
Iterative Parallax Mapping with Slope Information

Mátyás Premecz∗

Department of Control Engineering and Information Technology
Budapest University of Technology

Budapest / Hungary

Abstract

This paper improves per-pixel displacement mapping al-
gorithms. First we review the previous work including
bump, parallax, and relief mapping, and also sphere trac-
ing. Then we propose a new iterative algorithm based on
parallax mapping, which takes into account the surface
slope represented by the stored normal vector. We show
that the new method is much better than parallax mapping,
however a little poorer than relief mapping, in terms of
image quality. However, it is much faster than relief map-
ping, and is thus a good candidate for implementation in
games.

Keywords: Displacement mapping, GPU, texture map-
ping

1 Introduction

Object geometry is usually defined on three scales, the
macrostructure level, the mesostructure level, and the mi-
crostructure level. A geometric model usually refers to
the macrostructure level, and is often specified as a set of
polygonal or curved surfaces. The mesostructure level in-
cludes geometric details that are relatively small but still
visible such as bumps on a surface. The microstructure
level involves surface microfacets that are visually indis-
tinguishable by human eyes, and are modeled by BRDFs
[CT81] and conventional textures.

Displacement mapping [Coo84, CCC87] provides high
geometric detail by adding mesostructure properties to the
macrostructure model. This is done by modulating the
smooth version of the model by aheight mapdescrib-
ing the difference between the simplified and the detailed
model (figure 1).

highly tessellated surface simplified surface height map stored
as a texture

= +

Figure 1: The basic idea of displacement mapping

∗pmat@freemail.hu

Displacement mapping algorithms take sample points
and displace them perpendicularly to the surface normal
of the macrostructure surface with the distance obtained
from the height map. The sample points can be either
the vertices of the original or tessellated mesh (per-vertex
displacement mapping) or the points corresponding to the
texel centers (per-pixel displacement mapping). In case of
per-vertex displacement mapping the modified geometry
goes through the rendering pipeline. However, in per-pixel
displacement mapping, the surface details are added in the
last steps when texturing takes place. The idea of com-
bining displacement mapping with texture lookups was
proposed by Patterson, who called his method asinverse
displacement mapping[PHL91]. On the GPU per-vertex
displacement mapping can be implemented by the ver-
tex shader. Per-pixel displacement mapping, on the other
hand, is executed by the pixel shader.

During displacement mapping, the perturbed normal
vectors should also be computed for illumination and self-
shadowing information is also often needed.

In this paper we consider only pixel shader approaches.
Since all of them work intangent space, first the tangent
space is revisited.

1.1 Tangent space

Tangent spaceis a coordinate system attached to the lo-
cal surface [Gat03]. Its basis vectors arenormal ~N that is
perpendicular to the local surface,tangent~T andbinormal
~B vectors that are in the tangent plane of the surface and
are perpendicular to the normal. The tangent vector points
into the direction where the first texture coordinateu in-
creases, while binormal points to the direction where the
second texture coordinatev increases (figure 2).

Let us first consider the computation of the appropri-
ate tangent and binormal vectors. Suppose that we have
a triangle with vertices~p1, ~p2, ~p3 in local modeling space,
and with texture coordinates[u1, v1], [u2, v2], [u3, v3]. Ac-
cording to their definition, unknown tangent~T and binor-
mal ~B correspond totexture space vectors[1, 0] and[0, 1],
respectively. The mapping between the texture space and
the local modeling space is linear, thus an arbitrary point
~p is the following function of the texture coordinates:

~p(u, v) = ~p1 + (u− u1) · ~T + (v − v1) · ~B. (1)

T

B

T

B

N

x
y

z

[u , v]11

[u , v]22

[u , v]33 p

p

p

2

1

3

texture space local modeling space

Figure 2: Tangent space

Note that the linear approximation means that 3D vector
~p2− ~p1 corresponds to texture space vector[u2−u1, v2−
v1], and 3D vector~p3 − ~p1 corresponds to texture space
vector[u3 − u1, v3 − v1]. Thus we can write:

~p2 − ~p1 = [u2 − u1] · ~T + [v2 − v1] · ~B,

~p3 − ~p1 = [u3 − u1] · ~T + [v3 − v1] · ~B.

This a linear system of equations for the unknown~T and
~B vectors (in fact, there are three systems, one for each of
thex, y, andz coordinates of the vectors). Solving these
systems, we obtain:

~T =
(u3 − u1) · (~p2 − ~p1)− (u2 − u1) · (~p3 − ~p1)
(u3 − u1) · (v2 − v1)− (u2 − u1) · (v3 − v1)

,

~B =
(u2 − u1) · (~p3 − ~p1)− (u3 − u1) · (~p2 − ~p1)
(u3 − u1) · (v2 − v1)− (u2 − u1) · (v3 − v1)

.

The normal vector of the triangle can be obtained as the
cross product of these vectors since the cross product is
surely perpendicular to both vectors:

~N = ~T × ~B.

We often use unit length normal vector~N0 = ~N/| ~N |
instead of~N . Then the surfaces is displaced by~N0 · h.

Note that in texture space~T , ~B, ~N are orthonormal,
that is, they are orthogonal and have unit length. How-
ever, these vectors are usually not orthonormal in mod-
eling space (the transformation between the texture and
modeling spaces is not angle and distance preserving). We
should be aware that the lengths of the tangent and binor-
mal vectors in modeling space are usually not 1, but ex-
press the expansion or shrinking of the texels as they are
mapped onto the surface. On the other hand, while the
normal is orthogonal to both the tangent and the binormal,
the tangent and the binormal vectors are not necessarily or-
thogonal. Of course in special cases, such as when a rect-
angle, sphere, cylinder, etc. are parameterized in the usual
way, the orthogonality of these vectors are preserved, but
this is not true in the general case. Consider, for example,
a sheared rectangle.

Having vectors~T , ~B, ~N in the modeling space and point
~p0 corresponding to the origin of the texture space, a point

(u, v, h) in tangent (i.e. texture) space can be transformed
to modeling space as

~p(u, v) = ~p0 + [u, v, h] ·

~T
~B
~N

 = ~p0 + [u, v, h] ·M,

where M is the transformation matrix from tangent to
modeling space. This matrix is also called sometimes as
TBN matrix.

When transforming a vector~d = ~p− ~p0 from modeling
space to the tangent space, then the inverse of the matrix
should be applied.

[u, v, h] = [dx, dy, dz] ·M−1.

To compute the inverse, we can exploit only that the
normal is orthogonal to the tangent and the binormal:

u =
(~T · ~d) · ~B2 − (~B · ~d) · (~B · ~T)

~B2 · ~T 2 − (~B · ~T)2
,

v =
(~B · ~d) · ~T 2 − (~T · ~d) · (~B · ~T)

~B2 · ~T 2 − (~B · ~T)2
, h =

~N · ~d

~N2
.

1.2 Storing height maps

When height functionh(u, v) is stored as a texture, we
have to take into account that compact texture formats us-
ing a single byte per texel represent values in the range
of [0, 255] while the height function may be floating point
and may have even negative values. Thus the stored values
should be scaled and biased. Generally we use two con-
stantsSCALEandBIAS and convert the stored texel value
Texel(u, v) as:

h(u, v) = BIAS + SCALE · Texel(u, v).

If we displace by~N0 · h, then constantsSCALEand
BIAS must be scaled when the object is scaled since we
usually expect wrinkles also to grow together with the ob-
ject.

1.3 Pixel shader implementation

Displacement mapping can be solved by the pixel shader
(figure 3). The vertex shader processes only the smooth,
simplified geometry, and we take into account the surface
height map when fragments are processed, that is, at the
end of the graphics pipeline. However, at this stage it is
too late to change the geometry, thus the visibility problem
needs to be solved in the pixel shader program by a ray-
tracing like algorithm. The task can be imagined as tracing
rays into the height field (figure 4).

The graphics pipeline processes the simplified geome-
try, and the pixel shader gets one of its points associated
with texture coordinates[u, v]. This processed point has
(u, v, 0) coordinates in tangent space. The pixel shader

 smooth surface

height map stored
as a texture

vertex
shader rasterization

pixel
shader

visibility
ray

processed
point

modified
visible point

pixel

Figure 3: Displacement mapping on the pixel shader

(u,v,0)

N

T, B
h

(u’,v’, h(u’,v’))

smooth surface

pixel

processed point

visible point

(u’,v’)

Figure 4: Ray tracing of the height field

program is responsible for finding that point of the height
field which is really seen by the ray connecting the pixel
center and processed point(u, v, 0). This visible point has
(u′, v′, h(u′, v′)) coordinates in tangent space.

There are quite a few difficulties to implement this idea:

• A larger part of the height field texture might be
searched, thus the process can be slow. To preserve
speed, most of the implementations obtain the[u′, v′]
modified texture coordinates only approximately.

• There might be several points(u′, v′, h(u′, v′)) of the
height field that can be projected on the pixel of the
processed point. In this case we need that point which
is closest to the eye similarly to classical ray tracing.
However, it makes the search process even more com-
plex. Many algorithms simply ignore this fact and
obtain one, approximate solution, which might be in-
correct in this sense.

• The pixel shader is invoked only if its corresponding
point of the simplified geometry is not back facing
and also visible in case of early z-test. Thus it can
happen that a height map point is ignored because
its corresponding point of the simplified geometry is
not processed by the pixel shader. The possibility of
this error can be reduced if the simplified geometry
encloses the detailed surface, that is, the height field
values arenegative, but back facing simplified poly-
gons still pose problems.

• When the neighborhood of point(u, v, 0) is searched,
we should take into account that not only the height
field, but also the underlying simplified geometry
might change. In the pixel shader we do not have

access to the mesh information, therefore simply as-
sume that the simplified geometry is the plane of the
currently processed triangle. Of course, this assump-
tion fails at triangle edges, which prohibits the cor-
rect display of thesilhouetteof the detailed object.
A simple solution of this problem is to discard frag-
ments when the modified texture coordinate is out of
the processed triangle. To cope with this problem
in a more general case,local curvatureinformation
should also be supplied with the triangles to allow
the higher order (e.g. quadratic) approximation of the
smooth surface farther from the processed point. We
implemented only the simple fragment discarding ap-
proach.

• Replacing processed point(u, v, 0) by really visible
point (u′, v′, h(u′, v′)) does not change the pixel in
which the point is visible, but modifies the depth
value used to determine visibility in the z-buffer.
Although it is possible to change this value in the
pixel shader, we usually do not do that, because such
change would have performance penalty due to the
automatic disabling of the early z-culling. On the
other hand, the height field modifies the geometry on
a small scale, thus ignoring the z-changes before z-
buffering usually does not create visible errors.

2 Previous work

2.1 Bump mapping

normal
normal

view
light

N

T, B

h
smooth surface smooth surface

Figure 5: Bump mapping

Bump mapping[Bli78] can be seen as a strongly sim-
plified version of displacement mapping. This technique
was implemented in hardware even before the emergence
of programmable GPUs [PAC97, Kil00, BERW97]. If the
uneven surface has very small bumps it can be estimated as
being totally flat. In case of flat surfaces, the approximated
visible point (u′, v′, h(u′, v′)) is equal to the processed
point (u, v, 0). However, in order to visualize bumps, it
is necessary to simulate how light affects them. The sim-
plest way is to calculate the perturbed normals for every
pixel and use these normals to perform lighting.

Figure 6: Bump mapping results at 500 FPS on an
NV6800GT GPU.

2.2 Parallax mapping

Bump mapping controls only the shading normals accord-
ing to the height field data, but does not distort the tex-
ture coordinates and the geometric data.Parallax map-
ping [KKI ∗01] still works with the simplified geometry,
but also takes into account the height field when texture
coordinates are obtained.

(u,v)

N

T, B
h

(u’,v’)smooth surface

constant height
surface

Figure 7: Parallax mapping

The texture coordinates used to index surface data tex-
tures (color, shininess, etc.) are modified according to
the height of the actual point. As can be seen in fig-
ure 7, the original(u, v) texture coordinates get substi-
tuted by(u′, v′), which are calculated from the direction
of tangent-space view vector~V = (Vx, Vy, Vz) and height
valueh(u, v) read from a texture at point(u, v), assuming
that the height field is constanth(u, v) everywhere in the
neighborhood of(u, v). Using similarity

(u′ − u, v′ − v) : h = (Vx, Vy) : Vz,

the modified texture coordinates are:

(u′, v′) = (u, v) + h(u, v) ·
(

Vx

Vz
,
Vy

Vz

)
.

Parallax mapping is a computationally inexpensive, ap-
proximate 2D effect. Because of its ease of implemen-
tation, it can be used in conjunction with other types of
mapping. The new texture coordinates can be used to in-
dex regular texture maps for coloring the surface, normal
maps for bump mapping and computing reflection vectors,
shininess maps for computing reflectivity, and probably
any other standard type of texture data that the application
may use. The modified texture coordinates are not per-
fect, so care must be taken in producing height maps and

specifying scale and bias values. Because of the faulty as-
sumption that height values are the same from one texture
coordinate to the next, height maps with wildly varying
heights tend to cause problems. Parallax mapping is in-
capable of detecting areas of a surface that occlude other
areas, which is common on a surface with steep angles.

The implementation is very similar to the bump map-
ping pixel shader, the only difference is that the incoming
texture coordinates are modified before indexing the nor-
mal and surface texture maps. The height values are in the
alpha channel of the normal map.

float h = tex2D(hMap, uv).a * SCALE + BIAS;
return uv + h * View.xy / View.z;

bias = 0 bias = -0.04 bias = -0.04

scale = 1 scale = 0.12 scale = -0.06

Figure 8: Parallax mapping results at 330 FPS. Note that
this method is good if the scale is small and a smaller neg-
ative bias is added.

(u,v)

N

T, B

h

(u’,v’)smooth surface

constant height
surface

Figure 9: Parallax mapping with offset limiting

Parallax mapping in its original form has a significant
flaw. The computation presented in the previous subsec-
tion assumes that the point at(u′, v′) has the same height
as the point at(u, v), which is rarely true. Any surface that
exhibits parallax will have varying heights. At nearly per-
pendicular viewing angles, texture coordinate offsets tend
to be small. A small offset means that the height at(u′, v′)
is likely to be very close to the height at(u, v). Conse-
quently, the offset will be nearly correct. As the viewing
angle becomes more grazing, offset values approach in-
finity. When offset values become significantly large, the
odds of(u′, v′) indexing a similar height to that of(u, v)
fade away, and the result seems to be random. This prob-
lem can reduce surfaces with complex height patterns to a
shimmering mess of pixels that do not look anything like
the original texture map. A simple solution to this problem
is to limit the offsets so that they never grow longer than
the original height in(u, v) [Wel04]. Examining original
offseth(u, v) · (Vx/Vz, Vy/Vz), we can conclude that

• When the surface is seen at grazing angles and thus
Vz ¿ Vx, Vy, then offset limiting takes into effect,
and the offset becomesh(u, v) · (Vx, Vy).

• When the surface is seen from a roughly perpendicu-
lar direction and thusVz ≈ 1, then the offset is again
h(u, v) · (Vx, Vy) without any offset limiting.

Thus offset limiting can be implemented if the division by
Vz is eliminated, which makes the implementation even
simpler than that of the original parallax mapping. How-
ever, eliminating the division byVz even whenVz is large
causes the “swimming” of the texture, that is, the texture
appears to slide over the surface.

Since parallax mapping is an approximation, any limit-
ing value could be chosen, but this one works well enough
and it reduces the code in the fragment program by two in-
structions. The implementation differs from the previous
one only in the normalization of the view vector:

float h = tex2D(hMap, uv).a * SCALE + BIAS;
return uv + h * View.xy;

bias = 0 bias = -0.04 bias = -0.04

scale = 1 scale = 0.12 scale = -0.06

Figure 10: Parallax mapping with offset limiting results at
360 FPS.

Figure 11: Comparison of parallax mapping methods
without (left) and with (right) offset limiting. The bias is -
0.12 and the scale is 0.18. Note that without offset limiting
the image is bad when looking at the surface from grazing
angles.

2.3 Relief mapping

Relief mapping[POC05, PO05] uses a root-finding ap-
proach. Just like the previous method, it is capable of

(u,v)

N

T, B

h

triangle

max height
surface

(s,t)

Phase 1: linear search

(u’,v’)

N

T, B

Phase 2: binary search

4 2
∆ 1

2
3 3

5

Figure 12: Relief mapping. The first phase of the algo-
rithm is a linear search that stops at point 3. The second
phase, the binary search, starts at point pair 2 and 3 and
finds point 5 after two steps.

finding the first intersection, that is detecting occluded ar-
eas caused by steep angles on a surface. Thus, it gives
a correct view of the detailed surface and handles self-
shadowing, too. The key idea of relief mapping is an iter-
ative approximate solution of the intersection calculation
problem between a ray and an uneven surface given as a
height field. One way to find this intersection point is to
perform a binary search on the ray. The procedure has the
following steps:

1. Calculate the view vector.

2. Transform the inverse view vector pointing from the
viewer to the 3D position of the shaded point to tan-
gent space (−~V).

3. The incoming texture coordinates(s, t) represent the
point where the ray enters the area (highest possible
level of surface).

4. With vector−~V and(s, t) calculate(u, v), the point
where the ray leaves this area (lowest possible level
of surface).

5. Perform a texture lookup in the height field at the
middle point of this segment.

6. If the given value is greater than the height of the mid-
dle point, continue with step 5 with the upper half of
the original segment. Else continue with step 5 with
the lower half of the original segment.

This procedure can be stopped after a given number of
iterations or after reaching the needed precision.

float size = 1.0 / BIN_ITER;
float d = 1.0; // depth
float bd = 0.0; // best depth

for (int i=0; i < BIN_ITER; i++) {
size *= 0.5;
float t= tex2D(hMap, dp + ds * (1-d)).a;
if (d <= t) {

bd = depth;
d += 2 * size;

}
d -= size;

}

The binary search procedure just described may lead to
incorrect results if the viewing ray intersects the height
field surface in more than one point. In this case, the binary
search might not find the first intersection point. In order
to avoid this, we start the process with a linear search. Be-
ginning at point(s, t), we step along the(s, t) − (u, v)
line at increments of∆ · (s − u, t − v) looking for the
first point inside the surface. Once the first point under the
height field surface has been identified, the binary search
starts using the last point outside the surface and current
one. In this case, a smaller number of binary subdivi-
sions is needed. For example, if the depth interval be-
tween two linearly searched points is1/8, a six-step bi-
nary search will be equivalent to subdividing the interval
into 512 (8× 26) equally spaced intervals.

The implementation is very similar to the parallax map-
ping pixel shader:

float dstep = 1.0 / LIN_ITER; // depth step
float d = 1.0; //depth
float bd = 0.0; // best depth

// search from front to back
for (int i=0; i < LIN_ITER; i++){

d -= dstep;
float h = tex2D(hMap, dp + ds * (1-d)).a;
if (bd < 0.005) // if no depth found yet

if (d <= h) bd = depth; // best depth
}

bias = 0 bias = -0.04 bias = -0.04

scale = 1 scale = 0.18 scale = -0.06

Figure 13: Relief mapping results at 40 FPS

Note that this implementation always make 8 linear
search steps. If the graphics card supports shading model
3.0, the number of steps may vary from fragment to frag-
ment as function of the angle between view direction and
the interpolated surface normal at the fragment. According
to experience, it is worth increasing the number of steps at
oblique angles. This is possible as follows:

const int N = 8;
int LIN_ITER = lerp(2*N, N, View.z);

Note also that this algorithm always start at the maxi-
mum level surface, thus it is not affected by theBIAS .

This algorithm has been improved in several ways
[BT04, YJ04, MM05]. For example,steep Parallax Map-
ping [MM05] emphasized the application of mip-mapping
not to miss the first intersection, and exploited the dynamic
looping of Shader Model 3.0.

2.4 Displacement mapping with sphere
tracing

N

smooth surface

123

4

max level
surface

Figure 14: Displacement mapping with sphere tracing

Ray tracing of height fields is a numerical root find-
ing algorithm, where we need the root that corresponds
to the ray – height field intersection point closest to the
eye. Sphere tracinguses a distance map and an iterative
algorithm in order to always find the correct texture co-
ordinates of a shaded pixel with correct self-occlusions of
the displaced surface [Don05]. A distance map is a 3D tex-
ture that is precomputed based on the height field sample
of the surface. The 3D texture is best to think of as an axis-
aligned bounding box of the bumpy surface patch. Texels
of the texture correspond to 3D points~p. The value stored
in the texel is the distance from point~p to the closest point
on surfaceS. This distance can also be interpreted as the
radius of the largest sphere of center~p, not intersecting,
only touching the height field (figure 14). This property
explains the name of the method. Formally, the 3D texture
encodes the following distance function:

dist(~p, S) = min{|~p, ~q| : ~q ∈ S}.

In order to find the first intersection of the ray and the
height field, the ray is marched, that is, we make certain
steps. When we are at point~p on the ray, the distance
field tells us that the surface is at leastdist(~p, S) far from
this point. It means that we can step distancedist(~p, S)
safely on the ray, not risking that a hill of the height field is
jumped over. The step gets closer to the first hit. Marching
means the iteration of this step.

Formally, the iteration does the following. Suppose we
have a ray with origin~p1 (obtained as the intersection of
the ray and the maximum level plane of the height field)
and direction−~V (normalized, tangent-space view vector
pointing to the surface from the eye). We define a new
point

~p2 = ~p1 − dist(~p1, S) · ~V .

Then the next point is~p3 = ~p2−dist(~p2, S)· ~V , and so on.
Each consecutive point is a little bit closer to the surface.
Thus, if we take enough samples, our points converge to
the closest intersection of the ray with the surface. The last
point represents the displaced texture coordinates.

The implementation needs the Vertex Shader to com-
pute the tangent-space view and light vectors. The dis-
tance map is fed to the pixel shader as a monochromatic,
3D texture.

float3 tex3D = float3(uv, 1);
for (int i = 0; i < ITERATION; i++) {

float Dist = tex3D(distField, tex3D).a;
tex3D -= Dist * View;

}
uv = tex3D.xy;

Note that this algorithm always start at the maximum
level surface, thus it is not affected by theBIAS . On the
other hand, theSCALEis burnt in the distance field, thus
it cannot be controlled interactively.

The 3D distance field texture data may be generated by
the Danielsson’s algorithm[Dan80] implemented by the
following program [Don05]. The distance field generation
is quite time consuming. It is worth preparing it only once
and storing the result in a file.

3 The new algorithm

All the methods proposed so far assume that the surface is
locally horizontal, except for sphere tracing, which works
with a locally spherical approximation. However, the
height field and the normal map has more information,
which has not been exploited so far. A better approxima-
tion can be obtained if we assume that the surface is still
planar, but its normal vector can be arbitrary (i.e. this sur-
face is not necessarily parallel with the smooth surface).
The normal of the approximating plane can be taken as
the normal vector read from the normal map, thus this ap-
proach does not require any further texture lookups.

(u,v)

N

T, B

h

(u’,v’)smooth surface

N’

Figure 15: Parallax mapping taking into account the slope
of the surface

A place vector of the approximating surface is
(u, v, h(u, v)). The normal vector of this surface is
the shading normal~N ′(u, v) read from the normal map
at (u, v). The parametric equation of the view ray is
(u, v, 0) + ~V · t.

Substituting the ray equation into the the equation of the
approximating plane, we get

~N ′ · ((u, v, 0) + ~V · t) = ~N ′ · (u, v, h).

Expressing ray parametert and the point of intersection
(u′, v′, h′), we obtain:

t = h· N ′
z

(~N ′ · ~V)
, (u′, v′, h′) = (u, v, 0)+h· N ′

z

(~N ′ · ~V)
~V .

We need only the first two coordinates as texel coordinate
offsets:

(u′, v′) = (u, v) + h · N ′
z

(~N ′ · ~V)
(Vx, Vy).

As we pointed out in the section on offset limiting, if(~N ′ ·
~V) is small, the offset may be too big, so we should rather
use a “safer” modification:

(u′, v′) ≈ (u, v) + h ·N ′
z · (Vx, Vy).

Thus the shader calls the following function:

float4 Normal = tex2D(hMap, uv);
float h = Normal.a * SCALE + BIAS;
uv += h * Normal.z * View.xy;

This is as simple as the normal parallax mapping, but
provides much better results.

bias = 0 bias = -0.04 bias = -0.04

scale = 1 scale = 0.12 scale = -0.06

Figure 16: Parallax mapping with slope information re-
sults at 355 FPS

Parallax mapping makes an attempt to offset the tex-
ture coordinates toward the really seen height field point.
Of course, using a single attempt, no exact results can be
expected. The accuracy of the solution, however, can be
improved by iterating the same parallax mapping step by
a few (say 3–4) times.

After an attempt we get an approximation of the inter-
section(ui, vi, hi). Substituting this into the ray equation:

~N ′ · ((ui, vi, hi) + ~V · t) = ~N ′ · (ui+1, vi+1, hi+1).

Solving it for the updated approximation, and ignoring the
division with (~N ′ · ~V ′):

(ui+1, vi+1, hi+1) ≈ (ui, vi, hi)+(h(ui, vi)−hi)·N ′
z ·~V .

The pixel shader of the iterative parallax mapping is
similar to that of the parallax mapping with slope infor-
mation with the following differences:

for(int i = 0; i < ITERATION; i++) {
float4 Normal = tex2D(hMap, uv);
float h = Normal.a * SCALE + BIAS;
uv += (h - uv.z) * Normal.z * View;

}

Iterative parallax mapping is equivalent to numerical
root finding, which tries to solve the ray equation. How-
ever, there is a problem. This method cannot guarantee
that the found intersection point is the closest to the cam-
era (not even the convergence is guaranteed).

parallax relief new method, 1 iteration new method, 4 iterations

350 FPS 52 FPS 345 FPS 270 FPS

Figure 17: Comparison of the new methods to parallax and relief mapping using a simple silhouette processing

bias = 0 bias = -0.04 bias = -0.04

scale = 1 scale = 0.14 scale = -0.06

Figure 18: Iterative parallax mapping results at 246 FPS

4 Conclusions

We proposed a simple improvement of the parallax map-
ping algorithm, which is almost as fast as the original
method but is close to the slower relief mapping in image
quality.

5 Acknowledgement

This work has been supported by OTKA (ref. No.:
T042735), GameTools FP6 (IST-2-004363) project, and
by the National Office for Research and Technology (Hun-
gary).

References
[BERW97] BENNEBROEK K., ERNST I., RÜSSELER H., WITTING

O.: Design principles of hardware-based Phong shading
and bump-mapping.Computers and Graphics 21, 2 (1997),
143–149.

[Bli78] BLINN J. F.: Simulation of wrinkled surfaces. InComputer
Graphics (SIGGRAPH ’78 Proceedings)(1978), pp. 286–
292.

[BT04] BRAWLEY Z., TATARCHUK N.: Parallax occlusion map-
ping: Self-shadowing, perspective-correct bump mapping
using reverse height map tracing. InShaderX3(2004).

[CCC87] COOK R. L., CARPENTER L., CATMULL E.: The reyes
image rendering architecture. InComputer Graphics (SIG-
GRAPH ’87 Proceedings)(1987), pp. 95–102.

[Coo84] COOK R. L.: Shade trees. InSIGGRAPH ’84: Proceedings
of the 11th annual conference on Computer graphics and
interactive techniques(New York, NY, USA, 1984), ACM
Press, pp. 223–231.

[CT81] COOK R., TORRANCE K.: A reflectance model for com-
puter graphics.Computer Graphics 15, 3 (1981).

[Dan80] DANIELSSON P.: Euclidean distance mapping.Computer
Graphics and Image Processing 14(1980), 227–248.

[Don05] DONELLY W.: Per-pixel displacement mapping with dis-
tance functions. InGPU Gems II, M. P., (Ed.). Addison-
Wesley, 2005, pp. 123–136.

[Gat03] GATH J.: Derivation of the tangent
space matrix, 2003. http://www.blacksmith-
studios.dk/projects/downloads/tangentmatrix derivation.php.

[HDKS00] HEIDRICH W., DAUBERT K., KAUTZ J., SEIDEL H.-P.:
Illuminating micro geometry based on precomputed visibil-
ity. In SIGGRAPH 2000 Proceedings(2000), pp. 455–464.

[Kil00] K ILGARD M. J.: A practical and robust bump-mapping
technique for today’s GPUs. InIn GDC 2000: Advanced
OpenGL Game Development(2000).

[KKI ∗01] KANEKO T., KAKAHEI T., INAMI M., KAWAKAMI N.,
YANAGIDA Y., MAEDA T., TACHI S.: Detailed shape rep-
resentation with parallax mapping. InICAT 2001(2001).

[MM05] MCGUIRE M., MCGUIRE M.: Steep par-
allax mapping. In I3D 2005 Poster (2005).
http://www.cs.brown.edu/research/graphics/
games/SteepParallax/index.htm.

[PAC97] PEERCY M., A IREY J., CABRAL B.: Efficient bump map-
ping hardware. InIn SIGGRAPH 97 Conference Proceed-
ings(1997), pp. 303–306.

[PHL91] PATTERSON J. W., HOGGAR S. G., LOGIE J. R.: Inverse
displacement mapping.Computer Graphics Forum 10, 2
(1991), 129–139.

[PO05] POLICARPO F., OLIVEIRA M. M.: Rendering surface de-
tails with relief mapping. InShaderX4: Advanced Render-
ing Techniques, Engel W., (Ed.). Charles River Media, 2005.

[POC05] POLICARPO F., OLIVEIRA M. M., COMBA J.: Real-time
relief mapping on arbitrary polygonal surfaces. InACM
SIGGRAPH 2005 Symposium on Interactive 3D Graphics
and Games(2005), pp. 155–162.

[SKe95] SZIRMAY-KALOS (EDITOR) L.: Theory of Three Dimen-
sional Computer Graphics. Akad́emia Kiad́o, Budapest,
1995. http://www.iit.bme.hu/˜szirmay.

[Wel04] WELSH T.: Parallax Mapping with Offset Limiting: A Per-
Pixel Approximation of Uneven Surfaces. Tech. rep., Infis-
cape Corporation, 2004.

[YJ04] YEREX K., JAGERSAND M.: Displacement mapping with
ray-casting in hardware. InSiggraph 2004 Sketches(2004).

