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Foreword

One of the well-springs of mathematical inspiration has been the continu-
ing attempt to formalize human thought. From the syllogisms of the Greeks,
through all of logic and probability theory, cognitive models have led to beau-
tiful mathematics and wide ranging application. But mental processes have
proven to be more complex than any of the formal theories and the various
idealizations have broken off to become separate fields of study and applica-
tion.

It now appears that the same thing is happening with the recent devel-
opments in connectionist and neural computation. Starting in the 1940s and
with great acceleration since the 1980s, there has been an effort to model
cognition using formalisms based on increasingly sophisticated models of the
physiology of neurons. Some branches of this work continue to focus on biolog-
ical and psychological theory, but as in the past, the formalisms are taking on
a mathematical and application life of their own. Several varieties of adaptive
networks have proven to be practical in large difficult applied problems and
this has led to interest in their mathematical and computational properties.

We are now beginning to see good textbooks for introducing the subject
to various student groups. This book by Raul Rojas is aimed at advanced
undergraduates in computer science and mathematics. This is a revised version
of his German text which has been quite successful. It is also a valuable self-
instruction source for professionals interested in the relation of neural network
ideas to theoretical computer science and articulating disciplines.

The book is divided into eighteen chapters, each designed to be taught in
about one week. The first eight chapters follow a progression and the later
ones can be covered in a variety of orders. The emphasis throughout is on
explicating the computational nature of the structures and processes and re-
lating them to other computational formalisms. Proofs are rigorous, but not
overly formal, and there is extensive use of geometric intuition and diagrams.
Specific applications are discussed, with the emphasis on computational rather
than engineering issues. There is a modest number of exercises at the end of
most chapters.
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The most widely applied mechanisms involve adapting weights in feed-
forward networks of uniform differentiable units and these are covered thor-
oughly. In addition to chapters on the background, fundamentals, and varia-
tions on backpropagation techniques, there is treatment of related questions
from statistics and computational complexity.

There are also several chapters covering recurrent networks including the
general associative net and the models of Hopfield and Kohonen. Stochas-
tic variants are presented and linked to statistical physics and Boltzmann
learning. Other chapters (weeks) are dedicated to fuzzy logic, modular neural
networks, genetic algorithms, and an overview of computer hardware devel-
oped for neural computation. Each of the later chapters is self-contained and
should be readable by a student who has mastered the first half of the book.

The most remarkable aspect of neural computation at the present is the
speed at which it is maturing and becoming integrated with traditional disci-
plines. This book is both an indication of this trend and a vehicle for bringing
it to a generation of mathematically inclined students.

Berkeley, California Jerome Feldman



Preface

This book arose from my lectures on neural networks at the Free University
of Berlin and later at the University of Halle. I started writing a new text
out of dissatisfaction with the literature available at the time. Most books
on neural networks seemed to be chaotic collections of models and there was
no clear unifying theoretical thread connecting them. The results of my ef-
forts were published in German by Springer-Verlag under the title Theorie
der neuronalen Netze. 1 tried in that book to put the accent on a system-
atic development of neural network theory and to stimulate the intuition of
the reader by making use of many figures. Intuitive understanding fosters a
more immediate grasp of the objects one studies, which stresses the concrete
meaning of their relations. Since then some new books have appeared, which
are more systematic and comprehensive than those previously available, but
I think that there is still much room for improvement. The German edition
has been quite successful and at the time of this writing it has gone through
five printings in the space of three years.

However, this book is not a translation. I rewrote the text, added new
sections, and deleted some others. The chapter on fast learning algorithms is
completely new and some others have been adapted to deal with interesting
additional topics. The book has been written for undergraduates, and the only
mathematical tools needed are those which are learned during the first two
years at university. The book offers enough material for a semester, although
I do not normally go through all chapters. It is possible to omit some of them
so as to spend more time on others. Some chapters from this book have been
used successfully for university courses in Germany, Austria, and the United
States.

The various branches of neural networks theory are all interrelated closely
and quite often unexpectedly. Even so, because of the great diversity of the
material treated, it was necessary to make each chapter more or less self-
contained. There are a few minor repetitions but this renders each chapter
understandable and interesting. There is considerable flexibility in the order
of presentation for a course. Chapter 1 discusses the biological motivation
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of the whole enterprise. Chapters 2, 3, and 4 deal with the basics of thresh-
old logic and should be considered as a unit. Chapter 5 introduces vector
quantization and unsupervised learning. Chapter 6 gives a nice geometrical
interpretation of perceptron learning. Those interested in stressing current
applications of neural networks can skip Chapters 5 and 6 and go directly
to the backpropagation algorithm (Chapter 7). I am especially proud of this
chapter because it introduces backpropagation with minimal effort, using a
graphical approach, yet the result is more general than the usual derivations
of the algorithm in other books. I was rather surprised to see that Neural
Computation published in 1996 a paper about what is essentially the method
contained in my German book of 1993.

Those interested in statistics and complexity theory should review Chap-
ters 9 and 10. Chapter 11 is an intermezzo and clarifies the relation between
fuzzy logic and neural networks. Recurrent networks are handled in the three
chapters, dealing respectively with associative memories, the Hopfield model,
and Boltzmann machines. They should be also considered a unit. The book
closes with a review of self-organization and evolutionary methods, followed
by a short survey of currently available hardware for neural networks.

We are still struggling with neural network theory, trying to find a more
systematic and comprehensive approach. Every chapter should convey to the
reader an understanding of one small additional piece of the larger picture. I
sometimes compare the current state of the theory with a big puzzle which we
are all trying to put together. This explains the small puzzle pieces that the
reader will find at the end of each chapter. Enough discussion — Let us start
our journey into the fascinating world of artificial neural networks without
further delay.

Errata and electronic information

This book has an Internet home page. Any errors reported by readers, new
ideas, and suggested exercises can be downloaded from Berlin, Germany. The
WWW link is: http://www.inf.fu-berlin.de/~rojas/neural. The home page
offers also some additional useful information about neural networks. You can
send your comments by e-mail to rojas@inf.fu-berlin.de.
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The Biological Paradigm

1.1 Neural computation

Research in the field of neural networks has been attracting increasing atten-
tion in recent years. Since 1943, when Warren McCulloch and Walter Pitts
presented the first model of artificial neurons, new and more sophisticated
proposals have been made from decade to decade. Mathematical analysis has
solved some of the mysteries posed by the new models but has left many ques-
tions open for future investigations. Needless to say, the study of neurons, their
interconnections, and their role as the brain’s elementary building blocks is
one of the most dynamic and important research fields in modern biology. We
can illustrate the relevance of this endeavor by pointing out that between 1901
and 1991 approximately ten percent of the Nobel Prizes for Physiology and
Medicine were awarded to scientists who contributed to the understanding of
the brain. It is not an exaggeration to say that we have learned more about
the nervous system in the last fifty years than ever before.

In this book we deal with artificial neural networks, and therefore the first
question to be clarified is their relation to the biological paradigm. What do we
abstract from real neurons for our models? What is the link between neurons
and artificial computing units? This chapter gives a preliminary answer to
these important questions.

1.1.1 Natural and artificial neural networks

Artificial neural networks are an attempt at modeling the information pro-
cessing capabilities of nervous systems. Thus, first of all, we need to consider
the essential properties of biological neural networks from the viewpoint of in-
formation processing. This will allow us to design abstract models of artificial
neural networks, which can then be simulated and analyzed.

Although the models which have been proposed to explain the structure
of the brain and the nervous systems of some animals are different in many
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respects, there is a general consensus that the essence of the operation of
neural ensembles is “control through communication” [72]. Animal nervous
systems are composed of thousands or millions of interconnected cells. Each
one of them is a very complex arrangement which deals with incoming signals
in many different ways. However, neurons are rather slow when compared to
electronic logic gates. These can achieve switching times of a few nanoseconds,
whereas neurons need several milliseconds to react to a stimulus. Nevertheless
the brain is capable of solving problems which no digital computer can yet
efficiently deal with.

Massive and hierarchical networking of the brain seems to be the funda-
mental precondition for the emergence of consciousness and complex behav-
ior [202]. So far, however, biologists and neurologists have concentrated their
research on uncovering the properties of individual neurons. Today, the mech-
anisms for the production and transport of signals from one neuron to the
other are well-understood physiological phenomena, but how these individual
systems cooperate to form complex and massively parallel systems capable
of incredible information processing feats has not yet been completely elu-
cidated. Mathematics, physics, and computer science can provide invaluable
help in the study of these complex systems. It is not surprising that the study
of the brain has become one of the most interdisciplinary areas of scientific
research in recent years.

However, we should be careful with the metaphors and paradigms com-
monly introduced when dealing with the nervous system. It seems to be a
constant in the history of science that the brain has always been compared
to the most complicated contemporary artifact produced by human industry
[297]. In ancient times the brain was compared to a pneumatic machine, in
the Renaissance to a clockwork, and at the end of the last century to the tele-
phone network. There are some today who consider computers the paradigm
par excellence of a nervous system. It is rather paradoxical that when John
von Neumann wrote his classical description of future universal computers, he
tried to choose terms that would describe computers in terms of brains, not
brains in terms of computers.

The nervous system of an animal is an information processing totality. The
sensory inputs, i.e., signals from the environment, are coded and processed
to evoke the appropriate response. Biological neural networks are just one
of many possible solutions to the problem of processing information. The
main difference between neural networks and conventional computer systems
is the massive parallelism and redundancy which they exploit in order to deal
with the unreliability of the individual computing units. Moreover, biological
neural networks are self-organizing systems and each individual neuron is also
a delicate self-organizing structure capable of processing information in many
different ways.

In this book we study the information processing capabilities of complex
hierarchical networks of simple computing units. We deal with systems whose
structure is only partially predetermined. Some parameters modify the ca-
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pabilities of the network and it is our task to find the best combination for
the solution of a given problem. The adjustment of the parameters will be
done through a learning algorithm, i.e., not through explicit programming
but through an automatic adaptive method.

A cursory review of the relevant literature on artificial neural networks
leaves the impression of a chaotic mixture of very different network topologies
and learning algorithms. Commercial neural network simulators sometimes
offer several dozens of possible models. The large number of proposals has
led to a situation in which each single model appears as part of a big puzzle
whereas the bigger picture is absent. Consequently, in the following chapters
we try to solve this puzzle by systematically introducing and discussing each
of the neural network models in relation to the others.

Our approach consists of stating and answering the following questions:
what information processing capabilities emerge in hierarchical systems of
primitive computing units? What can be computed with these networks? How
can these networks determine their structure in a self-organizing manner?

We start by considering biological systems. Artificial neural networks have
aroused so much interest in recent years, not only because they exhibit inter-
esting properties, but also because they try to mirror the kind of information
processing capabilities of nervous systems. Since information processing con-
sists of transforming signals, we deal with the biological mechanisms for their
generation and transmission in this chapter. We discuss those biological pro-
cesses by which neurons produce signals, and absorb and modify them in order
to retransmit the result. In this way biological neural networks give us a clue
regarding the properties which would be interesting to include in our artificial
networks.

1.1.2 Models of computation

Artificial neural networks can be considered as just another approach to the
problem of computation. The first formal definitions of computability were
proposed in the 1930s and ’40s and at least five different alternatives were
studied at the time. The computer era was started, not with one single ap-
proach, but with a contest of alternative computing models. We all know that
the von Neumann computer emerged as the undisputed winner in this con-
frontation, but its triumph did not lead to the dismissal of the other computing
models. Figure 1.1 shows the five principal contenders:

The mathematical model

Mathematicians avoided dealing with the problem of a function’s computabil-
ity until the beginning of this century. This happened not just because exis-
tence theorems were considered sufficient to deal with functions, but mainly
because nobody had come up with a satisfactory definition of computability,
certainly a relative concept which depends on the specific tools that can be
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used. The general solution for algebraic equations of degree five, for example,
cannot be formulated using only algebraic functions, yet this can be done if
a more general class of functions is allowed as computational primitives. The
squaring of the circle, to give another example, is impossible using ruler and
compass, but it has a trivial real solution.

If we want to talk about computability we must therefore specify which
tools are available. We can start with the idea that some primitive functions
and composition rules are “obviously” computable. All other functions which
can be expressed in terms of these primitives and composition rules are then
also computable.

David Hilbert, the famous German mathematician, was the first to state
the conjecture that a certain class of functions contains all intuitively com-
putable functions. Hilbert was referring to the primitive recursive functions,
the class of functions which can be constructed from the zero and successor
function using composition, projection, and a deterministic number of itera-
tions (primitive recursion). However, in 1928, Wilhelm Ackermann was able
to find a computable function which is not primitive recursive. This led to
the definition of the general recursive functions [154]. In this formalism, a
new composition rule has to be introduced, the so-called i operator, which is
equivalent to an indeterminate recursion or a lookup in an infinite table. At
the same time Alonzo Church and collaborators developed the lambda calcu-
lus, another alternative to the mathematical definition of the computability
concept [380]. In 1936, Church and Kleene were able to show that the general
recursive functions can be expressed in the formalism of the lambda calculus.
This led to the Church thesis that computable functions are the general recur-
sive functions. David Deutsch has recently added that this thesis should be
considered to be a statement about the physical world and be given the same
status as a physical principle. He thus speaks of a “Church principle” [109].

The logic-operational model (Turing machines)

In his classical paper “On Computable Numbers with an Application to the
Entscheidungsproblem” Alan Turing introduced another kind of computing
model. The advantage of his approach is that it consists in an operational,
mechanical model of computability. A Turing machine is composed of an infi-
nite tape, in which symbols can be stored and read again. A read-write head
can move to the left or to the right according to its internal state, which
is updated at each step. The Turing thesis states that computable functions
are those which can be computed with this kind of device. It was formulated
concurrently with the Church thesis and Turing was able to show almost im-
mediately that they are equivalent [435]. The Turing approach made clear for
the first time what “programming” means, curiously enough at a time when
no computer had yet been built.
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Fig. 1.1. Five models of computation

The computer model

The first electronic computing devices were developed in the 1930s and ’40s.
Since then, “computation-with-the-computer” has been regarded as com-
putability itself. However the first engineers developing computers were for
the most part unaware of Turing’s or Church’s research. Konrad Zuse, for ex-
ample, developed in Berlin between 1938 and 1944 the computing machines 71
and Z3 which were programmable but not universal, because they could not
reach the whole space of the computable functions. Zuse’s machines were able
to process a sequence of instructions but could not iterate. Other computers of
the time, like the Mark I built at Harvard, could iterate a constant number of
times but were incapable of executing open-ended iterations (WHILE loops).
Therefore the Mark I could compute the primitive but not the general recur-
sive functions. Also the ENIAC, which is usually hailed as the world’s first
electronic computer, was incapable of dealing with open-ended loops, since
iterations were determined by specific connections between modules of the
machine. It seems that the first universal computer was the Mark I built in
Manchester [96, 375]. This machine was able to cover all computable functions
by making use of conditional branching and self-modifying programs, which
is one possible way of implementing indexed addressing [268].
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Cellular automata

The history of the development of the first mechanical and electronic comput-
ing devices shows how difficult it was to reach a consensus on the architecture
of universal computers. Aspects such as the economy or the dependability of
the building blocks played a role in the discussion, but the main problem was
the definition of the minimal architecture needed for universality. In machines
like the Mark I and the ENTAC there was no clear separation between memory
and processor, and both functional elements were intertwined. Some machines
still worked with base 10 and not 2, some were sequential and others parallel.

John von Neumann, who played a major role in defining the architecture of
sequential machines, analyzed at that time a new computational model which
he called cellular automata. Such automata operate in a “computing space” in
which all data can be processed simultaneously. The main problem for cellular
automata is communication and coordination between all the computing cells.
This can be guaranteed through certain algorithms and conventions. It is not
difficult to show that all computable functions, in the sense of Turing, can
also be computed with cellular automata, even of the one-dimensional type,
possessing only a few states. Turing himself considered this kind of computing
model at one point in his career [192].

Cellular automata as computing model resemble massively parallel multi-
processor systems of the kind that has attracted considerable interest recently.

The biological model (neural networks)

The explanation of important aspects of the physiology of neurons set the
stage for the formulation of artificial neural network models which do not op-
erate sequentially, as Turing machines do. Neural networks have a hierarchical
multilayered structure which sets them apart from cellular automata, so that
information is transmitted not only to the immediate neighbors but also to
more distant units. In artificial neural networks one can connect each unit
to any other. In contrast to conventional computers, no program is handed
over to the hardware — such a program has to be created, that is, the free
parameters of the network have to be found adaptively.

Although neural networks and cellular automata are potentially more effi-
cient than conventional computers in certain application areas, at the time of
their conception they were not yet ready to take center stage. The necessary
theory for harnessing the dynamics of complex parallel systems is still be-
ing developed right before our eyes. In the meantime, conventional computer
technology has made great strides.

There is no better illustration for the simultaneous and related emergence
of these various computability models than the life and work of John von
Neumann himself. He participated in the definition and development of at
least three of these models: in the architecture of sequential computers [417],
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the theory of cellular automata and the first neural network models. He also
collaborated with Church and Turing in Princeton [192].

Artificial neural networks have, as initial motivation, the structure of bi-
ological systems, and constitute an alternative computability paradigm. For
that reason we will review some aspects of the way in which biological sys-
tems perform information processing. The fascination which still pervades
this research field has much to do with the points of contact with the sur-
prisingly elegant methods used by neurons in order to process information at
the cellular level. Several million years of evolution have led to very sophis-
ticated solutions to the problem of dealing with an uncertain environment.
In this chapter we will discuss some elements of these strategies in order to
determine what features we want to adopt in our abstract models of neural
networks.

1.1.3 Elements of a computing model

What are the elementary components of any conceivable computing model?
In the theory of general recursive functions, for example, it is possible to
reduce any computable function to some composition rules and a small set of
primitive functions. For a universal computer, we ask about the existence of a
minimal and sufficient instruction set. For an arbitrary computing model the
following metaphoric expression has been proposed:

computation = storage + transmission + processing.

The mechanical computation of a function presupposes that these three
elements are present, that is, that data can be stored, communicated to the
functional units of the model and transformed. It is implicitly assumed that a
certain coding of the data has been agreed upon. Coding plays an important
role in information processing because, as Claude Shannon showed in 1948,
when noise is present information can still be transmitted without loss, if the
right code with the right amount of redundancy is chosen.

Modern computers transform storage of information into a form of infor-
mation transmission. Static memory chips store a bit as a circulating current
until the bit is read. Turing machines store information in an infinite tape,
whereas transmission is performed by the read-write head. Cellular automata
store information in each cell, which at the same time is a small processor.

1.2 Networks of neurons

In biological neural networks information is stored at the contact points be-
tween different neurons, the so-called synapses. Later we will discuss what role
these elements play for the storage, transmission, and processing of informa-
tion. Other forms of storage are also known, because neurons are themselves
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complex systems of self-organizing signaling. In the next few pages we can-
not do justice to all this complexity, but we analyze the most salient features
and, with the metaphoric expression given above in mind, we will ask: how
do neurons compute?

1.2.1 Structure of the neurons

Nervous systems possess global architectures of variable complexity, but all
are composed of similar building blocks, the neural cells or neurons. They can
perform different functions, which in turn leads to a very variable morphology.
If we analyze the human cortex under a microscope, we can find several dif-
ferent types of neurons. Figure 1.2 shows a diagram of a portion of the cortex.
Although the neurons have very different forms, it is possible to recognize a
hierarchical structure of six different layers. Each one has specific functional
characteristics. Sensory signals, for example, are transmitted directly to the
fourth layer and from there processing is taken over by other layers.

Fig. 1.2. A view of the human cortex [from Lassen et al. 1988]

Neurons receive signals and produce a response. The general structure
of a generic neuron is shown in Figure 1.3'. The branches to the left are the
transmission channels for incoming information and are called dendrites. Den-
drites receive the signals at the contact regions with other cells, the synapses

! Some animals have neurons with a very different morphology. In insects, for ex-
ample, the dendrites go directly into the axon and the cell body is located far from
them. The way these neurons work is nevertheless very similar to the description
in this chapter.
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mentioned already. Organelles in the body of the cell produce all necessary
chemicals for the continuous working of the neuron. The mitochondria, visible
in Figure 1.3, can be thought of as part of the energy supply of the cell, since
they produce chemicals which are consumed by other cell structures. The out-
put signals are transmitted by the azon, of which each cell has at most one.
Some cells do not have an axon, because their task is only to set some cells
in contact with others (in the retina, for example).

Fig. 1.3. A typical motor neuron [from Stevens 1988]

These four elements, dendrites, synapses, cell body, and axon, are the
minimal structure we will adopt from the biological model. Artificial neurons
for computing will have input channels, a cell body and an output channel.
Synapses will be simulated by contact points between the cell body and input
or output connections; a weight will be associated with these points.

1.2.2 Transmission of information

The fundamental problem of any information processing system is the trans-
mission of information, as data storage can be transformed into a recurrent
transmission of information between two points [177].

Biologists have known for more than 100 years that neurons transmit infor-
mation using electrical signals. Because we are dealing with biological struc-
tures, this cannot be done by simple electronic transport as in metallic cables.
Evolution arrived at another solution involving ions and semipermeable mem-
branes.

Our body consists mainly of water, 55% of which is contained within the
cells and 45% forming its environment. The cells preserve their identity and
biological components by enclosing the protoplasm in a membrane made of
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a double layer of molecules that form a diffusion barrier. Some salts, present
in our body, dissolve in the intracellular and extracellular fluid and dissociate
into negative and positive ions. Sodium chloride, for example, dissociates into
positive sodium ions (Na™) and negative chlorine ions (C1™). Other positive
ions present in the interior or exterior of the cells are potassium (K*) and
calcium (Ca?*). The membranes of the cells exhibit different degrees of per-
meability for each one of these ions. The permeability is determined by the
number and size of pores in the membrane, the so-called ionic channels. These
are macromolecules with forms and charges which allow only certain ions to
go from one side of the cell membrane to the other. Channels are selectively
permeable to sodium, potassium or calcium ions. The specific permeability
of the membrane leads to different distributions of ions in the interior and
the exterior of the cells and this, in turn, to the interior of neurons being
negatively charged with respect to the extracellular fluid.

membrane
| positive
H ° o— | ions \H ® o
H . ’
_| . )
o & negative o e o
ions
O 0 ® o (€]
o® o ®
@] ® o)
[ oo e |
~%— (iffusion force electrostatic < diffusion force

force

Fig. 1.4. Diffusion of ions through a membrane

Figure 1.4 illustrates this phenomenon. A box is divided into two parts
separated by a membrane permeable only to positive ions. Initially the same
number of positive and negative ions is located in the right side of the box.
Later, some positive ions move from the right to the left through the pores in
the membrane. This occurs because atoms and molecules have a thermody-
namical tendency to distribute homogeneously in space by the process called
diffusion. The process continues until the electrostatic repulsion from the pos-
itive ions on the left side balances the diffusion potential. A potential differ-
ence, called the reversal potential, is established and the system behaves like
a small electric battery. In a cell, if the initial concentration of potassium ions
in its interior is greater than in its exterior, positive potassium ions will dif-
fuse through the open potassium-selective channels. If these are the only ionic
channels, negative ions cannot disperse through the membrane. The interior
of the cell becomes negatively charged with respect to the exterior, creating
a potential difference between both sides of the membrane. This balances the
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diffusion potential, and, at some point, the net flow of potassium ions through
the membrane falls to zero. The system reaches a steady state. The potential
difference F for one kind of ion is given by the Nernst formula

E = k(In(c,) — In(¢;))

where ¢; is the concentration inside the cell, ¢, the concentration in the ex-
tracellular fluid and % is a proportionality constant [295]. For potassium ions
the equilibrium potential is —80 mV.

Because there are several different concentrations of ions inside and out-
side of the cell, the question is, what is the potential difference which is fi-
nally reached. The exact potential in the interior of the cell depends on the
mixture of concentrations. A typical cell’s potential is —70 mV, which is pro-
duced mainly by the ion concentrations shown in Figure 1.5 (A~ designates
negatively charged biomolecules). The two main ions in the cell are sodium
and potassium. Equilibrium potential for sodium lies around 58 mV. The cell
reaches a potential between —80 mV and 58 mV. The cell’s equilibrium poten-
tial is nearer to the value induced by potassium, because the permeability of
the membrane to potassium is greater than to sodium. There is a net outflow
of potassium ions at this potential and a net inflow of sodium ions. However,
the sodium ions are less mobile because fewer open channels are available. In
the steady state the cell membrane experiences two currents of ions trying to
reach their individual equilibrium potential. An ion pump guarantees that the
concentration of ions does not change with time.

intracellular fluid extracellular fluid
(concentration in mM) (concentration in mM)

K+ 5
Nat 120
ClI™ 125
A~ 0

Fig. 1.5. Ion concentrations inside and outside a cell

The British scientists Alan Hodgkin and Andrew Huxley were able to show
that it is possible to build an electric model of the cell membrane based on
very simple assumptions. The membrane behaves as a capacitor made of two
isolated layers of lipids. It can be charged with positive or negative ions. The
different concentrations of several classes of ions in the interior and exterior of
the cell provide an energy source capable of negatively polarizing the interior
of the cell. Figure 1.6 shows a diagram of the model proposed by Hodgkin and
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Huxley. The specific permeability of the membrane for each class of ion can
be modeled like a conductance (the reciprocal of resistance).
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Fig. 1.6. The Hodgkin—Huxley model of a cell membrane

The electric model is a simplification, because there are other classes of
ions and electrically charged proteins present in the cell. In the model, three
ions compete to create a potential difference between the interior and exterior
of the cell. The conductances gna, gk, and g, reflect the permeability of
the membrane to sodium, potassium, and leakages, i.e., the number of open
channels of each class. A signal can be produced by modifying the polarity
of the cell through changes in the conductances gn, and gkx. By making gy,
larger and the mobility of sodium ions greater than the mobility of potassium
ions, the polarity of the cell changes from —70 mV to a positive value, nearer
to the 58 mV at which sodium ions reach equilibrium. If the conductance gk
then becomes larger and gn, falls back to its original value, the interior of the
cell becomes negative again, overshooting in fact by going below —70 mV. To
generate a signal, a mechanism for depolarizing and polarizing the cell in a
controlled way is necessary.

The conductance and resistance of a cell membrane in relation to the
different classes of ions depends on its permeability. This can be controlled
by opening or closing excitable ionic channels. In addition to the static ionic
channels already mentioned, there is another class which can be electrically
controlled. These channels react to a depolarization of the cell membrane.
When this happens, that is, when the potential of the interior of the cell
in relation to the exterior reaches a threshold, the sodium-selective channels
open automatically and positive sodium ions flow into the cell making its
interior positive. This in turn leads to the opening of the potassium-selective
channels and positive potassium ions flow to the exterior of the cell, restoring
the original negative polarization.

Figure 1.7 shows a diagram of an electrically controlled sodium-selective
channel which lets only sodium ions flow across. This effect is produced by the



1.2 Networks of neurons 15

small aperture in the middle of the channel which is negatively charged (at
time ¢ = 1). If the interior of the cell becomes positive relative to the exterior,
some negative charges are displaced in the channel and this produces the
opening of a gate (¢ = 2). Sodium ions flow through the channel and into the
cell. After a short time the second gate is closed and the ionic channel is sealed
(t = 3). The opening of the channel corresponds to a change of membrane
conductivity as explained above.
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Fig. 1.7. Electrically controlled ionic channels

Static and electrically controlled ionic channels are not only found in neu-
rons. As in any electrical system there are charge losses which have to be
continuously balanced. A sodium ion pump (Figure 1.8) transports the excess
of sodium ions out of the cell and, at the same time, potassium ions into its
interior. The ion pump con