
Ruled quartic surfaces (I)

Pedro A. Castillejo

08.01.2014

Abstract

This is a talk of the seminar on Algebraic Geometry at FU Berlin, orga-
nized by Joana Cirici, on the Winter Semester 2013-14. The aim of the talk
is to partially describe the results of [1].

1 Some properties of the Grassmannian

In this section we will mention some properties of the Grassmannian Gr(2, 4) that
will be useful in the following sections.

We begin with a vector space V of dimension 4 over an algebraically closed field
K. As usual, the points of Gr := Gr(2, 4) will be the lines of P3 := P(V ).

We fix a basis e1, e2, e3, e4 of V , and this allows us to identify K and the exterior
product of V , so to say we have the isomorphism

∧4 V → K : e1 ∧ e2 ∧ e3 ∧ e4 7→ 1.
Note that given a plane W = 〈v1, v2〉 ⊂ V we can define a line in

∧2 V by
considering 〈v1 ∧ v2〉. Recall that by definition, V ∧ V = (V ⊗ V )/(v ⊗ v). Hence,
different planes of V are mapped to different lines of

∧2 V . Note that w ∈
∧2 V

different from zero can be identified with a plane if and only if1 w is decomposable (ie
w = v1 ∧ v2), so this identification can’t be extended to the whole

∧2 V . However,
we can write the following identifications, where we will understand that we are
identifying just what we can identify:

P(V ) ←→ V ←→
w̃ line W = 〈v1, v2〉 plane

←→
∧2 V ←→ P(

∧2 V ) ∼= P5∧2W = 〈v1 ∧ v2〉 = 〈w〉 line w = Kw point

With these identifications, we have that Gr consists of all the points w coming
from a line w̃ of P(V ), and by the previous paragraph, we have that a point w ∈
P(
∧2 V ) belongs to Gr if and only if w is decomposable. But w is decomposable

if and only if w ∧ w = 0. Hence, we have a criterion to decide wether a point of
P(
∧2 V ) belongs to Gr or not. Let’s see what happens if we introduce coordinates.

1One direction is clear. For the other, note that the identification is injective, so it will be
bijective with its image.
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Denote eij := ei ∧ ej for 1 ≤ i < j ≤ 4. They form a basis for
∧2 V with the

lexicographic ordering. The coordinates of w ∈
∧2 V with respect to this basis are

the Plücker coordinates: w =
∑

i<j pijeij. What happens to the coordinates if we
want w to be in Gr? The condition is equivalent to say w ∧ w = 0. We know that
eij ∧ ekl 6= 0 if and only if i, j, k, l are different, and if this is the case, the (wedge)
product is equal to 1 or −1, depending of the order. Hence,

0 = w ∧ w
=

∑
i<j pijeij ∧

∑
i<j pijeij

= p12p34 − p13p24 + p14p23 + p23p14 − p24p13 + p34p12
= 2p12p34 − 2p13p24 + 2p14p23

So, as we already knew from Vincent’s talk, w = [p12 : . . . : p34] ∈ Gr if and only
if w lies on Kleins quadric p12p34 − p13p24 + p14p23 = 0.

From now on, we will abuse the notation and we will use w with w ∧ w = 0 for
the point of Gr and for the line w̃ defined in P(V ).

Now, we write some remarks that will be useful in the following sections. Some
of them were mentioned in Gabriel’s talk:

(i) Two lines w1, w2 of P(V ) intersect if and only if dim(〈v11, v12, v21, v22〉) = 3,
and this is equivalent to saying that w1 ∧ w2 = v11 ∧ v12 ∧ v21 ∧ v22 = 0.

(ii) Every hyperplane of P(
∧2 V ) has the form {z| w ∧ z = 0}, where w is a

fixed point. It is clear that this is an hyperplane because this set is the
projectivization of the kernel of the linear map γw :

∧2 V → K : z 7→ w ∧ z.
We will denote this hyperplane as Hw.

(iii) If w is indecomposable, then the intersection of Hw and Gr is a non degenerate
quadric, because Kleins quadric is non degenerate and w /∈ Gr, so Hw is not a
tangent plane2. We are intersecting Gr with an hyperplane in general position.

If w is decomposable, then Hw is the tangent space of Gr at the point w, TGr,w,
so the intersection will have a singularity. In particular, TGr,w ∩ Gr can be
identified3 with the cone in P4 over a non singular quadric in P3 with vertex
w. Note that if K is algebraically closed, all the non singular quadrics are
equivalent, so the cone is always the same. This intersection can be identified
with σ1(w) := the collection of all lines l ⊂ P(V ) with l ∩ w 6= ∅, because of
(i).

(iv) Let p0 be a point of P(V ). Then, σ2(p0) := the collection of all lines through
p0. If we consider the lines as points, we obtain a P2, because we can consider
a sphere with center p0 and then the lines identify the antipodal points. When

2Recall that a non degenerate quadric give us a canonical way of going from a vector space to
its dual space. In this particular case, the isomorphism is w 7→ Hw, where Kleins quadric defines
the wedge product. We are doing the inverse process: we start with a quadric and we obtain a
bilinear form (uniquely determined up to scalar product). In this way, we can define the wedge
product geometrically starting from Kleins quadric

3The reader can think in a lower dimensional example: if we start with an hyperboloid H, then
TH,p ∩H is a cone in P2 over a non singular quadric in P, ie, a pair of lines.

2



we go to the grassmannian, we obtain again a 2-plane. For example, if p0 = e1,
then σ2(e1) = {

∑
1<j≤4 p1je1 ∧ ej} is a 2-plane in Gr.

(v) Let h0 be a plane of P(V ). Then, σ1,1(h0) := the collection of all lines in the
plane h0. Again, it has the structure of a P2 (just consider, in h0, the dual
space. Then, you obtain the lines in h0), and when you look at Gr, you have
again a plane: indeed, if you choose a basis such that h0 = 〈e1, e2, e3〉, then
σ1,1(h0) = {

∑
1≤i<j≤3 pijei ∧ ej}.

(vi) σ2,1(p0, h0) := the collection of all lines in h0 through p0. Note that σ2,1(p0, h0) =
σ2(p0) ∩ σ1,1(h0), so this is a line on Gr.

(vii) Every plane in Gr has the form σ2(p0) or σ1,1(h0), and every line in Gr has
the form σ2,1(p0, h0).

(viii) We can classify three dimensional projective subspaces P of P(∧2V ) with re-
spect to their relation with Gr:

(a) Gr ∩P is a non degenerate quadric surface. Then, the matrix associated
to this quadric surface has rank 4, so we can choose the basis in such a way
that the equations of P are p12 = p34 = 0. But the hyperplane p12 = 0 is
precisely4 He34 , and this is the tangent space TGr,e34 . Analoguely, p34 = 0
defines the hyperplane TGr,e12 . Hence, P is the intersection of two tangent
spaces.

(b) Gr ∩ P is an irreducible degenerate quadric surface. In this case, the
equations of P are p34 = 0 and p13 + p24 = 0 for a suitable basis of V . In
this case, P lies on only one tangent space, TGr,e12 and Gr∩P is the cone
p213 + p14p23 = 0, p34 = 0 and p13 + p24 = 0. The cone is over the quadric
curve p213 + p14p23 = 0.

(c) Gr∩P is reducible. The equations for P in this case are p12 = p13 = 0 for
a basis of V , and Gr ∩ P is the union of the planes p14 = 0 and p23 = 0.

2 Ruled surfaces and curves on Gr

Given a ruled surface S in P(V ), we can consider the set of lines of the surface. This

set, in general, can be viewed as family of lines, and therefore as family of points C̃
in Gr. In this section we will study the relation between ruled surfaces and curves
on Gr, and will answer the following question: given the ruled surface S, what do
we obtain in Gr?

We start with a naive example that we have already mentioned. If we consider
a plane h0 ⊂ P(V ), then we have a lot of lines. Indeed, as seen in (v), this set is
precisely σ1,1(h0), and this is a 2-plane on Gr. Note that in general, one starts with
a ruled surface that consists on all the lines passing through a curve, but in this
configuration there are a lot of lines that appear in the surface, and therefore we
obtain a two-parameter family. We expect that this is not the general case.

4If z = [p12 : . . . : p34], then z ∈ He34 iff 0 = z ∧ e34 = p12.
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We are also interested in the inverse problem, so to say: given a curve C ⊂ Gr, do
we obtain a ruled surface? We will start with this second question, and afterwards
we will study the first one.

2.1 From a curve in Gr to a ruled surface in P(V )

Again, we can also look at an easy example. If we start with a line C on Gr, we
know from (vi) that the only lines on Gr have the form σ2,1(p0, h0), and we obtain
a plane in P(V ) (all the lines on h0 that pass through p0 define the plane h0).

Now, let’s assume that the degree of C is d ≥ 2. How can we define a set S on
P(V )? We do the following. Consider S̃ := {(w, v) ∈ C × P(V )| w ∧ v = 0}. The
condition w∧v = 0 is equivalent as saying that given a point w = w1∧w2 ∈ C ⊂ Gr,
the point v ∈ P(V ) must not be linearly independent with respect to w1 and w2, ie,
v must lie on the line 〈w1, w2〉. This is equivalent as saying that the fibres of the

projection pr1 : S̃ → C are lines in P(V ).

If we consider the projection pr2 : S̃ → P(V ), its image, S, will be the set of
points lying on the lines that form C.

What happens if C lies on a 2-plane σ2(p0)? Here, all the lines of S will pass
through p0, so we will have a cone. Indeed, if you consider a plane h ⊂ P(V ) with
equation

∑
λixi = 0 that doesn’t contain p0 and you take S ∩h, you obtain a curve

with equations w ∧ v = 0 and
∑
λivi = 0. Then, S will be exactly the set of all the

lines passing through p0 and the points of this curve.
In general, we have the following

Lemma 1. Let C ⊂ Gr be an irreducible curve of degree d ≥ 2 not lying in some
2-plane σ2(p0). Then, S̃ is an irreducible variety of dimension 2, and S is an
irreducible surface.

Proof.

Lemma 2. With the above assumptions, the surface S has some degree e ≤ d.
Suppose that through a general point of S there are f lines w ∈ C. Then, d = e · f .

Before we proof the lemma, recall from Christ’s talk (the first one) that the degree
of an hypersurface coincides with the intersection number of a line with it.

Proof. A general line w0 in P(V ) intersects S in e points. Through each of these
e points there are f lines w ∈ C. Thus the intersection of C with the general
hyperplane {w ∈ P(V )| w ∧ w0 = 0} consists of e · f points and therefore d = e · f .

Given a curve C ⊂ Gr, define P (C) as the smallest projective subspace of P(
∧2 v)

containing C. We have the following

Lemma 3. If d ≥ 3 and S is not a cone, a plane or a quadric, then dimP (C) ≥ 3.
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Proof. Since d > 1, dimP (C) > 1. Now, assume that dimP (C) = 2. If P (C) ⊂ Gr,
then, by (vii), either P (C) is a σ2(p0) and S is a cone, or P (C) is a σ1,1(h0) and S
is the plane h0. Now, if P (C) * Gr, then C ⊂ P (C) ∩ Gr, but the degree of the
curve P (C)∩Gr is at most 2, and then S consists of a plane or a quadric. Therefore
dimP (C) ≥ 3.

Now we move on to the first question.

2.2 From a ruled surface in P(V ) to a curve in Gr

Consider a ruled (irreducible and reduced) surface S ⊂ P(V ) of some degree d ≥ 3
(note that we already know how to classify surfaces of degree 2, and we also know

which ones are ruled). Assume that S is not a cone. We define C̃ to be the subset
of Gr corresponding to the lines on S. Then,

Lemma 4. C̃ is the union of an irreducible curve C (not lying in some 2-plane
σ2(p0)) of degree d and a finite, possibly empty, set.

Proof. Consider the affine open part A12 of Gr given by p12 6= 0. The points of
this affine part, actually ∼= A4, are precisely the planes in V given by the genera-
tors 〈e1 + ae3 + be4, e2 + ce3 + de4〉, which correspond to the points w ∈ A12 with
coordinates [1 : c : d : −a : −b : (ad− bc)].

Let F (t1, . . . , t4) = 0 be the homogeneous equation of S. The intersection of C̃
with this affine part consists of the tuples (a, b, c, d) such that F (s, t, as+ct, bs+dt) =
0 for all (s, t) 6= (0, 0) (see example below). Then, the ideal generated by this

polynomials in a, b, c, d defines the intersection of C̃ with A12. Thus C̃ is Zarisky
closed.

Now, we have that C̃ has dimension 1, and by the above discussion, it can be
written as a finite union of irreducible curves Ci, i = 1, . . . , r and a finite set of
points. It is only left to prove that r = 1. Note that the image of the projection
{(w, v) ∈ C1 × P(V )| w ∧ v = 0} → P(V ) is a ruled surface contained in S. But S
is irreducible, so this image is precisely S. Now, assume that r ≥ 2. Then through
every point of a line w2 ∈ C2 \ C1 passes a line w1 ∈ C1, since the above projection
gives S. Hence w1∧w2 = 0 for all w1 ∈ C1, and therefore w∧w2 = 0 for all w ∈ P (C1)
(you can take as generators of P (C1) all the points of C1). By symmetry, w1∧w2 = 0
for all wi ∈ P (Ci). Since the symmetric bilinear form (w1, w2) 7→ w1 ∧ w2 is not
degenerate, we have that 5 = dim(P(

∧2 V )) ≥ dim(P (C1)) + dim(P (C2)), and from
lemma 3 we have that dim(P (Ci)) ≥ 3, and this makes a contradiction. Hence,
r = 1 and the factor f of lemma 2 is 1, so the degree of C is d.

As a concrete example of the proof, let’s do it with the cubic ruled surface S
defined by F (t1, . . . , t4) = t3t

2
1 + t4t

2
2. For convenience, we will choose the affine

open part A14 of Gr given by p14 6= 0. We have that w ∈ A14 iff the associated
plane W ⊂ V is generated by 〈e1 + ae2 + be3, ce2 + de3 + e4〉 = 〈v1, v2〉. Hence,
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w = v1 ∧ v2 = [c : d : 1 : (ad− bc) : a : b] are the coordinates of a point at our affine
open part A14.

Now, we want to look at C̃∩A14. The line w lies on S iff F (s, as+ct, bs+dt, t) =
bs3 + (d + a2)ts2 + 2acst2 + c2t3 = 0 for all (s, t) 6= (0, 0). Then, (a, b, c, d) must
satisfy b = 0, c = 0 and d + a2 = 0. These polinomials define the intersection of
C̃ ∩ A14, so to say, w ∈ C̃ ∩ A14 iff w = [0,−a2 : 1 : −a3 : a : 0] for some a ∈ K.

In the following lemma we look how do the points in C̃ \C look like in our initial

surface S. The answer will be that the lines w0 ∈ C̃ \C intersect all the lines of C.
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Lemma 5. Let w0 ∈ C̃ \ C. Then C lies in the tangent space of Gr at w0.

Before proving the lemma, note that this is the same as saying that w0 intersect all
the lines of C, because we identified TGr,w0 ∩ Gr with σ1(w0), the collection of all
lines w with w0 ∩ w 6= ∅.

Proof. Assume the opposite: if the tangent space at w0 does not contain C, then the
intersection C ∩TGr,w0 consists of d points (counting multiplicity). Thus the line w0

on S intersects d lines of S, corresponding to points of C. Let H ⊂ P(V ) be a plane
through w0. The intersection H ∩ S consists of w0 and a curve Γ of degree d − 1
(note that the union of both curves is a reducible curve of degree d). If we now look
what happens in H ⊂ P(V ), we have that Γ ∩ w0 consists of d− 1 points (counted
with multiplicity), instead of the d points that we expect from above. Therefore we
have a contradiction.

In the following, we will call the lines on S corresponding to the points of C̃ \C
isolated lines. A line w1 on S is, classically, called a directrix if w1 meets every
line w ∈ C. Hence, an isolated line is a directrix. The opposite is, in general,
false: we can think on a cone, where all the lines intersect and therefore they are all
directrices.

The (Zariski closure of the) set of points of S lying on at least two non isolated
lines of S will be called “double curve”. Not that it can be something different from
a curve: in an hyperboloid, is the whole surface. In a cone, is just the vertex. We
will not use this concept in this talk, but it can be found in [2], p. 8.

As a remark, note that if we consider only the curve C and we consider S̃ =
{(w, v) ∈ C × P(V )| w ∧ v = 0}, we recover the whole surface by projecting on the
second component, so to say, we can recover the isolated lines from the curve C.

Corollary 1. A ruled surface of degree d ≥ 3 different from a cone, a plane or a
quadric can have at most two isolated lines. If S has two isolated lines w1, w2, then
w1 ∩ w2 = ∅.

Proof. From lemma 3, we have that dimP (C) ≥ 3. Since C lies on
⋂

w∈C̃\C TGr,w by

previous lemma, we have that there can be at most two lines in C̃ \C. This actually
gives us much more information, but we will not use it.

For the second part, assume that w1∩w2 6= ∅. The, C lies on Gr∩TGr,w1∩TGr,w2 .
According to the list of properties ofGr, (viii) part (c) tells us thatGr∩TGr,w1∩TGr,w2

is the union of two planes. One of them contains C because it is irreducible, and
then we have a contradiction with dimP (C) ≥ 3.

We have developed until now some theory regarding the ruled surfaces, so we
may ask ourselves what does a modern algebraic geometer understands when you tell
him/her that you have a ruled surface. As everything, the answer is in Hartshorne’s
book, and is the first definition of Ch. V.2: a ruled surface is a surface X, together
with a surjective morphism π : X → C to a (non singular) curve C, such that the
fibre Xy is isomorphic to P1 for every y ∈ C. In our setting, we have a surface S
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that give us a curve C ⊂ Gr and (possibly) some isolated lines. Then we define

S̃ = {(w, v) ∈ C × P(V )| w ∧ v = 0}, that gives us a morphism onto C. But C may
have singularities, so in order to get a ruled surface (in the modern sense) we need
to change the basis. The natural candidate for the change of basis is Cnorm. Indeed,

it can be proven that
˜̃
S = S̃ ×C C

norm together with
˜̃
S � Cnorm is a ruled surface

in the modern sense. You can find the proof (not so difficult) in [1]. Moreover, in
[1] we have the following proposition, that gives us much more information:

Proposition 1. 1. pr2 : S̃ → S is a birational morphism. Let Cnorm → C be

the normalization of C and let
˜̃
S = S̃ ×C C

norm be the pullback of S̃ → C.

Then
˜̃
S → Cnorm is a ruled surface (in the modern sense) and

˜̃
S → S is the

normalization of S.

2. The singular locus of S is purely 1-dimensional or empty.

3. Suppose that the line w belongs to the singular locus of S and does not corre-
spond to a singular point of C. Then C lies in the tangent space of Gr at the
point w.

Lemma 6. Suppose that dimP (C) = 3 and that P (C) is the intersection of two
tangent spaces of Gr at points w1 6= w2. Then the lines w1 and w2 do not intersect.
For a suitable choice of coordinates (t1, t2, t3, t4) of P(V ), the equation F of S is
bi-homogeneous of degree (a1, a2), with a1 + a2 = d, in the pairs t1, t2 and t3, t4.

Further, C̃ \ C = {w1, w2}.
The lines w1, w2 are “directrices”. The singular locus of S consists of the lines

wi with ai > 1 and for each singular point w ∈ C, the line w ⊂ S.

We only prove part of the lemma.

Proof. As in Corollary 1, the assumption that the lines w1, w2 intersect leads to a
contradiction. Now, take w1 = e12 and w2 = e34, then the elements of P (C) =
TGr,e12 ∩ TGr,e34 have coordinates [0 : p13 : p14 : p23 : p24 : 0] (cf property (iii)
of the list of properties), so C lies on the quadric surface Gr ∩ P (C), given by
−p13p24 + p14p23 = 0. Note that this is the equation of the Segre embedding, so
we can identify this quadric with P1 × P1, and then we have that C ⊂ P1 × P1 of
bi-degree (a1, a2), with a1 + a2 = d.

Now, consider the rational map f : P(V ) // P1 × P1 given by (t1, t2, t3, t4) 7→
((t1, t2), (t3, t4)). It is defined outside the lines w1, w2. The surface S is the Zarisli
closure of f−1(C) and so the equation F of S is bi-homogeneous and coincides with
the equation for C ⊂ P1 × P1. The other statments are not proved.

As a remark, assume now that dimP (C) = 3 but P (C) is only in a single
tangent space of Gr. In this case, we can also choose coordinates in order to get that
P (C) ⊂ TGr,e12 and P (C) is given by the equations p34 = 0, p13+p24 = 0, and here we
have that a point of Gr lies on P (C) if it has the form [p12 : p13 : p14 : p23 : −p13 : 0],
so we can take p12, p13, p14, p23 as coordinates of P (C). Then, Gr∩P (C) is the cone
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with equation p213 + p14p23 = 0 with vertex e12. Since C lies on this cone, we have

the rational map f : C // E := {p213 + p14p23 = 0} . This map can be identified

with the rational map C // e12 given by w 7→ w ∩ e12.
The rational map f is a morphis if w12 /∈ C or if e12 ∈ C and this is a regular

point of C. Let e be the degree of the morphism f .
In case e12 /∈ C, take two unramified points e1, e2 ∈ E (ie points such that their

preimage via f gives e different points) and the plane through the corresponding
two lines. This plane meets C in 2e points. Hence, d = 2e. In case e12 ∈ C and is
not a singular points, we have that d− 1 = 2e.

2.3 The possibilities for the singular locus

Now, we want to study the singular locus of the curve C ⊂ Gr. In general, we do
the following: if S is a ruled surface, we consider Q := S ∩ H with H ⊂ P(V ) a
general plane. By Bertini’s theorem, Q is an irreducible reduced curve of degree d.
The morphism C → Q, given by w 7→ w ∩ H ∈ Q, is birational. Thus Cnorm is
also the normalization of Q. We can write the singular locus of S as a union of its
irreducible components Ci, with degree di and multiplicity mi. Note that the curve
Q meets every Ci in di points with multiplicity mi (if you prefer, you can think on
the plane H intersecting the curve Ci, but since Ci ⊂ S, H ∩ Ci = Q ∩ Ci). Hence,
with the Plücker formulae it is possible to write the genus of Cnorm in terms of the
degree of Q and the multiplicity of its singular points.

But for d = 3, the work is easy, since the only singularities of a cubic curve are
a node or a cusp. Therefore the singular locus consists on one curve (C has at most
one singularity) of degree 1 and of multiplicity 2 (the singularity is only a node or
a cusp).

For d = 4 there are more possibilities.

2.4 Ruled surfaces of degree 3

Now we can classify the ruled surfaces of degree 3. For this, we will assume that the
characteristic of the base field is different from 2. Now we know that the singular
locus of S is a line, and from the Plücker formulae that we have ommited, it can be
shown that Cnorm has genus 0. From lemma 3, we know also that P (C) = 3. This
implies that C is the twisted cubic in P (C), and hence C = Cnorm. We have two
possibilities according to P (C). In the first case, P (C) is the intersection of two
tangent spaces, and in the second one P (C) lies just in one tangent space.

In the first case, where P (C) lies on TGr,w1 and TGr,w2 . We know from lemma 6
that S is given by a bi-homogeneous equation F in the pairs of variables t1, t2 and
t3, t4 of bi-degree (2, 1), corresponding to a morphism f : w1 → w2 of degree 2. The
line w1 is non singular and a “directrix”. The line w2 is the singular locus. Further,
C̃ \ C = {w1, w2}. If we assume that the field is algebraically closed, then we can
find a basis such that f has the form (t1, t2, 0, 0) 7→ (0, 0, t22,−t21).

In the second case P (C) lies in only one tangent space, namely at the point w0,
which is the singular line of S. Then C lies on the quadratic cone in P (C) and
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w0 ∈ C. In this case, C̃ = C. Now C and S can be put in a standard form, and we
arrive to the following result:

Proposition 2. The standard equations for ruled cubic surfaces S over an alge-
braically closed fields which are not cones are the following:

• t3t21 + t4t
2
2 = 0.

• t3t1t2 + t4t
2
1 + t32 = 0.

We already found a parametrization of the C associated to the first surfac. Let’s
write both parametrizations.

The first one is [0 : −t2 : 1 : −t3 : t : 0], and the second one is [0 : t3 : t2 : −t2 :
−t : −1].

If the field is R, we obtain in the first case another equation, so to say t3(t1t2) +
t4(−t21 + t22).
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