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Abstract

This is the second talk of the Research Seminar “Supersingular K3 surfaces
are unirational” of the Arithmetic Geometry group (FU Berlin), which is on
the Winter Semester 2015-2016. In the seminar we study the result of Liedtke
in [Lie15b]:

Theorem 1. Supersingular K3 surfaces are unirational.

One of the ingredients of the proof is crystalline cohomology, and this talk
is devoted to give an introduction to it. In these notes for the talk you can
find the following:

• We first give a motivation, explaining why crystalline cohomology is like
a “p-adic” cohomology, and first we recall the construction and some
properties of `-adic cohommology.

• After this, we recall the construction and m ain properties of the Witt
vector, since crystalline cohomology will have these coefficients. After
this, we sheafify this construction as in [Ser58], but the first idea that
one may have, which is to take sheaf cohomology with this coefficients,
doesn’t work.

• Hence, we move on to crystalline cohomology, explaining some properties
and giving the definition. We also do a couple of examples.

• Finally, we look at the de Rham-Witt complex, and state the canoni-
cal decomposition of the crystalline cohomology given by the Frobenius
action.

1 Motivation

What is brown outside, white inside and is very delicate?
Crystalline cocohomology.

Crystalline cohomology was at first motivated by the search of a cohomology
theory analogous to the `-adic cohomology for a scheme over a field of characteristic
p, with p 6= `. In fact, under the assumption ` 6= p, `-adic cohomology has a lot of
nice properties which become false if we allow ` = p.
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For example, let’s consider a smooth and proper scheme X over Zp, with special
fibre X over Fp, and let X := X ×Fp Fp, where Fp is an algebraic closure. On the
other hand, consider X an the complex analytic variety defined by X and an inclusion
Zp ↪→ C.

X //

��

X

��

// X

��

X anoo

��

Spec(Fp) // Spec(Fp) // Spec(Zp) Spec(C)oo

Then, for ` 6= p, we have isomorphisms

H i
ét(X,Z`) ∼= H i(X an,Z)⊗Z Z`

Hence, knowing the `-adic cohomology of X is the same as knowing the rank
and the `-torsion of the singular cohomology of X an. But this isomorphism is no
longer true for ` = p, as we will see in an example, so we want to define a different
cohomology theory that has the properties of the `-adic cohomology, but with ` = p.
Once we have this, we will be able to study also the p-torsion phenomena. This was
done in Berthelot’s thesis [Ber74].

2 `-adic cohomology

Recall that for a prime number `, we define the `-adic cohomology as

Hn
ét(X,Z`) := lim

←
Hn

ét(X,Z/`mZ)

and we also define Hn
ét(X,Q`) := Hn

ét(X,Z`)⊗Z`
Q`. This cohomology theory has a

lot of convenient properties. For instance, if we assume that X is smooth, irreducible
and proper over an algebraically closed field (of any characteristic), we have:

1. Hn
ét(X,Q`) is a contravariant functor in X. The cohomology groups are finite

dimensional Q`-vector spaces, zero if n /∈ [0, . . . , 2 dim(X)] and we also have

that H
2 dim(X)
ét (X,Q`) is 1-dimensional.

2. There is a cup-product structure

∪i,j : H i
ét(X,Q`)×Hj

ét(X,Q`)→ H i+j
ét (X,Q`)

which is a perfect pairing for ∪n,2 dim(X)−n (and n in the above interval), called
Poincaré duality.

3. Hn
ét(X,Z`) defines an integral structure on Hn

ét(X,Q`).

4. If char(k) = p > 0, and ` 6= p, then the dimensions dimQ`
Hn

ét(X,Q`) is
independent of `. Hence, the Betti number

bn(X) := dimQ`
Hn

ét(X,Q`)

is well defined for ` 6= p.
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5. If k = C, we can choose an inclusion Q` ⊂ C (note that this will not be a
continuous inclusion), and then, there exist isomorphisms

Hn
ét(X,Q`)⊗Q`

C ∼= Hn(X,C)

where X is considered as a differentiable manifold on the right hand side and
C is locally constant with respect to the analytic topology.

6. There is a Lefschetz fixed point formula, there exist base change formulas,
cycle classes in H2q

ét (X,Q`) of codimension q subvarieties, . . .

Remark 1. The assumption in 4. of ` 6= p is crucial. For example, if A is a g-
dimensional abelian variety over an algebraically closed field of characteristic p,
dimQ`

H1
ét(A,Q`) = 2g if ` 6= p, and dimQp H

1
ét(A,Qp) = r for some r ≤ g.

The crystalline cohomology that we will later define will have similar properties.
One of the differences is that instead of vector spaces, we will have modules over
the ring of Witt vectors. Let’s recall the construction of this ring.

3 Witt vectors

Serre observed in [Ser58] that there can’t be a Weil cohomology with coefficients
in Qp for schemes X over a field of characteristic p. That’s why we introduce the
ring of Witt vectors, because there we will be able to obtain our desired cohomology
theory.

We know (c.f. [Ser79]) the following theorem:

Theorem 2. For every perfect field k of characteristic p, there exists a complete
discrete valuation ring and only one (up to unique isomorphism) which is absolutely
unramified and has k as its residue field.

We define this ring as the ring of Witt vectors W (k). The name is after the nazi
mathematician (c.f. [Sch96]) Ernst Witt, who was able to put a ring structure and
define the operations in a computable way. Note that W (k) is unique up to unique
isomorphism. More precisely, we know that W (k) satisfies the following:

1. W (k) is a complete discrete valuation ring of characteristic zero.

2. The unique maximal ideal m of W (k) is generated by p, and the residue field
W (k)/m is isomorphic to k.

3. Every m-adically complete discrete valuation ring of characteristic zero with
residue field k contains W (k) as a subring.

4. The Witt ring W (k) is functorial in k, i.e. for every φ : k → k′, there exists a
unique f : W (k)→ W (k′) making the obvious diagram commutative.
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Explicit construction of W (k)

We now give an explicit construction of this ring: define the Witt polynomials (with
respect to p) to be the following polynomials with coefficients in Z:

W0(x0) := x0

W1(x0, x1) := xp0 + px1
...

Wn(x0, . . . , xn) := xp
n

0 + pxp
n−1

1 + . . .+ pnxn =
∑n

i=0 p
ixp

n−i

i

One can show [Ser79] that there exist unique polynomials Sn and Pn in 2n + 2
variables with coefficients in Z such that

Wn(x0, . . . , xn) + Wn(y0, . . . , yn) = Wn(S0, . . . , Sn(x0, . . . , xn, y0, . . . , yn))
Wn(x0, . . . , xn) · Wn(y0, . . . , yn) = Wn(P0, . . . , Pn(x0, . . . , xn, y0, . . . , yn))

For example, we have

S0(a0, b0) = a0 + b0 S1(a0, a1, b0, b1) = a1 + b1 +
ap0+bp0−(a0+b0)p

p

P0(a0, b0) = a0b0 P1(a0, a1, b0, b1) = bp0a1 + b1a
p
0 + pa1b1

We now construct W (R) for an arbitrary ring R (not necessarily of characteristic
p). First, we define the truncated Witt ring Wn+1(R) to be the set Rn+1, together
with the operations:

(x0, . . . , xn) ⊕ (y0, . . . , yn)
:= (S0(x0, y0), . . . , Sn(x0, . . . , xn, y0, . . . , yn))

(x0, . . . , xn) � (y0, . . . , yn)
:= (P0(x0, y0), . . . , Pn(x0, . . . , xn, y0, . . . , yn))

With this operations, Wn(R) is a ring with zero 0 = (0, . . . , 0) and unit 1 =
(1, 0 . . . , 0). For example, W1(R) is just R with the usual operations.

Now we assume that R is of characteristic p, and we introduce two important
operations:

Ṽ : Wn(R) → Wn+1(R)
(x0, . . . , xn−1) 7→ (0, x0, . . . , xn−1)

σ : Wn(R) → Wn−1(R)
(x0, . . . , xn−1) 7→ (xp0, . . . , x

p
n−2)

Ṽ is called the shift or transfer (in German this is Verschiebung), and it is additive.
σ is called the Frobenius and it is a ring homomorphism. We have the following
relation:

σ ◦ Ṽ = Ṽ ◦ σ = p · idWn(R)

Here, obviously, multiplication by p is not multiplication by p coordinate-wise
(otherwise, since A has characteristic p, this would be the same as multiplication by
0), but adding (using ⊕) p times any vector with itself.
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Now the projection Wn(R) → Wn−1(R) onto the first (n − 1) components is a
surjective ring homomorphism, and we can take the projective limit of this projective
system in order to get W (R):

W (R) := lim
←
Wn(R)

For example, if R = Fp, the Frobenius σ is trivial, so the Verschiebung V is
just multiplying by p. Hence, Wn(Fp) ⊂ Z/pnZ. Moreover, by noting that there is
an element of order pn and comparing sizes, we conclude that this is an equality.
Therefore,

W (Fp) = lim
←

Z/pnZ = Zp

Sheafification of Wn(R)

Given a scheme X over an algebraically closed field of characteristic p, we can
sheafify the construction of Wn(R) to obtain sheaves of rings WnOX and WOX .
This was done by Serre in [Ser58] as follows: for any closed x ∈ X, the ring OX,x is
a ring of characteristic p. If we fix n, we form Wn(OX,x), and when we vary x we get
a sheaf of rings WnOX . We construct similarly WOX , and we get the cohomology
groups H i(X,WnOX) and H i(X,WOX).

It is easy to prove that if X is a projective variety (as, for example, a K3 surface)
over a field of characteristic p, the cohomology groups H i(X,WnOX) are WOX-
modules of finite length (c.f. [Ser58]). But we have to be careful, because this may
not be true for H i(X,WOX): indeed, if X is a supersingular K3 surface, the torsion
part of the W (k)-module H i(X,WOX) is not finitely generated. In particular, we
don’t want this to be the p-adic analogous of `-adic cohomology, so we will have to
do something else.

4 Crystalline cohomology

Properties of crystalline cohomology

“Un cristal possède deux propriétés caractérist́ıques:
la rigidité, et la faculté de croitre, dans un voisina-
ge approprié. Il y a des cristaux de toute espèce de

substance: des cristaux de soude, de souffre, de mo-
dules, d’anneaux, de schémas relatifs etc.”1

Grothendieck, in a letter to Tate in 1966

Let X be a scheme over k. In the next section we will define the cohomology
groups H i

crys(X/Wn), which are finitely generated Wn(k)-modules. For n = 1, we
have W1(k) = k and we obtain the de Rham cohomology:

H i
crys(X/k) ∼= H i

dR(X/k)

1A crystal has two characteristic properties: the rigidity, and the faculty to grow in an adequate
neighbourhood. There are crystals of all kind of substances: crystals of soda, of sulphur, of modules,
of rings, of relative schemes etc.
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The limit of these groups will be the crystalline cohomology:

H i
crys(X/W ) := lim

←
H i

crys(X/Wn)

Note that X may not have a lift X over W (k). For example, recall the following
theorem:

Theorem 3 (Delligne-Illusie ’87). Let X be a smooth and proper variety over a
perfect field of characteristic p of dim(X) ≤ p, and assume that X admits a lift to
W2(k). Then, the Fröhlicher spectral sequence of X degenerates at E1.

But, after Mumford’s work in [Mum61], we know examples of projective and
smooth surfaces in positive characteristic p whose Fröhlicher spectral sequence does
not degenerate at E1, so in particular they don’t admit a lift to W2(k).

However, we can still construct crystalline cohomology, we don’t need a lift of
X: we make the cohomology groups “grow” locally from k, and this grow is kind of
“rigid”, because we can glue these groups in order to get a group over W (k). This
explains the origin of the terminology.

Before we give the construction of crystalline cohomology, let’s see which prop-
erties will this cohomology satisfy. All the demonstrations can be found in [Ber74].

If X is a proper and smooth scheme over k a perfect field of characteristic p > 0,
then we can define a cohomology satisfying the following properties:

1. Hn
crys(X/W ) is a contravariant functor in X. These groups are finitely gener-

ated W -modules, and zero if n /∈ [0, 2 dim(X)].

2. There is a cup-product ∪i,j structure module torsion that induces a perfect
pairing at ∪n,2 dim(X)−n when n ∈ [0, 2 dim(X)].

3. Hn
crys(X/W ) defines an integral structure on Hn

crys(X/W )⊗W K.

4. If ` is a prime different from p, then

dimQ`
Hn

ét(X,Q`) = rankWH
n
crys(X/W )

so crystalline cohomology computes `-adic Betti numbers.

5. Crystalline cohomology computes the de Rham cohomology:

0→ Hn
crys(X/W )⊗W k → Hn

dR(X/k)→ TorW1 (Hn+1
crys(X/W ), k)→ 0

6. There is a Lefschetz fixed point formula, there exist base change formulas,
cycle classes in H2q

crys(X/W ) of codimension q subvarieties, . . .

As an application of these facts, we can show that the following are equivalent:

1. For all n ≥ 0, the W -module Hn
crys(X/W ) is torsion-free.
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2. We have
dimQ`

Hn
ét(X,Q`) = dimkH

n
dR(X/k)

for all n ≥ 0 and all primes ` 6= p.

Indeed, if Hn
crys(X/W ) is torsion-free, the exact sequence of 5. induces an iso-

morphism Hn
crys(X/W ) ⊗W k ∼= Hn

dR(X/k). But by 4., the rank of Hn
crys(X/W ) is

precisely the n-th Betti number, so 2. holds.
Conversely, if we have that equality, looking at

dimQ`
Hn

ét(X,Q`) = rankWH
n
crys(X/W ) ≤ dimk(Hn

crys(X/W )⊗W k) ≤ Hn
dR(X/k)

we deduce that the inequality must be an equality. Therefore, the term on the right
of the exact sequence appearing in 5. must be zero: in other words, Hn

crys(X/W ) is
torsion-free.

Definition of the crystalline cohomology

Divided powers: let A be a ring and I ⊂ A an ideal. A PD2 structure over I is a
collection of maps γn : I → A for n ≥ 0 s.t., morally, “γn(x) = xn/n!”. We impose
the following conditions:

1. γ0(x) = 1 and γ1(x) = x for every x ∈ I.

2. γn(x) ∈ I if n ≥ 1.

3. γn(x+ y) =
∑

i+j=n γi(x)γj(y).

4. γn(λx) = λnγn(x) for all λ ∈ A.

5. γn(x)γm(x) =
(
n+m
n

)
γm+n(x).

6. γm(γn(x)) =
(mn)!

m!(n!)m
γmn(x).

Using the fact that γ1(x) = x, condition 5. and induction one easily sees that
n!γn(x) = xn. With this trick, we can talk about divided powers even if the charac-
teristic of A is positive.

Example 1. Consider the ideal (p) ⊂ W (k), where k is a perfect field of characteristic
p (you can think on Fp, so that the Witt ring becomes Zp). Then, since we are in
characteristic zero, we must define γn(p) = pn/n! and extend to the whole ideal
(p) by the above properties. This is well defined because pn/n! lies on W (k): for
instance, its p-adic valuation is positive for n ≥ 0, and non-zero for n ≥ 1, so this
definition satisfies the first two conditions. By a boring computation, you can check
the other conditions.

Crystalline category: Let k be a perfect field of characteristic p, and we denote
W := W (k) and Wn := Wn(k) = W/pn. Let X be a scheme over k. We define the
category Crys(X/Wn) as follows:

2From French, puissances divisées.
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• The objects are commutative diagrams

U i //

��

V

��

Spec(k) // Spec(Wn)

where U ⊂ X is a Zariski open, and i : U → V is a PD thickening of U .
More concretely, i is a closed immersion of Wn-schemes such that the ideal
Ker(OV → OU) is endowed with a PD structure δ compatible with the canonic
PD structure on pWn ⊂ Wn, i.e. δ(pa) = γn(p)an for any pa ∈ Ker(OV → OU).
Note that we always have that (p)OV ⊂ Ker(OV → OU), but the latter may
be bigger and we may not have a PD structure, so the condition is not empty.

• The morphisms from (U, V, δ) to (U ′, V ′, δ′) are the commutative diagrams
formed by an open immersion U ↪→ U ′ and a morphism V → V ′ compatible
with the PD structure.

Crystalline site: We have to define the Grothendieck topology. This will be given
by covers of the form (Ui, Vi, δi) → (U, V, δ), where Vi → V is an open immersion
and V =

⋃
i Ui.

Now that we have a site, so we can define sheaves, and we can relate sheaves for
the crystalline topology over (U, V ) with sheaves for the Zariski topology on V as
follows:

• Let F be a sheaf and (U, V ) an object of Crys(X/Wn). For a Zariski open

W ⊂ V , we define F̃(U,V )(W ) := F (U ×V W,W ), and this way we get a sheaf
on V . Moreover, for a morphism g : (U, V ) → (U ′, V ′) in Crys(X/Wn), we

obtain a morphism g∗F : g−1F̃(U ′,V ′) → F̃(U,V ) that satisfies

(i) Transitivity for (U, V )→ (U ′, V ′)→ (U ′′, V ′′).

(ii) g∗F is an isomorphism if V → V ′ is an open immersion and U = U ′×′V V .

• Conversely, if for every object (U, V ) of Crys(X/Wn) we have a sheaf F̃(U,V )

for the Zariski topology of V s.t. for every morphism g : (U, V )→ (U ′, V ′) in

Crys(X/Wn) we have a morphism g∗F : g−1F̃(U ′,V ′) → F̃(U,V ) satisfying the two
conditions, we get a sheaf F on the crystalline site.

This way, we can define a structure sheaf on Crys(X/Wn), OX/Wn , that associates
to every object (U, V, δ) the sheaf OV .

Finally, we are able to define the crystalline cohomology with the crystalline
structure sheaf:

H i
crys(X/Wn) := H i(Crys(X/Wn),OX/Wn)

and, passing to the limit,

H i
crys(X/W ) = lim

←
H i

crys(X/Wn)
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Examples

Let A be an abelian variety of dimension g. Then, the Hn
crys(A/W ) are torsion-free

W -modules. More precisely, H1
crys(A/W ) is free of rank 2g and for all n ≥ 2 there

are isomorphisms Hn
crys(A/W ) ∼= ΛnH1

crys(A/W ).
For a smooth and proper variety X, recall that its Albanese morphism is (once

we fix a point p ∈ X) α : X → Alb(X), where Alb(X) is an abelian variety that
satisfies the following universal property: for any morphism to an abelian variety A
(X, p)→ (A, e), this factors through (Alb(X), e).

Then, α induces an isomorphism H1
crys(X/W ) ∼= H1

crys(Alb(X)/W ), so by the
above example we get that H1

crys(X/W ) is always torsion-free.

5 The de Rham-Witt complex

Through this section X will be assumed to be smooth and projective over k a field of
characteristic p. The sheaves WnOX and WOX of the previous sections are just the
zero part of the complexes WnΩ•X and WΩ•X . We can define (see [Ill79]) operators
V : WnΩ•X → Wn+1Ω•X and F : WnΩ•X → Wn−1Ω•X between the complexes satisfying
the following properties:

1. Both operators are additive.

2. Over WnOX , F : WnOX → Wn−1OX is our σ defined on Wn, and the previous
Ṽ equals this V : WnOX → Wn+1OX .

3. FV = V F = p.

4. FdV = d. This property, combined with the previous, gives us dF = pFd.

5. Fd[x] = [xp−1]d[x], where [x] is the Teichmüller representative of x ∈ OX , i.e.
[x] = (x, 0, . . .).

6. FxFy = F (xy), xV y = V (F (xy)) and V (xdy) = V (x)dV (y).

Remark 2. Assume that k = Fp. Then, we have the absolute Frobenius FX : X → X,
which is the identity on the topological spaces and taking the p-th power on the ring
structure. This absolute Frobenius induces a morphism F ∗X on the complex WnΩ•X .
Let’s look at it at the first level, i.e. at WnΩ1

X → WnΩ1
X . It is a fact that we can

write every element of WnΩ1
X as a sum of V i([a])dV j([b]), with [a], [b] ∈ OX . Then,

the induced Frobenius acts as follows:

F ∗X : WnΩ1
X → WnΩ1

X

V i([a])dV j([b]) 7→ V i([ap])dV j([bp])

and then by properties 2 and 4 we get

F ∗X(V i([a])dV j([b])) = F (V i([a]))dFV j([b]) = pF (V i([a])V j([b]))

so we have that
F ∗Xα = pFα
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The technical part of divided powers in the construction of the crystalline cohomol-
ogy is motivated by this, because we want a correct way to say F = “F ∗X/p” in
characteristic p.

Let’s look now a little bit closer to the complex WΩ•. We can consider the stupid
filtration on it

WΩ• : WO −→ WΩ1 −→ WΩ2 −→ · · ·
∪ ↑ ↑ ↑

WΩ≥1 : 0 −→ WΩ1 −→ WΩ2 −→ · · ·
∪ ↑ ↑ ↑

WΩ≥2 : 0 −→ 0 −→ WΩ2 −→ · · ·
∪
...

Note that if we denote by WΩi the complex that is zero everywhere except on
level 0, where it is precisely WΩi, we get the equality of complexes

WΩ≥i

WΩ≥i+1
= (WΩi)[−i]

Now, as usual, this double complex induces a spectral sequence, and we have
Ei,n−i

1 = Hn(WΩ≥i/WΩ≥i+1) = Hn(WΩi[−i]) = Hn−i(WΩi
X).

Assuming that X is smooth and proper over k, and that k is perfect, and after
killing the torsion part (by tensoring with K := Frac(W (k))), we have that the
spectral sequence degenerates at E1 (c.f. [Ill79, Thm. 3.2]), i.e.,

Hn−i(WΩi
X)K ⇒ Hn(XZar,WΩ•)K

Here the right hand side means the hypercohomology of the double complex ob-
tained by considering an injective resolution of each WΩi

X in a compatible way3.
One of the nice properties of crystalline cohomology is that we get the equality
Hn(XZar,WΩ•)K = H i

crys(X/W )K =: Hn
crys(X/K).

Remark 3. In general, if we consider the spectral sequence over W directly, it will
not degenerate at E1. But if the Hj(WΩi) are finitely generated, then the sequence
will degenerate (c.f. [Ill79, Thm. 3.7]).

We have a decomposition of Hn
crys(X/K) coming from the Frobenius. For sim-

plicity, we will assume that k is a finite field, although these results hold in greater
generality. The Frobenius ϕ : k → k induces a morphism on X → X, and by the
functoriality of the cohomology we get an automorphism on Hn

crys(X/K). We want
to look now to the eigenvalues of this automorphism, so we consider the vector space
and the automorphism on the algebraic closure of K, i.e. we see the automorphism
ϕ∗ in Hn

crys(X/K) ⊗K K =: Hn
crys(X/K). This automorphism will be linear (here

we are using our assumption that k is finite: in general, we only have p-linearity),

3From the double complex I•• you form the complex Tot(I••)•, where Tot(I••)n =
⊕

i+j=n I
i,j

and the differentials are the sum (up to a sign) of the two obvious ones.
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and since we are working over an algebraically closed field we have a basis formed
by eigenvectors.

Given q ∈ Q, we define Hn,q
crys(X/K) as the linear subspace generated by all

the eigenvectors of ϕ∗ whose eigenvalues have p-adic valuation equal to q (here the
valuation is normed so that pr, the size of the field, has valuation 1. Therefore
we may have non-integer valuations). Note that we can see this subspaces already
over K, because those linear subspaces will be invariant (there is a Galois action
involved). Since the valuations of all the eigenvalues are rational (and positive), we
get the decomposition

Hn
crys(X/K) =

⊕
q∈Q≥0

Hn,q
crys(X/K)

One very nice fact about this decompositions is that is compatible with the
graded structure coming from the spectral sequence. If we denote H

n,[q1,q2)
crys (X/K) :=⊕

q∈[q1,q2) H
n,q
crys(X/K), we have the equality

Hn,[i,i+1)
crys (X/K) = Hn(WΩi

X)K

for all i ∈ N. In this way, thanks to this decomposition associated to the Frobenius
action we obtain a canonical decomposition of Hn

crys(X/K), something which is not
clear a priori.

Further information can be found in [Lie15a], where he discusses F -crystals and
Ogus’ crystalline theorem for supersingular K3 surfaces (among other things); in
[CL98], where he discusses more on F -crystals, the link between the de Rham-Witt
cohomology and the slopes of the Frobenius operator and the Hodge-Witt decompo-
sition; in [Ill79], where he studies the de Rham-Witt complex; and in [Ber74], where
he developes the whole theory of crystalline cohomology.
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