Godlike, if instantiated, is necessarily instantiated.

And finally from T3, T5 (together with some implicit modal axioms,
e.g. S5) the existence of (at least a) God follows:

T6 Being Godlike is necessarily instantiated.

aThe underlined part in definition D2 has been added by Scott. Godel originally omitted this part.
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Ontological Argument: Variant by Fitting (2002)

Part | - Proving that God’s existence is possible |
D1| Part Il - Proving that God’s existence is necessary, if possible
A1] D2 A property E is the essence of an individual x iff x has E and all of x’s
A2 properties are entailed by E.?
A3] A4 Positive properties are necessarily positive.
Frof From . L .
“Modal Collapse” is *not* implied by these axioms
T11 T4 §
D3 |
Fro i @ D O  (has countermodel)
T2
A5 |} . . .
Fro We can prove that these “positive property extensions” (which corre-
13| Fro™M| sponds to # from before) form an ultrafilter.
T5
And > - = T

e.g. S5) the existence of (at least a) God follows:
T6 Being Godlike is necessarily instantiated.

aThe underlined part in definition D2 has been added by Scott. Godel originally omitted this part.
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Ontological Argument: Variant by Fitting (2002)

1
2
3
4
5
6)
7
8|
9

theory FittingProof imports IHOML

begin

(*Positiveness/perfection: uninterpreted constant symbol*)

consts Positiveness::"(e=-bool)=-i=-bool" ("P")

(*Some auxiliary definitions*)

(*(¢) converts an extensional object ¢ into ‘rigid' intensional one*)

abbreviation trivialConversion ("(_)") where "(y) (Aw. )"
abbreviation Entails (infix"=" 60) where "X=Y = O(Vfz. (X z)—(Y z))"

(*p's argument is a relativized term (of extensional type) derived from an intensional predicate.*)
abbreviation extPredArg (infix "|" 60) where "¢ [P = Aw. ¢ (Ax. P x w) w"

(*A variant of the latter where ¢ takes intensional terms as argument.*)
abbreviation mextPredArg (infix "|" 60) where "o [P = Aw. ¢ (Ax. (P x w)) w"
(*Another variant where ¢ has two arguments (the first one being relativized).*)
abbreviation extPredArgl (infix "[;" 60) where "¢ [;P = Az. Aw. ¢ (Ax. P x w) z w"

(**Part I**)

(*D1*) abbreviation God ("G") where "G = (Ax. VY. P Y — (Y x))"

(*H*) axiomatization where Ala:"|VX. P (—X) — =(P X) ]" and Alb:"|VX. =(P X) — P (—X)]"
(*E*) axiomatization where A2: "[VX Y. (P X A (X = Y)) —» P Y|"

(*ﬁ*) theorem T1: "[VX. P X — O(3%z. (X z))]" using Ala A2 by blast

(*E*) axiomatization where T2: "[P |G|"

(*E*) theorem T3deRe: "[(AX. ©3F X) |G|" using T1 T2 by simp

theorem T3deDicto: "|O3F |G|" nitpick oops (*countermodel*)
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Ontological Argument: Variant by Fitting (2002)

1|theory FittingProof imports IHOML

2|begin

3| (*Positiveness/perfection: uninterpreted constant symbol*)
he Do TPRETOR RV SIE WK NP LAY

P
25| (**Part II*)

26| (*Logic KB*) axiomatization where symm: "symmetric aRel"
27| (*A4*) axiomatization where Ad4: "|VX. P X — O(P X)|"

39| (**Consistency**)
40|lemma True nitpick[satisfy] oops (*Model found by Nitpick: the axioms are consistent*)

42| (**Modal Collapse**)
43| lemma ModalCollapse: "|V®.(® — (O @))]" nitEick oops (*countermodel*)

28 (*L_Z*) abbreviation Essence ("&") where "€ Y x = (Y x) A (VZ.(Z x)—(Y=2Z))"
1] 29| (*T4*) theorem T4: "[Vx. G x = ((€ ]16) x)|" using Alb by metis
1] 30| (*D3*) definition NE ("NE") where "NE x = Aw. (VY. €Y x — O(3z. (Y z))) w"
1 |31 l*E*) axiomatization where A5: "|P |NEJ"
1l |32 lemma helpl: "[3 |G — O3F |G|" sorry (*longer interactive proof, omitted here*)
1 33 lemma help2: "[3 |G — ((AX. O3F X) [G)|" by (metis A4 helpl)
1] 34| (*T5*) theorem T5deDicto:"|®3% |G|—|O3F |G|" using T3deRe helpl by blast
1 | 35| theorem T5deRe:"[(AX. ©3F X) |G| — [(AX. O3F X) |G|" by (metis A4 help2)
1y 36| (*T6*) theorem TeédeDicto: "[O3% |G|" using T3deRe helpl by blast
1 37 theorem T6deRe: "[(AX. O3F X) |G|" using T3deRe help2 by blast
11 |38
2]
2]
2]
2]
7
e

45| (**Some Corollaries**)

46| (* Todo (*C1*) theorem C1: "IVE P x. ((£EXx) A(Px)) — (E= P)]" by (metis ess_def) *)
47| (*C2*) theorem C2: "LV)T =P X — O(=P X)|" using A4 symm by blast _

48] definition h4 ("A™) where "N’ X = =P X"

49| (*C3*) theorem C3: "[VX. A" X — O(N X)|" by (simp add: C2 h4_def)

50| definition "rigid ¢ = Vx. ¢ x — O(p x)"

51 (*C4*) theorem "|Vy. ¢ — rigid (Ax. (¢ x))]" by (simp add: rigid_def)

52| (*E*) theorem "|rigid P|" by (simp add: A4 rigid_def)
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Ontological Argument: Variant by Fitting (2002)

1|theory FittingProof imports IHOML

© 2|begin
3| (*Positiveness/perfection: uninterpreted constant symbol*)
P IFPNETUR RN TI SOL R TR
Pz
25| (**Part II*)
26| (*Logic KB*) axiomatization where symm: "symmetric aRel"
27| (*A4*) axiomatization where Ad4: "|VX. P X — O(P X)|"
28 (*5*) abbreviation Essence ("&") where "€ Y x = (Y x) A (VZ.(Z x)—(Y=2Z))"
1] 29| l*ﬁ*) theorem T4: "[Vx. G x — ((€ [16) x)|" using Alb by metis
1] |30 (*E*) definition NE ("NE") where "NE x = Aw. (VY. &Y x — O(Fz. (Y z))) w"
1 . . . o
i BE BES
1 E 54{ (**Positive Properties and Ultrafilters**)
1 E 55| abbreviation empty ("(") where "() = Ax. False"
i BE BES abbreviation intersect (infix "M" 52) where "p M ¥ = (Ax. ¢ X A ¥ x)"
1 E 57| abbreviation nnegpred (" _"[52]53) where "0 = Ax. —¢/(x)"
N RE BE: abbreviation entail (infixr"C"51) where "pC¢ = ¥x. ¢ x — ¥ x"
i 3 959 abbreviation "ultrafilter ® cw =
J) E 60| (2 0 cw) (* The empty set is not an element of U *)
A |4 61 A ::(e=bool). Vi)::(e=bool). (P ¢ cw A & ¢ cw) — (P (pMM)) cw))
2) 4 62| A (e=bool). V¢::(e=bool). (® ¢ cw V @ (7¢) cw) A ~(2 ¢ cw A © (Tp) cw))
2) 4 1 63| A pi:(e=bool). Vi::(e=bool). (P ¢ cw A pC¥h) — D ¢ cw)"
9| 4 64 lemma lemmaA: "Vw. —(P 0 w)" using T1 by blast
= BV B lemma lemmaB: "Vw. (P ¢ w A P ) w) > (P (¢lhp) w)" by (metis Alb T3deRe)
4 66| lemma lemmaC: "Vw. (P o w V P (7p) w) A =(P o w AP (7p) w)" using Ala Alb by blast
4 67| lemma lemmaD: "Vw. (P o w A ¢Cy) — P ¢ w" by (smt A2)
4] | 68
4] 69| (*U1*) theorem "Vw. ultrafilter P w" by (smt lemmaA lemmaB lemmaC lemmaD)
4 |79
51 (*C4*) theorem "|Vy. P ¢ — rigid (Ax. (¢ x))|" by (simp add: rigid_def)
52| l*E*) theorem "|rigid P|" by (simp add: A4 rigid_def)
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Summary of Results

> “Godlike” has been defined in terms of “positive properties”
> “positive properties” has been linked with the notion of “ultrafilter”.

C. Benzmidiller & D. Fuenmayor, 2018



Summary of Results

> “Godlike” has been defined in terms of “positive properties”
> “positive properties” has been linked with the notion of “ultrafilter”.
> In our experiments we then distinguished between

#: positive intensional properties
#’: positive ("rigidly intensionalised") extensions of properties

C. Benzmidiller & D. Fuenmayor, 2018



Summary of Results

> “Godlike” has been defined in terms of “positive properties”

> “positive properties” has been linked with the notion of “ultrafilter”.
> In our experiments we then distinguished between
#: positive intensional properties
#’: positive ("rigidly intensionalised") extensions of properties
> Gddel/Scott variant axiomatises #: P =P’ is an ultrafilter

C. Benzmidiller & D. Fuenmayor, 2018



Summary of Results

> “Godlike” has been defined in terms of “positive properties”

> “positive properties” has been linked with the notion of “ultrafilter”.
> In our experiments we then distinguished between

#: positive intensional properties
#’: positive ("rigidly intensionalised") extensions of properties

> Godel/Scott variant axiomatises P: P =P is an ultrafilter
> Anderson’s variant axiomatises #: P + P’;only P is an ultrafilter

C. Benzmidiller & D. Fuenmayor, 2018



Summary of Results

> “Godlike” has been defined in terms of “positive properties”
> “positive properties” has been linked with the notion of “ultrafilter”.
> In our experiments we then distinguished between

#: positive intensional properties
#’: positive ("rigidly intensionalised") extensions of properties

> Gddel/Scott variant axiomatises #: P =P’ is an ultrafilter
> Anderson’s variant axiomatises #: P + P’;only P is an ultrafilter
> Fitting’s variant axiomatises only #’: P’ is an ultrafilter

C. Benzmidiller & D. Fuenmayor, 2018



Summary of Results

> “Godlike” has been defined in terms of “positive properties”
> “positive properties” has been linked with the notion of “ultrafilter”.
> In our experiments we then distinguished between

#: positive intensional properties
#’: positive ("rigidly intensionalised") extensions of properties

> Gddel/Scott variant axiomatises #: P =P’ is an ultrafilter
> Anderson’s variant axiomatises #: P + P’;only P is an ultrafilter
> Fitting’s variant axiomatises only #’: P’ is an ultrafilter

Modal collapse holds for Gddel/Scott variant, but not for Anderson’s & Fitting’s!
They achieve this in seemingly different ways.

Mathematically, however, their solutions appear closely related.
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Part D
— Discussion —
Metaphysics, Mathematics and Reality
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Discussion: Metaphysics, Mathematics and Reality

> There are consistent theistic theories which

> imply the necessary existence of a Godlike (superior) being
> support different philosophical positions: determinism / non-determinism

> Theistic belief (at least in an abstract sense) not necessarily irrational
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Discussion: Metaphysics, Mathematics and Reality

> There are consistent theistic theories which

> imply the necessary existence of a Godlike (superior) being
> support different philosophical positions: determinism / non-determinism

> Theistic belief (at least in an abstract sense) not necessarily irrational

> By adopting the notion of “ultrafilter” these
theistic theories were mapped here to mathematical theories

Question
> Relevance of existence results for the real world?

> Existence results in metaphysics vs. mathematics — difference?
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Conclusion

Experiments in Computational Metaphysics: Ontological Argument
Universal Logical Reasoning Approach

Further developed and applied since AISSQ 2015

Interesting new results

vV v v VY

Approach has other relevant and pressing applications (e.g., machine ethics)

Evidence provided for central claim of this talk
> Computers may help to sharpen our understanding of arguments
> Universal (meta-)logical reasoning approach particularly well suited

Related work

> Ed Zalta (& co) with PROVERS9 at Stanford [AJP 2011, CADE 2015]
» John Rushby with PVS at SRl [CAV-WS 2013, JAL 2018]
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