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In the memory of Bridget Bishop (1632 – 10 June 1692),

first woman executed for witchcraft during the Salem witch trials 328 years ago





Pope Clement VII commissioned Michelangelo

Figure: Clement VII.

to decorate the altar wall of Sistine Chapel

Less known: in 1533, Clement VII was told
about the Copernican system...
And he was actually very happy about it!



Pope Clement VII commissioned Michelangelo

Figure: Clement VII.

to decorate the altar wall of Sistine Chapel

Less known: in 1533, Clement VII was told
about the Copernican system...

And he was actually very happy about it!



Pope Clement VII commissioned Michelangelo

Figure: Clement VII.

to decorate the altar wall of Sistine Chapel

Less known: in 1533, Clement VII was told
about the Copernican system...
And he was actually very happy about it!



Heliocentric model of Copernicus

Figure: Heliocentric

model

.

I Planetary orbit is a circle

I The Sun is at the center of the orbit

I The speed of the planet in the orbit
is constant
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Figure: Inquisition asking for Galileo in 1615. Meanwhile, in the Holy Roman

Empire...



Copernicus was actually wrong!!

Kepler (1619) described better the orbits of the solar system...

I Planetary orbit is a circle an ellipse

I The Sun is at the center a focal point of the orbit

I The speed of the planet in the orbit is constant varies, but the
area speed is constant

I The orbital period of a planet is algebraically related to the
semi-axis of its orbit

(For the experts: the square of the period is directly proportional to the cube of

the semi-axis)
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Sir Isaac Newton (1642 – 1727): mathematician, scientist...
and alchemist!

Figure: Fortunately he

was not born in Salem...

Derived Kepler’s laws from his law of
universal gravitation.

(Principia, Problem XXIII)
“Find the place of a body moving in a given
elliptic trajectory at any assigned time”
Theorem (Newton, 1687):
The position of a planet in its orbit can’t be
universally found by means of equations of
any number of finite terms and dimensions.

Reformulation in modern language:
Theorem (Newton, 1687; reformulation
by Arnold, 1987, Newton’s proof essentially
works):
There exists no algebraically integrable convex non-singular
algebraic curve.
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I Rational function: f = p/q, with p, q ∈ Q[x1, . . . , xn]. Write
f ∈ Q(x1, . . . , xn)

I Q-semi-algebraic set: finite union or intersection of sets of the
form

S = {x ∈ Rn| r(x) ≥ 0, r ∈ Q[x1, . . . , xn]}

Definition (period as a complex number)

A period is a complex number z ∈ PC ⊂ C whose real and
imaginary parts can be written as absolutely convergent integrals
of the form ∫

S
f dx1 . . . dxn,

where f ∈ Q(x1, . . . , xn) and S is a Q-semi-algebraic set. In other
words,

z =

∫
S1

f1 +

(∫
S2

f2

)
i
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Example (some periods)

I Algebraic numbers are periods (exercise)

I π = 3.1415926 . . . is a period:

π =

∫
{x2+y2≤1}

dxdy

=

∫ ∞
−∞

dx

x2 + 1

I Logarithms of rational numbers q > 1 are periods:

log(q) =

∫ q

1

dx

x

Still open questions

I Is 1/π a period?

I Is e = 2.71828 . . . a period?
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Fact: set of periods PC is a ring

Linear relations between (representations of) periods (a.k.a. rules
of integration):

I Bilinearity:
∫

S (f +g) =
∫

S f +
∫

S g ;∫
StT f =

∫
S f +

∫
T f

I Change of variable: for φ algebraic,∫
S f =

∫
φ−1(S)(f ◦ φ)|Jac(φ)|

I Stokes:
∫

S dω =
∫
∂S ω

Kontsevich-Zagier period conjecture

The linear relations between representations of periods come all
from the above rules.
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Ayoub constructs periods in a different way:
Fix σ : K ↪→ C
I OK−alg (D

n
) := K -vec. sp. of formal power series on

(z1, . . . , zn), convergent on a polydisk D of radius r > 1,
algebraic over K (z1, . . . , zn)

I OK−alg (D
∞

) :=
⋃

nOK−alg (D
n
)

We integrate elements of OK−alg (D
∞

) on the unit hypercube:∫
�

: OK−alg (D
∞

)→ C,

which is a linear map, and for K = Q we recover the previous
periods! If f ∈ OK−alg (D

n
),∫

�
f :=

∫
[0,1]n

f dz1 · · · dzn ∈ PC .

Example

The element g := 2z − 1 ∈ OQ−alg (D
1
) maps to zero:∫

[0,1](2z − 1)dz = (z2 − z)|1 − (z2 − z)|0 = 0.

Note that g = df
dz − f (1) + f (0) for f (z) = z2.
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In general, for any f ∈ OK−alg (D
∞

), the element

∂f

∂zi
− f |zi =1 + f |zi =0

maps to zero.

Kontsevich-Zagier period conjecture (Ayoub’s formulation)

The kernel of ∫
�

: OQ−alg (D
∞

)→ C

is spanned by the elements of the form

∂f

∂zi
− f |zi =1 + f |zi =0.



In general, for any f ∈ OK−alg (D
∞

), the element

∂f

∂zi
− f |zi =1 + f |zi =0

maps to zero.

Kontsevich-Zagier period conjecture (Ayoub’s formulation)

The kernel of ∫
�

: OQ−alg (D
∞

)→ C

is spanned by the elements of the form

∂f

∂zi
− f |zi =1 + f |zi =0.



Grothendieck’s point of view

K ↪→ C, X/K smooth variety, X an its analytification.
Grothendieck’s period isomorphism:

H∗dR(X )⊗K C→ H∗sing (X an,Q)⊗Q C

Bhatt-Morrow-Scholze (2018) obtained information of the torsion
part (for X proper and smooth, but this is unrelated with today’s
topic)
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: H∗dR(X )⊗ Hsing ,∗(X an,Q) −→ C

where

[ω]⊗ [γ] 7→
∫
γ
ω

Definition: The period field of a smooth variety X is the subfield
Per(X ) of C generated by the image of the period pairing:

Per(X ) := K

(
im

(∫ ))
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Grothendieck’s point of view

Example: X = Gm = Spec(Q[T ,T−1]), X an = C∗.

H∗dR(X )⊗Q C→ H∗sing (X an,Q)⊗Q C

I Hsing ,1(C∗,Q) = Q is generated by the class of the loop

γ : [0, 1]→ C∗ : t 7→ e2πi t

I H1
dR(Gm) = Q is generated by ω = dT/T

Then, period pairing maps

[ω]⊗ [γ] 7→
∫
γ
ω =

∫ 1

0
e−2πitd(e2πit) = 2πi

∫ 1

0
dt = 2πi ,

so we see that Q(2πi) ⊂ Per(Gm). Some extra work yields an
equality.
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Grothendieck’s point of view

Note that in the previous example,

tr .deg(Per(Gm)/Q) = 1

Grothendieck’s period conjecture

If K/Q is an algebraic field extension, X/K ,

tr .deg(Per(X )/Q) = dim Gmot(X )

What is the motivic Galois group of X ???
Two approaches: via Nori motives, via Voevodsky motives
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Motivic Galois group of a variety X?

Recall

Absolute Galois group of a field K ↪→ C:

Gal(K sep/K ) := lim←−
L/K finite

AutK (L)

Grothendieck’s étale fundamental group of a scheme X :
Geometric point x̄ : Spec(Ω)→ X , then we have a fiber functor :

Fibx̄ : (Y → X ) fin. étale 7→ HomX (Spec(Ω),Y ).

πét
1 (X , x̄) := Aut(Fibx̄ )

Tannakian category (C, ω) over Q, where

I C (Q-linear) abelian tensor category (+ some assumptions)

I ω : C → fVecQ exact faithful tensor functor, called fiber
functor
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Motivic Galois group of a variety X?

Tannakian category (C, ω) over Q induces an affine group scheme

G := Aut⊗(ω)

called the Tannakian fundamental group of (C, ω).

Example

For any affine group scheme G/Q,
RepG : fin. dim. representations of G over Q.

(RepG , ω)

ω is the forgetful functor RepG → fVecQ.

For any Tannakian category (C, ω), we have an equivalence of
categories:

(C, ω)←→ RepG
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Motivic Galois group of a variety X?

Conjecture (Grothendieck): for σ : K ↪→ C, there exists a
category of mixed motives MM(K ) such that:

I different cohomology theories should factor through MM(K ):

VarK MM(K) H∗sing (X an,Q)

X M(X ) H∗dR (X )

H∗` (X )

...

I Morphisms come from geometry

I Tannakian category, fiber functor should give singular
cohomology (a.k.a. Betti realization)
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Motivic Galois group of a variety X?

Study of MM(K ) is very open, although we have two candidates:

I Nori motives
I Nice Tannakian structure and cohomology realizations, not

clear geometric nature of morphisms
I Nori’s absolute motivic Galois group G abs

N,mot(K )

I Voevodsky motives (actually a derived category)
I Nice realizations and geometric nature of morphisms, not clear

how to get a Tannakian category
I Ayoub (2014) constructed here an absolute motivic Galois

group G abs
A,mot(K )

Hope: yield same theory.
Evidence (Choudhury, Gallauer 2017): if K/Q algebraic,

G abs
N,mot(K ) ∼= G abs

A,mot(K )
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Motivic Galois group of a variety X !

For a variety X/K , consider

〈M(X )〉 ⊂ MM(K )

(smallest full Tannakian subcategory of MM(K ) containing M(X )
and stable under taking subobjects and quotiens)

Gmot(X ) := Tannakian fundamental group of 〈M(X )〉

Gmot(X ) := Aut⊗Hsing |〈M(X )〉
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Geometric version

Power series of periods: ∑
i≥0

fi · t i

where fi are periods in the sense of Ayoub.

I Laurent series of periods := O(D
n
)[[t]][t−1]

I O†K−alg (D
n
) := Laurent series algebraic over K (z1, . . . , zn)(t)

I O†K−alg (D
∞

) :=
⋃

n>0O
†
K−alg (D

n
)

We have an integration map
∫
� : O†K−alg (D

∞
)→ C((t)):

∑
i>>−∞

fi · t i 7→
∑

i>>−∞

(∫
�

fi

)
· ti
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Geometric version

As in the previous case,
∫
� maps elements of the form

∂f

∂zi
− f |zi =1 + f |zi =0

to zero (here f ∈ O†K−alg (D
∞

) (call them elements of the first
kind).

Is there anything else in the kernel of∫
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)→ C((t))?

Ayoub (Annals ’15 + Tohoku - to appear) answers this question:
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Theorem (Geometric version of the KZ conjecture)

Assume K contains the number π in its algebraic closure. Then,
the kernel of ∫

�
: O†K−alg (D

∞
)→ C((t))

is generated by

I Elements of the first kind, and

I Elements of the form
g · h,

where
I g ∈ OK−alg (D

∞
) such that

∫
� g = 0

I h ∈ O†K−alg (D
∞

) such that g and h don’t depend
simultaneously on the same variable
(in other words: ∂g

∂zi
6= 0⇒ ∂h

∂zi
= 0)
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