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Definition: Let X, Y be varieties over a field F. We say that they
are conjugate if 3 o € Aut(F) such that

Y —— X

| |

Spec F —%— Spec F

is Cartesian. We will write Y = X,
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Answer (Serre, '64): No!

He constructs conjugate surfaces whose analytifications have
different topological fundamental groups.

Question: What happens in the non-archimedean setting?
Are non-archimedean conjugate varieties homeomorphic?
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In non-archimedean

geometry there are different analytification functors.
First approach: using rigid analytic spaces a la Tate.
Problem: the

underlying topological space is totally disconnected.
Second approach: using Berkovich spaces.

Remark:

this approach will lead to locally path-connected

and locally contractible topological spaces.

Example: The Berkovich analytification of smooth
curves of genus 0 (P, A}, G,,, etc.) is contractible.
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Example (C., idea from Chambert-Loir)

Assume for simplicity K = C,, with p > 3.

Let E:y? =x3+ px+a, with a € C, of valuation equal to 1
= E°" is contractible.

If moreover a is transcendental over (Q, we can construct an
automorphism o € Aut(C,) such that the analytification of

E, : y?> = x3 + px + o(a) is not contractible!

(Trick: play with the j-invariant)

= E®" and E2" are non-homeomorphic Berkovich elliptic curves.
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Question: given o € Aut(C,), is there a variety X/C,
non-homeomorphic to its conjugate X,?

Theorem (C.)

Given any non-continuous o € Aut(C,), we can construct an
elliptic curve E/C, such that E?" and E2" are non-homeomorphic.

The construction of the elliptic curve is explicit, and uses again the
trick of the j-invariant.
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A
Let K = C{t} := (U C(tl/”)) be the field of Puiseux series.

Theorem (Nicaise, '20)

Every connected smooth and proper variety X over C{t} is
conjugate to a smooth and proper variety Y whose Berkovich
analytification is contractible.

We don't know an explicit construction of the conjugate variety,
this is an existence statement.
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Question: Can we construct more explicit examples of
non-homeomorphic conjugate Berkovich spaces?

Idea: Use tropicalizations to achieve this:

L X = Al

We can define the (extended) tropicalization map

T XA (RU {oo})”

J

(val(K))"

Theorem (Payne, '09)

Let X/K be an affine variety, K alg. closed non-archimedean field
with nontrivial valuation.

X?2" js homeomorphic to the inverse limit of all extended
tropicalizations.



We fix now the field of Puiseux series C{t}.

Construction (C.)

For any degree d > 3, we construct explicit smooth planar curves
C — G2, of degree d, and find an automorphism o € Aut(C{t})
such that:

» C is Mumford
» C, has good reduction

In particular, their (Berkovich) analytifications are
non-homeomorphic conjugate curves.



We fix now the field of Puiseux series C{t}.

Construction (C.)

For any degree d > 3, we construct explicit smooth planar curves
C — G2, of degree d, and find an automorphism o € Aut(C{t})
such that:

» C is Mumford
» C, has good reduction

In particular, their (Berkovich) analytifications are

non-homeomorphic conjugate curves. For example, for d = 4 the

curve is given by the following polynomial f € C{t}[x, y]:
fx.y)= y*

+ty3 + txy3

183y2 4 thxy? + tTx2y2

Tty 1 2y 19652y 4 12753y

Fargn + 12072 4 414152y 1 412353, 3 4 boooox®,

The automorphism o fixes t and moves azgs and bago29.



(2) Degree d =4

(b) Degree d =6
Figure: Newton polytopes of Mumford curves with their regular
subdivisions.
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Thank you for your attention!



