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Abstract

In this master thesis, we revisit the Grothendieck-Ogg-Shafarevich for-

mula. In order to do this, we recall constructions and results from arithmetic

(more concretely, about the rami�cation groups of a Galois extension), repre-

sentation theory (speci�cally the tools needed to measure the wild rami�cation

of an `-adic Galois representation) and arithmetic geometry (mainly construc-

tions and results of the cohomology of constructible sheaves). In the last part,

we give a detailed proof of the formula.
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1 Introduction

The aim of this master thesis is to understand the Grothendieck-Ogg-Shafarevich
formula, which measures the Euler characteristic of a lisse sheaf over a smooth curve
and puts it in terms of its rank, the geometry of the curve and its wild rami�cation.
Let's explain this a little bit more:

Let U be a curve de�ned over an algebraically closed �eld k, and let F be a lisse
sheaf (one can think, for example, in a locally constant �etale sheaf) de�ned over U .
Let C be a compacti�cation of U .

If k has characteristic zero, then we know that �c(U;F) = rk(F)�c(U;Q`), where
�c denotes the Euler characteristic with compact support.

If k has positive characteristic and U = C, then this formula remains true, but if
U is non proper then the formula becomes false. The reason for this is that it may
appear some wild rami�cation of F at CnU . What is this wild rami�cation? We will
de�ne it later, but let's try to explain it a little bit: for a given lisse sheaf F on U , we
want to de�ne the wild rami�cation of F at a point x 2 C n U , denoted Swanx(F);
in order to achieve this, we will construct from F a continuous representation of
the absolute Galois group Gx of a complete discretely valued �eld determined by
x. This kind of representations are called `-adic Galois representation, and one can
measure the wild rami�cation of these representations.

In order to measure this wild rami�cation, one has to construct the so called
Artin and Swan representations. We construct these representations by de�ning
their characters directly. One important fact that we use is the Hasse-Arf theorem,
which is very deep although at �rst it looks mild, and that tells us that the breaks
of a �ltration of certain Galois groups are integer.

All in all, we have that using geometry, representation theory and arithmetic we
are able to de�ne the wild rami�cation of our sheaf F at a point x 2 C nU , denoted
Swanx(F). With this notion, we obtain the Grothendieck-Ogg-Shafarevich formula,
which tells us that

�c(U;F) = rk(F)�c(U;Q`)�
X
x2CnU

Swanx(F):

For a more precise statement, see theorem 4.63 below.
The structure of this thesis, following the presentation of [KR15], is the other way

around: we �rst de�ne and study the rami�cation groups from arithmetic (section
2); after this we recall some facts from representation theory and construct the Artin
and Swan representations, which will allow us to measure the wild rami�cation of an
`-adic Galois representation (section 3); in the last section we go to the geometric
setting, and we study how to associate from a lisse sheaf F a representation of
the fundamental group of U , and from this we will obtain an `-adic representation;
�nally, after recalling some facts from `-adic cohomology, we de�ne precisely the wild
rami�cation of an `-adic sheaf and we �nish the thesis proving the Grothendieck-
Ogg-Shafarevich formula.

Having a way of computing the Euler characteristic of a sheaf is very useful,
because combined with vanishing theorems it gives us information about the dimen-
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sion of the cohomology groups. This formula has a lot of applications: for example,
it is used (among other things) in the proof of the Weil conjectures by Laumon.

Lately these notions have been generalized to higher dimension. There are two
approaches: the �rst one, initiated by Wiesend and developed by Kerz, Schmidt,
Drinfeld and Deligne, consists in reducing the study to dimension 1 by considering
the family of all curves in our algebraic variety; the second approach, followed by
Kato and Saito, develops a rami�cation theory directly in higher dimension and
they prove an analogue of the Grothendieck-Ogg-Shafarevich formula. Kindler and
R�ulling survey both approaches in the last sections of [KR15], and this can be the
�rst thing one can read after this master thesis.

Finally, there are essentially no new ideas in this thesis. Its presentation follows
the one by Kindler and R�ulling in [KR15], and the only merit that I can expect is
having clari�ed some explanations, having enlightened some paragraphs that were
not so detailed, having motivated a little bit more some parts, presenting sometimes
examples where they don't and having restructured some of their proofs: this was
challenging because their material is really nice. When I found that I couldn't
improve their approach, I have quoted their notes. Hopefully this thesis serves as
a �rst step towards their notes and gives the reader the opportunity to understand
this nice formula and its proof.
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2 Arithmetic

A general reference for this part is [Ser79]. In this section, L=K will be a �nite Galois
extension of complete discretely valued �elds with separable residue �eld extension,
and G := Gal(L=K). We denote by v the valuation in K, vL the extension to L and
p will be the characteristic char(k(v)), and let

K L

A B

mK mL

be the diagram where the arrows are inclusions, A and B the ring of integers of K
and L, and mK and mL their maximal ideals.

2.1 Rami�cation �ltration - lower numbering

In the above setting, we de�ne the rami�cation groups with lower numbering:

De�nition 2.1. For i � �1, we know that G acts on B=mi+1
L . The i-th rami�cation

subgroup of G is the following subgroup:

Gi := f� 2 Gj� acts trivially on B=mi+1
L g:

These rami�cation subgroups form a �ltration of G called the rami�cation �ltration
of G in the lower numbering.

One sees immediately that G�1 = G and that G0 = I (the inertia group, i.e. the
kernel of the surjective map G� Gal(k(vL)=k(v)).

Remark 2.2. Note that Gi is just

Gi := f� 2 Gj8b 2 B; vL(�(b)� b) � i+ 1g;

and since we know [Ser79, III, Prop. 12] that there exists x 2 B such that B = A[x],
we can also write

Gi = f� 2 GjvL(�(x)� x) � i+ 1g;
which gives us an easy way to compute these subgroups. For example, we see
immediately that Gi is trivial for i� 0.

Let's compute an example:

Example 2.3. Let k be an algebraically closed �eld of char(k) = p > 0, and let
K := k((x)) be the Laurent series with coe�cients in k. Consider the polynomial
up + xup�1 � x 2 K[u], which by the Eisenstein criterion is seen to be irreducible
and therefore de�nes the �eld extension L := K[u]=(up+xup�1�x), which is called
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an Artin-Schreier extension1. This extension L=K is Galois with group G = Z=pZ,
and a 2 G acts via u 7! u=(1 + au). We get this diagram:

K K[u]=(up + xup�1 � x)

k[[x]] k[[x]][u]=(up + xup�1 � x)

(x) (u)

and since up = x(1 � up�1), we see that the rami�cation index of this extension is
e(L=K) = p (in particular it is totally rami�ed, so G�1 = G0 = G). Let's compute
the other rami�cation groups. For this, we just need to know how does a 2 G act
on u. Since, for a 6= 0,

vL(u� u=(1 + au)) = vL(u(1 + au� 1)=(1 + au)) = 2;

we have that G1 = G and that G2 = 0.
Similarly (c.f. [Lau81]), one proves that L = K[t]=(tp

n � t � x�m)=K, with
(m; p) = 1, has the following rami�cation �ltration:

Z=pnZ = G0 = : : : = Gm ! Gm+1 = 0:

This �nishes the example.

Since B = A[x], the generator x will also be a generator over intermediate
valuation rings, so we have the following compatibility when taking subgroups:

Proposition 2.4. If H < G is a subgroup and LH its �xed �eld, then L=LH is
Galois with group H, and for all i,

Hi = Gi \H:
Remark 2.5. 1. Applying the proposition to H = I, we see that we may assume

L=K to be totally rami�ed.

2. Quotients will not respect this �ltration in general. In order to �x this, we will
de�ne a di�erent rami�cation �ltration, which will have the same subgroups
but in a di�erent numbering (c.f. [KR15, Cor. 3.43]). In order to distinguish
the �ltrations, we denote the second one as Gi, and we call it rami�cation
�ltration with upper numbering. But before we de�ne this second �ltration,
let's study a little bit more the structure of our lower numbering �ltration.

Once we assume that L=K is totally rami�ed, we know by [Ser79, III, Lem. 4]
that x, the generator of B = A[x], may be chosen so that it is an uniformizer for L.
Hence, for � 2 G0, we see that vL(�(x)) = vL(x) = 1 and therefore �(x)=x 2 B� =:
U0
L. Since Gi = f� 2 Gj�(x)� x 2 (x)i+1g, we see that

Gi = f� 2 Gj�(x)=x � 1 (mod mi
L)g:

This motivates a �ltration of the group of units of L:

1Changing coordinates t = 1=u, we see that L is isomorphic to K[t]=(tp � t� 1=x).
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De�nition 2.6. For i > 0, we de�ne U i
L := 1 + mi

L � B� to be the group of i-th
units. For i = 0, we will just de�ne U0

L := UL := B�.

These subgroups will give us information about the rami�cation subgroups be-
cause they are easier to handle and we can do the following2:

Proposition 2.7. The assigment � 7! �(x)=x induces an injective homomorphism
of groups

Gi=Gi+1 ,! U i
L=U

i+1
L ;

and this homomorphism is independent of the choice of x.

The right hand side of this homomorphism is very explicit. Indeed, let's look
closer at both i = 0 and i > 0. Since we may assume that L=K is totally rami�ed,
the residue �elds of L and K are the same. Let's denote them by k.

� The case i = 0: U0
L=U

1
L
�= (k�; �), where the map U0

L ! (k�; �) is given by
�xing a local parameter x and mapping u0+ u1x+ : : :+ unx

n 7! [u0]. We can
also map U0

L ! U0
L=mL = k�, so we don't need to make any choice.

� The case i > 0: Un
L=U

n+1
L
�= (k;+). For this, we can show that Un

L=U
n+1
L !

mn
L=m

n+1
L : [1 + x] 7! [x] is an isomorphism, and that the latter is a 1-

dimensional k-vector space (for this just need to choose a local parameter
xn).

Using this, one shows the following:

Corollary 2.8. � G0=G1 is cyclic of order prime to p = char(k).

� If p = 0, then Gi = 0 for i > 0.

� If p > 0, then for i � 1 the groups Gi are p-groups, and the quotients Gi=Gi+1

are abelian p-groups.

� G0 is a semi-direct product of a cyclic group of order prime to p and a p-group.
In particular, G0 is solvable and G1 is its unique p-Sylow group.

2.2 Rami�cation �ltration - upper numbering

Now we want to introduce the upper numbering �ltration, that will respect the
quotients. We said that we have to change the numbering, and in order to do it we
�rst need to �x some notation. For u 2 R��1, we denote Gu := Gdue, where due is
the smallest integer greater or equal to u.

De�nition 2.9 (Herbrand's function). We de�ne the function 'L=K : [�1;1) !
[�1;1) as follows:

'L=K(u) =

Z u

0

dt

(G0 : Gt)
;

where (G0 : Gt) is de�ned, for t 2 [�1; 0), as (G0 : Gt) := (Gt : G0)
�1. In other

words, (G0 : G�1) = 1=f and (G0 : Gt) = 1 for t 2 (�1; 0), where f is the degree of
the extension of the residue �elds.

2The two lines computation can be checked in [KR15, Prop. 3.37].

9



Remark 2.10. Note that if u 2 Z�0, then

'L=K(u) + 1 =
1

jG0j
uX
i=0

jGij:

This de�nition arises naturally in the computation of the image of Gi in the
quotient G=H, where HCG is a normal subgroup (c.f. proof of [KR15, Cor. 3.43]).
Indeed, we obtain the following compatibility when taking quotients:

Proposition 2.11. Let H CG be a normal subgroup. Then, for u 2 R��1, we have
GuH=H = (G=H)'

L=LH
(u):

Hence, if  L=K denotes the inverse to 'L=K , we de�ne the upper numbering
�ltration as follows:

De�nition 2.12. For v 2 R��1, de�ne Gv := G L=K(v).

In order to be able to write the �ltration, we will only keep track of the jumps,
i.e. the v 2 R��1 such that Gv ! Gv+" for all " > 0. In other words, the jumps are
just the 'L=K(u), where u are the integers such that Gu ! Gu+1.

Example 2.13. � Let's compute the upper numbering �ltration of the Artin-
Schreier extension. Since

Z=pZ = G0 = : : : = Gm ! Gm+1 = 0;

we have that

'L=K(u) =

8><>:
up

p
= u if 0 � u � m;

m+
u�m
p

if u > m:

Hence, we get

 L=K(v) =

�
v if 0 � u � m;
p(v �m) +m if u > m:

We see then that the only jump is on v = m, and therefore we write the upper
numbering �ltration as

Z=pZ = G0 = : : : = Gm ! Gm+" = 0:

� In the above example the only jump of the �ltration is an integer, but this is not
always the case. Indeed, Serre constructed in [Ser60, Sec. 4] a totally rami�ed
Galois extension L=Q2 with Galois group G isomorphic to the quaternions
group f�1;�i;�j;�kg with the usual relations. The center of the group is
Z(G) = f�1g, and L=Q2 has the following lower numbering �ltration: G =
G0 = G1, G2 = G3 = Z(G), and G4 = f1g. Hence, the jumps are 'L=Q2

(1) = 1
and 'L=Q2

(3) = 3=2.

In the next subsection, we will see the theorem of Hasse-Arf, which asserts
that when G is abelian, the jumps are integers. This result turns out to be
very important, as we will see later.
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The upper numbering �ltration respects the quotients, as we were looking for
(c.f. [KR15, Prop. 3.53]):

Proposition 2.14. If H CG is a normal subgroup, we have

Gv=(H \Gv) = (G=H)v:

2.3 Theorem of Hasse-Arf

Recall that the jumps or breaks of the upper numbering �ltration of G are the
v 2 R��1 such that Gv ! Gv+" for all " > 0. Then the following is true:

Theorem 2.15 (Hasse-Arf). If G is abelian, the jumps are integers.

There are at least two ways of proving this result.
The �rst one uses local class �eld theory, and we need the extra assumption that

the residue �eld of K is �nite. Under this assumption, we know that there exists
the local reciprocity map � : K� ! Gal(Kab=K) such that, for any �nite abelian
extension L=K, the composition

K� ! Gal(Kab=K)� Gal(L=K)

maps U
dve
K onto Gal(L=K)v for any v 2 R�0 (c.f. [CF67, Ch. VI.4, Thm. 1]), so the

jumps will occur at integer v's.
The second proof (c.f. [Ser79]) doesn't need the development of the local class

�eld theory and doesn't need the extra assumption on the residue �eld, but on the
other hand is a little bit longer and intricate. The idea of it consists of reducing to
the case of a cyclic extension (using the transitivity of the norm and of the functions
') and the last jump (i.e. the last v where Gv is non-trivial). In this particular case,
we consider V := fkernel of the norm NL=K : L� ! K�g. By Hilbert's theorem 90
this is just V = fgy=yj y 2 L�g, where g generates G, and we consider the subgroup
W := fgy=yj y 2 ULg. Then, �xing a local parameter x 2 L, the assigment

� : G ! V=W
� 7! �(x)=x

is an isomorphism of groups that respects the �ltrations, i.e. �jGi : Gi ,! Vi=Wi for
all i � 0. Using this, if we assume that the jump v is not an integer, then there is an
integer w such that w < v < w+1, and then our problem is reduced to showing that
if Gw+1 = 0 and V L=K(v)+1=W L=K(v)+1 = 0, then V L=K(v)=W L=K(v) = 0, because
once he have this we conclude (using that the isomorphism � respects �ltrations) that
G L=K(v) = 0, which contradicts the de�nition of v. One proves that fact studying
the norm map, as it is perfectly done in [Ser79, Ch. V] [KR15, Sections 3.8 and 3.9].
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3 Representation theory

A general reference for this part is [Ser77]. Let E be a �eld and G a �nite group.
Recall that a class function ' : G! E is a function which is constant on conjugacy
classes.

Example 3.1. Let G := Gal(L=K), with L=K a �nite Galois extension of complete
discrete valued �elds as in the previous section, and x 2 L a local parameter. Then
we can de�ned the rami�cation subgroups using the following class function:

iG : G ! Z�0 [ f1g
� 7! vL(�(x)� x)

Note that according to our de�nition this wouldn't be a class map because we don't
go to a �eld, but this is not so important. They key point is that it is constant on
conjugacy classes.

One nice property of iG is that it allows us to write the rami�cation groups as
follows: Gi = i�1G ([i+ 1;1]). Using this we will construct the Artin character (this
one will be a class function to a �eld E), which will be very important in this thesis.
This function will also appear in the proof of the Grothendieck-Ogg-Shafarevich
formula.

One important example of a class function of special interest for us is the char-
acter of a representation. Recall that if � : G! GL(V ) is a representation of G on
a �nite dimensional E-vector space V , the character of �, �� : G! E, is de�ned as

��(g) := �V (g) := Tr(�(g)):

Note that if V is 1-dimensional, the character is the representation itself. The
following facts can be easily shown:

Remark 3.2. Let V1; V2 be two representations of G.

1. �V1�V2 = �V1 + �V2 .

2. �V1
V2 = �V1 � �V2 .
3. �V _1 (g) =

�V1(g
�1). In particular, if E = C, we have �V _1 (g) =

�V1(g).

Example 3.3. Given G, recall that the regular representation is the representation
associated to E[G] seen as an E[G]-module. In other words, if a basis of V is given
by feggg2G, then G acts by moving these elements3. Hence, if rG is the character
of the regular representation, rG(1) = jGj and rG(g) = 0 for g 6= 1 (because in the
diagonals of the matrices with respect to the above basis, we will have only zeroes).

Recall also the augmentation representation, which is just the kernel of the quo-
tient from the regular representation to the trivial representation (of rank 1). Let
uG denote its character. If jGj is invertible in E, then the regular representation is
the direct sum of the trivial representation and the augmentation representation, so
we have rG = uG+1G. In particular, uG(1) = jGj�1 and uG(g) = �1 for the g 6= 1.

3For all h 2 G, heg = ehg.
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The set of class functions from G to a �eld E, CE;G, has a natural structure of
an E-vector space, and if the characteristic of E doesn't divide jGj, we can de�ne
the following bilinear product:

h';  iG :=
1

jGj
X
g2G

'(g) (g�1):

This is a symmetric bilinear form on CG;E.
If E = C, we have the following nice theorem:

Theorem 3.4. Let G be a �nite group. Then, its irreducible characters �1; : : : ; �r
form a basis of CC;G. Moreover, this basis is orthonormal with respect to h�;�iG.
Therefore, we have the following:

Corollary 3.5. Over C, a class function ' is the character of a representation of
G if and only if it is of the form

' = a1�1 + : : :+ ar�r;

with the ai 2 Z�0.
We will need two more things in the rest of the section: the Frobenius reciprocity

and Brauer's theorem. First we need a couple of de�nitions:

De�nition 3.6. Let � : H ! G be a group homomorphism (one can think on the
inclusion of a subgroup), and let E be a �eld of characteristic 0.

1. If ' 2 CE;G is a class function on G, then ��' := ' � � is a class function on
H. We call it the restriction of '.

2. If ' 2 CE;H is a class function on H, then we de�ne the induced class function
on G, ��', as follows:

� If � is injective,

��'(g) :=
1

jHj
X
x2G

xgx�12H

'(xgx�1):

� If � is surjective,

��'(g) :=
1

j ker(�)j
X
h7!g

'(h):

� In general, factor � onto its image and an inclusion.

Remark 3.7. Both the restricted and the induces class functions respect characters,
i.e. if � is a character on H (resp. G), then ��� (resp. ���) is again a character on
G (resp. on H).

The Frobenius reciprocity gives us an adjuction relation between induced and
restricted representations:
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Proposition 3.8 (Frobenius recoprocity). Let � : H ! G be a group homomor-
phism,  2 CC;H , and ' 2 CC;G. Then

h ; ��'iH = h�� ; 'iG :

Finally, Brauer's theorem allows us to write any character of G as a combination
of 1-dimensional characters of subgroups Hi < G:

Theorem 3.9 (Brauer). Let G be a �nite group and � a character corresponding to
a �nite dimensional complex representation of G. Then, � is a Z-linear combination
of characters of the form �i��i, where �i : Hi ,! G is an inclusion of a subgroup
and �i is a 1-dimensional representation of Hi.

3.1 Artin and Swan representations

In this section we de�ne the Artin and the Swan representations. Given a complete
discrete valued �eldK with perfect residue �eld, we will use the Swan representation
to de�ne a measure of \wildness" of the pro-p-subgroup PK < GK .

Let L=K be a �nite Galois extension of complete discretely valued �elds with
separable residue extension of degree f and Galois group G. Then, we de�ne the
Artin character, which is the class function given by

aG(g) :=

� �fiG(g) if g 6= 1;
f
P

g0 6=1 iG(g
0) if g = 1;

where iG is the class function de�ned in Example 3.1. Of course, we call it a character
because it is a character:

Theorem 3.10 (Artin). The Artin character aG is indeed a character (of a repre-
sentation of G over C).

Proof. (Sketch) First of all, we reduce the theorem to the totally rami�ed case,
because if � : G0 ,! G is the inclusion of the inertia subgroup, we have (c.f. [KR15,
Lem. 4.47]) ��aG0 = aG, and we know that the induced class function of a character
is again a character. By corollary 3.5, it is enough to show that for any character
�, then haG; �i =: f(�) 2 Z�0. For this, one proves �rst that f(�) is a non-negative
rational number4 (c.f. [KR15, Lem. 4.48]). Once we have this, then by Brauer's
theorem we have that � =

P
ai�
0
i, where ai 2 Z and �0

i := �i��i is the induced
representation of a 1-dimensional character �i on the subgroup Hi. Hence, we just
need to show that f(�0i) 2 Z.

But by Frobenius reciprocity, we have that f(�0i) = haG; �i��0iiG = h��i aG; �0iiHi
.

Now we can write ��i aG in terms of the regular representation of Hi and the Artin
character of Hi (c.f. [KR15, Lem. 4.51]):

��i aG = �rHi
+ aHi

;

4Indeed, we have that f(�) =
P

i�0

1

jG : Gij
(dimV � dimV Gi).
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where � = vK0(DK0=K) is a non-negative integer and K
0 := LHi . Therefore we have

f(�0i) = h��i aG; �ii = � hrHi
; �ii+ haHi

; �ii = ��i(1) + haHi
; �ii ;

where �i is 1-dimensional, so �i(1) = 1. Hence, we reduced our problem to the
1-dimensional case, because if we prove that haHi

; �ii is an integer, we are done.
We have the group homomorphism �i : Hi ! C�. Let H 0 := ker(�i). Then

given the chain of subgroups f1g < H 0 < Hi < G, we denote the corresponding
chain of �eld extensions as L=Li=K

0=K. If c0i denotes the largest integer such that
Gal(Li=K

0)c0i = (Hi=H
0)c0i 6= f1g, then we have (c.f. [KR15, Lem. 4.50])

haHi
; �ii = 'K0=K(c

0
i) + 1;

and since Hi=H
0 is a subgroup of C�, K 0=K is an abelian extension. Finally Hasse-

Arf theorem tells us that 'K0=K(c
0
i) is an integer, so we are done.

De�nition 3.11. The Swan character is the following function:

swG := aG � (rG � rG=G0
):

Note that if L=K is totally rami�ed, then swG = aG � (rG � 1G) = aG � uG.
Remark 3.12. Again, we have that the Swan character is a character. To see this,
we can assume as before that L=K is totally rami�ed, and then, for any character
� of a representation V ,

hswG; �i = haG; �i � hrG � 1G; �i
= haG; �i � dimV=V G

=
X
i�0

1

jG : Gij(dimV � dimV Gi)� (dimV � dimV G)

=
X
i�1

1

jG : Gij(dimV � dimV Gi);

which is greater or equal to 0, and since haG; �i is an integer, we conclude that swG
is the character of a representation.

So far, we have seen that aG and swG are the characters of complex representa-
tions. Since C has characteristic 0 and G is �nite, we know that these representations
are realizable over Q (c.f. [KR15, Prop. 4.19]). We could ask if we can go further,
i.e. if these representations are realizable over a smaller �eld, for example over Q,
but this turns out to be false (c.f. [Ser60]). Nonetheless, we can still do something:
since both representations are realizable over Q, they are also realizable over Q`,
and we have the following theorem:

Theorem 3.13. Let ` be a prime number di�erent from the residue characteristic
of K. Then,

1. The Artin and the Swan representations are realizable over Q`.
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2. There exists a �nitely generated projective left-Z`[G]-module SwG, unique up to
isomorphism, such that SwG 
Z` Q` is isomorphic to the Swan representation
(i.e. it has character swG).

Remark 3.14. There is no direct construction of the Z`[G]-module known, since all
the proofs that we have give just the existence of the module.

The proof of the existence of SwG lies on the study of representations over a �eld
whose characteristic may divide the order of jGj and over discrete valuation rings of
mixed characteristic. This makes things complicated, and since we don't obtain a
direct construction we omit the proof. More explanations can be found on [KR15,
Section 4.3], and a complete proof in [Ser77].

In the next section we will use SwG to study the group GK .

3.2 Measuring the wild rami�cation of an `-adic Galois rep-

resentation

LetK be a complete discretely valued �eld with perfect residue �eld of characteristic
p > 0. Fix a separable closure Ksep of K, and let GK := Gal(Ksep=K) be the
absolute Galois group of K. Let ` 6= p be a second prime, and E=Q` a �nite
�eld extension. In this section we consider continuous representations of the shape
� : GK ! GL(V ), where V is a �nite dimensional vector space over E. Such a
representation is called an `-adic Galois representation.

We are interested in the restriction of this action to the wild rami�cation sub-
group of GK (we de�ne it right now). Recall that for any �nite Galois extension
L=K, Gal(L=K)1 is the unique p-Sylow subgroup of Gal(L=K) (c.f. Cor. 2.8), and
that the quotient Gal(L=K)=Gal(L=K)1 is cyclic of order prime to p. Given two
�nite extensions L=L0=K, we know that Gal(L=K)1 maps to Gal(L

0=K)1, since the
image of a p-group is a p-group. Hence we can take the inverse limit of Gal(L=K)1
over all the �nite Galois L=K, and we obtain a closed normal pro-p-group PKEGK .
We call this group PK the wild rami�cation subgroup of GK . Note that GK=PK is
pro-cyclic with every �nite quotient of order prime to p. In particular, for any HEG
open normal subgroup, the image of PK in GK=H is precisely (GK=H)1.

We use this group PK for the following de�nition:

De�nition 3.15. Let R be a commutative ring and � : GK ! GLn(R) be a group
homomorphism.

1. � is called unrami�ed if G0
K � ker(�).

2. � is called tame or tamely rami�ed if PK � ker(�). Otherwise � is called wild
or wildly rami�ed.

We are mainly interested in the cases R = E;OE and F� := OE=mE, and � contin-
uous.

Given an `-adic Galois representation � : GK ! GL(V ), we can factor it via a
model GL(V) over OE. Indeed, we can do it for any pro�nite group G:
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Lemma 3.16. If G is a compact topological group (in particular a pro�nite group
as GK) and � : G ! GL(V ) a continuous representation, then there exists a free
OE-submodule V � V such that V = VE and � factors

� : G! GL(V)! GL(V );

where GL(V) := AutOE(V).
Proof. Choose a basis e1; : : : ; er of V . This gives us an inclusion GLr(OE) � GLr(E),
and makes GLr(OE) into a topological group. Then

G =
[

M2GLr(E)

��1(MGLr(OE))

is an open covering, so we can �nd a minimal n � 1 and matrices M1; : : : ;Mn 2
GLr(E) such that im(�) � SMiGLr(OE).

Taking V 0 := Pr
j ejOE � V , for any g 2 G we have that �(g)V 0 = MiV 0 for

some i, so V :=
P

iMiV 0 is a G-stable free OE-submodule of V satisfying our
conditions.

Now, if � is a local parameter of OE, we specialize the representation as follows:

De�nition 3.17. Given a continuous representation � : GK ! GL(V) over OE,
then the composition � : GK ! GL(V) ! GL(V), with V = V=�V is called the
reduction modulo � of �. Note that � is a representation over F�.

We now want to see that PK acts on V and V through the same group, and this
group will be �nite. In particular, given an `-adic Galois representation � : GK !
GL(V ), �jPK factors through a �nite quotient of PK (i.e. the action is, in some sense,
almost trivial). It is important to emphasize here that we are assuming all the time
that ` 6= p.

Indeed, we prove something more general:

Lemma 3.18. Let E=Q` be a �nite �eld extension, ` 6= p. If P is a pro-p-group
and � : P ! GLr(OE) a continuous representation, then the image of � is �nite and
�(P ) \ ker(GLr(OE)� GLr(F�)) = f1g.
Proof. If Mr(OE) denotes the ring of r � r matrices with coe�cients in OE, then
H := ker(GLr(OE)� GLr(F�)) = id + �Mr(OE). Since � is continuous, ��1(H) is
an open subgroup of P . Since F� is a �nite extension of F`, H is a pro-`-group, and
since ` 6= p there are no non-trivial maps between pro-p- and pro-`-groups. Hence
��1(H) � ker(�), so �(P ) \ H = f1g. Finally H has �nite index in GLr(OE), so
��1(H) has �nite index in P which implies that ker(�) also has �nite index, and we
are done.

Corollary 3.19. In the above situation, � is tame if and only if � is tame.

Now we want to de�ne an invariant of a given `-adic Galois representation that
measures its wild rami�cation. There are two ways of de�ning this invariant: one
using the Swan representation de�ned over Z` (last chapter of [Ser77]), and another
one using the break decomposition of the representation, which allows us to de�ne
the Swan conductor (beginning of [Kat88]). At the end of the section we show that
both de�nitions coincide.
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3.2.1 First approach: the invariant b(V )

Let � : GK ! GL(V) be, as before, a continuous representation, where V is a free
OE-module.
De�nition 3.20. Let G := GK= ker(�), which is a �nite group (since F� is a �nite
�eld) corresponding to a �nite Galois extension L=K. Hence, we are in the situation
of section 3.1, so we can consider the Swan representation over Z` of G, SwG. Then,
we de�ne

b(�) := b(V) := dimF� HomF�[G](SwG 
Z` F�; �):
Remark 3.21. 1. Note that the number b(V) only depends on the class of V (i.e.

the reduction � of the representation �) in the Grothendieck ring RF�(G),
which is the abelian group generated by the isomorphism classes [W ] of �nite
dimensional representations of G with the extra relation [W ] = [W1] + [W2] if
there exists an exact sequence of representations 0 ! W1 ! W ! W2 ! 0.
RF�(G) becomes a ring with the tensor product.

2. If we start with an `-adic Galois representation � : GK ! GL(V ), where V
is a vector space over E, then by lemma 3.16 it factors through � : GK !
GL(V)! GL(V ). Then, we can de�ne b(V ) := b(V), and this number doesn't
depend on the OE-lattice V that we choose. This is because the class of V in
the ring RF�(G) only depends on � : GK ! GL(V ): in order to check this,
one has to develop a little bit of representation theory in mixed characteristic,
and we refer to [Ser77] or [KR15, Prop. 4.61] for details. Here we just need to
know that b(V ) is well de�ned.

3. Here we use G := Gk= ker(�) to de�ne b(�), but we can use GK=N , where N is
an open normal subgroup of �nite index contained in ker(�) without changing
the result, as we will see at the end of the section.

4. If � factors through a �nite quotient G of GK , then

b(�) = dimF�[G]HomF�[G](SwG 
Z` F�; �)
= rankOEHomOE [G](SwG 
Z` OE; �)
= dimE HomE[G](SwG 
Q` E; �
 E);

c.f. [KR15, Rem. 4.72].

With the next proposition, we see that b(V ) tells us if V has wild rami�cation
or not.

Proposition 3.22. In the above situation, with G := GK= ker(�), we have

b(V) =
1X
i=1

jGij
jG0j dimF�(V=V

Gi
):

The proof uses some facts about representation theory, and we refer again to
[Ser77] or [KR15, Prop. 4.73] for the details. We summarize here what we know
about b(V ) measuring the the wild rami�cation:
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Proposition 3.23. Let � : GK ! GLr(OE) be a continuous representation. Then
the following are equivalent:

1. The composition �
 E : GK ! GLr(OE) ,! GLr(E) is tame.

2. � is tame.

3. � : GK ! GLr(F�) is tame.

4. b(V) = 0.

3.2.2 Second approach: the Swan conductor Swan(V )

In this section, given an `-adic Galois representation � : GK ! GL(V ), we want to
construct a decomposition of V , called the break decomposition V =

L
x2R�0

V (x),

that will encode part of the rami�cation information of GK . Once we have it, we
will de�ne the Swan conductor of V , which is the real number

Swan(V ) :=
X
x2R�0

x dimV (x);

and we will see that it coincides with b(V ).
In order to construct the break decomposition, we need some more facts about

the rami�cation �ltration on GK :

Lemma 3.24. Let � 2 R�0, and denote G�+
K :=

S
�0>�G

�0
K the closure of the union of

the subgroups G�0

K in the topological group GK. Then, the upper numbering �ltration
G�
K satis�es the following:

1.
T
�>0G

�
K = f1g.

2. For � > 0,

G�
K =

\
0<�0<�

G�0

K :

3. PK = G0+
K .

Proof. For the �rst part, note that if g 2 G�
K for all � > 0, then for every �nite

Galois extension L=K, g maps to 1Gal(L=K), which is the only element of Gal(L=K)�

for � big enough. Hence g must be the identity element.
For the second part, �rst note that G�

K � G�0

K for every �0 < �, so G�
K �T

�0<�G
�0

K . If we assume that there exists g 2 (
T
G�0

K) n G�
K , then there must be

a �nite Galois extension L=K such that g, the image of g in Gal(L=K), lies in
(
T
Gal(L=K)�

0

) nGal(L=K)�. In other words, g 2 Gal(L=K)�
0 nGal(L=K)� for all

�0 < �, but this is a contradiction with the fact that the function t 7! #Gal(L=K)t

is left continuous (this is because Gal(L=K)t = Gal(L=K) (t) = Gal(L=K)d (t)e, and
the function d�e is left continuous). Therefore we must have an equality.

Finally, for the third part, let L=K be a �nite Galois extension. By de�nition, the
image of PK in Gal(L=K) is Gal(L=K)1. We know that for any " > 0,  L=K(") > 0,
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so Gal(L=K)" = Gal(L=K)d (")e � Gal(L=K)1. Hence, G0+
K � PK . Moreover, for

L=K, there exists "L > 0 such that Gal(L=K)"L = Gal(L=K)1. Hence the image of
G0+
K in PK is precisely Gal(L=K)1 for any �nite Galois L=K, so we have an equality

G0+
K = PK because G0+

K is closed and any closed subgroup H of a pro�nite group
P = lim

 �
N

P=N is isomorphic to lim
 �
N

H=(H \N).

We will use this lemma to construct the break decomposition. This decomposi-
tion exists in a more general setting, i.e. we have it not just for any E[GK ]-module
V , but for more general modules:

De�nition 3.25. We say that a PK-module is a Z[1=p]-module M , together with
a morphism � : PK ! AutZM which factors through a �nite discrete quotient.
A morphism of PK-modules is a morphism of Z[1=p]-modules that respects the
additional structure.

Note that by lemma 3.18, any `-adic representation V of GK is a PK-module.
Now we see that the break decomposition exists for PK-modules, and we see also
how does it look like:

Proposition 3.26. For notational convenience, let's denote G := GK and P := PK.
Let M be a P -module.

1. There exists a unique decomposition M =
L

x2R�0

M(x) of P -modules such that

(a) M(0) =MP .

(b) M(x)G
x
= 0 for x > 0.

(c) M(x)G
y
=M(x) for x > y.

2. M(x) = 0 for all but �nitely many x 2 R�0.
3. For every x 2 R�0, the assignment M 7! M(x) is an exact endofunctor on

the category of P -modules.

4. HomP (M(x);M(y)) = 0 for x 6= y.

The proof can be checked in [Kat88, Prop. I.1.1], and some more details of the
proof in [KR15, Prop. 4.77]. Here we don't prove the whole statement, but we
follow the second reference in order to de�ne the P -modules M(x).

First, let � : P ! AutZ(M) denote the representation that givesM the structure
of a P -module, and let H := im(�), which is a �nite discrete p-group by de�nition.
Now, for x 2 R�0, let H(x+) := �(Gx+) and for x > 0, H(x) := �(Gx). For
example, H = �(P ) = �(G0+) = H(0+). Note that H(x) and H(x+) are all normal
subgroups of H.

Now, for the di�erent x, we de�ne the following elements of Z[1=p][H]:

�(x) :=
1

jH(x)j
X

h2H(x)

h and �(x+) :=
1

jH(x+)j
X

h2H(x+)

h:

20



Since Gx+ � Gx, we see that H(x+) � H(x), and we see that they are equal if x is
not a break in the upper numbering �ltration of G. Since �(x+)�(x) = �(x), we see
that almost all the elements �(x+)(1 � �(x)) are zero, and the non-zero elements
correspond to the jumps of the �ltration. Then one shows that these elements are
orthogonal, idempotents and their sum is zero (c.f. [KR15, Lemma 4.78]). Now
we can de�ne the decomposition of M : M(0) := fm 2 M j �(0+)m = mg, and
M(x) := fm 2M j �(x+)(1� �(x))m = mg for x > 0.

Corollary 3.27. Let A be a Z-algebra, and M an A-module on which P = PK
acts A-linearly through a �nite quotient (i.e. is a P -module and the representation
factors also through AutA(M) � AutZ(M)).

1. In the break decomposition M =
L

x�0M(x), every M(x) is an A-submodule
of M .

2. If B is an A-algebra, then the break decomposition of B 
AM isM
x�0

B 
AM(x):

3. If A is local and noetherian, and M a free A-module of �nite rank, then every
M(x) is free of �nite rank.

Proof. 1. If a 2 A, multiplication by a is P -equivariant on M , so by the third
part of the previous proposition, a maps M(x) to M(x).

2. This is because of the construction of �(x) and �(x+).

3. If M is a free A-module of �nite rank, then M(x) is a direct summand so it
is projective. If A is noetherian, then M(x) is also �nitely generated. Finally,
if A is local, then projective modules of �nite rank are free modules of �nite
rank.

Now we de�ne the Swan conductor of a PK-module:

De�nition 3.28. Let A be a local noetherian Z[1=p]-algebra and M a free A-
module of �nite rank on which PK acts A-linearly through a �nite quotient. The
Swan conductor of M is the real number

Swan(M) :=
X
x�0

x rankA(M(x)):

Remark 3.29. 1. One sees immediately that Swan(M) = 0 if and only if the
action of PK on M is trivial.

2. If B is an A-algebra, then Swan(M) = Swan(M 
A B).
3. Swan(M) is additive on short exact sequences.
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Now we want to extend the notion of the Swan conductor for an `-adic Ga-
lois representation V of GK . We are almost there, we just need to see that the
decomposition is not just a decomposition of PK-modules, but of GK-modules:

Lemma 3.30. Let M be a Z[1=p]-module on which GK acts such that the restriction
to PK acts through a �nite quotient on M . Then the break decomposition M =L

x�0M(x) is a decomposition of GK-modules.

The proof of this lemma is easy, and we refer the reader to [KR15, Lem. 4.83].
Hence, by lemma 3.18, our `-adic Galois representation V satis�es the conditions
(recall that we are assuming all the time that ` 6= p) and we obtain the break
decomposition

V =
M
x2R�0

V (x);

which is a decomposition of continuous E-representations of GK (for the continuity,
note that � factors through

L
xGL(V (x)), and here we have the subspace topology).

Remark 3.31. 1. We see immediately that Swan(V ) measures the wild rami�ca-
tion of V , because by the previous remark Swan(V ) = 0 if and only if V is
tame.

2. If we have our `-adic representation GK ! GL(V ), we know that it factors
through a free OE-module V of the same rank as V . Then V = V 
E implies
that V (x) = V(x)
 E, and therefore

Swan(V ) = Swan(V):

3. Similarly, one gets that Swan(V) = Swan(V ).

In the next section we prove that Swan(V ) is an integer in the case of `-adic
representations. If V is just a representation of PK , then Swan(V ) may not be an
integer, but it will still be a rational number (c.f. [Kat83, Cor. of p. 214]).

3.2.3 Both approaches give us the same number

Here we want to prove that b(V ) = Swan(V ):

Theorem 3.32. If � : GK ! GL(V ) is an `-adic Galois representation, then
Swan(V ) = b(V ).

Example 3.33. Let's compute the Swan conductors of the 1-dimensional non-trivial
`-adic Galois representations of the Artin-Schreier extension L := K[t]=(tp�t�x�m),
whereK = k((x)) and k is an algebraically closed �eld of characteristic p. Recall that
if we assume that (m; p) = 1, then the lower numbering �ltration of G := Gal(L=K)
is G = Fp = G0 = : : : = Gm ! Gm+1 = 0 (c.f. example 2.3).

Now let ` 6= p, and let � : Fp ! Q` be a 1-dimensional `-adic Galois repre-

sentation. By proposition 3.22, we know that b(V ) =
P

i jGij=jG0j dimF`(�=�
Gi).

The reduction � : Fp ! F�` is non-trivial (since the image of a generator of Fp
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must be a root of unity di�erent from 1, it belongs to UQ` n U1
Q`
), so we have that

dimF`(�=�
Gi) = 1 for i = 0; : : : ;m.

Hence, applying the theorem we get that

Swan(�) = Swan(�) = b(�) =
1X
i=0

jGij
jG0j dimF`(�=�

Gi) =
mX
i=1

1 = m:

Let's prove the theorem:

Proof. We saw that Swan(V ) = Swan(V), where V is the reduction of a lift of V , as
usual. Let E denote the �eld of the coe�cients of V and F� its residue �eld, which
is �nite. Since V is �nite dimensional V also is, so GL(V) is a �nite group, so GK

acts on V through a �nite quotient G. Let L=K be the subextension corresponding
to this group G.

Assume that V 6= 0 (else, both numbers are 0 and we are done). Then V 6= 0.
Let x 2 R�0 such that V(x) 6= 0. Then x corresponds to a jump of the upper
numbering �ltration of G, as we saw in the discussion after proposition 3.26. In
other words, Gx 6= Gx+" for all " > 0, so  L=K(x) 2 Z�0. Then by remark 2.10,

x = 'L=K( L=K(x)) =

 (x)X
i=1

jGij
jG0j :

We also have that for any integer i �  L=K(x), G
x = G L=K(x) � Gi, so V(x)Gi =

V(x)Gx . But the last term is zero because of proposition 3.26, so both are zero.
Now, if i >  L=K(x), then 'L=K(i) > x and by the same proposition, V(x)Gi =

V(x)G'(i) = V(x). Hence, we have that

dimF�(V(x)=V(x)Gi) =
�

dimF� V(x) if i �  L=K(x);
0 if i >  L=K(x):

With this, noting that
�V(x)� (y) = 0 for y 6= x, we can compute

Swan(V(x)) = x dimF� V(x) =
X
i�0

jGij
jG0j dimF�(V(x)=V(x)Gi):

Since both sides are additive with respect to direct sums (c.f. remark 3.29) we
conclude, using as in the previous example the proposition 3.22, that

Swan(V) =
1X
i=1

jGij
jG0j dimF�(V=V

Gi
) = b(V ):

Note in particular that since b(V ) is independent of the choice of the �nite
quotient G, Swan(V ) is also independent, as we mentioned in remark 3.21.
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4 Geometry

General references for this part are [SGA1], [SGA4] and [SGA4.5].

4.1 �Etale fundamental group

Here we recall the construction of the �etale fundamental group and some of its
properties. We assume that the reader is familiar with this topic, but we still give
some de�nitions and state some propositions for the sake of unity.

4.1.1 �Etale morphisms

In order to de�ne the �etale fundamental group, we proceed as in algebraic topology,
where we can de�ne the the fundamental group via the covering maps. Finite �etale
morphisms will play the role of �nite covering maps, and this will be our starting
point. First we give the local de�nition:

De�nition 4.1. Let A be a ring (commutative and with 1, as always). An A-
algebra B is said to be �etale if B is �nitely presented as an A-algebra, and one of
the following equivalent conditions holds:

1. B is at as an A-module and it is unrami�ed, i.e. for each prime ideal q �
B over p � A, the natural map k(p) = Ap=pAp ! Bq=pBq is a separable
extension of �elds.

2. If B = A[x1; : : : ; xn]=I is a presentation of B, then for all prime ideals p �
A[x1; : : : ; xn] with p � I, there exist polynomials f1; : : : ; fn 2 I such that

Ip = (f1; : : : ; fn) � A[x1; : : : ; xn]p

and

det

�
@fi
@xj

�
i;j

=2 p:

And now we give the global de�nition:

De�nition 4.2. A morphism of schemes f : X ! Y is �etale if for any point
x 2 X with image y = f(x), there exist open neighborhoods x 2 V = Spec(B) and
y 2 U = Spec(A) such that the induced restriction map A ! B makes B into an
�etale A-algebra.

Example 4.3. 1. Isomorphisms are �etale. More generally, open immersions are
�etale because they are local isomorphisms.

2. 0-dimensional case: let k be a �eld, and B a k-algebra. Then B is �etale over
k if and only if B is isomorphic to a �nite product of �nite separable �eld
extensions Li=k, i.e. B =

Q
Li.
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3. 1-dimensional arithmetic example: let A be a Dedekind domain with fraction
�eld K, and L=K a �nite �eld extension with ring of integers B. Then the
A-algebra B is �etale if and only if B is at over A and unrami�ed. Every such
extension is at (because A is a Dedekind domain, so being at is the same as
being torsion-free), so B is �etale over A if and only if L=K is unrami�ed.

4. 1-dimensional geometric example: consider the C-morphism Spec(C[y; y�1])!
Spec(C[x; x�1]) associated to x 7! y2. Then, with the notation of the de�ni-
tion, A = C[x; x�1] and the A-module structure on B induced by the morphism
is isomorphic to C[x; x�1][z]=(f), where f(z) = z2�x. Here, of course, z plays
the role of y, and we don't write y just to make explicit that the isomorphism

is not canonical (z may be y or �y). Now, @f
@z

= 2z, which doesn't lie in any

p � C[x; x�1][z] containing (z2 � x) because those prime ideals p correspond
to the prime ideals in the quotient, but in the quotient, 2z is a unit and hence
can't be in any prime ideal. Therefore the morphism is �etale.

5. One can similarly prove that the morphism

Spec(Q(i)[s; s�1])! Spec(Q(i)[t; t�1])

corresponding to t 7! s4 is �etale. We will develop this example later.
�Etale morphisms satisfy the following nice properties:

Proposition 4.4. �Etale morphisms are stable under base change, composition and
�bered products.

For a proof, see for example [Liu02, Prop. 4.3.22]. We said that �etale morphisms
will play the role of �nite covering maps. Recall that for covering spaces we have
this proposition:

Proposition 4.5. Consider the diagram

X Y

S;

g

f

p

where S is a locally connected topological space, p : Y ! S is a cover, X a connected
topological space, and f; g : X ! Y two continuous maps such that p � f = p � g. If
there is a point x 2 X such that f(x) = g(x), then f = g.

For a proof and the de�nitions, see for example [Sza09, Prop. 2.2.2]. Now, we have
the analogous property for �etale morphisms:

Proposition 4.6. Consider the diagram

X Y

S;

g

f

p
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where S is connected, p : Y ! S is separated and �etale, and f; g : X ! Y are
two morphisms of schemes such that p � f = p � g. If there is a point x 2 X such
that f(x) = g(x) (not just topologically, but in the sense that the embeddings in the
residue �elds are the same), then f = g.

For a proof, check [Sza09, Cor. 5.3.3] or, if we further assume that everything is
locally noetherian, [SGA1, Exp. I, Cor. 5.4].

4.1.2 De�nition of ��et
1 (X; x) and �rst properties

Now we want to de�ne the �etale fundamental group of a connected (not necessarily
noetherian) scheme X. Let x : Spec(
)! X be a geometric point (i.e. a morphism
with 
 an algebraically closed �eld), and consider the �bre functor Fibx from the
category of �etale coverings of X (i.e. �nite �etale morphisms over X) to the category
of �nite sets given by

Fibx : (Y ! X) 7! HomX(Spec(
); Y ):

Note that we can identify HomX(Spec(
); Y ) with the �nite set underlying the
geometric �bre Yx := Y �X Spec(
).

De�nition 4.7. Let X be a connected scheme, and x a geometric point. The
(�etale) fundamental group of X with respect to x, denoted ��et

1 (X; x), is by de�nition
��et
1 (X; x) := Aut(Fibx).

Recall that an automorphism of a functor F : C ! C 0 is a compatible collection
of isomorphisms f�C : F (C)! F (C); �C is an isomorphism in C 0j 8C 2 Cg.

In our case, C 0 is the category of sets, so for every �nite �etale map Y ! X,
the isomorphisms �Y are just permutations of Fibx(Y ). Therefore our compatible
collection forms a projective system (all the axioms are automatically ful�lled) of
groups which are �nite, since from proposition 4.6 it is not di�cult to see that each
set Fibx(Y ) is �nite, which implies that its group of permutations stays �nite. The
projective limit of this projective system is precisely ��et

1 (X; x), so it is a pro�nite
group.

Remark 4.8. 1. In [SGA1], Grothendieck assumes that X is noetherian, but it is
not necessary: c.f. [Sza09, Def. 5.4.1] for example.

2. We don't need that X is connected, but we impose the condition because in
this way, the isomorphism class of ��et

1 (X; x) doesn't depend on the geometric
point (c.f. [Sza09, Prop. 5.5.1 and Cor. 5.5.2]).

Example 4.9. 1. If X := Spec(Q), then a geometric point x : Spec(
)! Spec(Q)
corresponds with and embedding Q ,! 
, and the �etale coverings correspond
with the �nite �eld extensions K=Q (because Q is perfect and therefore all its
�nite extensions are separable).

If we consider Q ,! Q( 3
p
2), then Fibx(Spec(Q(

3
p
2))) = HomQ(Q(

3
p
2);
) can

be identi�ed with the three roots of T 3�2 in 
. Note that since Q( 3
p
2) is a 3-

dimensional vector space over Q, then Yx = Spec(Q( 3
p
2)) �Spec(Q) Spec(
) =
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F3
i=1 Spec(
): Hence, as sets, they are isomorphic (i.e. they have the same

cardinality).

Finally, to give an automorphism of Fibx is the same as giving a compatible
collection of isomorphisms of �nite �eld extensionsK=Q for all �nite extensions
K. Since they are compatible, they glue to an isomorphism of the algebraic
closure Q induced by Q ,! 
. In other words,

��et
1 (Spec(Q); x) = Aut(Fibx) �= lim

 �
K=Q �nite

AutQ(K) = Gal(Q=Q):

2. The same argument works in general: the fundamental group of any �eld k
is isomorphic to its absolute Galois group, i.e. ��et

1 (Spec(k); x)
�= Gal(ksep=k),

where ksep is the separable of k with respect to x.

In the case of the �elds, we know that any element in Gal(ksep=k) can be deter-
mined by the Galois extensions of k contained in ksep, i.e. we have

��et
1 (Spec(k); x)

�= Gal(ksep=k) = lim
 �

ksep=k0=k
�nite separable

Autk(k
0) = lim

 �
ksep=k0=k

�nite Galois

Autk(k
0);

so instead of looking at all the �nite separable extensions of k, it is enough to study
the �nite Galois extensions. This makes the computations easier. In general, we
can do the same, but �rst we need to introduce the notion of Galois covering.

De�nition 4.10. Let Y ! X be a �nite �etale covering. We say that this is a
Galois covering if (i) Y is connected and (ii) AutX(Y ) acts on Fibx(Y ) transitively.
If Y ! X is Galois, then we call AutX(Y ) the Galois group of Y ! X and we
denote it GY .

Remark 4.11. 1. Note that AutX(Y ) acts transitively on Fibx(Y ) if and only if
jAutX(Y )j = deg(Y=X).

2. If Y ! X corresponds to a �nite separable �eld extension L=K, then the
covering is Galois if and only if L=K is Galois.

3. If Y ! X is a Galois cover, with both Y;X irreducible varieties over a �eld
k, then the �nite �eld extension K(Y )=K(X) is Galois. The converse, in
general, is not true, because there can be some rami�cation in the extension
K(Y )=K(X) (and therefore the morphism Y ! X would not be �etale). How-
ever, we can �x this by imposing the rami�cation condition: Y ! X is a
Galois cover if and only if K(Y )=K(X) is a �nite Galois extension (this im-
plies that Y ! X is �nite and at) which is unrami�ed for all the valuations
in OX(X).

In the following example, which continues the last part of example 4.3, we com-
pute explicitly that the extension is Galois.
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Example 4.12. Consider the �nite surjective �etale morphism

Y := Spec(Q(i)[s; s�1])

X := Spec(Q(i)[t; t�1])

f

corresponding to t 7! s4. We know that Y is connected, so in order to show that
this is a Galois covering we just need to show that given a geometric point x, the
group AutX(Y ) acts on Fibx(Y ) transitively. Consider the geometric point

x : Spec(Q)! Spec(Q(i)[t; t�1])

given by the evaluation t 7! �1. On the ring level, we have so far this setting:

Q(i)[s; s�1] s4

Q Q(i)[t; t�1] �1 t

and now we want to lift the geometric point x, which means giving a diagonal
arrow such that the diagram commutes. This means that s4 7! �1, so the image
of s must be an 8th-primitive root of 1, i.e. s 7! f�8; �38 ; �58 ; �78g. This gives us
Fibx(Y ) = HomX(Spec(Q); Y ), which consists on the geometric points xY;j, for
j = 0; : : : ; 3.

The group GY := AutX(Y ) is given by the � : Y ! Y such that f � � = f . On
the ring level, this means that �� : Q(i)[s; s�1] ! Q(i)[s; s�1] has to map s4 7! s4,
so the only possibilities are s 7! fs;�s; is;�isg. In particular, GY

�= Z=4Z, where
the isomorphism is given by �xing a generator of GY , for example �

�
0 : s 7! is.

Finally, we see that the action of AutX(Y ) on Fibx(Y ) is transitive. This is easy,
because (x�Y;0 � (��0)j)(s) = �2j+1

8 = x�Y;j(s) for j = 0; : : : ; 3, and similarly with the
other geometric points.

Alternatively, we can use the remark to conclude directly that the covering is
Galois, since jAutX(Y )j = 4 = deg(Y=X).

In the case of �elds, given a �nite separable extension K 0=K, we know that there
exists a Galois closure L=K 0=K. The following proposition is a generalization in our
case of study:

Proposition 4.13. Let f : Y ! X be a connected �etale cover. Then, there is a
morphism � : P ! Y such that f � � : P ! X is a Galois cover. Moreover, if
P 0 ! X is another Galois cover factoring through Y ! X, then it factors through
P ! X:

P 0 P

Y

X

9

�

f
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A proof can be found in [Sza09, Prop. 5.3.9].
In the de�nition of a Galois covering we impose the connectivity condition be-

cause it allows us to use proposition 4.6. The idea is the following: �rst we choose
a geometric point x : Spec(
) ! X, and then for any P� Galois covering of X, we
choose a lift of the geometric point, say p� 2 HomX(Spec(
); P�). Then, the pre-
vious proposition tells us that this system is directed, and by proposition 4.6 there
is at most one map between ��;� : P� ! P�. Then, we have a projective system of
Galois coverings (P�; ��;�). This projective system contains the information of the
�etale fundamental group:

Proposition 4.14. With the notation above,

��et
1 (X; x)

�= lim
 �

AutX(P�)
op:

Check [Sza09, Cor. 5.4.8] for a proof.

Example 4.15. Let Y ! X be a Galois covering of irreducible varieties, as in remark
4.11, part 3. Then, this proposition tells us that there is an isomorphism

Gal(K(X)unr=K(X)) �= ��et
1 (X; �);

where K(X)unr is the biggest extension of K(X) in K(X)sep which is unrami�ed for
all the valuations in OX(X).

The �etale fundamental group ��et
1 (X; x) encodes all the information of the �nite

�etale covers of X, as we can see in the following deep theorem by Grothendieck:

Theorem 4.16. Let X be a connected scheme, and let x : Spec(
) ! X be a
geometric point. The functor Fibx induces an equivalence between the category of
�nite �etale covers of X and the category of �nite sets with a continuous left-action
of ��et

1 (X; x).

Note that we don't assume that X is locally noetherian. A proof can be found in
[Sza09, Thm. 5.4.2].

We conclude the section with a few more properties about the �etale fundamental
group. The proofs are in [KR15, Prop. 6.8], [Sza09, Prop. 5.6.1] and [SGA1, Exp.
XII, Cor. 5.2]:

Proposition 4.17 (Functoriality). If f : X 0 ! X is a morphism of noetherian
connected schemes, and x0 : Spec(
) ! X 0 a geometric point, then f induces a
continuous homomorphism of groups

��et
1 (X

0; x0)! ��et
1 (X; fx

0):

Theorem 4.18 (Homotopy exact sequence). Let X be a quasi-compact and geomet-
rically integral scheme over a �eld k. Let x : Spec(
) ! X be a geometric point,
which induces the extensions k=ksep=k. Then the exact sequence

1! ��et
1 (Xksep ; x)! ��et

1 (X; x)! Gal(ksep=k)! 1

induced by the maps Xksep ! X and X ! Spec(k) is exact (note that here we abuse
a little bit the notation, since we denote by x both the geometric point of X and the
geometric point induced in Xksep).
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Theorem 4.19 (Comparison). Let X be a connected scheme of �nite type over C.
The functor (Y ! X) 7! (Y an ! Xan) induces an equivalence of the category of
�nite �etale covers of X with the category of �nite topological covers of Xan. Conse-
quently, for every C-point x : Spec(C)! X, this functor induces an isomorphism

�top1 (Xan; x)^ �= ��et
1 (X; x);

where the left-hand side is the pro�nite completion of the topological fundamental
group of Xan with base point the image of x.

4.2 Cohomology of `-adic sheaves

The aim of this master thesis is to understand the Grothendieck-Ogg-Shafarevich
formula, which measures the wild rami�cation of an `-adic sheaf on a curve and
puts it in term of the Euler characteristic of the curve and of the `-adic sheaf. This
sentence is still too vague because we haven't de�ned yet what an `-adic sheaf, or
its wild rami�cation or even its Euler characteristic is. Hence, we need to describe
what are `-adic sheaves. In this section we assume that our schemes are separated
and noetherian.

4.2.1 �Etale cohomology

Let (�et=X) be the category of �etale X-schemes with morphisms over X. �Etale cover-
ings de�ne a Grothendieck topology on this category (c.f. the beautiful description
in [Mum63, x1] or the more detailed approach in [Mil80, II. x1]). Recall that if
A is a ring, an �etale presheaf of A-modules on X is just a contravariant functor
F : (�et=X)! (A-mod), and an �etale sheaf is a presheaf that satis�es the sheaf ax-
ioms with respect to the mentioned Grothendieck topology. We denote the category
of �etale sheaves over X by X�et.

If x : Spec(
)! X is a geometric point, then the stalk of F at x is

Fx := lim
�!

Spec(
)!U

F(U);

where the limit is taken over the �etale neighbourhoods of x (indeed we can choose
a representative U for each isomorphism class to avoid set theoretical problems),
i.e. all the lifts of x to a �nite �etale covering U ! X. If we assume that X is
connected, then the map F 7! Fx de�nes an equivalence between the category of
locally constant sheaves of sets (resp. abelian groups) with �nite stalks on X and
the category of �nite ��et

1 (X; x)-sets (resp. �
�et
1 (X; x)-modules). For a proof of this,

see for example [Mil13, Prop. I.6.16].

Example 4.20. 1. If M is an A-module, the constant sheaf MX is given by U 7!
M�0(U).

2. The sheaf Ga;X is given by U 7! �(U;Ga(U)) = �(U;OU). It is easy to see
that it is indeed a sheaf, c.f. [KR15, Ex. 7.3, (b)].

3. The sheaf Gm;X is given by U 7! �(U;Gm(U)) = �(U;OU)�.
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4. The sheaf �n;X is given by the kernel of the multiplication by n on Gm;X . If n
is invertible in the ring R and the polynomial tn � 1 decomposes in R[t], then
for any X an R-scheme we have a non-canonical isomorphism �n;X �= (Z=nZ)X
on X�et (c.f. [KR15, Ex. 7.3 (d)]).

Now we want to briey introduce the notion of direct and inverse image in this
setting. Let � : X ! Y be a morphism of schemes, and F a sheaf of A-modules on
X�et:

F

X Y:

Then we obtain the direct image of F under � on Y�et, denoted ��F , via ��F(V ) :=
F(V �Y X) for any �etale morphism V ! Y in (�et=Y ). This de�nition of �� de�nes
a left exact functor from the category of A-modules on X�et to the category of A-
modules on Y�et.

Now, if we have a sheaf G in Y�et,

G

X Y;

we want to de�ne an inverse image of G under �, ��G. This turns out to be the
left adjoint5 of ��, i.e. HomX�et

(��G;F) �= HomY�et(G; ��F). More concretely, if x is
a geometric point of X, then we have that (��G)x = G(��x). In particular, �� is an
exact functor. Sometimes we use the restriction notation GjX := ��G, because if �
itself is �etale, then ��G coincides with the restriction of G to the category (�et=X).
This allows us to de�ne the notion of locally constant sheaf:

De�nition 4.21. Let M be an A-module. An �etale sheaf F of A-modules on X is
said to be locally constant with stalk M if there exists a family fui : Ui ! Xg of
�etale morphisms with

S
ui(Ui) = X such that FjUi =MUi for all i.

We introduce one more functor, the extension by zero. Given j : U ,! X an
open immersion and denoting i : Z ,! X the closed immersion of the complement,
we de�ne the extension by zero of a sheaf of A-modules F on U by

j!F := ker(j�F ! i�i
�j�F);

where the morphism comes from the right adjoint of the identity morphism

id : i�j�F ! i�j�F
via the adjunction formula. Locally, if x is a geometric point of X, this is just

(j!F)x =
� Fx if im(x) 2 U;

0 if im(x) 2 Z:
5The existence of such a left adjoint is a standard result in category theory: one can check

[Mil80, Prop. II.2.2], which is proven in [HS71, Thm IX.5.1].
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In particular, j! is an exact functor from the category of A-modules on U�et to the
category of A-modules on X�et. We also have that it is left adjoint to j�, i.e. that
there exists a functorial isomorphism HomX�et

(j!F ;G) �= HomU�et
(F ; j�G).

Remark 4.22. The category of A-modules on X�et is abelian. For this, check [Stacks,
Tag 03D9], where the ringed site is given in our case by the site X�et and we take
as the sheaf of rings the constant sheaf associated to A. Moreover, it has enough
injectives: check [Stacks, Tag 01DU]. Hence, we are able to de�ne higher direct
images of of sheaves (and in particular, cohomology).

De�nition 4.23. Let k be a perfect �eld, and f : X ! Y a k-morphism between
schemes of �nite type over k. Let F be a sheaf of A-modules on X�et, and let F ! I�
be an injective resolution. Then, the i-th higher direct image of F under f is the
i-th right derived functor of f�:

Rif�F := H i(f�I�):

Let's choose a compacti�cation of f (using Nagata's theorem, c.f. [L�ut93, Thm.

3.2]), i.e. a proper morphism ef : eX ! Y together with a dominant open immersion

j : X ,! eX such that f = ef � j. Then, we de�ne
Rif!F := Ri ef�j!F :

Remark 4.24. If k is an algebraically closed �eld and � : X ! Spec(k) is the
structure morphism ofX, then Ri��F coincides with the i-th right derived functor of
the global section functor �(X�et;�), i.e. Ri��F = Ri(�(X�et;�))F . This motivates
the following de�nition:

De�nition 4.25. Let k be an algebraically closed �eld, X a k-scheme and F a sheaf
of A-modules on X. We de�ne the �etale cohomology as

H i(X�et;F) := Ri��F ;

and the �etale cohomology with compact support, given by

H i
c(X�et;F) := H i( eX0et; j!F) = Ri�!F :

Remark 4.26. �Etale cohomology works nicely when A is assumed to be a torsion
ring. For example, if X is a nonsingular variety over C, we have the isomorphism

H i(X�et; (Z=nZ)X) �= H i
sing(X

an;Z=nZ);

where in the right hand side we consider the singular cohomology of X considered
as a complex manifold with coe�cients in Z=nZ (c.f. [Mil13, Thm. 21.1]). But this
is no longer true if we consider, for example, A = Z` = lim

 
Z=`nZ (c.f. [FK88, I.

x12]. Nonetheless, we have the following isomorphism:

lim
 �
n

H i(X�et; (Z=`
nZ)X) �= H i

sing(X
an;Z`):
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This motivates us to look not just to sheaves, but to projective systems of sheaves.
We make this precise when we de�ne the notion of constructible Z`-, Q`- and Q`-
sheaf, see de�nition 4.29 and the next ones below, and will lead us to the de�nition of
`-adic cohomology, which is a projective limit of �etale cohomology. Recently, Bhatt
and Scholze developed in [BS15] the notion of pro-�etale topology for schemes, which
is a new site that allows to de�ne the pro-�etale cohomology. With this cohomology,
we have the isomorphism

H i(Xpro�et; (Q`)X) �= H i
sing(X

an;Q`);

but we will not follow this recent development and we will just stick to the classical
setting.

4.2.2 Constructible sheaves and `-adic cohomology

In this section we extend the notion of �etale sheaf.

De�nition 4.27. Let A be a noetherian ring which is torsion (i.e. mA = 0 for
some m > 0) and F a sheaf of A-modules on X�et. Then we say that F is con-
structible if there exist �nite type A-modules M1; : : : ;Mn and locally closed subsets
X1; : : : ; Xn � X such that

� The scheme X is a disjoint union of the Xi, i.e. X =
F
iXi.

� The restrictions FjXi
are locally constant with stalks Mi.

Remark 4.28. The notion of constructible sheaf generalizes the notion of locally
constant sheaf. We do this generalization because in this way, the pullback of a
constructible sheaf is again constructible (because this is still true for locally constant
sheaves: if we consider the pullback of MY along the morphism � : X ! Y , we
obtain ��MY =MX , c.f. [KR15, Ex. 7.4]), and more distinctively, the pushforward
under a proper morphism of a constructible sheaf is again constructible (c.f. [SGA4,
Exp. XIV, Thm. 1.1]), something which is not true for locally constant sheaves (c.f.
[KR15, Ex. 7.4]).

De�nition 4.29. Let X be a scheme, and R a complete local discrete valuation
ring with maximal ideal m with residue �eld of characteristic ` > 0.

1. A constructible R-sheaf onX is a projective system of R-modules F = (Fn)n�1
on X�et such that:

� Each Fn is a constructible R=mn-module on X�et such that mn � Fn = 0.

� For all n � 1, Fn = Fn+1 
R=mn+1 R=mn.

2. A lisse R-sheaf on X is a constructible R-sheaf F = (Fn) such that each Fn
is a locally constant sheaf of R=mn-modules.

Example 4.30. 1. Let R = Z`. The projective system given by (Z=`n)X for each
n gives us a lisse Z`-sheaf. We write Z`;X := ((Z=`n)X)n, and we call it the
constant lisse Z`-sheaf. This shouldn't be confused with the constant sheaf
(Z`)X . If X is a scheme over a ring containing all `n-roots of unity, and there
are precisely `n of them, this sheaf coincides with Z`(1) := (�`n;X)n.
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2. Let R be as in the de�nition, let n0 be a natural number and F a locally
constant sheaf of �nitely generated R=mn0-modules on X�et. Then we see it as
a lisse R-sheaf by de�ning Fn := F for n � n0, and Fn := F 
R=mn0 R=mn for
n < n0.

Note that given two constructible R-sheaves F = (Fn) and G = (Gn), we have a
morphism

Hom(Fn+1;Gn+1)! Hom(Fn;Gn) : ' 7! '
R=mn;

so we can take the projective limit in order to de�ne morphisms between con-
structible R-sheaves:

Hom(F ;G) := lim
 

Hom(Fn;Gn):
This makes the category of constructible sheaves abelian (c.f. [SGA5, V, Thm.
5.2.3]).

Remark 4.31. We have de�ned constructible R-sheaves for R a complete discrete
valuation ring, but we will need di�erent coe�cient rings when we work with co-
homology. Hence, we are going to de�ne the notion of constructible E-sheaf, with
E=Q` a �nite �eld extension, and constructible Q`-sheaves in a similar way.

De�nition 4.32. Let X be a scheme and ` an invertible prime on X, and �x an
algebraic closure Q` of Q`.

� A constructible E-sheaf, where E=Q` is a �nite �eld extension, is a con-
structible OE-sheaf F , but we denote it like F 
OE E. The reason for this is
because we de�ne the morphisms to be

Hom(F 
OE E;G 
OE E) := Hom(F ;G)
OE E;

which means that we identify to morphisms if both are equal after localizing
with respect to �
OE E.
We say that a constructible E-sheaf F 
 E is lisse if there exists an �etale
covering fUi ! Xg and lisse OE-sheaves Fi on Ui such that FjUi
E �= Fi
E.
� A constructible Q`-sheaf is an object of the category which consists of the
colimit of the categories of constructible E-sheaves for all the �nite extensions
E=Q`. More precisely, if we have two �nite �eld extensions E 0=E=Q`, there is
a natural functor from the category of constructible E-sheaves to the category
of constructible E 0-sheaves, given by

F 
OE E 7! (F 
OE E)
E E 0 = F 
OE0 E 0;

and therefore we can take the inductive 2-colimit. This 2-colimit is the cate-
gory of constructible Q`-sheaves.

Finally, lisse Q`-sheaves are those which �etale locally are of the form F 
EQ`,
with F a lisse E-sheaf.
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Convention 4.33. We will say that A is an `-adic coe�cient ring if it is either Q`,
a �nite extension E of Q`, or equal to OE or OE=mn for some n � 1. In this way,
in the above setting we can talk about constructible A-sheaves. Note that we can
write any constructible A-sheaf as (Fn)
OE A for some �nite �eld extension E=Q`

and (Fn) a constructible OE-sheaf.
Before de�ning the `-adic cohomology, let's extend the de�nitions of the push-

forward of a sheaf and of constant sheaf for an arbitrary `-adic coe�cient ring A:

De�nition 4.34. Let F = (Fn)
OE A be a constructible A-sheaf over X, and let
� : X ! Y be a proper morphism. Then ��F := (��Fn)
OE A.
Remark 4.35. The pushforward of a constructible sheaf under a proper morphism
is again constructible.

De�nition 4.36. Let A be an `-adic coe�cient ring, X a scheme as before such
that ` is invertible on X. Let F = (Fn)
OE A be a lisse A-sheaf, with E=Q` �nite.

1. If A = OE, then we say that F is constant if there exists a �nitely generated
OE-module V such that (Fn) �= ((V 
OE OE=mn)X) as projective systems. In
this case, we write F = VX .

2. If A = E, we say that F is constant if there is a �nite dimensional vector
space V over E and an OE-lattice V � V such that F = VX 
OE E as before.
Note that as an E-sheaf, it only depends on V up to isomorphism, so we write
F = VX .

3. If A = Q`, we say that F is constant if we can write it as F = (VE)X
EQ`. It
is again independent of all the choices up to isomorphism, so we write F = VX .

De�nition 4.37. Let X be a separated k-scheme of �nite type, where k is an
algebraically closed �eld of characteristic p � 0, and let A be an `-adic coe�cient ring
(with ` 6= p). Let F be a constructible A-sheaf onX�et, so that we can �nd a complete
discrete valuation ring OE such that A is an OE-algebra and F = (Fn)
OE A, with
(Fn) a constructible OE-sheaf. Then, we de�ne the i-th �etale cohomology group of
F as

H i(X�et;F) :=
�
lim
 
H i(X�et;Fn)

�

OE A;

where each H i(X�et;Fn) is an OE=mn-module, so the group H i(X�et;Fn) is the one
from de�nition 4.25. Similarly, we de�ne the cohomology groups with compact
support of a constructible A-sheaf F as

H i
c(X�et;F) :=

�
lim
 
H i
c(X�et;Fn)

�

OE A:

This de�nition is independent of the choice of the complete discrete valuation ring
OE and the constructible OE-sheaf (Fn) (c.f. [SGA5, pp. VI, 2.2]).
Remark 4.38. With this de�nition, in the situation of remark 4.26, we get the iso-
morphism

H i(X�et;Z`;X) �= H i
sing(X

an;Z`):
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4.2.3 Some properties of `-adic cohomology

Here we list some more de�nitions, properties and theorems of `-adic cohomology
that we will use later. As usual, schemes are still assumed to be separated and of
�nite type over a �eld k.

Remark 4.39. Let k be an algebraically closed �eld, f : X ! Y a morphism of
k-schemes, A an `-adic coe�cient ring and F a constructible A-sheaf on X�et.

1. The A-modules H i(X�et;F) and H i
c(X�et;F) are �nitely generated (c.f. [SGA5,

Expos�ee VI, 2.2] or [Fu11, Thm. 9.5.2]).

2. A short exact sequence 0 ! F 0 ! F ! F 00 ! 0 of constructible A-sheaves
induces a long exact sequence of cohomology

� � � ! H i(X�et;F)! H i(X�et;F 00)! H i+1(X�et;F 0)! � � � ;

and the same holds true if we replace H i by H i
c (c.f. [KR15, Par. 8.1.2]).

3. If f : X ! Y is �nite, then H i(X�et;F) = H i(Y�et; f�F) (c.f. [op. cit.]).
4. Assume that X is proper, j : U ,! X an open embedding with complement
i : Z ,! X. Then there is a long exact sequence

� � � ! H i
c(U�et; j

�F)! H i(X�et;F)! H i(Z�et; i
�F)! H i+1

c (U�et; j
�F)! � � � ;

which is induced, if we write F = (Fn) 
OE A, by the exact sequences 0 !
j!j
�Fn ! Fn ! i�i

�Fn ! 0 (c.f. [op. cit.]).

5. If X is a�ne, then H i(X�et;F) = 0 for all i > dimX, see [SGA4, XIV, Cor.
3.2].

6. In general, if X has pure dimension d, H i(X�et;F) = 0 for i > 2 dimX (see
[SGA4, X, Cor. 4.3]).

De�nition 4.40. Let X be a proper separated scheme over an algebraically closed
�eld k, and let j : U ,! X be an open subset of X with complement i : Z ,! X.
Let F be a constructible A-sheaf, where A is an `-adic coe�cient ring.

� If A is a �nite `-adic coe�cient ring (think of OE=mn, with n � 1), we de�ne
the cohomology with support on Z as follows: let j�F ! j�F be the identity
morphism, which corresponds via the adjunction formula to F ! j�j

�F , and
now we pullback this morphism to Z so we obtain i�F ! i�j�j

�F . De�ne

i!F := ker(i�F ! i�j�j
�F);

which de�nes a left exact functor �Z(X�et;F) := �(Z�et; i
!F). Then, the coho-

mology with support in Z is de�ned as

H i
Z(X�et;F) := Ri�Z(X�et;F):
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� If A is a general `-adic coe�cient ring, the we write F = (Fn)
OE A and set

H i
Z(X�et;F) :=

�
lim
 
H i
Z(X�et;Fn)

�

OE A:

Remark 4.41. In the same setting as in the de�nition, we have an exact sequence

� � � ! H i(X�et;F)! H i(U�et;FjU)! H i+1
Z (X�et;F)! � � � ;

see [KR15, Par. 8.1.2].

Recall that we de�ned in example 4.20 the sheaf �`n;X on X�et, and now we want
to use it in order to de�ne the Tate twist of a constructible sheaf.

De�nition 4.42. Let X be a scheme, and de�ne, for i � 0, the sheaf Z=`n(i) on
X�et given by

U 7! �`n;X(U)
Z=`n � � � 
Z=`n �`n(U);
and for i < 0, we have that the sheaf Z=`n(i) is given by

U 7! HomU(Z=`
n(�i)jU ;Z=`njU):

Now, if A is an `-adic coe�cient ring and F a constructible sheaf, then he i-th Tate
twist of F , F(i), is de�ned as follows: we write F = (Fn) 
OE A, where OE is a
complete discrete valuation ring �nite over Z` and (Fn) is a constructible OE-sheaf.
The Fn are not just OE=mn-modules, but also Z=`n-modules on X�et. Hence, we
de�ne Fn(i);U 7! Fn(U)
Z=`n Z=`n(i)(U), and

F(i) := (Fn(i))
OE A:

This de�nition doesn't depend on the choices.

Remark 4.43. 1. If F is lisse, so is F(i).
2. We have F(i)(j) = F(i+ j).

De�nition 4.44. If F is a constructible A-sheaf for some `-adic coe�cient ring A,
then we de�ne the dual of F , denoted F_, as follows: �rst we write F = (Fn)
OE A
as usual, and then F_ := (Hom(Fn;OE=mn))
OE A. Here Hom(Fn;OE=mn) plays
the role of F_n , and as usual (F_n ) denotes the limit.
Theorem 4.45 (Poincar�e duality). Let X be a smooth k-scheme of pure dimension
d, k a perfect �eld of characteristic p � 0 and k an algebraic closure of k. Let ` 6= p,
A an `-adic coe�cient ring and F a lisse A-sheaf. Then for all i 2 Z, there is a
natural (i.e. functorial in F) and Gal(k=k)-equivariant isomorphism

H2d�i((X 
k k)�et;F_(d))! H i
c((X 
k k)�et;F)_;

where H i
c((X 
k k)�et;F)_ := HomA(H

i
c((X 
k k)�et;F); A).

A proof can be found on [Fu11, Cor. 8.5.3], [KR15, Thm 8.4] or [Mil13, Thm. 24.1].
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De�nition 4.46. Let X be an (as usual, separated of �nite type) smooth k-scheme,
and let f : X ! X be a k-morphism. Let �f be the graph of f and �X the diagonal.
Then, the degree of the intersection product �f ��X is

(�f ��X) :=
X

x2�f\�X

length(OX;x=If );

where If � OX;x is the ideal generated by the elements a� f �(a) in OX;x (note that
if x 2 �f \�X , f induces an endomorphism of OX;x).
Theorem 4.47 (Lefschetz trace formula). Let X be a smooth projective scheme
over an algebraically closed �eld k of characteristic p > 0, and let ` 6= p be a prime
number. Let f : X ! X be a k-morphism, and assume that the intersection scheme
�f \ �X is either empty or zero dimensional (i.e. �f and �X intersect properly).
Then,

(�f ��X) =
X
i

(�1)iTr(f �jH i(X�et;Q`)):

A proof can be found in [SGA4.5, Cycle, Cor. 3.7].

De�nition 4.48. We say that a group G acts on a scheme X if there exists a group
homomorphism G! Aut(X). We say that G acts admissibly on X if X is a union
of open a�nes U = Spec(A) such that the action of G restricts to an action on U .

Remark 4.49. If G is �nite and X is a quasi-projective scheme over an a�ne scheme,
then G acts admissibly (c.f. [SGA1, V, Prop. 3.1]).

If G acts admissibly on X, then we can form the quotient � : X ! X=G by
glueing the schemes U=G := Spec(AG). Then, Hom(X; Y )G = Hom(X=G; Y ) for all
schemes Y .

De�nition 4.50. Let G be a �nite group acting admissibly on X, and let F be a
sheaf of A-modules in X�et together with morphisms

F(�) : F ! ��F ; � 2 G
such that F(1G) = idF and F(��) = � �(F(�)) � F(�). Then we say that F is a
sheaf with G-action on X.

Remark 4.51. If � : X ! X=G as above, then by the adjunction formula we have
morphisms ��F ! F , and we can push forward in order to obtain ����F ! ��F .
But note that � �� = �, so if we equip X=G with the trivial action of G, we get that
G acts on ��F . This allows us to de�ne the sheaf of G-invariant elements (��F)G
as follows:

De�nition 4.52. In the above situation, we de�ne the sheaf (��F)G on (X=G)�et,
whose sections for U ! X=G �etale are given by

(��F)G(U) = fa 2 F(U �X=G X)j F(�)(a) = a for all � 2 Gg:
We now extend the de�nition to constructible A-sheaves, where A is an `-adic coef-
�cient ring.
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De�nition 4.53. Let X be a scheme and ` an invertible prime on X, and let F be a
constructible A-sheaf on X, so we can write F = (Fn)
OE A for some constructible
OE-sheaf (Fn). Then, we say that a �nite group G (with the trivial action on
X) acts on F if we can choose (Fn) such that the Fn form a projective system of
OE[G]-modules. Then, we de�ne the sheaf of G-invariants FG by

FG := (FGn )
OE A:
Proposition 4.54. Let k be an algebraically closed �eld, X an integral k-scheme,
E=Q` a �nite extension and F a constructible E-sheaf on X. If there is a �nite
group G acting on F , then

H i(X�et;FG) = H i(X�et;F)G:
This is proved in [KR15, Lem. 8.8], for example.

4.3 Wild rami�cation of an `-adic sheaf

In this section, k will still be a perfect �eld of characteristic p, ` 6= p a di�erent
prime and A an `-adic coe�cient ring. In this section we want to de�ne the wild
rami�cation on a point x 2 X of an `-adic sheaf F , which is measured by a number
Swanx(F) that will appear in the Grothendieck-Ogg-Shafarevich formula. The idea
to de�ne this number is to relate lisse A-sheaves with representations of ��et

1 (X; �)
and then use the machinery already developed to talk about wild rami�cation.

Given a connected scheme X with a geometric point x, an `-adic coe�cient ring
A and a constructible A-sheaf F on X, we can �nd a complete discrete valuation
ring OE such that F = (Fn)
OE A. If x : Spec(
)! X is a geometric point, then

we de�ne the stalk of F at x as Fx :=
�
lim
 
Fn;x

�

OE A.

Remark 4.55. If F is a lisse sheaf, then Fx is a �nite type A-module. This comes
from the fact that F1;x is �nitely generated, and after lifting the system of generators
and tensoring with A, we are done, c.f. [KR15, p. 7.1.10].

We say the a lisse A-sheaf F is free if its stalks are free A-modules.

De�nition 4.56. Let M be a �nitely generated A-module (it will play the role of
Fx), which has the induced `-adic topology from A, and let X be a (separated,
noetherian) connected scheme with a geometric point x : Spec(
)! X. If A 6= Q`,
an A-representation of ��et

1 (X; x) is a continuous group homomorphism

��et
1 (X; x)! AutA(M):

If A = Q`, then a Q`-representation of ��et
1 (X; x) is a continuous group homomor-

phism �V : ��et
1 (X; x) ! AutQ`(V ) coming (via base change with � 
 Q`) from an

E-representation of ��et
1 (X; x), where E=Q` is a �nite extension.

Theorem 4.57. Let X be a connected scheme and x a geometric point. Let A be
an `-adic coe�cient ring. Then, the functor F  Fx induces a natural equivalence
of categories between

(lisse A-sheaves on X)! (A-representations of ��et
1 (X; x)):
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Furthermore, let � : X 0 ! X be a �nite Galois cover with Galois group G. Then,
the functor induces another equivalence between the subcategories

(lisse A-sheaves on X; constant on X 0)! (�nitely generated A[G]-modules):

In this case, the inverse is given by

(��MX0)G M:

The action of ��et
1 (X; x) on Fx is as follows: once we �x an inverse system of �nite

Galois coverings of X over x, denoted (P�; p�), then any element � 2 ��et
1 (X; x)

�=
lim
 �

Aut(P�)
op is the same as a compatible system of automorphisms of (P�; p�)

�xing x. Let U be an �etale neighbourhood of x. Then, for every �, we denote ��� :
F(P�) ! F(P�) the automorphism of the compatible system, and U� := U �X P�
the �ber product. Then we have

F(U) F(U�) F(U�) Fx;���jU�

which forms a compatible system, and taking the limit over all the �etale neighbour-
hoods U of x gives us the action �� : Fx ! Fx. A proof of this theorem can be
found in [KR15, Thm. 7.13].

Remark 4.58. In the situation of the second part of the theorem, recall that if A
is in�nite and M a �nitely generated A[G]-module, then there exists a complete
discrete valuation ring OE �nite over Z` and a �nitely generated OE-module N such
that M = N 
OE A. Then, M corresponds to�

(��NX0)G 
OE OE=mn
�
OE A M:

Now, we have all the tools to de�ne the wild rami�cation. In order to make
things easier, we are going to restrict now to the situation of the Grothendieck-Ogg-
Shafarevich formula and we will �x some notation:

� We will work with C a smooth proper and geometrically connected curve over
a perfect �eld k of characteristic p > 0, and U will be an a�ne open subset of
C (any non-trivial open subset will work).

� We �x ` 6= p a di�erent prime number.

� We denote K := k(C) the function �eld of C, and we �x an algebraic closure
K of K. Let � : Spec(K)! C be the generic point of C and � : Spec(K)! C
the geometric point corresponding to the chosen algebraic closure. We denote
by Ksep the separable closure of K in K.

� Given a closed point x 2 C, Kx will denote the completion of K with respect
to the valuation corresponding to x, and for every x we choose an embedding
�x : K

sep ,! Ksep
x over K. Here Ksep

x denotes a separable closure of Kx.
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� The absolute Galois group of K will be denoted by G := Gal(Ksep=K), and for
a closed point x 2 C we write Dx for the decomposition subgroup of G with
respect to �x, i.e. the image of the inclusion Gal(Ksep

x =Kx) ,! Gal(Ksep=K).
We denote by Px � Ix the wild inertia and inertia subgroup respectively.

De�nition 4.59. Let A be an `-adic coe�cient ring and F a free lisse A-module
on U . By theorem 4.57, F corresponds to a representation of ��et

1 (U; �), namely
F�. Since ��et

1 (U; �)
�= Gal(Kunr(U)=K(U)) (see example 4.15), there is a natural

surjection G! ��et
1 (U; �), so we obtain a G-action on F�

G! ��et
1 (U; �)! Aut(F�):

Since Px is a pro-p-group, lemma 3.18 tells us that the restriction of this action
factors over a �nite quotient of Px. Therefore we have a break decomposition of the
Px-representation F�, and we can de�ne its Swan conductor, denoted Swanx(F):
this is the wild rami�cation of F at the point x.

Remark 4.60. Here we state and recall some facts, c.f. section 3.2.2:

1. Although Px depends on the chosen embedding �x : K
sep ,! Ksep

x , Swanx(F)
doesn't, because a di�erent embedding leads to a conjugate in G, and then we
get isomorphic break decompositions.

2. If A! A0 is a homomorphism between `-adic coe�cient rings, then

Swanx(F) = Swanx(F 
A A0):

3. The wild rami�cation of F at a point x is a non-negative integer, i.e.

Swanx(F) 2 Z�0:

4. We can see ��et
1 (U; �) as the quotient of Gal(Ksep=K) by the smallest closed

normal subgroup containing Ix for all x 2 U , because we don't admit rami�ca-
tion on U . Hence, Ix (and in particular Px) acts trivially on F� for all x 2 U .
In particular, Swanx(F) = 0 for all x 2 U .

5. For any exact sequence of free lisse sheaves 0! F 0 ! F ! F 00 ! 0, we have
Swanx(F) = Swanx(F 0) + Swanx(F 00).

6. If x 2 C 
k k is a point above x 2 C, then Swanx
�FjU
kk� = Swanx(F) (c.f.

[KR15, Lem. 9.2]).

We are now in conditions to state the Grothendieck-Ogg-Shafarevich formula
and prove it.
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4.4 Grothendieck-Ogg-Shafarevich formula

In this section we also �x the situation and the notation of the previous section.
The Grothendieck-Ogg-Shafarevich formula measures the Euler characteristic of a
lisse Q`-sheaf on a curve U via its rank and its wild rami�cation. First, recall the
de�nition of the compactly supported Euler characteristic:

De�nition 4.61. Let F be a Q`-sheaf on U , and let U := U 
k k. The compactly
supported Euler characteristic of F is

�c(U;F) :=
2X
i=0

(�1)i dimH i
c(U �et;F);

where we abuse notation and write F instead of FjU .
Remark 4.62. Note that H0

c (U �et;F) = 0, since the extension by zero of F to the
compacti�cation C doesn't have any non-zero global section. The alternate sum
goes until 2 because of the vanishing theorems of �etale cohomology. Hence,

�c(U;F) = � dimQ`
H1
c (U �et;F) + dimQ`

H2
c (U �et;F):

Theorem 4.63 (Grothendieck-Ogg-Shafarevich formula). Let F be a lisse Q`-sheaf
on U . Then,

�c(U;F) = rk(F) � �c(U;Q`)�
X
x2CnU

[k(x) : k]Swanx(F):

We prove the theorem in several steps following the ideas of [KR15].

Step 1. It is enough to consider the case k = k. Indeed, given a closed point
x 2 C, the number of points x 2 C 
k k above x is precisely [k(x) : k]. Hence, since
Swanx(F) = Swanx(F),

�c(U;F) = rk(F) � �c(U;Q`)�
P

x2CnU

[k(x) : k]Swanx(F)

�c(U;F) = rk(F) � �c(U;Q`)�
P

x2CnU

Swanx(F);

so from now on we assume that k = k and we get rid o� the bars, i.e. we want to
prove

�c(U;F) = rk(F) � �c(U)�
X
x2CnU

Swanx(F);

where �c(U) := �c(U;Q`).
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Step 2. We want to change the `-adic coe�cient ring (until now, we are working
with a lisse Q`-sheaf) in order to use more tools, and for this we need to extend the
notion of compactly supported Euler characteristic for an arbitrary `-adic coe�cient
ring A. Given F , �rst we see that we can build in a functorial way a two term
complex of A-modules that will encode the cohomology of F , and we will use this
complex to de�ne the Euler characteristic.

Lemma 4.64. Recall that k = k. Let A be an `-adic coe�cient ring and F a lisse
A-sheaf on U . Then there is a functor from the category of lisse A-sheaves to the
category of complexes of A-modules

C(�) : F  C(F) := � � � ! 0! C1(F)! C2(F)! 0! � � �

with the following properties:

1. H i
c(U;F) = H i(C(F)) for all i.

2. If F is free, then Ci(F) is a free A-module of �nite rank.

3. The functor C(�) is exact.
4. If F is free and A ! A0 is a morphism of `-adic coe�cient rings, then we

have an isomorphism

C(F)
A A0 �= C(F 
A A0):

Proof. One de�nes the A-modules of the complex by choosing a closed point P 2 U
and setting C1(F) := H1((C n P )�et; (j!F)jCnP ) and C2(F) := H0(P�et; (j!F)(�1)jP ),
where j : U ,! C is the inclusion. One uses tools from �etale cohomology in order to
prove the theorem, check [KR15, Lem. 9.3] for the details.

Hence, we can extend the de�nition of the compactly supported Euler charac-
teristic of free lisse sheaves F to arbitrary `-adic coe�cient rings via

�c(U;F) := �rkA(C1(F)) + rkA(C
2(F));

and we have the following corollary:

Corollary 4.65. In the situation of the lemma, if we assume that F is a free lisse
A-sheaf, we have:

1. If H i
c(U�et;F) is a free A-module for i = 1; 2, then

�c(U;F) =
X
i

(�1)irkAH i
c(U�et;F):

2. If A! A0 is a morphism of `-adic coe�cient rings, then

�c(U;F) = �c(U;F 
A A0):
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3. If 0! F 0 ! F ! F 00 ! 0 is an exact sequence, then

�c(U;F) = �c(U;F 0) + �c(U;F 00):

Hence, going back to the formula that we want to prove, note that the lisse
Q`-sheaf F comes from a free OE-sheaf F 0, where OE is as usual the ring of integers
of a �nite �eld extension E=Q`, via F = (F 0 
OE E) 
E Q`. Hence, from remark
4.60, it is enough to prove the formula for A = F� the residue �eld of E and F
a lisse F�-sheaf. This is a reduction because now F corresponds to a continuous
homomorphism ��et

1 (U; �) ! GLrk(F)(F�), and the target is a �nite group. Let's see
how can we obtain bene�t from this in the next step:

Step 3. Now we describe Swanx(F) more explicitly. The idea is to consider a
(�nite) Galois cover of U that trivializes F , and then we put it in terms of the Swan
representation (c.f. 3.1) of the Galois group of the cover.

First, note that if F is a lisse F�-sheaf, then it corresponds to a continuous
homomorphism ��et

1 (U; �)! Aut(F�) �= GLrk(F)(F�). The target is a �nite group, so
we have a �nite group with a ��et

1 (U; �) action. This corresponds, via theorem 4.16,
to a �nite Galois covering (it is not just an �etale covering because the �nite set is
itself a group, and hence the subgroup corresponding to the cover is the kernel of a
group homomorphism: hence, it is a normal subgroup and the covering is Galois)
trivializing F : indeed, ��et

1 (U
0; �0) is precisely the kernel of ��et

1 (U; �) ! Aut(F�), so
the restriction to U 0 FjU 0 is constant.

Let GU 0 denote the Galois group of this cover. We can extend the morphism
U 0 ! U to C 0 ! C, but this one will not be in general a Galois cover since
there might be some rami�cation at C 0 n U 0. In order to understand this rami�-
cation, we can use the Swan conductor to measure it: given x0 2 C 0 n U 0 above
x 2 C n U , consider the decomposition group GU 0;x0 of GU 0 at x0, which cor-
responds to the Galois extension k(C 0)x0=k(C)x (that is, the completions of the
function �elds). By theorem 3.13, there exists a �nitely generated and projective
Z`[GU 0;x0 ]-module SwGU0;x0 underlying the Swan representation of GU 0;x0 . We con-
sider the induced representation with respect to �x0 : GU 0;x0 ,! GU 0 and denote it
SwGU0;x := Ind�x0 (SwGU0;x0 ) = SwGU0;x0 
Z`[GU0;x0 ] Z`[GU 0 ]. We denote its character by
swGU0;x . This measures the wild rami�cation of F at x:

Proposition 4.66. Let swGU0;x denote the character of the above representation.

1. If U 0 ! U is a Galois cover trivializing F , then, for all closed points x 2 C,

Swanx(F) = 1

jGU 0j
X
�2GU0

swGU0;x(�) � Tr(��jF�):

2. With the same notation,

Swanx(F) = dimF� HomF�[GU0 ]
(SwGU0;x 
Z` F�;F�):
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3. The character swGU0;x is given by

swGU0;x(�) =

8>>>><>>>>:

X
y 7!x
�(y)=y

(1� iGU0;y(�)); if � 6= 1;

 X
y 7!x

(1 + vy(DC0=C))

!
� jGU 0j; if � = 1:

Recall that iGU0;y(�) = vy(�(�) � �), where � is a local parameter of k(C 0)y.
The di�erent DC0=C is just the di�erent of the ring of integers of the extension
k(C 0)y=k(C)x, c.f. [Ser79].

In particular, the de�nition of SwGU0;x doesn't depend on the choice of x0.

Proof. Along the proof, we denote G := GU 0 to make the notation easier. We start
by proving the third part. Since �x0 : Gx0 ,! G is injective, the character of the
induced representation is given, according to de�nition 3.6, by

swGx(�) =
1

jGx0 j
X
�2G

����12Gx0

swGx0 (���
�1);

where swGx0 is the Swan character of Gx0 given by

swGx0 = aGx0 � uGx0 ;
c.f. de�nition 3.11 (note that the extension is totally rami�ed since the base �eld is
after step 1 assumed to be algebraically closed).

� Case � 6= 1: we have that

����1 2 Gx0 , ����1(x0) = x0 , �(��1(x0)) = ��1(x0), � 2 G��1(x0);

and also that
swGx0 (���

�1) = swG��1(x0)
(�);

because we can see SwGx0 and SwG��1(x0)
as terms of the direct sum SwG :=L

�2G=Gx0
SwG�(x0) , and here we have that

swGx0 (���
�1) = swG(���

�1) = swG(�
�1��) = swG��1(x0)

(�);

where we use the fact from linear algebra that the trace function satis�es
Tr(AB) = Tr(BA). With this, we have that

swGx(�) =
1

jGx0j
X
�2G

G��1(x0)3�

swG��1(x0)
(�):

Since G = AutU(U
0), G acts transitively on the points over x. Hence we have

a bijection G=Gx0  ! fy 2 C 0j y 7! xg, so we get
swGx(�) =

X
y 7!x
�(y)=y

swGy(�):

Finally, since for � 6= 1 we have that aGy(�) = �iGy(�) and uGy(�) = �1, we
obtain the formula.
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� Case � = 1. In this case,

swGx(1) =
1

jGx0 j
X
�2G

�1��12Gx0

swGx0 (�1�
�1) =

jGj
jGx0 jswGx0 (1) =

X
y 7!x

swGy(1)

=
X
y 7!x

  X
� 6=1

iGy(�)

!
� (jGyj � 1)

!
:

By [Ser79, IV, Prop. 4],
P

� 6=1 iGy(�) = vy(DC0=C), and by the above bijectionP
y 7!x jGyj = jGj, so we obtain the formula.

For the second part, note that Swanx(F) = Swanx(F 
OE F�), and the Swan
conductor coincides with the b(�) invariant, so we get that

Swanx(F 
OE F�) = b(Res�x0 (F� 
OE F�))
= dimF� HomF�[G](SwGx0 
Z` F�;Res�x0 (F� 
OE F�));

where Res�x0 is the restriction with respect to the inclusion �x0 . Now using that Ind�x0
is a left adjoint to Res�x0 , we get the formula.

Finally, for the �rst part, recall from remark 3.21 that

dimQ`
HomQ`[G]

(SwGx 
Z` Q`;F�) = dimF� HomF�[G](SwGx 
Z` F�;F�);
so we can stay in the zero-characteristic case. Here, for two `-adic Galois represen-
tations V1; V2 with characters �1; �2, we know that

dimQ`
HomQ`[G]

(V1; V2) = h�1; �2i = 1

jGj
X
�2G

�1(�
�1)�2(�);

so applying this to V1 = Swx and V2 = F� we get the equality, since swGx(��1) =
swGx(�) by the above computation.

Hence, having a Galois cover trivializing F allows us to describe explicitly
Swanx(F). In the next step, we are going to see the representation over a �nite
extension E=Q`, something that will allow us to use some facts from representation
theory.

Step 4. The Grothendieck-Ogg-Shafarevich formula, using the functor C(�) from
lemma 4.64, looks at this point like this:

rkF�(C
2(F))� rkF�(C

1(F)) = rkF�(F) � �c(U;Q`)�
X
x2CnU

Swanx(F):

Since F is trivialized by U 0, theorem 4.57 tells us that F corresponds to a �nitely
generated F�[GU 0 ]-module. Now let RF�(GU 0) denote the Grothendieck group of the
category of �nitely generated F�[GU 0 ]-modules. Let E=Q` be a �nite extension with
ring of integers OE and residue �eld F�.
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Lemma 4.67. There is a group homomorphism d : RE(GU 0) ! RF�(GU 0) which is
a surjection.

Proof. The homomorphism is constructed as follows: to give an E[GU 0 ]-module
V is the same as giving an E-representation of GU 0 , i.e. a group homomorphism
GU 0 ! GL(V ). But by lemma 3.16, this map factors through a representation V
over OE such that V 
OE E = V :

GU 0 ! GL(V)! GL(V );

and tensoring with F� we obtain the F�-module. One checks that this doesn't depend
of the choice of V . The surjectivity is not so easy, but in [Ser77, Ch. 17] there is a
proof. Here we omit it.

Hence, if we prove for a lisse sheaf of E-modules F that

rkE(C
2(F))� rkE(C

1(F)) = rkE(F) � �c(U;Q`)�
X
x2CnU

Swanx(F);

we will be done, because the map d is a surjective group homomorphism. Hence,
now our situation is the following: we have a lisse E-sheaf of rank r trivialized by
the Galois covering � : U 0 ! U , so if we denote V := F�, we have by theorem 4.57
that F �= (��VU 0)

GU0 and ��F �= VU 0 , where VU 0 denotes the constant lisse E-sheaf
on U 0.

In the next step, we will see how can we bene�t from this.

Step 5. Now we want to write the cohomology groups H i
c(U�et;F) in terms of the

cohomology of the constant sheaf EU 0 in U 0�et. For this, we extend the morphism
� : U 0 ! U to a morphism of smooh poper curves:

U 0 C 0

U C

j0

� �

j

and we have that

j!F �= j!(��VU 0)
GU0 �= (j!��VU 0)

GU0 �= (��j
0
!VU 0)

GU0 :

The second isomorphism comes from comparing them as presheaves from the def-
inition of extension by zero and GU 0-invariants, and then shea�fying. The third
isomorphism requires a little bit more of work: �rst, we have that the morphism
j0�j0!VU 0 ! VU 0 is the identity. Hence, we pull it back and obtain an isomorphism
��j
0�j0!VU 0

�= ��VU 0 . By base change, we have that ��j
0�j0!VU 0

�= j���j
0
!VU 0 , so we

have an isomorphism ��VU 0 ! j���j
0
!VU 0 . Now extend by zero this isomorphism

to get j!��VU 0 �= j!j
���j

0
!VU 0 , so we only need to check that the right hand side is

isomorphic to ��j
0
!VU 0 . For this, if we regard j!j

���j
0
!VU 0 as a presheaf, then the
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morphism j!j
���j

0
!VU 0 ! ��j

0!VU 0 is an isomorphism on stalks, so the shea��cation
gives a morphism which is an isomorphism on stalks.

Hence when we compute the cohomology with support we get, by de�nition and
using proposition 4.54,

H i
c(U�et;F) = H i(C�et; j!F) �= H i

�
C�et; (��j

0
!VU 0)

GU0
� �= H i(C�et; ��j

0
!VU 0)

GU0 ;

and since � is �nite, this is equal to

H i(C�et; ��j
0
!VU 0)

GU0 �= H i(C 0�et; j
0
!VU 0)

GU0 �= H i
c(U

0
�et; VU 0)

GU0 ;

and we conclude by noticing that there is aGU 0-invariant isomorphismH i
c(U

0
�et; VU 0)

�=
H i
c(U

0
�et; EU 0)
EV : indeed, if we �x anOE-lattice V � V which is GU 0-invariant, then

for any injective resolution (OE=mn)U 0 ! I�, we have that I�
OE (V
OEOE=mn)U 0
is an injective resolution of (V
OEOE=mn)U 0 compatible with theGU 0-action. Hence,
we have

H i
c(U�et;F) �= (H i

c(U
0
�et; EU 0)
E V )GU0 :

In the next step, we will use representation theory in order to compute the dimen-
sions.

Step 6. Recall that given a representation V of a �nite group G, the element
1
jGj

P
g2G g induces a projection V ! V G, so the trace of this map gives us the

dimension of the image, i.e.

Tr

 
1

jGj
X
g2G

g

!
= dimE V

G:

Applying this to our situation, and having in mind that the character of a tensor
product is the product of the characters (c.f. remark 3.2), we have that

�c(U;F) = dimE(H
2
c (U

0
�et; E)
E V )GU0 � dimE(H

i
c(U

0
�et; E)
E V )GU0

=
1

jGU 0j
X
�2GU0

(Tr(��jH2
c (U

0
�et; E))� Tr(��jH1

c (U
0
�et; E)))Tr(�

�jV ):

We can do more: setting Z 0 := C 0 n U 0, we can look at the long exact sequence on
cohomology

� � � ! H i(C 0�et; E)! H i(Z 0�et; E)! H i+1
c (U 0�et; E)! � � � ;

and since j0!E has no global sections on C 0 and Z 0 is zero-dimensional we get an
exact sequence

0! H0(C 0�et; E)! H0(Z 0�et; E)! H1
c (U

0
�et; E)! H1(C 0�et; E)! 0

and an isomorphism
H2
c (U

0
�et; E)

�= H2(C 0�et; E):
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Therefore we obtain

Tr(��jH2
c (U

0
�et; E))� Tr(��jH1

c (U
0
�et; E)) =

= Tr(��jH2(C 0�et; E)) + Tr(��jH0(C 0�et; E))� Tr(��jH0(Z 0�et; E))� Tr(��jH1(C 0�et; E))

= �Tr(��jH0(Z 0�et; E)) +
2X
i=0

(�1)iTr(��jH i(C 0�et; E))

for every � 2 GU 0 . The zero-dimensional part is easy to compute, since H
0(Z 0�et; E) =L

x02Z0 Ex0 and � acts via �� : Ex0 ! E�(x0) as the identity (note that Ex0 = E),
since GU 0 is just permuting the points on Z

0. Hence we have, for any � 2 GU 0 ,

Tr(��jH0(Z 0�et; E)) =
X
x02Z0

�(x0)=x0

1:

In the next step we see what happens with the one-dimensional part.

Step 7. If � 6= 1, we have that �� and �C0 intersect properly in C 0 � C 0, because
�(x0) = x0 implies that x0 2 Z 0 = C 0 n U 0: indeed, the Galois group GU 0 acts
transitively and freely on the �bers over U , so there we will not �nd any �xed point.
Hence we may apply the Lefschetz trace formula of theorem 4.47 to obtain

2X
i=0

(�1)iTr(��jH i(C 0�et; E)) = (�� ��C0):

Moreover, we can describe this product explicitly:

(�� ��C0) =
X

�(x0)=x0

iGU0;x0 (�);

where iGU0;x0 is as in step 3. For this, recall that the de�nition of the intersection
product (�� ��0C) is

(�� ��C0) :=
X

�(x0)=x0

length(OC0;x0=I�);

where the ideal I� is generated by the elements a � ��(a); a 2 OC0;x0 . Hence, it is
enough to show that

length(OC0;x0=I�) = iGU0;x0 (�) = vx0(�� ��(�));
where � is a local parameter of A0, the mx0-adic completion of OC0;x0 . Since OC0;x0 is
a discrete valuation ring, I� is of the shape m

l
x0 , where l is precisely the left hand side

of the last equation (the length doesn't change when we take mx0-adic completion).
But this is equal to length(A0=I�A

0), and since I� is the ideal generated by ����(�),
we are done6.

6To see this, note that vx0(� � ��(�)) is the index of the smallest rami�cation subgroup con-
taining �, and by remark 2.2 it follows the equality of the ideals.

49



If � = 1, then Tr(1�jH i(C 0�et; E)) = dimE H
i(C 0�et; E), so the alternating sum is

just the Euler characteristic of C 0:

2X
i=0

(�1)iTr(1�jH i(C 0�et; E)) = �(C 0):

We can write �(C 0) in terms of �(C) as follows:

Lemma 4.68. In our situation, we have

�(C 0) = 2� 2g(C 0) = jGU 0j � �(C)�
X
x02Z0

vx0(DC0=C);

with vx0(DC0=C) as in proposition 4.66. Here �(C) = �c(U) + card(Z).

Proof. The second equality is just the Hurwitz formula, c.f. [Liu02, Thm 7.4.16], so
we only need to prove the �rst one. The idea is to consider a model C 0 of C 0 over the
ring of Witt vectors W (k), and then change base to the complex numbers. By the
comparison theorem, we can compare the cohomology of C 0C with the cohomology of
C 0. In C 0C we have the �rst equality, and this implies the equality in our case because
the genus stays constant on the �bers of at families. This is explained very well in
[KR15, Lem. 9.8], and we refer the reader there for the details.

In the next step, we put everything together in order to obtain the formula.

Step 8. We have, from step 6, that

�c(U;F) = 1

jGU 0 j
X
�2GU0

�
Tr(��jH2

c (U
0
�et; E))� Tr(��jH1

c (U
0
�et; E))

�
Tr(��jV )

=
1

jGU 0 j
X
�2GU0

 
�Tr(��jH0(Z 0�et; E)) +

2X
i=0

(�1)iTr(��jH i(C 0�et; E))

!
Tr(��jV ):

We know that
Tr(��jH0(Z 0�et; E)) =

X
x02Z0

�(x0)=x0

1

for all � 2 GU 0 , and in step 7 we saw that the behaviour of Tr(��jH i(C 0�et; E)) is
di�erent for � = 1 and � 6= 1, so we study each of the terms separately:
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� For � = 1,

�Tr(1�jH0(Z 0�et; E)) +
2X
i=0

(�1)iTr(1�jH i(C 0�et; E))

= �card(Z 0) + �(C 0)

= �card(Z 0) + jGU 0 j � �(C)�
X
x02Z0

vx0(DC0=C)

= �
 X
x02Z0

1

!
+ jGU 0 j � (�c(U) + card(Z))�

X
x02Z0

vx0(DC0=C)

= jGU 0j�c(U)�
X
x2Z

  X
x0 7!x

1 + vx0(DC0=C)

!
� jGU 0 j

!
= jGU 0j�c(U)�

X
x2Z

swGU0;x(1):

� For � 6= 1,

�Tr(��jH0(Z 0�et; E)) +
2X
i=0

(�1)iTr(��jH i(C 0�et; E))

= �

0BB@ X
x02Z0

�(x0)=x0

1

1CCA+ (�� ��C0)

= �

0BB@X
x2Z

X
x0 7!x

�(x0)=x0

1

1CCA+
X
x2Z

X
x0 7!x

�(x0)=x0

iGU0;x0 (�)

=
X
x2Z

X
x0 7!x

�(x0)=x0

�
iGU0 ;x0(�)� 1

�
= �

X
x2Z

swGU0;x(�):

Since Tr(1�jV ) = rk(F) and

Swanx(F) = 1

jGU 0j
X
�2GU0

swGU0;x(�) � Tr(��jV );
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we get that

1

jGU 0 j
X
�2GU0

 
�Tr(��jH0(Z 0�et; E)) +

2X
i=0

(�1)iTr(��jH i(C 0�et; E))

!
Tr(��jV ) =

=
1

jGU 0j
X
�2GU0
� 6=1

 
�Tr(��jH0(Z 0�et; E)) +

2X
i=0

(�1)iTr(��jH i(C 0�et; E))

!
Tr(��jV )

+
1

jGU 0 j

 
�Tr(1�jH0(Z 0�et; E)) +

2X
i=0

(�1)iTr(1�jH i(C 0�et; E))

!
Tr(1�jV )

=
1

jGU 0j
X
�2GU0
� 6=1

 
�
X
x2Z

swGU0;x(�)

!
Tr(��jV )

+
1

jGU 0 j

 
jGU 0j�c(U)�

X
x2Z

swGU0;x(1)

!
Tr(1�jV )

= Tr(1�jV )�c(U)�
X
x2Z

1

jGU 0 j
X
�2GU0

swGU0;x(�) � Tr(��jV )

= rk(F)�c(U)�
X
x2Z

Swanx(F):

This �nishes the proof.

4.4.1 Recapitulation of the proof

Since the proof is a little bit long, let's recapitulate the main points and ideas here.
We start with a lisse Q`-sheaf and the �rst thing that we do is to reduce to the case
where we have a lisse F�-sheaf F . The advantage of this reduction is that now we can
�nd a Galois cover U 0 ! U trivializing F . This cover allows us to describe Swanx(F)
explicitly. In order to compute the Euler characteristic, we use the surjection of the
Grothendieck groups RE(GU 0)! RF�(GU 0) coming from representation theory to be
in the situation of a lisse E-sheaf that is trivialized by a Galois cover U 0 ! U , and
here we are able to use tools coming from `-adic cohomology and from representation
theory in order to describe precisely the Euler characteristic of the sheaf.

Putting everything together yields the formula.
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