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Abstract

This is the tenth talk of the Research Seminar of the Arithmetic Geometry group
(FU Berlin), which is on the Summer term of 2016. In the seminar we study the papers
[Ayo14a] and [Ayo14b], where the reader will find the details ommited here. In this talk
I’ll try to give a brief overview of the classical theory of periods, the motivic Galois group
defined by Ayoub, Grothendieck’s period conjecture, its relation with Kontsevich-Zagier’s
conjecture and at the end, I make a small digression on a Galois theory for periods
following [And09]. Special acknowledgments go for Javier Fresán, Simon Pepin Lehalleur
and Sinan Ünver for helping me enjoying the preparation of this talk.
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5 Abstract periods à la Kontsevich-Zagier 9

6 Comparing the different definitions of periods: the Kontsevich-Zagier con-
jecture 10

7 Relation between Grothendieck’s period conjecture and Kontsevich-Zagier’s
conjecture 11

8 Galois theory for periods 12

1



“Parmi toutes les choses mathématiques que j’avais eu le
privilège de découvrir et d’amener au jour, cette réalité des
motifs m’apparâıt encore comme la plus fascinante, la plus
chargée de mystère — au coeur même de l’identité pro-
fonde entre la “géométrie” et l’ “arithmétique”. Et le “yoga
des motifs”. . . est peut-être le plus puissant instrument de
décourverte que j’aie dégagé dans cette première période de
ma vie de mathématicien.”

A. Grothendieck, Récoltes et Semailles, Introduction.

1 Classical periods

The set of periods is a subset of the complex numbers C that appear naturally in Grothendieck’s
period isomorphism, which relates singular cohomology (a purely topological invariant) with
algebraic de Rham cohomology (defined algebraically).

Let’s recall this isomorphism, as it is of central importance for this talk. First, let k be a
subfield of C with a fixed embedding σ, and let X be a smooth variety (not necessarily proper)
over k. Let Xan denote its complex analytification. Then, there exists a canonical isomorphism

$X : H∗dR(X)⊗k C→ H∗sing(X
an,Q)⊗Q C,

where we have on the left hand side the (algebraic) de Rham cohomology and singular coho-
mology on the right hand side. Let’s unravel a little bit this isomorphism:

First of all, we have an isomorphism H∗sing(X
an,C) ∼= H∗dR(Xan). Here the right hand side

means de analytic de Rham cohomology, which is defined analogously to the algebraic one. This
isomorphism comes from the natural map of sheaves C→ OholXan , because singular cohomology
can be computed as sheaf cohomology and the complex

0→ C→ OholXan → Ω1
Xan → Ω2

Xan → . . .

is exact. Indeed, we have to check this locally, and Poincaré lemma precisely says that on
small balls (indeed on any contractible set) closed p-forms are exact. Hence we obtain the
isomorphism.

Secondly, GAGA gives us an isomorphism H∗dR(X ⊗k C) ∼= H∗dR(Xan), where on the left
hand side we have algebraic de Rham cohomology and on the right hand side, analytic de
Rham cohomology. In the case that X is proper this follows automatically from GAGA, and if
X is not proper then we get it from considering a compactification with a simple divisor with
normal crossings, and allowing log-poles on this divisor (cf. [HMS15, Prop. 4.1.7]).

Then, the isomorphism $X : H∗dR(X) ⊗k C ∼= H∗sing(X
an,Q) ⊗Q C is just the composition

of the following isomorphisms:

H∗dR(X)⊗k C→ H∗dR(X ⊗k C)→ H∗dR(Xan)→ H∗sing(X
an,C)→ H∗sing(X

an,Q)⊗Q C.

Note that this isomorphism forgets all torsion classes present in H∗sing(X
an,Z), but we can

still say something in the proper case: recently Bhatt, Scholze and Morrow showed in [BMS16]
that if X is proper and smooth over Z[1/N ], then for all i ≥ 0 and n > 1 coprime to N , the
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order of H i
dR(X)[n] is at least the order of H i

sing(X
an,Z)[n], where the suffix [n] means the

kernel of the multiplication by n (cf. for example [Sch16, Thm. 2.3]).
But let’s go back to our more classical isomorphism $X and look closer on it. It can be

described explicitly via integration, which induces a pairing

〈−,−〉 : H i
dR(X)×Hsing,i(X

an,Q)→ C.

More precisely, if ω represents a closed form in H i
dR(X)⊗kC and γ =

∑
j ajγj a singular i-cycle,

with the γj : ∆i → Xan differentiable (note that we can always do this because X is smooth
and we are only interested in the homology class), then

〈[ω], [γ]〉 :=

∫
γ

ω =
∑
j

aj

∫
∆i

γ∗jω.

Note that Stokes’ formula tells us that the pairing is well defined. Moreover, this pairing is
compatible with products and long exact sequences for cohomology.

We define the set of periods of the variety X, denoted Per(X) to be the extension of k
generated by the image of this pairing.

Let’s do an easy example: let X = Gm = Spec(Q[T, T−1]), so that Xan = C∗. Its cohomol-
ogy H1

sing(C∗,Q) = Q is generated by the class α dual to the loop γ : [0, 1] → C∗ : t 7→ e2πit.
The algebraic de Rham complex is given by

Q[T±1]→ Q[T±1]dT :
∑
n∈Z

anT
n 7→

∑
n∈Z

nanT
n−1dT,

and we see that we can integrate 1-forms as long as a−1 = 0 via∑
n∈Z\{−1}

anT
ndT 7→

∑
n∈Z\{−1}

an
n+ 1

T n+1.

Hence, H1
dR(Gm) = Q and it is generated by ω = dT/T . Then, the period pairing, which in

this case defines also the period isomorphism, is given by

〈[ω], [γ]〉 =

∫
γ

ω =

∫ 1

0

e−2πitd(e2πit) = 2πi

∫ 1

0

dt = 2πi.

There is also a version of this isomorphism using relative cohomology: if X is a (now not
necessarily smooth) variety over k and D ⊂ X a closed subvariety, then there is a canonical
isomorphism

$X,D : H∗dR(X,D)⊗k C→ H∗sing(X
an, Dan;Q)⊗Q C.

We also obtain a well defined period pairing which is compatible with products and long
exact sequences for relative cohomology. We can make this pairing explicit in the following
case: if X is a smooth affine variety of dimension d and D ⊂ X a simple divisor with normal
crossings, then we pick ω ∈ Ωi

X(X) with associated cohomology class [(ω, ωD)] ∈ H i
dR(X,D),

and (γ, γD) a singular chain on Xan with boundary in Dan. Note that by the definition of
cohomology and homology with support, they have to satisfy

∂γ = −i∗γD, i∗ω = ωD, dω = 0.
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If we represent γ as
∑

j ajγj, with aj ∈ Q and γj : ∆i → Xan, then

〈[ω], [γ]〉 :=

∫
γ

ω +

∫
γD

ωD.

This definition allows us to write logarithms of rational numbers as periods. Indeed, if
X = Gm = Spec(Q[T±]) and D = {1, α}, with α > 1 a rational number, then the singular
homology of (Xan, Dan) is generated by the interval [1, α] and by a loop around 0. After a
computation, we see that H1

dR(X,D) is generated by dT/T and dt/(α− 1). Hence, if we write
γ := the interval [1, α] and ω := dT/T , the period pairing gives us

〈[ω], [γ]〉 =

∫
γ

ω =

∫ α

1

dT

T
= log(α).

We can also write easily algebraic numbers as periods. Indeed, if α ∈ Q and f(T ) is its
minimal polynomial, let X = A1

Q and D = Spec(Q[T ]/(Tf(T ))). Then, if we considering the
singular 1-chain

γ : [0, 1] → Xan = C
s 7→ sα

consisting on a path from 0 to α. Since Dan consists on the set of roots of T · f(T ), both 0 and
α belong to Dan and this 1-chain defines a class in H1,sing(X

an, Dan;Q), and taking the pairing
together with the 1-form dT we get

〈[dT ], [γ]〉 =

∫
γ

dT =

∫ α

0

dT = α.

There are more examples of trascendental numbers that appear in many contexts and that
are periods, as for example the periods of elliptic curves, values of the ζ function, multiple-zeta
values and so on. The interested reader can find more in [HMS15, Part IV] and in [BF a].

2 Voevodsky’s definition of motive

In order to make these notes a little bit more self-contained, we briefly recall here Voevodsky’s
approach to the theory of motives. Ayoub’s construction of the motivic Galois group of a field
k with respect to σ : k ↪→ C will be sketched in the next section.

First, let Sm/k denote the site of (not necessarily proper) smooth varieties over k equipped
with the étale topology, and let Q be the coefficient ring (in general, we write Λ for this
coefficient ring, but here we stick to the case Λ = Q). The category Shv((Sm/k)ét,Q) is a
monoidal abelian category (actually a Grothendieck abelian category). Then, we derive the
category in order to obtain

D(k) := D(Shv((Sm/k)ét,Q)),

which is a monoidal triangulated category Q-linear (intuitively, this gives us cohomology theo-
ries satisfying étale descent, but not necessarily A1-invariance and P1-stability).

In order to obtain A1-invariance, we quotient the category by IA1 := smallest triangulated
category stable by arbitrary direct sums and which contains, for all X ∈ Sm/k,

· · · → 0→ Qét(X × A1)→ Qét(X)→ 0→ · · · ,
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where Qét(X) is the sheaf associated to U  QHomk(U,X). The idea is to identify the motives of
X and X × A1.

We call DAeff (k) := DAét,eff (k,Q) := D(k)/IA1 the category of effective motives. We have
a functor

Sm/k −→ DAeff (k)
X 7−→M eff (X),

where M eff (X) is Qét(X) seen in the quotient DAeff (k).
In order to obtain the P1-stability, we have to localize DAeff (k). Let T := Qét(P1

k)/Qét(∞),
and write Q(1)[2] for its image in DAeff (k). Denote, for every n ∈ N, Q(n) := Q(1)⊗n, and for
negative integers one takes the dual.

The first try is to consider DAnaive(k), where the objects are pairs (M,m) with M ∈
DAeff (k) and m ∈ Z, and the morphisms are

HomDAnaive(k)((M,m), (N, n)) := lim
s→+∞

(M ⊗Q(m+ s), N ⊗Q(n+ s)).

The problem of this approach is that arbitrary direct sums don’t work well. For example,
Q⊕Q(−1)⊕Q(−2)⊕ . . . will be problematic.

In order to fix this, we need another approach. The idea, roughly speaking, is first to consider
the category of complexes P := Compl(PSh(Sm/k,Q)), which turns out to be equivalent to
PSh(Sm/k,ChQ−mod), where ChQ−mod are Z-graded Q-complexes with chain maps between
them, and P considered with more structure on it (the projective model structure on it, we
don’t give more details here). After doing a process called the Bousfield localisation on étale-
local equivalences, we obtain a stable monoidal model category Pét−loc such that its homotopy
category H0Pét−loc is isomorphic to D(Shv(Sm/k,Q)). If we now further localize with respect
to A1, we get the category PA1−ét−loc. With this, we get an isomorphism DAeff (k,Q) ∼=
H0PA1−ét−loc, where H0(−) denotes the homotopy category constructed from a model category.
Hence, with this approach we recover the previous definition of effective motives.

Recall that the aim is to get P1-stability in a category well behaved with arbitrary direct
sums, and we will do this using spectra. If we denote T := P1

k ⊗ Q/∞⊗ Q, then the functor
T ⊗ • : PA1−ét−loc → PA1−ét−loc defines a Quillen adjunction, and from it we construct the
category of spectra SpT (PA1−ét−loc) := SpT⊗•(PA1−ét−loc), with objects consisting on complexes
in PA1−ét−loc, where transfer maps given by T ⊗•, together with arrows between the complexes
which are compatible with the transfer maps. This construction has suspension (resp. evalu-
ation) functors, from PA1−ét−loc to SpT (PA1−ét−loc) (resp. from SpT (PA1−ét−loc) to PA1−ét−loc).
Levelwise, as a model category is fibrant with respect to PA1−ét−loc. Localizing SpT (PA1−ét−loc)
with respect to the suspensions Susi of cofibrant replacements of objects, we get the category
SpT (PA1−ét−loc)stable, from which we redefine DA(k,Q) := H0(SpT (PA1−ét−loc)stable).

With this, we obtain compatible functors

Sm/k PA1−ét−loc SpT (PA1−ét−loc)

DAeff (k,Q) DA(k,Q)

Meff

Sus0

LSus0

where we denote M the composition M := LSus0 ◦M eff . This fixes the problem of the direct
sums and we obtain P1-stability, which is precisely what we were looking for.
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Hence, the motive associated to a smooth variety over k X is M(X) = Sus0(M eff (X)),
where M eff (X) means the previous M eff composed with the isomorphism DAeff (k,Q) ∼=
H0PA1−ét−loc. We continue our abuse of notation and write Q(1) := Sus0(Q(1)).

Since this category of motives may be too big, we look at the smallest triangulated category
containing M(X) for all X ∈ Sm/k, denoted DAc(k), and called the category of constructible
(or compact) motives.

2.1 Betti realization

The category of motives specializes in all cohomology theories. In particular, there is a Betti
realization that gives the singular cohomology attached to the motive. One constructs this
functor by going from Sm/k to the analytic varieties over a point An/pt. One constructs an
analytic analogue of DA(k), written AnDA, which comes with a functor An∗ : DA(k) →
AnDA. As before, we have an evaluation functor Ev0,an : AnDA → AnDAeff , and this last
category is equivalent to D(Q−mod) via a functor i∗ : AnDAeff → D(Q−mod). Composing
both functors, we obtain the Betti realization

Bti∗ := i∗An
∗ : DA(k)→ D(Q−mod),

which has a right adjoint Bti∗.
With Bti∗Q, we recover the Betti cohomology of X ∈ Sm/k via

Hn
B(X) ∼= Hom(M(X), Bti∗Q[n]).

3 Ayoub’s motivic Galois group

Here we define the motivic Galois group from the Betti realization Bti∗ : DA(k)→ D(Q−mod)
constructed by Ayoub. Its right adjoint Bti∗ satisfies the following projection formula:

Bti∗(K)⊗M Bti∗(K ⊗Bti∗M),
∼=

for every K ∈ D(Q−mod) and M ∈ DA(k). This, together with the fact that Bti∗ is monoidal,
allows Ayoub to use a weak Tannakian formalism in order to obtain the structure of a Hopf
algebra object on Bti∗Bti∗Q, with Q regarded in D(Q−mod).

Hence we define the following motivic Hopf algebra:

Hmot(k, σ) := Bti∗Bti∗Q.

Here we write explicitly σ because this construction depends on the chosen embedding σ : k ↪→
C. Before we were hiding σ in order to make the notation easier to read.

The complex Hmot(k, σ) is concentrated in negative degree, and it is posible to describe
it explicitly. Its zero homology group H0(Hmot(k, σ)) defines a Hopf algebra, and taking it’s
spectrum we obtain the motivic Galois group

Gmot(k, σ) := Spec(H0(Hmot(k, σ))).

There is a functor
DAc(k) −→ Db(Repfd(Gmot(k, σ)))
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that it is expected to be an equivalence. This is the so called motivic t-structure conjecture,
and it implies Grothendieck’s standard conjectures, Bloch-Beilinson conjecture on Chow groups,
etc.

If this conjecture is true, then MM(k) := Repfd(Gmot(k, σ)) would satisfy all the properties
expected for the abelian category of mixed motives over k.

In any case, without assuming the conjecture, we can define the motivic Galois group of
a smooth k-variety X as follows: let M denote the image of M(X) in Db(Repfd(Gmot(k, σ))).
Then, we consider the set of cohomology groups of the complex M together with the action
of Gmot(k, σ), which satisfy by construction that H i(M) = H i

sing(X
an,Q) (not just as vector

spaces, but as representations of Gmot(k, σ)), and we further consider the Tannakian subcat-
egory of Repfd(Gmot(k, σ)) generated by (direct sums, tensor products and duals of) these
cohomology groups, denoted 〈M〉. This category is again a neutral Tannakian category, and
therefore we can consider its fundamental group. This group, denoted Gmot(X), is the motivic
Galois group of X.

Remark 3.1. One can try to define the motivic Galois group of X directly on DA(k), without
going to the category of representations, by doing the following: consider the subcategory
〈M(X)〉 of DA(k) generated by (tensor products and duals of) M(X). Then, we can restrict
the Betti realization to 〈M(X)〉,

Bti∗|〈M(X)〉 : 〈M(X)〉 → D(Q−mod),

which has also a right adjoint Bti∗|〈M(X)〉, and see if this also induces a Hopf algebra structure
on Hmot(X) := Bti∗|〈M(X)〉◦Bti∗|〈M(X)〉Q. If this is the case, we could define the motivic Galois
group of X via

Gmot(X) := Spec(H0(Hmot(X))).

One of course should check if this construction gives us the same group. In any case Ayoub
doesn’t do this in his paper, so we stick to the more classical setting of MM(k).

With this definition we get that for a finite Galois extension L/k, the motivic Galois group
coincides with the usual Galois group (considered as a group scheme). The motivic Galois
group of P1 is Gm.

Remark 3.2. In MM(k) = Repfd(Gmot(k, σ)) there is a second fiber functor that neutralizes
he category. From this construction it is not clear where is it coming from, and one has to
consider a different approach developed by Nori. Indeed, Nori constructs in a different way
a Tannakian category of mixed motives. From his construction, it is not clear what is the
fundamental group of this Tannakian category, but it has been recently proved in [CG14]
that it is isomorphic to the motivic Galois group defined by Ayoub, which is our approach
here. Hence, a posteriori, we have that both constructions of MM(k) are isomorphic, and the
advantage of Nori’s construction is that it comes with a fiber functor

MM(k)→ V eck

that realizes the de Rham cohomology. We will use this later.
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4 Grothendieck’s period conjecture

Through this section, we assume that k is an algebraic extension of Q. Recall that every smooth
k-variety X induces a canonical isomorphism $X between H∗dR(X)⊗kC and H∗sing(X

an,Q)⊗QC.
We have already seen how does the entries of this matrix look like: for example, if X = Gm,
$X is given by multiplication by 2πi. Note that the field generated by this period, Q(2πi), has
trascendence degree over Q equal to 1. Covering P1 and using the Mayer-Vietoris’ sequence,
we get also that Per(P1) = Q(2πi).

On the other hand, we have also seen that the motivic Galois group of P1 is Gm.
Grothendieck’s conjecture states that the trascendence degree of Per(X) is equal to the

dimension (as a group scheme) of the motivic Galois group of X, i.e.

tr.deg(Per(X)/Q) = dimGmot(X).

In the case of P1, we see that this is true because of the above discussion.
There is a more geometrical way to describe this conjecture, and for this we need the notion

of the motivic period torsor.
First, we describe now more precisely the motivic Hopf algebra Hmot(k, σ) of the previous

section. We have that Hmot(k, σ) ∼= P(k, σ) ⊗ C, where P(k, σ) := Ω̃∞−•alg (D∞)[π−1] is the
complex of Valentina’s talk inverting what we need to invert.

Ayoub defines the ring of abstrac periods as follows: we look at PAy(k, σ) := H0(P(k, σ)).
If we don’t invert π, then we obtain the ring of abstract effective periods, which is canonically
isomorphic, as a k-vector space, to

Oalg(D
∞

)/

(
∂f

∂ti
− (f |ti=1 − f |ti=0)

)
.

Here Oalg(D
∞

) := colim(Oalg(D
n
)) is defined by

Oalg(D
n
) :=

{
f ∈ C[[t1, . . . , tn]]

∣∣∣∣ f has radius of convergence > 1
and f is algebraic over k(t1, . . . , tn)

}
.

With this description, we see easily that we have an evaluation morphism

Ev : PAy(k, σ) → C

f 7→
∫

[0,1]n
f,

where n is just an integer such that f ∈ Oalg(D
n
). The image of this evaluation morphism gives

us classical periods, we come to this later.
We can interpret Spec(PAy(k, σ)) as follows:
In MM(k), we have two realizations (two fibre functors) specializing in Betti and de Rham

cohomology:

HdR : MM(k)→ V eck
Hsing : MM(k)→ V ecQ

where the first one is the de Rham realization coming from Nori’s construction and the second
one is the Betti realization discussed above. Note that Hsing is the fibre functor giving the
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Tannakian fundamental group Gmot(k, σ). In other words, we can describe for example the
motivic Galois group of X as

Gmot(M) = Aut⊗Hsing|〈M〉.

Then, if we consider the torsor of isomorphisms between the functors HdR|〈M〉 and Hsing|〈M〉,
denoted Isom⊗(HdR|〈M〉, Hsing|〈M〉), we obtain a variety that has a canonical complex point
given by Grothendieck’s isomorphism $X . Hence, this is a torsor under Gmot(X), which is
acting on the right.

Moreover, the residue field k($X) of this complex point $X is exactly Per(X) (cf. [Ayo14c,
Lem. 27]). Now, we can relate the previous statement of the Grothendieck’s conjecture with this
torsor. Indeed, since Isom⊗(HdR|〈M〉, Hsing|〈M〉) is a torsor over Gmot(X), it is equidimensional
of dimension

dim(Isom⊗(HdR|〈M〉, Hsing|〈M〉)) = dim(Gmot(X)).

Hence, since k($X) = Per(X), Grothendieck’s period conjecture

tr.deg(Per(X)/Q) = dimGmot(X)

holds for X if and only if $X is a generic point of Isom⊗(HdR|〈M〉, Hsing|〈M〉). Note that we
are saying that $X is a generic point, and this doesn’t imply that it is a dense point because
we don’t know if Isom⊗(HdR|〈M〉, Hsing|〈M〉) is connected (although we expect it). We come to
this later.

In particular, we get the inequality

tr.deg(Per(X)/Q) ≤ dimGmot(X),

which gives us non-trivial information about multizeta values.
Passing to the limit of all the smooth k-varieties X, we get a pro-k-algebraic variety

Isom⊗(HdR, Hsing), which is a torsor for the pro-Q-algebraic group Gmot(k, σ) and that it is
called the torsor of periods. This coincides with Spec(PAy(k, σ)), and Grothendieck conjecture
is equivalent to the fact that, if k = Q, $ is a generic point of Isom⊗(HdR, Hsing).

5 Abstract periods à la Kontsevich-Zagier

The ring of abstract efective periods of Kontsevich-Zagier, denoted P eff
KZ , is a free Q-vector

space generated by some symbols modulo some relations.
Here the symbols are 5-tuples (X,D, i, γ, ω), where

• X is a Q-variety (possibly singular!).

• D ⊂ X is a closed subvariety.

• The symbol i is just a natural number.

• The symbol γ is a class in Hsing,i(X
an, Dan).

• The symbol ω is a class in H i
dR(X,D).
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And the relation are the following:

• Additivity: the map (γ, ω) 7→ (X,D, i, γ, ω) is bilinear.

• Base change: given f : X ′ → X with f(D′) ⊂ D, then (X,D, i, f∗γ
′, ω) = (X ′, D′, i, ω′, F ∗).

• Stokes’ formula: if E ⊂ D ⊂ X are closed subvarieties, and γ ∈ Hsing,i(X
an, Dan), ω ∈

H i−1
dR (D,E), then (X,D, i, γ, dω) = (D,E, i− 1, ∂ω, ω).

Let 2πi denote the class (G, ∅, 1, γ, dT/T ), where γ is the loop, then the ring of abstract
periods (of Kontsevich-Zagier) is obtained by inverting 2πi: PKZ := P eff [2πi−1].

As in the case of Ayoub’s periods, we have an evaluation morphism

Ev : PKZ(k, σ) → C

(X,D, i, γ, ω) 7→
∫
γ

ω,

which is well defined because of the additivity, the base-change and fulfill of the Stoke’s formula
by integration. We see that its image is precissely the set of classical periods defined via
Grothendieck’s comparisson isomorphism. In other words, Ev factors surjectively through the
set of periods.

Here there is a remark to make: we are considering here possibly singular varieties, but at
the end of the day we get the same thing as if we only consider smooth varieties.

6 Comparing the different definitions of periods: the

Kontsevich-Zagier conjecture

So far, we have three different definitions of periods: the classical one as entries of the compar-
ison isomorphism, the one by Ayoub and the one by Kontsevich-Zagier. What is the relation
between them?

First of all, we have an isomorphism

PAy ∼= PKZ ,

and this is compatible with the evaluation morphisms (cf. [Ayo14c, Prop. 11]). In particular,
this tells us that the evaluation morphism from Ayoub’s definition also gives us all the classical
periods. Let’s construct the morphism:

Given f ∈ PAy, we know that there exists an n ∈ N such that f ∈ Oalg(D
n
), we know from

Valentina’s talk that the exists an étale Q[t1, . . . , tn]-algebra A contained in Oalg(D
n
) containing

f . Setting X := Spec(A), we already have two elements of the 5-tuple.
Now we set D ⊂ X to be the divisor given by

∏n
i=1 ti(ti− 1) = 0. Here we are using that A

is contained in Oalg(D
n
). Let τn be the composition [0, 1]n ↪→ Dn → Xan. Then, the morphism

PAy → PKZ is given by
f 7→ (X,D, n, τn, f · dt1 ∧ · · · ∧ dtn).

Proving that this morphism is actually an isomorphism is quite difficult, and requires the
isomorphism between of Nori’s motivic Galois group and the one described in these notes, due
to Ayoub.
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Finally, one could ask how big PKZ is, compared with the algebra of classical periods. The
conjecture, by Kontsevich and Zagier, is that it is as big as the classical periods. In other
words, the Kontsevich-Zagier’s conjecture states that the surjective evaluation morphism

Ev : PKZ → {Classical periods}

is injective.
Another way to think on this conjecture is by saying that all the algebraic relations between

(classical) periods are of motivic origin.
There is still another (vague) way to think on this conjecture: if we start with a smooth

projective Q-variety and we consider an algebraic cycle Z of codimension c, we can look at
their cohomology classes [Z]dR and [Z]sing in H2c

dR(X)⊗C and H2c
sing(X

an,Q)⊗C, respectively.
Then, the period isomorphism $X sends [Z]dR to (2πi)c[Z]sing (cf. [BC16]). This will induce
some algebraic relations on the periods: if we look at a cycle Z on some power of X, Künneth
formula allows us to write it as an element of the tensor product of H2c(X) (here we ommit the
subindex because both hold), and this will give polynomial relations between the periods of X.
Then, Kontsevich-Zagier conjecture says that these polynomial relations are all the relations
between the periods of X.

7 Relation between Grothendieck’s period conjecture and

Kontsevich-Zagier’s conjecture

Here we continue to assume that k = Q. The conjecture of Grothendieck, which says that the
complex point

$ : Spec(C)→ Isom⊗(HdR, Hsing)

is a generic point of Isom⊗(HdR, Hsing), is very related with Kontsevich-Zagier’s conjecture,
which says that Ev : PAy → C is injective.

Recall that for X ∈ SmQ, the residue field of $X is equal to the ring of periods of X. Hence,
if we take f ∈ O(Iso⊗(HdR, Hsing)) and we look at its image on k($) ⊂ C, denoted as usual
f($), we obtain something in the ring of periods.

This is not casual. Indeed, we have that O(Isom⊗(HdR, Hsing)) ∼= PAy, and that this
isomorphism is compatible with both evaluation morphisms:

O(Isom⊗(HdR, Hsing)) PAy

C

'

Ev

Therefore, Kontsevich-Zagier’s conjecture holds if and only if Grothendieck’s period conjecture
holds and PAy is an integral domain. Indeed, Ev is injective if and only if $ is a generic point
andO(Isom⊗(HdR, Hsing)) is an integral domain (note that this implies that Isom⊗(HdR, Hsing)
is connected).
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8 Galois theory for periods

“Pour un nombre α appartenant à la “Q-algèbre des périodes”
(i.e. l’algèbre engendrée par les périodes de tous les motifs
définis sur Q, en inversant 2πi), la théorie des motifs suggère
que oui: le sens profond de la conjecture des périodes de
Grothendieck est de pouvoir fair agir le groupe des points
rationnels du Galois motivique absolu sur cette algèbre des
périodes.”

Y. André, Une introduction aux motifs.

André proposes in [And09] a Galois theory for periods. First, he takes some non algebraic
numbers, say for example π. Since it is trascendental, Q(π) is infinite dimensional as a Q-vector
space, so there are no polynomials that vanish at π, but for example sin(x) vanishes at π. Since
sin(x) also vanishes at 0, sin(x) would not be irreducible (if we think on sin(x) as a polynomial),
so we consider sin(x)/x, which vanishes at nπ for all n ∈ Z \ 0.

If we write sin(x)/x as a power series, we have that∏
n∈Z\{0}

(
1− x

nπ

)
=

sin(x)

x
,

and if we write the product on the left hand side, we obtain indeed a formal power series with
rational coefficients. Note that this is the closest thing to a polynomial that we can think on.

Here the semigroup (Z \ {0}, ·) acts on the set of roots of our power series. But in classical
Galois theory, we have a group acting, not just a semigroup, so we consider the group generated
by (Z \ {0}, ·), which is precisely Gal(Q(π)/Q) := Q∗ = Gm. Here the set of conjugates of π is
Q∗ · π, and we have that Q(π)Gal(Q(π),Q) = Q.

If we compare this naive computation with the results that we obtain for X = P1, where
Gmot(X) = Gm, and Per(X) = Q(2πi), we see that essentially we obtain the same (we could
have started with 2πi and the power series given by

∏
(1− 1/(n2πi)).

In [And09], André computes also the same for periods coming from elliptic curves. It seems
plausible that there is a Galois theory for periods, and maybe in the future, when we understand
better the motivic Galois group and the ring of periods, we can study it.
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