

The CALCULEMUS Research Training Network (HPRN-CT-2000-00102)

Christoph Benzmüller

Saarland University, Saarbrücken, Germany

QPQ Workshop, Miami, USA, July, 2003

Interest Group since mid 90s www.calculemus.org

> EU Research Training Network 09/2000 - 09/2004 www.eurice.de/calculemus/

Scientific Motivation

New generation of (mathematical) assistant systems

Scientific Motivation

New generation of (mathematical) assistant systems

Integration of symbolic reasoning and symbolic computation

Applications in mathematics, maths education, formal methods

© C. Benzmüller, QPQ Workshop, Miami, USA, July, 2003

New generation of (mathematical) assistant systems

- Integration of symbolic reasoning and symbolic computation
- Interoperability with mathematical knowledge bases
- Integration of heterogeneous specialist reasoners

Open system architectures and mathematical services

Applications in mathematics, maths education, formal methods

© C. Benzmüller, QPQ Workshop, Miami, USA, July, 2003

New generation of (mathematical) assistant systems

- Integration of symbolic reasoning and symbolic computation
- Interoperability with mathematical knowledge bases
- Knowledge exploration, maintenance, management of change
- Integration of heterogeneous specialist reasoners
- Expressive representations; human-oriented user interfaces
- Support for representation transformations
- Open system architectures and mathematical services
- Preparation and validation of mathematical texts and publications
- Applications in mathematics, maths education, formal methods

Early stage training of young researchers

Early stage training of young researchers

Measures:

- The CALCULEMUS Autumn School 2002
- CALCULEMUS Symposia and Network Meetings
- Training at an Individual Level at the Network Nodes
- Local Courses, Workshops, Talks, and Seminars
- Exchange of YVRs between Network Nodes
- Industry Internships

The CALCULEMUS RTN

CALCULEMUS Methodology

CALCULEMUS Methodology

CAS & DS: The Map

DS ⊆ CAS:	 ■ - ТНЕОRЕМА ⊆ Mathematica ■ - HR uses OTTER for MAPLE
CAS ⊆ DS:	 (tight coupling: T-unification, constraint resolution, T-resolution) loose coupling: reflection approach as used in Coq proof planning (λClam, ΩMEGA)
CAS ≡ DS:	 protocol, e.g. á la Calmet common interface: top down: OMRS, MathWeb-SB, LBA, MathBroker bottom up: CCR, MathSat

Bad news:

no single predominant approach for CAS & DS

Bad news:

no single predominant approach for CAS & DS

Good news:

- heterogeneity is not necessarily bad
- challenge is to support heterogeneity
- frameworks supporting the integration of heterogeneous tools are in development (CAS = DS)

Proof Planning (as an example for $CAS \subseteq DS$):

domain specific, heuristic reasoning at abstract layer

Integration of Specialist Reasoners (CASs and ATPs):

- at method layer
- at the heuristic meta-reasoning layer

soundness is evaluated by ...

. . .

refinement (expansion) over several layers

© C. Benzmüller, QPQ Workshop, Miami, USA, July, 2003

Required/Useful for $CAS \subseteq DS$:

- white box integration of external specialist reasoners
- tools for extraction and transformation of results

QPQ and CALCULEMUS?

Short-term

- central repository for tools
- foster uniform (problem and proof) representations
- provide (problem and proof) transformation tools

QPQ and CALCULEMUS?

Short-term

- central repository for tools
- foster uniform (problem and proof) representations
- provide (problem and proof) transformation tools

Long-term

- foster semantical descriptions of tools
- cooperate with emerging semantic brokering mechanism

Source: Jürgen Zimmer (Edingurgh/Saarbrücken)

Service: SpassProver	
classification:	Classifi cation with Taxonomy of services or link to Ontology (\rightarrow QPQ) • \rightarrow first-order problem description
service interface:	ightarrow fo-prover.wsdl
implementation details:	Information about hardware, software (calculus, etc.)

first-order problem description		
input parameters:	name: <i>problem</i> , signature: ATP-Problem (DAML-S Class)	
output parameters:	name: <i>result</i> , signature: ATP-Result (DAML-S Class)	
pre-conditions:	$equational_reasoning(problem)$	
	$\wedge Ax = axioms(problem)$	
	$\wedge C = conjecture(problem)$	
	$\land \forall a \in Ax.first_order(a)$	
	$\land first_order(C)$	
post-conditions:	$Ax \vdash_{FOL} C : has(result, proof_object)$	

Semantic Brokering of Mathematical Services

Semantic Brokering of Mathematical Services

Related (EU) research initiatives

MONET: Mathematics on the Net

offering mathematical algorithms through web services

- MOWGLI: Mathematics on the Web: Get it by Logics and Interfaces from machine-readable to machine-understandable representations of mathematical information
- OpenMath:

standard for representing mathematical objects with their semantics

MKM: Mathematical Knowledge Management Network from paper-oriented and presentation-oriented view to a semantics-oriented view of mathematical knowledge