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In the memory of Bridget Bishop (1632 — 10 June 1692),

first woman executed for witchcraft during the Salem witch trials 328 years ago






Pope Clement VIl commissioned Michelangelo
to decorate the altar wall of Sistine Chapel

"
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Pope Clement VIl commissioned Michelangelo
to decorate the altar wall of Sistine Chapel

Less known: in 1533, Clement VIl was told
about the Copernican system...
And he was actually very happy about it!

"

Figure: Clement VII.
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Heliocentric model of Copernicus

» Planetary orbit is a circle
» The Sun is at the center of the orbit

» The speed of the planet in the orbit
is constant

Figure: Heliocentric

model






Nobody expects

the Spanish Inquisition.

Figure: Inquisition asking for Galileo in 1615. Meanwhile, in the Holy Roman
Empire...
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Copernicus was actually wrong!!
Kepler (1619) described better the orbits of the solar system...

» Planetary orbit is a—eirele an ellipse
» The Sun is at the—eenter a focal point of the orbit

» The speed of the planet in the orbit is—eenstant varies, but the
area speed is constant

» The orbital period of a planet is algebraically related to the
semi-axis of its orbit

(For the experts: the square of the period is directly proportional to the cube of

the semi-axis)



Sir Isaac Newton (1642 — 1727): mathematician, scientist...
and alchemist!

Derived Kepler's laws from his law of
universal gravitation.

Figure: Fortunately he

was not born in Salem...
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Sir Isaac Newton (1642 — 1727): mathematician, scientist...
and alchemist!

Derived Kepler's laws from his law of
universal gravitation.

(Principia, Problem XXIII)

“Find the place of a body moving in a given
elliptic trajectory at any assigned time”
Theorem (Newton, 1687):

The position of a planet in its orbit can't be
universally found by means of equations of
any number of finite terms and dimensions.

Reformulation in modern language:
Theorem (Newton, 1687; reformulation
by Arnold, 1987, Newton's proof essentially

Figure: Fortunately he
WOFkS)Z was not born in Salem...
There exists no algebraically integrable convex non-singular

algebraic curve.
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» Rational function: f = p/q, with p,q € Q[xg, ..., x,]. Write
feQ(x,...,xn)
P> (Q-semi-algebraic set: finite union or intersection of sets of the

form
S={x R r(x) =0, reQha, ..., x|}

Definition (period as a complex number)

A period is a complex number z € P C C whose real and
imaginary parts can be written as absolutely convergent integrals

of the form
/fdxl...dx,,,
S

where f € Q(xi,...,x,) and S is a Q-semi-algebraic set. In other
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Example (some periods)

» Algebraic numbers are periods (exercise)
> 7 = 3.1415926... is a period:

< d
7r :/ dxdy :/ 27)(
{X2+}/ZS1} —co X + ]_

» Logarithms of rational numbers g > 1 are periods:

9 dx

log(q) = X

Still open questions

» Is 1/m a period?
> Is e =2.71828... a period?
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Fact: set of periods P¢ is a ring
Linear relations between (representations of) periods (a.k.a. rules
of integration):
> Bilinearity: [o(f+g) = [sf+ [s&:
Jsorf=Jsf+ [+ f
» Change of variable: for ¢ algebraic,
Jsf = f<r1(5)(fo o)|[Jac(0)]
> Stokes: [odw = [ cw

Kontsevich-Zagier period conjecture

The linear relations between representations of periods come all
from the above rules.
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Fixo: K—=C
> (’)K_a,g(bn) := K-vec. sp. of formal power series on
(z1,...,2,), convergent on a polydisk D of radius r > 1,
algebraic over K(zi,...,z,)

> Ok-ag(D") = U, Ok-ag(D")
We integrate elements of (’)K,a,g(DOO) on the unit hypercube:
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Ayoub constructs periods in a different way:

Fixo: K—=C
> (’)K_a,g(bn) := K-vec. sp. of formal power series on
(z1,...,2,), convergent on a polydisk D of radius r > 1,
algebraic over K(zi,...,z,)

> Ok-ag(D") = U, Ok-ag(D")
We integrate elements of (’)K,a,g(DOO) on the unit hypercube:
/ : OK_a/g(Eoo) — (C,
O

which is a linear map, and for K = Q we recover the previous
periods! If f € Ok_.,g(D"),

/f:/ fdz---dz, € Pc.
O (0,1

Example

The element g :=2z—-1 € OQ_a/g(El) maps to zero:

f[071](2z —1)dz = (22 — 2)|1 — (22 — 2)|o = O.
Note that g = g_i — (1) e f(O) for f(Z) _ 22.



In general, for any f € Ok_,;g(D”°), the element

of
a_ f‘Z,':]. + f’Z,'ZO

aZ,'

maps to zero.



In general, for any f € Ok_,;g(D”°), the element

of
— — fl,= fl,—
oz lzi=1 + flz=0

maps to zero.

Kontsevich-Zagier period conjecture (Ayoub’s formulation)

The kernel of

/D . Og-ug(D) = C
is spanned by the elements of the form

of
0z;

- f|Z,'=1 + f|Z,'=0'
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Grothendieck's point of view

K — C, X/K smooth variety, X" its analytification.
Grothendieck's period isomorphism:
Har(X) @k C = Hgng (X", Q) @ C
Bhatt-Morrow-Scholze (2018) obtained information of the torsion
part (for X proper and smooth, but this is unrelated with today’s
topic)
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Grothendieck's point of view

K — C, X/K smooth variety, X" its analytification.
Grothendieck's period isomorphism:

Har(X) @k C — Hgng (X", Q) ®g C

We can describe it via the period pairing:

/  Hir(X) ® Hsing (X", Q) — C

where
lepbls [
.
Definition: The period field of a smooth variety X is the subfield
Per(X) of C generated by the image of the period pairing:

Per(X) := K (im (/ >>
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Grothendieck's point of view
Example: X = G, = Spec(Q[T, T™1]), X" = C*.

Har(X) @g C = Hgng (X", Q) 2o C

» Hsing,1(C*,Q) = Q is generated by the class of the loop

v [0,1] = C*: t s 2

> HéR(Gm) =Qis generated by w = dT/T

Then, period pairing maps

1 1
[w] @ [v] — /w = / e 2t d(e2™t) = 27ri/ dt = 27,
o 0 0

so we see that Q(27i) C Per(Gp,). Some extra work yields an
equality.
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Grothendieck's point of view

Note that in the previous example,

tr.deg(Per(Gn)/Q) =1

Grothendieck's period conjecture

If K/Q is an algebraic field extension, X /K,

tr.deg(Per(X)/Q) = dim Gpot(X)

What is the motivic Galois group of X777
Two approaches: via Nori motives, via Voevodsky motives
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Motivic Galois group of a variety X7

Recall

Absolute Galois group of a field K — C:

Gal(K*P/K):= lim Auty(L)
L/K finite

Grothendieck’s étale fundamental group of a scheme X:
Geometric point x : Spec(£2) — X, then we have a fiber functor:

Fibz : (Y — X) fin. étale — Homx(Spec(Q2), Y).
7§(X, x) := Aut(Fibg)

Tannakian category (C,w) over Q, where
» C (Q-linear) abelian tensor category (4 some assumptions)

» w:C — fVecq exact faithful tensor functor, called fiber
functor
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Motivic Galois group of a variety X7
Tannakian category (C,w) over Q induces an affine group scheme
G = Aut®(w)
called the Tannakian fundamental group of (C,w).

Example

For any affine group scheme G/Q,
Repc: fin. dim. representations of G over Q.

(RePG7w)
w is the forgetful functor Rep; — fVecq.

For any Tannakian category (C,w), we have an equivalence of
categories:
(C,w) <— Repg
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Motivic Galois group of a variety X7

Conjecture (Grothendieck): for o : K < C, there exists a
category of mixed motives MM(K) such that:
» different cohomology theories should factor through MM(K):

Varx —— MM(K) Hine (X", Q)

/

X —— M(X) ———— Hir(X)

N

H; (X)

» Morphisms come from geometry

» Tannakian category, fiber functor should give singular
cohomology (a.k.a. Betti realization)
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Motivic Galois group of a variety X7

Study of MM(K) is very open, although we have two candidates:
» Nori motives
» Nice Tannakian structure and cohomology realizations, not

clear geometric nature of morphisms

> Nori's absolute motivic Galois group G, (K)

» Voevodsky motives (actually a derived category)
» Nice realizations and geometric nature of morphisms, not clear
how to get a Tannakian category
> Ayoub (2014) constructed here an absolute motivic Galois
group G (K)

Hope: yield same theory.
Evidence (Choudhury, Gallauer 2017): if K/Q algebraic,

Gitmot (K) 2 Gamor(K)
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For a variety X/K, consider
(M(X)) C MM(K)

(smallest full Tannakian subcategory of MM(K) containing M(X)
and stable under taking subobjects and quotiens)



Motivic Galois group of a variety X!

For a variety X/K, consider
(M(X)) C MM(K)

(smallest full Tannakian subcategory of MM(K) containing M(X)
and stable under taking subobjects and quotiens)
Gmot(X) := Tannakian fundamental group of (M(X))

Gmot(X) = Aut® Hsing|<M(X))



Kontsevich-Zagier conjecture
(Jo: Og_aig(D™) — C has the expected kernel)

4

Grothendieck period conjecture for X /Q

tr.deg(Per(X)/Q) = dim Gmot(X)



Kontsevich-Zagier conjecture
(Jo: Og_aig(D™) — C has the expected kernel)

)
Grothendieck period conjecture for X /Q
tr.deg(Per(X)/Q) = dim Gpot(X)

+ Og-aig(D™) modulo the expected kernel of [ is an integral
domain
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i>0
where f; are periods in the sense of Ayoub.
> Laurent series of periods := O(D")[[t]][t ]

> O}fa,g(bn) := Laurent series algebraic over K(zi, ...
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Geometric version

Power series of periods:

>

>0
where f; are periods in the sense of Ayoub.
> Laurent series of periods := O(D")[[t]][t ]
> (D,T< a,g(ﬁn) := Laurent series algebraic over K(zi,...,z,)(t)
> OI( a/g(i\x‘) = Un>0 OI(—alg(bn)
We have an integration map [ : OI(_a,g(boo) — C((t)):

X ren X ([1)e

i>>—00 1>>—00
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Geometric version

As in the previous case, fD maps elements of the form

of

— — flz= fl,—
82,- ‘z,fl"i‘ ’2,70

to zero (here f € O}L(_a,g(ﬁoo) (call them elements of the first
kind).

Is there anything else in the kernel of

[0k 0) > ()2

Ayoub (Annals '15 + Tohoku - to appear) answers this question:
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Theorem (Geometric version of the KZ conjecture)

Assume K contains the number m in its algebraic closure. Then,
the kernel of

i Ok (D7) = C((1))

is generated by
» Elements of the first kind, and
» Elements of the form
g-h,
where
> g€ Ok (D7) such that Jog=0
> he (’)I(ﬂ,g(ﬁoo) such that g and h don't depend

simultaneously on the same variable
(in other words: g—i #0= 88 =0)






