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Abstract

In this talk of the seminar Abelian Varieties (FU Berlin, SS 2014) we
present the theorem of the cube, a purely algebraic result that results very
important in the study of Abelian Varieties. Following the notes Abelian
Varieties, by Gerard van der Geer and Ben Moonen, we complete and correct
some of the proofs and we try to prove the theorem. There is a missing step
in the proof that I was not able to understand.

We offer a section of prerequisites to make the script as self-contained as
possible, and we discuss some important corollaries of the theorem.

1 Prerequisites

Here we write some important definitions and facts (all of them with proof or an
exact reference) that will be later used.

Definition 1. Let f : X → Y be a morphism of schemes.

1. f is projective if it factors into a closed immersion i : X → PnY for some n,
followed by the projection PnY → Y , where we define PnY as PnZ ×Z Y .

2. f is locally of finite type if there exists a covering of Y by open affine subsets
Vi = Spec(Bi) such that for each i, f−1(Vi) can be covered by open affine
subsets Uij = Spec(Aij), where each Aij is a finitely generated Bi-algebra. f
is of finite type if in addition each f−1(Vi) can be covered by a finite number
of the Uij.

3. f is separated if the diagonal morphism ∆ : X → X ×Y X is a closed
immersion. We also say that X is separated over Y .

4. f is closed if the image of any closed subset is closed. f is universally closed
if it is closed, and for any morphism Y ′ → Y , the extension f ′ : X ′ → Y ′ is
also closed.

5. f is proper if it separated, of finite type, and universally closed.

Proposition 1. We have that proper morphisms are stable under base extension
(see for example Hartshorne, Cor. II.4.8 c)).

1



Definition 2. Let y ∈ Y , and let k(y) be the residue field of y, Spec(k(y)) → Y
the natural morphism. Then the fibre of the morphism f over the point y is the
scheme X ×Y Spec(k(y)).

Remark 1. As topological spaces, Xy
∼= f−1(y).

We can see the morphism f : X → Y as a family of schemes of the shape Xy

parametrized by the points of Y .

Remark 2. Given X, Y S-schemes, then we can consider X ×S Y . Given y ∈ Y ,
we can define the subscheme Xy as X ×S Spec(k(y)), where k(y) is the residue
field. Caution: Note that this is not the fibre of any morphism, since we don’t
have in general a morphism X → Y . This has to be seen as the topological subset
X ×S {y}, since they are isomorphic as topological spaces. But (mixing a little bit
the notations), we have that the fibre of the projection p : X ×S Y → Y over the
point y is just (X ×S Y )×Y Spec(k(y)) ∼= X ×S Spec(k(y)). Therefore this abuse of
notation should be read as (X×S Y )y, and we will also call this the fibre of X×S Y
over the point y ∈ Y , and will denote it by Xy when there is no risk of confusion.

Note that here we have the natural morphism id × ι : Xy → X ×S Y coming
from ι : Spec(k(y)) → Y . Then, if we have a line bundle L over X ×S Y , we will
denote Ly for the restriction L|X×{y}, i.e. for the pullback (id× ι)∗L.

We will be also interested in the fibre of line bundles, specially in the case of line
bundles defined over a product variety X × Y .

Definition 3. Let X × Y be a variety, and let x ∈ X. Let L be a line bundle over
X × Y . Then the fibre of L over the point x is the restriction L|{x}×Y , i.e. the
pullback (ι × id)∗L, where ι × id : {x} × Y → X × Y is the obvious morphism.
When there is no risk of confusion, we will denote Lx = L|{x}×Y , and Ly = L|X×{y}.

Definition 4. Let k be a field. A k-scheme is geometrically integral if for some
algebraically closed field K containing k the scheme XK := X ×k K is integral, i.e.
irreducible and reduced. By EGA IV, if it holds for some alg. closed field K over
k, then XK is integral for every field K containing k.

A k-variety X is a k-scheme of finite type and geometrically integral. If it is
proper over k, we say that X is complete.

Remark 3. Let X and Y be k-varieties, with X complete. Then the fibre Xy (coming
from X ×k Y ) is also complete (over k(y)). Indeed, here Xy = X ×k Spec(k(y)),
and we have that X is of finite type over k, so it will also be of finite type over
k(y) (note that this is just a finite extension of k, and if Aij is a finitely generated
k-algebra, then of course Aij ⊗k k(y) is a finitely generated k(y)-algebra), and it is
also geometrically closed, because if K is an alg. closed overfield of k(y), then it is
also an overfield of k. (c.f. Qing Liu, Ex. III.2.14) Finally, since properness is stable
under base change (c.f. Prop. 1), then Xy is proper over k(y).

Proposition 2. We have that if X is proper over a ring A, then the ring of global
sections O(X) is integral over A (c.f. Qing Liu, Prop. 3.18 of chapter 3). As a
corollary we obtain that if X is complete over a (not necessarily alg. closed) field k,
then O(X) = k (Qing Liu, Cor. 3.21).
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Proposition 3. Let X be a complete variety. An invertible sheaf L over X is trivial
if and only if both it and its dual have non trivial global sections, i.e. H0(M) 6= 0 6=
H0(M−1). (Milne, AG, Prop. 13.3)

Definition 5. Let f : X → Y be a morphism of schemes, and let F be an OX-
module. We say that F is flat over Y at a point x ∈ X, if the stalk Fx is a flat
OY,f(x)-module. We say that F is flat over Y if it is flat on every point of X, and
we say that X is flat over Y if OX is.

Remark 4. Note that with this definition, it is clear that locally free sheaves are flat.

Proposition 4. Flatness is stable under base extension. (c.f. Hartshorne, III.9.2)

Proposition 5. Let f : X → Y be a separated morphism of finite type of noetherian
schemes, and let F be a quasicoherent sheaf on X. Let u : Y ′ → Y be a flat morphism
of noetherian schemes.

X ′

g
��

v // X

f
��

Y ′ u // Y

Then (c.f. Hartshorne, III.9.3) for all i ≥ 0 there are natural isomorphisms

u∗Rif∗(F) ∼= Rig∗(v
∗F).

Proposition 6 (Künneth formula). If X, Y are locally noetherian schemes of finite
type over k, then

Hn(X × Y,OX×Y ) ∼=
⊕
i+j=n

H i(X,OX)⊗Hj(Y,OY )

(c.f. EGA III2, Theorem 6.7.8)

Definition 6. Let Y be a top. space. A function φ : Y → Z is upper semicon-
tinuous if for each y ∈ Y , there is an open neighbourhood U of y st for all y′ ∈ U ,
φ(y′) ≤ φ(y). Intuitively: this means that φ gets bigger in special points.

For example, given a curve X, define φ(x) = 0 if x is regular or generic, and
φ(x) = 1 if it is singular. Then φ is upper semicontinuous, because we know that
the set of singular points is closed.

Theorem 1 (Semicontinuity). Let f : X → Y be a projective morphism of noethe-
rian schemes, and let F be a coherent sheaf on X, flat over Y . Then for each i ≥ 0,
the function

hi(y,F) = dimk(y)H
i(Xy,Fy)

is an upper semicontinuous functions on Y . In particular, the set {y ∈ Y |hi(y,F) ≥
n} is closed for each n (see Hartshorne, III.12.8).

Corollary 1 (Grauert). With the same hypotheses as the theorem, suppose further-
more that Y is integral, and that for some i, the function hi(y,F) is constant on Y .
Then Rif∗(F) is locally free on Y , and for every y the natural map

Rif∗(F)⊗ k(y)→ H i(Xy,Fy)
is an isomorphism, where Rif∗(F) is the sheaf associated to the presheaf V 7→
H i(f−1(V ),F|f−1(V )).
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2 The theorem of the cube

The aim of this section is to clarify the contents of the notes as much as possible.

Theorem 2. Let X and Y be varieties. Suppose X is complete. Let L and M be
two line bundles on X × Y . If for all closed points y ∈ Y we have Ly ∼= My, there
exists a line bundle N on Y such that L ∼= M ⊗ p∗N , where p = prY : X × Y → Y
is the projection.

Proof. We have that Ly ⊗ M−1
y is the trivial bundle of Xy. By remark 3, Xy is

complete, so we can apply prop. 2 to conclude that H0(Xy, Ly ⊗M−1
y ) ∼= k(y).

By Grauert’s corollary, this implies that p∗(L ×M−1) ⊗ k(y) is isomorphic to
k(y), and therefore p∗(L⊗M−1) is a line bundle over Y which we denote N . Note
that we just now that it has rank 1, so it may not be trivial. Indeed, in general, it
will not be trivial.

So if we prove that L⊗M−1 ∼= p∗N , we will be done. For this, we will show that
the natural map

α : p∗p∗(L⊗M−1)→ L⊗M−1

is an isomorphism.
For this we proceed in two steps: first we restrict α to the fibres Xy (where y ∈ Y

is a closed point) and see that there is trivial, and secondly we see that this implies
that L⊗M−1 ∼= p∗(p∗(L⊗M−1)). Caution: note that this is different from saying
that if two line bundles are isomorphic in the fibres, then they are isomorphic: first
we need to fix a morphism, and afterwards we have to check that this morphism is
an isomorphism in the fibres (as we will do now).

So consider the commutative diagram:

Xy

πy

��

φ
// X × Y

p

��

Spec(k(y)) �
� ι // Y

where φ = idX×Y ×ι. How does α looks like in the fibre? Note that since the diagram
commutes, φ∗p∗p∗(L⊗M−1) = π∗yι

∗p∗(L⊗M−1), and by Prop. ??, ι∗p∗(L⊗M−1) ∼=
πy∗φ

∗(L⊗M−1). Hence the restriction is φ∗(α) : π∗yπy∗(L⊗M−1)|y → (L⊗M−1)|y.
Note that the pushforward is by definition πy∗(L⊗M−1)(U) = H0(Xy, Ly⊗M−1

y )
for every non empty U , since we are going to a single point. But we have already seen
that this is isomorphic to k(y), so π∗yπy∗(L ⊗M−1) ∼= π∗yOk(y) ∼= OXy ⊗OXy

OXy
∼=

OXy .
By hypothesis, we have that (L⊗M−1)|y ∼= OXy , so writing everything together

we have that φ∗(α) is an isomorphism.
We now go for the second step. It is enough to show that given a morphism

f : E → OX×Y s.t. fy is an isomorphism for every closed point y, then E is trivial.
Let x̃ ∈ X×Y be a closed point. Since we can see (X×Y ) as an algebraic family

of the fibres Xy = (X × Y )y parametrized by Y , there is a closed point y ∈ Y s.t. x
”lies” in Xy, so to say, that there exists a point that maps to x̃ via φ : Xy → X×Y .
We call this point x.
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We want to show that Ex̃ = 0. We have that

0 = (Ey)x = (φ∗E)x = (φ−1E ⊗φ−1OX×Y
OXy)x = Ex̃ ⊗OX×Y,x̃

OXy ,x

and if I is the kernel of OX×Y,x̃ → (φ∗OXy)x̃ ∼= OXy ,x, then we have

0 = Ex̃ ⊗OX×Y,x̃
OXy ,x

∼= Ex̃ ⊗OX×Y,x̃
OX×Y,x̃/I ∼= Ex̃/IEx̃

and Nakayama’s lemma implies that Ex̃ = 0.

This theorem induces an equivalence relation in the set Pic(X×Y ), and therefore
induces the following

Definition 7. We say that a line bundle L over X × Y is trivial (in the fibres)
over Y if it is the pullback of a line bundle on Y . This is equivalent to being trivial
(in the usual sense) over Y , i.e. that Ly ∼= OXy . We say that two line bundles are
isomorphic (in the fibres) over Y if L⊗M−1 is trivial in the fibres.

Theorem 3 (See-saw Principle). Let X and Y be as above, and L,M two line
bundles on X × Y isomorphic over Y . If in addition we have Lx = Mx for some
x ∈ X(k), then L ∼= M , i.e. L and M are isomorphic in the usual sense.

Proof. We have that L ∼= M ⊗ pr∗YN for some line bundle N over Y . If we restrict
to {x} × Y , we have that Mx = Lx ∼= Mx ⊗ (pr∗YN)x, so (pr∗YN)x is trivial. Hence,
N is trivial, because we have the following commutative diagram:

Y

f

%%

i

**

ψ

��

Yx

πx
��

φ
// X × Y

prX

��

Spec(k(x)) �
� ι // X

where ψ is just the structure morphism of Y (note that x is k-rational!), and i
arises from the fibre product of ι ◦ ψ and the identity on Y . Since the diagram is
commutative, we have that idY = prY ◦ φ ◦ f , and f ∗OYx = OY , so

OY = f ∗OYx ∼= f ∗(φ∗pr∗YN) = id∗YN = N

and therefore N is trivial. And we are done, because pr∗YOY ∼= OX×Y ⇒ L ∼= M .

Now we want to prove the main theorem of the talk, the theorem of the cube. It
says (under certain conditions) that given a line bundle L over X × Y × Z, if it is
trivial over {x} × Y ×Z, X × {y} ×Z and X × Y × {z} for some k-rational points
x, y and z, then the line bundle L is trivial.

Before we prove (and state correctly) this, we need a lemma.
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Lemma 1. Let X and Y be varieties, with X complete. For a line bundle L on
X × Y , the set {y ∈ Y |Ly is trivial over Y } is closed in Y .

Proof. By Prop. ??, we have that

{y ∈ Y |Ly is trivial} = {y ∈ Y |h0(Ly) > 0} ∩ {y ∈ Y |h0(L−1y ) > 0}.

Since the functions y 7→ h0(Ly) and y 7→ h0(L−1) are upper semi-continuous (c.f.
Semicontinuity theorem), the sets on the right hand side are closed and we are done.

There is a refinement of this lemma:

Lemma 2. Let X be a complete variety over k, Y a k-scheme, and let L be a
line bundle on X × Y . Then there exists a closed subscheme Y0 ↪→ Y which is the
maximal subscheme of Y over which L is trivial. More concretely:

1. Triviality: the restriction of L to X×Y0 is the pullback of a line bundle on Y0.

2. Maximality: for every morphism φ : Z → Y such that (idX × φ)∗(L) is trivial
over Z, then φ factors through Y0. Note than in particular, if we take Z
as closed subschemes of Y , we are asking for L to be trivial over this closed
subscheme, so this Y0 is the maximal one.

Now we go for the big theorem:

Theorem 4. Let X and Y be complete varieties and let Z be a connected, locally
noetherian scheme. Let x ∈ X(k), y ∈ Y (k) and let z be a point of Z. If L is a
line bundle on X × Y × Z whose restriction to {x} × Y × Z, X × {y} × Z and to
X × Y × {z} is trivial, then L is trivial.

Proof. Since the projection X × Y ×Z → Z is flat, we can see L as a family of line
bundles parametrized by Z. Now let Z ′ be the maximal closed subscheme of Z over
which L is trivial, as in the lemma. By the maximality condition, taking z ↪→ Z,
then this factorizes through j : Z ′ ↪→ Z: in other words, z ∈ Z ′, so Z ′ is non empty.
We want to show that Z ′ = Z, and for this it will be enough to show that it is open
(because Z is connected and Z ′ is closed and non-empty).

Let ζ be a point of Z ′. Let m be the maximal ideal of OZ,ζ and I ⊂ OZ,ζ be the
ideal defining the germ of Z ′, i.e. the kernel of OZ,ζ → (j∗OZ′)ζ . Note that I = (0)
if and only if there is an open subset ζ ∈ V ⊂ Z s.t. V ⊂ Z ′, because of the exact
sequence 0 → i!(OU) → OZ → j∗OZ′ → 0, where i : U ⊂ Z is the complement
of Z ′. (c.f. Hartshorne, Ex. II.1.19) Therefore if we prove that (I) is zero, then
OZ ∼= j∗OZ′ , and since Z ′ is a closed subscheme of Z, they must be equal and we
will be done.

So assume that I 6= (0). OZ,ζ is noetherian because Z is locally noetherian,
so ∩nmn = (0). Let n be the natural number s.t. I ⊂ mn and I * mn+1. Write
a1 = (I,mn+1). Claim: there exists an ideal a2 s.t. mn+1 ⊂ a2 ⊂ a1 ⊂ mn and
dimk(ζ)(a1/a2) = 1. Indeed, if we quotient with mn+1 we have the chain of k(ζ)-
vector spaces 0 ⊂ a1 ⊂ mn/mn+1, and since I * mn+1, the dimension of a1/m

n+1 is

6



greater than zero. Hence, taking a subspace a2 ⊂ a1/m
n+1 of codimension one and

going back to the chain of OZ,ζ-modules, we obtain such an a2. By construction,
I * a2.

Let Zi ⊂ Spec(OZ,ζ) be the closed subschemes defined by ai, which topologically
they are both just m, since p ∈ Spec(OZ,ζ/ai) iff p ⊃ ai ⊃ mn+1 iff p = m. Let
Spec(A) ⊂ Z be an open subset of Z containing ζ. Note that Aζ = OZ,ζ , so the
localization A → Aζ induces a morphism Zi ⊂ Spec(OZ,ζ) → Spec(A) ↪→ Z for
each i. Let φi denote the composition φi : Zi ↪→ Z. Since I ⊂ a1, we have that φ1

factors through Z ′, so the restriction of L to X×Y ×Z1 is trivial. We will show now
that the restriction of L to X × Y ×Z2 is trivial, which implies that φ2 factors also
through Z ′, but this implies that I ⊂ a2, which is a contradiction, and therefore we
will be done.

First we fix the notation. Let Li be the restriction j∗i (L) := (idX × idY × φi)∗L.
Take a trivializing global section s ∈ Γ(L1), i.e. a global section s s.t. the morphism
OX×Y×Z1 → L1 : 1 7→ s is actually an isomorphism (this can be done because L1 is
trivial!). The inclusion Z1 ⊂ Z2 induces i12 : X × Y × Z1 → X × Y × Z2. We also
have the commutative diagram

X × Y × Z1

i12
��

j1

((

X × Y × Z2 j2
// X × Y × Z

so we have the natural map L2 → i12∗(i
∗
12L2) = i12∗L1 coming from the identity

i∗12L2 → i∗12L2 via the adjunction formula. (c.f. Hartshorne, p. 110) Now, taking
global sections, we have a restriction map ψ : Γ(L2) → Γ(L1). Claim: L2 is trivial
if and only if s can be lifted to a global section s′ of L2.

Indeed, suppose first that we have a lift s′ of the trivializing global section s ∈
Γ(L1). Since the underlying point set of both Z1 and Z2 is the same, X × Y × Zi
are homeomorphic. We know that if the image s′(P ) of s′ via OX×Y×Z2 → L2 →
(L2)P → (L2)P/mP , where mP is the maximal ideal of (OX×Y×Z2)P , is zero, then
also s(P ) is zero. Indeed, just look at the commutative diagram

L2
//

��

i12∗L1

��

(L2)P

��

// (i12∗L1)P

��

L2,P ⊗OX×Y×Z2
k(P ) // (i12∗L1)P ⊗OX×Y×Z2

k(P )

and note that in the last row, the tensor product with k(P ) is isomorphic to the
quotient L2,P/mPL2,P , and something similar in the right hand side.

Now assume that L2 is trivial. Then we have that the sequence with L2 is just

OX×Y×Z2 → i12∗OX×Y×Z1 → 0
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and we can take global sections and use Künneth formula, i.e. H0(X × Y ×
Zi,OX×Y×Zi

) ∼= H0(X × Y,OX×Y ) ⊗ H0(Zi,OZi
) and we have that the induced

morphism is just

idX×Y ⊗π : H0(X ×Y,OX×Y )⊗kH0(Z2,OZ2)→ H0(X ×Y,OX×Y )⊗kH0(Z1,OZ1)

where π is just the projection given by OZ,ζ/a1 → OZ,ζ/a2. Hence this is surjective,
so we will be able to lift s.

So we reduced the problem to finding a lift s′ of s. For this, it is enough to show
that Γ(L2)→ Γ(L1) is surjective. From the exact sequence

0→ ker(ψ)→ L2 → i12∗L1 → 0

it is enough to show that H1(X × Y × Z2, ker(ψ)) = 0.
The missing step: For this, it is enough to show that H1(X × Y,OX×Y ) = 0.
Assumed that this is enough, let’s prove that it is indeed equal to zero. Let

ξ ∈ H1(X × Y,OX×Y ). By hypothesis, the restrictions of L2 to {x} × Y × Z2 and
X × {y} × Z2 are trivial. As in the proof of the See-saw principle, since the points
x, y ∈ X(k), we find the maps i1 = (idX , y) : X ↪→ X × Y and i2 = (x, idY ) : Y ↪→
X × Y . But being trivial implies that i∗1(ξ) = 0 = i∗2(ξ), because of the direction of
the claim that we haven’t proved and the missing step. (Sorry for that) Finally, since
X and Y are complete, we have that H1(X,OX)⊗H0(X,OX) ∼= H1(X,⊗OX), and
analog with OY . Hence the Künneth formula gives us the following isomorphism

H1(X × Y,OX×Y ) ∼= H1(X,OX)⊕H1(Y,OY )

so ξ = 0 and we are done (modulo the missing steps :P).

Remark 5. In the theorem as stated we require x and y to be k-rational points of X
and Y , but we can generalize this. We used this fact in the definition of i1 and i2,
but the theorem still holds without these assumptions. The point is that if k ⊂ K
is a field extension then a line bundle M on a k-variety V is trivial if and only if the
line bundle MK on VK is trivial. (Exercise (2.1) of van der Geer and Moonen notes
of AV)

Remark 6. The analogous statement for line bundles on a product of two complete
varieties is false in general, so to say, if L is a line bundle on X × Y , then we may
have Lx ∼= OY and Ly ∼= OX , and still we will not have L ∼= OX×Y . For example,
consider X = Y an elliptic curve, and take the divisor

D = ∆X − ({0} ×X)− (X × {0})

where ∆X ⊂ X × X is the diagonal. Then L = OX×X(D) restricts to the trivial
bundle on {0} × X and X × {0}, because the divisor 1 · eX is linearly equivalent
(from the group law) to a divisor whose support doesn’t contain eX . But L is not
the trivial bundle: if it were, L|{P}×X = OX(P − ex) ∼= OX , and then we would have
that X is a rational curve, and we get a contradiction. (c.f. Hartshorne, Example
II.6.10.1)
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3 Consequences

This theorem has a lot of consequences which will give us information about line
bundles. First, recall that if f(x) = ax2 + bx + c ∈ R[x] is a quadratic form, then
the polynomial

f(x+ y + z)− f(x+ y)− f(x+ z)− f(y + z) + f(x) + f(y) + f(z)

is constant. We have an analogue of this for line bundles on abelian varieties. Before
we state it, let’s prove the following corollary which will be helpful.

Corollary 2. Let X be an abelian variety, and let I = {i1, . . . , ir} ⊂ {1, 2, 3}. We
denote pI : X3 → X for the morphism sending (x1, x2, x3) to xi1 + . . . + xir , i.e.
p12 + p1 + p2, and so on. Let L be a line bundle on X. Then the line bundle

Θ(L) :=
⊗

I⊂{1,2,3}
p∗IL

⊗(−1)1+#I

= p∗123L⊗ p∗12L−1 ⊗ p∗13L−1 ⊗ p∗23L−1 ⊗ p∗1L⊗ p∗2L⊗ p∗3L

on X3 is trivial.

Proof. From the big theorem, it is enough to show that the restrictions to {0} ×
X × X, X × {0} × X and X × X × {0} are trivial. We do it for {0} × X × X.
Let j : {0} × X × X ↪→ X3 be the obvious map. Then j∗p∗123L

∼= p∗23L, and
j∗p∗1L

∼= O{0}×X×X , and similarly j∗12L
∼= p∗2L. Then, when we substitute, everything

cancels and we get that the line bundle is trivial.

And now we get the analogue of our quadratic form:

Corollary 3. Let Y be a scheme and let X be an abelian variety. For every triple
f, g, h of morphisms Y → X and for every line bundle L on X, we have that the
bundle

(f + g + h)∗L⊗ (f + g)∗L−1 ⊗ (f + h)∗L−1 ⊗ (g + h)∗L−1 ⊗ f ∗L⊗ g∗L⊗ h∗L

on Y is trivial.

Proof. Consider (f, g, h) : Y → X ×X ×X and apply the previous corollary. Since
from the definition of the fibre product we have that the diagrams

Y

##

f

**
g

��

X ×X

��

// X

��

X // Spec(k)

commute, so the above line bundle is the pullback of the constant line bundle Θ(L),
and hence it is again constant.
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And we finish with an important corollary of the theorem of the cube, the so
called theorem of the square:

Corollary 4 (Theorem of the Square). Let X be an abelian variety and let L be a
line bundle over it. Then, for all x, y ∈ X(k),

t∗x+yL⊗ L ∼= t∗xL⊗ t∗yL.

Proof. The statement follows from the previous corollary by taking f = idX , and g
and h the constant maps to x and y respectively.

Remark 7. 1. The previous corollary holds more generally: let T be a k-scheme
and let LT be the pullback of L to XT . Then

t∗x+yLT ⊗ LT ∼= t∗xLT ⊗ t∗yLT ⊗ pr∗T ((x+ y)∗L⊗ x∗L−1 ⊗ y∗L−1).

2. If we tensor the isomorphism in the corollary with L−2 and look at the points
x and eX , we obtain the following important fact:

Corollary 5. Given a line bundle L over an abelian variety X, then the map

ϕL : X(k)→ Pic(X) : x 7→ [t∗xL⊗ L−1]

is a group homomorphism.

This generalizes the well known fact for elliptic curves. (c.f. Hartshorne, IV.1.3.7)
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de l’IHÉS.
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