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Abstract

This is the second talk of the Research Seminar of the Arithmetic Geome-
try group (FU Berlin), which is on the Summer term of 2015. In the seminar
we study the paper [JHS11]. In this talk I’ll try to give an introduction to
the language of stacks by following [Góm01]: first I give some motivation and
historical remarks, then I define the notion of algebraic spaces and finally we
go for the algebraic stacks. I’ll try to give as many examples as possible,
although in the references one can find more.

1 Motivation

O sol che sani ogne vista turbata,
tu mi contenti s̀ı quando tu solvi,

che, non men che saver, dubbiar m’aggrata.
Dante Alighieri

1.1 From Apollonius of Perga to Grothendieck

Apollonius of Perga (3rd century BC) was a Greek geometer and astronomer, and
he is very well known because of his study of conic sections. He gave the hyperbola,
the ellipse and the parabola their names and he studied several properties.

On the other hand, Diophantus of Alexandria (3rd century AD) was an Alexan-
drian Greek mathematician who was interested in algebraic problems, mainly finding
integer and rational solutions to a given polynomial equation. For example, the worl-
wide famous equation xn + yn = zn was contained in his Arithmetica, and Fermat’s
claim was written in a margin of his copy of Arithmetica.

In the 19th century, the geometry of the polynomial equations was developed,
and number theorists were looking for analogue methods, since a lot of problems were
very similar: those involving polynomial equations. If we work over real or complex
numbers, we have geometry, but if we work over integer or rational numbers, we
have arithmetic. But the main point is that the equation is the same in both sides!

In order to achieve this, in the 20th century Algebraic geometry was first founded
in commutative algebra (van der Waerden, Zariski, Weil) in order to give a rigorous
framework for the Italian school of Algebraic geometry (the typical structure of their
results was Theorem - Proof - Counterexample); and in the 50’s and 60’s, Serre and
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Grothendieck introduced in Algebraic geometry the sheaf theory, and finally in the
60’s Grothendieck introduced the notion of scheme.

In what sense did the notion of scheme unify geometry and arithmetic? One
way to see this is via the functor of points: we start with an abstract polynomial
equation, say p(x, y) = y2 − x3 + x = 0. Note that p(x, y) can be regarded as a
polynomial in R[x, y] for every ring R different from zero. We may be interested in
its real or complex solutions, or maybe we are just wondering if it has any solution
in the integers. But to give a solution of p(x, y) in a ring R, is the same as giving a
ring homomorphism ϕ : Z[x, y]/p(x, y)→ R, or equivalently, a morphism of (affine)
schemes Spec(R) → Spec(Z[x, y]/p(x, y)): indeed, in order to have a well defined
homomorphism, ϕ(x) and ϕ(y) must satisfy the equation p(ϕ(x), ϕ(y)) = 0, so this
defines a solution of p(x, y) in the ring R. This leads to the following definition:

Definition 1 (Functor of points). Given a scheme X, its functor of points hX is, for
every other scheme Y , the set Hom(Y,X). If Y = Spec(R) is affine, we will denote
the set as Hom(R,X).

Hence, the integer solutions of y2 − x3 + x = 0 may be identified with the set
Hom(Z, (Spec(Z[x, y]/p(x, y))), and if we are interested in the equation itself, then
we have to focus in the functor of points hSpec(Z[x,y]/p(x,y)).

Therefore, if we study the functor of points, we are studying at the same time
arithmetic and geometry.

1.2 Moduli spaces

In some situations, it is easier to define the functor of points of a scheme rather than
the scheme itself. This situation happens, for example, when we study the moduli
space that parametrizes some objects: vector bundles, curves, subspaces... In these
situations, the moduli space ma be very complicated, but to give a morphism with
target this moduli space is the same as choosing some elements that are being
parametrized.

For example, we may be interested in the closed subschemes of PnC. One desirable
condition is that we have an object that parametrizes flat families of these objects.
By the following proposition (c.f. [EH77][p. 126]), we should restrict our attention
to families of objects that have the same Hilbert polynomial:

Proposition 1. A family X ⊂ PrB of closed subschemes of a projective space over
a reduced connected base B is flat if and only if all fibers have the same Hilbert
polynomial.

Assume that we have a nice object HP that parametrizes all the closed sub-
schemes of PnC with a given Hilbert polynomial. Then a flat family X of sub-
schemes of PnC with Hilbert polynomial P parametrized by B is just a closed scheme
X ⊂ PnC×B. This gives us a map B → HP between the points b ∈ B and the fibers
Xb, which are our closed subspaces. We can ask that for every scheme B over C,
the set of flat families of closed subschemes of PnC with Hilbert polynomial P and
the set of maps from B to HP are identified.
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But maybe we are even more ambitious and ask that not only for C, but for any
field K, we have this, since the problem of parametrizing subspaces of PnK should be
similar for different fields K, so so we would like to do this over Spec(Z) (which is the
final object in (Sch)), and then when we choose a field, we want that HP ×Spec(K)
parametrizes the closed subschemes of PnK .

What we indeed are looking for is for the following functor:

Definition 2 (Hilbert functor). The Hilbert functor hP , also called the “functor
of flat families of schemes in PnZ with Hilbert polynomial P”, is the functor that
associates to any scheme B the set of subschemes X ⊂ PnB flat over B whose fibers
over points of B have Hilbert polynomial P .

We have a concrete description of this functor, and one may ask if there is a
scheme HP that represents this functor. Later we will solve the mystery, but just
notice that if it exists, it has to very a very difficult object, since it must encode
really a lot of information.

This is one of the advantages of using the functor of points point of view.

2 Stacks

La conclusion pratique à laquelle je suis arrivé dès maintenant,
c’est que chaque fois que en vertu de mes critères, une variété de

modules (ou plutôt, un schéma de modules) pour la classification des
variations (globales, ou infinitésimales) de certaines structures

(variétés complètes non singulières, fibrés vectoriels, etc.)
ne peut exister, malgré de bonnes hypothèses de platitude, propreté,

et non singularité éventuellement, la raison en est seulement
l’existence d’automorphismes de la structure qui empêche la technique

de descente de marcher.
Grothendieck’s letter to Serre, 1959 Nov 5.

2.1 Algebraic spaces

First recall that a Grothendieck topology on an arbitrary category is basically a
choice of class of morphisms that will play the analogue role of the open sets (for
the details, see for example [Mum63, p. 38]): a morphism f : V → U is to be though
of as an open set in the object U . The concept of intersection is replaced by the fiber
product (cf [Mum63, pp. 35-36]): the ‘intersection’ of f1 : U1 → U and f2 : U2 → U
is f12 : U1 ×U U2 → U .

A category with a Grothendieck topology is called a site. Here we will consider
the following topologies on (Sch/S):

fppf topology. Let U be a scheme. Then a cover of U is a finite collection of mor-
phisms {fi : Ui → U}i∈I such that

∐
Ui → U is ‘fidèlement plat de présentation

finie’, i.e., such that each fi is a finitely presented flat morphism.
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Étale topology. The same definition, replacing flat by étale.

Definition 3 (Presheaf of sets). A presheaf of sets on (Sch/S) is a contravariant
functor F from (Sch/S) to (Sets). We will use the following usual notation: if
X ∈ F (U) and fi : Ui → U is a morphism, then X|i is the element of F (Ui)
given by F (fi)(X), and we call it the ‘restriction of X to Ui’ (even if fi is not an
inclusion!). If Xi ∈ F (Ui), then Xi|ij is the element of F (Uij) given by F (fij,i)(Xi),
where fij,i : Ui ×U Uj → Ui is the pullback of fj.

Example 1 (Functor of points). Let X be an S-scheme. The functor of points hX
is a presheaf of sets on (Sch/S), given by assigning to every S-scheme Y the set of
S-morphisms HomSch/S(Y,X). We say that a presheaf of sets is representable if it is
isomorphic to hX for some S-scheme X.

Example 2 (Hilbert functor). The Hilbert functor defined above is a presheaf of sets.

Example 3 (Curves). The moduli functor Mg of smooth curves of genus g over a
noetherian base S is the functor that sends each S-scheme B to the set Mg(B)
of isomorphism classes of smooth and proper morphisms C → B (where C is also
an S-scheme) whose fibers are geometrically connected curves of genus g. Each
morphism f : B′ → B is sent to the map of sets given by the pullback.

Example 4 (Fiber product). Let α1 : F1 → G and α2 : F2 → G be two morphisms of
presheaves (i.e. natural transformations of functors), then the fiber product F1×GF2

is the presheaf defined, for every S-scheme B, by

(F1 ×G F2)(B) = {(u1, u2) ∈ F1(B)× F2(B)|a1(u1) = a2(u2)in G(B)}

and similarly for morphisms.

Definition 4 (Space). Fix a topology on (Sch/S). We say that F is an S-space
(or a sheaf) if for every cover {fi : Ui → U}i∈I in the topology, the following two
axioms are satisfied:

• Mono: let X, Y ∈ F (U). If X|i = Y |i for all i, then X = Y .

• Glueing : let Xi ∈ F (Ui) for each i such that Xi|ij = Xj|ij; then there exists
X ∈ F (U) such that X|i = Xi for each i.

Example 5 (Functor of points). The functor of points defined above is indeed a sheaf:
first, note that we have the following sequence of finer Grothendieck topologies:

XZar ↪→ Xét ↪→ Xfppf ↪→ Xfpqc

Indeed, the two first arrows are easy to check, and a proof for the third can be
found in [Fan+05, Prop. 2.35]. Hence, it is enough to show the sheaf axioms for the
fpqc-topology, something that it is done, for example, in [Stacks, Tag 023Q].

Hence, S-schemes are a subcategory of S-spaces, and Yoneda’s lemma states
that it is indeed a full subcategory. We will sometimes abuse notation and write X
for hX when the context is clear.
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Example 6 (Hilbert scheme). Now we solve the previous mystery: the Hilbert functor
is representable by a scheme HP . For a proof, see [Kol96].

Example 7 (Curves). The functorMg defined above is not a sheaf (and therefore is
not representable by example 5) because of the presence of automorphisms. Indeed,
given a curve C over S with nontrivial automorphisms, it is possible to construct
a family f : C → B such that every fiber of f is isomorphic to C, but C is not
isomorphic to B × C (see [Edi97]).

Definition 5 (Equivalence relation and quotient space). An equivalence relation
in (Sch/S) consists of two S-spaces R and U and a monomorphism of S-spaces
δ : R→ U×hSU such that for all S-scheme B, the map δ(B) : R(B)→ (U×hSU)(B)
is the graph of an equivalence relation between sets. A quotient S-space for such an
equivalence relation is by definition the sheaf cokernel of the diagram

R
p2◦δ
//

p1◦δ
// U.

Note that here the cokernel V exists, and can be built as follows: for every S-
scheme B, let V (B) = U(B)/ ∼. This gives you a presheaf, and after shefifying you
obtain V .

Definition 6 (Algebraic space). An S-space F is called an algebraic space if it is the
quotient S-space for an equivalence relation such that R and U are S-schemes, p1 ◦δ
and p2 ◦ δ are étale (morphisms of S-schemes), and δ is a quasi-compact morphism
(of S-schemes).

Roughly speaking, it is the quotient of a scheme by an étale equivalence relation.
We have an alternative definition:

Definition 7 (Algebraic space (2)). An S-space F is called an algebraic space if
there exists a scheme U (called atlas) and a morphism of S-spaces u : U → F such
that

1. The morphism u is étale. For any S-scheme V and morphism (of S-spaces)
V → F , the (sheaf) fiber product U ×F V is representable, and the map
U ×F V → V is an étale morphism of schemes.

2. Quasi-separatedness. The morphism U ×F U → U ×S U is quasi-compact.

Remark 1. We recover the previous definition by taking R = U ×F U .

Algebraic spaces and schemes

Now we follow Artin in [Art71], who first defined the notion of algebraic space,
in order to compare the notions of algebraic spaces and schemes. The idea is to
construct global objects by glueing affine schemes: if we glue them in one way or
another, we get algebraic spaces or schemes.

He starts with an analytic space X, and the problem is to give an algebraic
structure to it. First we give some definitions:
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Definition 8 (Analytic variety (over C)). We say that (Z,OZ) is an analytic variety
if Z is the zero locus of some analytic functions f1, . . . , fk defined in some open set
U ⊂ Cn, and OZ is the structure sheaf given by OU/ < f1, . . . , fk >.

Remark 2. Note that analytic varieties are analogous to algebraic varieties: we just
substitute polynomials by analytic functions.

Definition 9 (Analytic space (over C)). An analytic space is a locally ringed space
(X,OX) such that for every point x ∈ X, there exists an open neighborhood U such
that (U,OU) is isomorphic to an analytic variety.

Remark 3. Closed analytic subspaces of PnC are algebraic. This is Chow’s theorem.

So let’s assume that X is closed. Then we can cover X by a finite set of affines
schemes Ui. Since the finite1 disjoint union of affine schemes is again affine, we get
a surjective map f :

∐
Ui = U → X, where f is a map between analytical spaces.

We write R = U ×X U ⊂ U ×C U .
Now, we put some requirements to U → X: if the Ui’s are mapped isomorphically

onto their images in X, we get the structure of a scheme; if instead we just ask to
U → X to be étale, we get an algebraic space.

Putting everything together, we recover our first definition: an algebraic space
X consists on an affine scheme U and a closed subscheme R ⊂ U × U such that

1. R is an equivalence relation.

2. The projection maps are étale.

The algebraic space is a scheme if moreover

3 The restriction of R to every connected component of U is the trivial diagonal
equivalence relation.

Remark 4. The underlying point set of X is precisely |U |/|R|.

2.2 Interlude on 2-categories

Definition 10 (2-category). A 2-category C consists of the following data: a class of
objects ob(C), and for each pair of objects X, Y , a category Hom(X, Y ). We call the
objects of Hom(X, Y ) 1-morphisms, and given two 1-morphisms f, g ∈ Hom(X, Y ),
an element α ∈ HomHom(X,Y )(f, g) is called a 2-morphism. We add the expected
axioms (identity elements, associativity, composition, etc.; c.f. [Góm01] for the
details), and we will say that a diagram of 1-morphisms commutes in a 2-category
if is of the shape

Y

α

��

g

��

X

f
>>

h
// Z

1Note that an infinite disjoint union of affine schemes is not affine, since
∐

Ui is not quasi-
compact and affine schemes are.
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and α defines a 2-isomorphism between g ◦ f and h. Warning: note that in general,
g ◦ f 6= h. Some authors say that the diagram 2-commutes, because it commutes up
to a 2-morphism.

Example 8. The example to keep in mind is (Cat), the 2-category of all categories
(1-categories). The objects of (Cat) are categories, and for each pair of categories
X, Y , Hom(X, Y ) is just the category of functors between X and Y : 1-morphisms
are functors and 2-morphisms are natural transformations.

Example 9. If the only 2-morphisms in our category C are the identities (i.e.
HomHom(X,Y )(f, g) is empty if f 6= g, and else equal to the identity functor {f → f}),
and each of the categories Hom(X, Y ) is small (i.e. the class of objects is indeed a
set), then we can regard C as a 1-category.

2-functors

A covariant 2-functor F between two 2-categories C and C ′ is a law that for each
object X in C, it gives an object F (X) in C ′, and similarly with 1-morphisms and
2-morphisms. Moreover, this law must satisfy the usual commutative rules. Note
that in particular, F respects composition of 1-morphisms up to a 2-morphism.

2.3 Stacks

Here we will follow [Fan01] as a complement for [Góm01]. We begin with an example
in order to have something down to earth in mind while developing the abstract
definitions.

Example 10 (The category Vr). Let B be an S-scheme, and let X be a vector bundle
of rank r over it, i.e. a S-scheme X and a morphism p : X → B with additional data
consisting of an open covering {Ui} of B, and isomorphisms φi : p−1(Ui) → Ar

Ui
,

such that for any i, j, and for any open affine subset V = Spec(A) ⊂ Ui ∩ Uj,
the automorphism φij = φj ◦ φ−1

i of Ar
V = Spec(A[x1, . . . , xr]) is given by a linear

automorphism θ of A[x1, . . . , xr], i.e., θ(a) = a for any a ∈ A, and θ(xi) =
∑
aijxj

for suitable aij ∈ A. Alternatively, one can just take a locally free sheaf of rank r,
and we will also denote it by X (c.f. [Har77, Ex. II.5.18]).

Now let f : B′ → B be a morphism of S-schemes. We call a diagram

X ′
f
//

��

X

��

B′
f
// B

pullback diagram if X ′ is a vector bundle over B′, and the diagram makes X ′ into
the pullback of X via f (hence, the diagram is cartesian and f induces a linear iso-
morphism on fibers). We will also say that (X ′, f) is a pullback of X via f . Pullback
is esentially unique (given another pullback X ′′, there is a unique isomorphism from
X ′ to X ′′).

We define the category Vr as follows: its objects are rank r vector bundles over
S-schemes, and its morphisms are pullback diagrams (i.e. the above diagram defines
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a morphism from X ′ to X). There is a natural forgetful functor pVr : Vr → (Sch/S),
which sends X → B to the base B and every pullback diagram to f .

Category fibered on groupoids

Definition 11. A category over (Sch/S) is a category F and a covariant functor
pF : F → (Sch/S) (called the structure functor). If X is an object (resp. φ is a
morphism) of F , and pF(X) = B (resp. pF(φ) = f), then we say that X lies over B
(resp. φ lies over f). If B is an S-scheme, the fiber of F over B is the subcategory
of objects over B, and morphisms over the identity of B. We denote it F(B).

Example 11. Vr is a category over (Sch/S); the fiber over B is the category whose
objects are vector bundles over B, and whose morphisms are the isomorphisms
among them.

Recall that a groupoid is a category where every morphism is invertible. Note
that if we start with a group G and consider the category G, given by an object ♥
and the set of morphisms Mor(♥,♥) = G, we get a groupoid.

Hence, the fiber of Vr over B, Vr(B), is a groupoid.

Definition 12. A category F over (Sch/S) is called a category fibered on groupoids
if

1. For every f : B′ → B in (Sch/S) and every object X lying over B, there exists
at least one object X ′ and a morphism φ : X ′ → X over f :

X ′
φ
//

_

��

X_

��

B′
f
// B

2. For every commutative diagram

X3
ψ

//
_

��

X1_

��

X2

φ
==

_

��

B3

f ′ !!

f◦f ′
// B1

B2

f

==

where the vertical arrows are given by pF , there exists a unique ϕ : X3 → X2

that fits in the diagram and makes everything commutative.

Remark 5. Condition 2 implies that the object X ′, whose existence is asserted by
the first condition, is unique up to unique isomorphism. Indeed, if we take in the
big diagram B2 = B3 and f ′ = idB2 , we get a unique morphism ϕ : X3 → X2. Since
we can do the same construction with (idB2)

−1, ϕ is an isomorphism. Hence, every
fiber F(B) is indeed a groupoid.
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Remark 6. For each X and f , we choose once and for all such a X ′ and we denote
it as f ∗X, and if the morphism is clear from he context, we write X|B′ instead of
f ∗B (for example, when f is an inclusion).

Descent data

Now we want to define the descent data. This will allow us to glue objects.

Example 12 (Descent data on Vr). For example, if we have an open covering {Bi →
B} of an S-scheme, and a vector bundle X over B, we may not be able to recover
X from the Xi := X|Bi

, as X may not be trivial and at the same time, trivial in the
restrictions. But the fact that Xi is the pullback of X means that we have induced
isomorphisms φij : Xi|Bij

→ Xj|ij which satisfy the cocycle condition on Bijk, i.e.
φik = φjk ◦φij on Bijk, and now we are able to recover X from the Xi, since now we
know how to glue them. In general, we have the following definition:

Definition 13 (Descent data). Let F be a category fibered in groupoids over
(Sch/S). A descent datum for F over an S-scheme B is the following: an open
covering {Bi → B}; for every i, a lifting Xi of Bi to F ; for every i, j an iso-
morphism φij : Xi|Bij

→ Xj|Bij
in the fiber which satisfies the cocycle condition

φik = φjk ◦ φij over Bijk.
We say that the descent datum is effective if there exists a lifting X of B to F

together with isomorphisms φi : X|Bi
→ Xi in the fiber such that φij = φj|Bij

◦
(φi|Bij

)−1.

Example 13. The descent data of Vr is effective.

Stacks as categories

First, we fix a topology on (Sch/S). Here we will be mainly interested in the étale
and the fppf topologies. Until the definition of algebraic stacks, the distinction will
not matter at all.

Definition 14 (Stack). A stack is a category F fibered in groupoids over (Sch/S)
such that

1. For every S-scheme B and pair of objects X, Y of F over B, the contravariant
functor

HomB(X, Y ) : (Sch/B) −→ (Sets)
(f : B′ → B) 7−→ Hom(f ∗X, f ∗Y )

is a sheaf on the site (Sch/B).

2. Descent data is effective.

Remark 7. The notion of stack is just a categorical notion. Now we will define
morphisms of stacks and the fiber product of stacks, and then we will give define
the notion of algebraic stack. The advantage of this notion will be that it has an
analogy with the notion of algebraic space, so we will be able to see some geometry
behind these categorical concepts. If we choose the étale topology on (Sch/S), we
obtain the definition of a Deligne-Mumford stack (c.f. [DM69]), and with the fppf
we get an Artin stack.
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Stacks as functors

There is another way to define a stack, and this point of view is to regard a stack
as a sheaf of groupoids.

Definition 15 (Stack as a functor). A stack is a sheaf of groupoids F , i.e. a
contravariant 2-functor (a presheaf) from (Sch/S) to (Groupoids) that satisfies the
following sheaf axioms. Let {fi : Ui → U}i∈I be a covering of U in the site (Sch/S).
Then

1. Glueing of morphisms. If X and Y are two objects of F(U), and φi : X|i → Y |i
are morphisms such that φi|ij = φj|ij, then there exists a morphism φ : X → Y
such that φ|i = φi.

2. Monopresheaf. If X and Y are two objects of F(U), and φ : X → Y , ψ : X →
Y are morphisms such that φ|i = ψ|i, then φ = ψ.

3. Glueing of objects. If Xi are objects of F(Ui) and φij : Xi|ij → Xj|ij are
morphisms satisfying the cocycle condition, then there exists an object X of
F(U) and isomorphisms φi : X|i → Xi such that φij ◦ φi|ij = φj|ij.

Note that the third condition is equivalent to saying that the descent data is
effective.

We now see how to go from one definition to the other, first comparing a cate-
gory fibered on groupoids and a presheaf on groupoids: start with an object B of
(Sch/S). Recall that we defined F(B) to be the fiber of F over B. Since F(B) is a
groupoid, this association defines a presheaf of groupoids (everything is well defined
because of the conditions of the definition 12 of category fibered on groupoids).
Conversely, given a presheaf (a 2-contravariant functor) from (Sch/S) to the cate-
gory of groupoids G, we can define the category F whose objecs are pairs (B,X)
where B is an object of (Sch/S) and X is an object of G, and whose morphisms
(B′, X ′)→ (B,X) are pairs (f, α), where f : B′ → B is a morphism in (Sch/S) and
α : f ∗X → X ′ is an isomorphism, where f ∗ = G(f). This gives us the relationship
netween category fibered on groupoids and presheaves of groupoids, and one sees
that the conditions of the definitions of stack are just a translation from one side to
the other.

Hence, we have the following picture:

Stacks // Presheaves of groupoids

(Sch/S) // Algebraic spaces // Spaces

OO

// Presheaves of sets

OO

where each arrow means that we have a full subcategory. We will complete the
picture by defining algebraic stacks, but first we will define morphisms of stacks.
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Morphisms of stacks

Definition 16. A morphism of stacks (over (Sch/S)) f : F → G is a 2-functor
between the categories such that pG ◦ f = pF . A commutative diagram of stacks is
a diagram

G
α

��

g

��

F

f
??

h
//H

such that α : g ◦ f → h is an isomorphism of functors. If f is an equivalence
of categories, then we say that the stacks F and G are isomorphic. We denote by
HomS(F ,G) the category whose objects (1-morphisms) are morphisms of stacks and
whose morphisms (2-morphisms) are natural transformations. With this structure,
(Stacks) forms a 2-category.

Remark 8. Note that Grothendieck’s difficulties to define a moduli space were the
existance of automorphisms (c.f. remark 9), and this is solved by conidering 2-
categories as we will see.

Before we study different properties of morphisms, we need the notions of rep-
resentability and of fiber product.

2.4 Algebraic stacks

Representability of stacks

Given an S-scheme U , consider the category (Sch/U). If we define the functor
pU : (Sch/U) → (Sch/S) that sends B to B regarded as an S-scheme, and U -
morphisms f : B′ → B to the same morphism, but regarded as a morphism of
S-schemes, then (Sch/U) becomes a stack. By abuse of notation, we call this stack
U . If we think in the 2-functor point of view, then the stack associated to U is the
2-functor that associates, for each S-scheme B, the category HomS(B,U) (where
the 2-morphisms are just the identities).

Definition 17. We say that a stack is represented by a scheme (resp. algebraic
space) U if it is isomorphic to the stack associated to U .

Remark 9. Note that if a stack has an object with an automorphism other that the
identity, then the stack can’t be represented by a scheme, since we would have a
2-morphism different from the identity.

Remark 10. Let F be an stack and U an S-scheme. The functor

u : HomS(U,F)→ F(U)

that sends f to f(idU) is an equivalence of categories. This follows from Yoneda’s
lemma.
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Fiber product of stacks

Given two morphisms of stacks f1 : F1 → G, f2 : F2 → G, we define a new stack
F1 ×G F2 as follows: the objects are triples (X1, X2, α) where Xi belongs to Fi and
they lie over the same S-scheme U , and α : f1(X1) → f2(X2) is an isomorphism in
G (or equivalently, pG(α) = idU). A morphism from (X1, X2, α) to (Y1, Y2, β) is a
pair (φ1, φ2) of morphisms φi : Xi → Yi that lie over the same morphism of schemes
f : U → V , and such that β ◦ f1(φ1) = f2(φ2) ◦ α. One can check that the fiber
product satisfies the usual universal property.

Representability of morphisms and properties

A morphism of stacks f : F → G is representable if for all objects U in (Sch/S)
and morphisms U → G, the fiber product stack U ×G F is representable by an
algebraic space. Let P be a property of morphisms of schemes that is local in
nature on the target for the topology chosen on (Sch/S) (étale or fppf), and it
is stable under arbitrary base change (e.g. separated, quasi-compact, unramified,
flat, smooth, étale, surjective, finite type, locally of finite type,...). Then, for a
representable morphism f , we say that f has property P if for every U → G, the
pullback U ×G F → U has property P .

A very important notion is the diagonal of a stack:

Definition 18. Given a stack F , the diagonal is the obvious ∆F : F → F ×S F ,
i.e. the fiber product of the structure functor pF : F → (Sch/S) with itself.

Remark 11. Note that a morphism from a S-scheme U to F ×S F is, by remark 10,
equivalent to two objects X1, X2 of F(U). Taking now the fiber product of U and
F , we get precisely

HomU(X1, X2) //

��

F
∆F
��

U
(X1,X2)

// F ×S F
and recall that HomU(X1, X2) forms a groupoid because of condition 2 on definition
12. Because of this, sometimes people denote this as IsoU(X1, X2). Hence, the
information of the group of automorphisms of an object is encoded in the diagonal
morphism.

Now, we state a proposition that will allow us to define the notion of an algebraic
stack. A proof can be found, for example, in [Góm01, Prop. 2.23].

Proposition 2. Let F be a stack. The following are equivalent:

1. The morphism ∆F is representable.

2. The stack IsoU(X1, X2) is representable for all U , X1 and X2.

3. For all scheme U , every morphism U → F is representable.

4. For all schemes U, V and morphisms U → F and V → F , the fiber product
U ×F V is representable.
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Algebraic stacks

Definition 19 (Deligne-Mumford stack). Let (Sch/S) with the étale topology. Let
F be a stack. We say that F is a Deligne-Mumford stack if

1. Quasi-separatedness. The diagonal ∆F is representable, quasi-compact and
separated.

2. There exists a scheme U (called atlas) and an étale surjective morphism u :
U → F .

Definition 20 (Artin stack). Let (Sch/S) with the fppf topology. Let F be a stack.
We say that F is a Deligne-Mumford stack if

1. Quasi-separatedness. The diagonal ∆F is representable, quasi-compact and
separated.

2. There exists a scheme U (called atlas) and an smooth surjective morphism
u : U → F .

Remark 12. This definition with an atlas is similar to the second definition of alge-
braic space.

Remark 13. The last proposition ensures us that the morphism u is representable,
since the diagonal ∆F is assumed to be representable. Hence the definitions make
sense.

This completes our previous picture:

Algebraic stacks // Stacks // Presheaves of groupoids

(Sch/S) //

66

Algebraic spaces //

OO

Spaces

OO

// Presheaves of sets

OO

We know follow [LMB00] in order to define properties of stacks and morphisms.
As before, we are interested in the properties P that are local in nature and stable
under base change.

Definition 21 ([LMB00][Def. 4.7.1]). An algebraic stack F has property P if for
one (and therefore for all) presentation u : U → F , U has the property P .

Definition 22 ([LMB00][Def. 4.14]). We say that (1-)morphism F : F1 → F2 of
algebraic stacks has the property P if, for a presentation f of F , i.e. a commutative
diagram of 1-morphisms

U ′1
u′1 //

f
  

F ′1 //

��

F1

F
��

U2
u2 // F2

where u′1 and u2 are the presentations of F ′1 = U2 ×u2,F2,F F1 and F2 respectively,
the morphism f : U ′1 → U2 has this property P .
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2.5 Final remark

There is still another way to define a stack, which is analogue to the method used
to define an algebraic space via a quotient.

If C is a category, we denote by U the class of objects and by R the class of
morphisms. From the axioms of a category we get the ‘maps’

R
t
//

s // U e // R R×s,U,t R m // R,

where s and t give the source and he target of a morphism respectively, e gives
the identity morphism and m the composition. If C is a groupoid, we also have

R i // R

which assigns to a morphism its inverse. These maps satisfy

1. s ◦ e = t ◦ e = idU , s ◦ i = t, t ◦ i = s, s ◦m = s ◦ p2 and t ◦m = t ◦ p1.

2. Associativity. m ◦ (m× idR) = m ◦ (idR ◦m).

3. Identity. Both compositions

R = R×s,U U
idR×e // R×s,U,t R m // R

R = U ×U,t R
e×idR // R×s,U,t R m // R

are the identity on R.

4. Inverse. In R, m ◦ (i× idR) = e ◦ s, m ◦ (idR × i) = e ◦ t.

Definition 23 (Groupoid space). A groupoid space is a pair of spaces U,R with
five morphisms s, t, e,m, i satisfying the above properties.

Definition 24. Given a groupoid space, define the groupoid over (Sch/S) as the
category [R,U ]′ over (Sch/S) whose objects over the S-scheme B are the elements
of the set U(B) and whose morphisms over B are elements of the set R(B). Given
f : B′ → B, we define a functor f ∗ : [R,U ]′ → [R,U ]′(B′) using the maps U(B)→
U(B′) and R(B)→ R(B′).

This defines just a prestack (i.e. there may be non effective descent data). We
denote by [R,U ] the associated stack. This can be thought of as the sheaf associated
to the presheaf of groupoids B 7→ [R,U ]′(B) (c.f. [LMB00, Lemma 3.2]).

Example 14. Let R,U be a groupoid space such that R and U are algebraic spaces,
locally of finite presentation. Assume that the morphisms s, t are flat, and that
δ = (s, t) : R → U ×S U is separated and quasi-compact. Then [R,U ] is an Artin
stack, locally of finite type (c.f. [LMB00, Cor. 10.4]).

Remark 14. Any Artin stack can be defined in this fashion. The algebraic space U
will be the atlas of F , and we set R = U ×F U . The morphisms s and t are the
two projections, i exchanges the factors, e is the diagonal, and m is defined by the
projection to the first and third factor.
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