
129 

Inverse Displacement Mapping 

J.W. Patterson*, S.G. Hoggar‡, and J.R. Logie* 

Abstract 

Inverse displacement mapping is a variant of displacement 
mapping which does not actually perturb the geometry of 
the surface being mapped. It is thus a true texture mapping 
technique which can be applied during rendering without 
breaking viewing pipeline discipline. The method works 
by first projecting probing rays into texture space and solv- 
ing for a ray-texture intersection there. Shadows can also 
be determined by mapping a probe from the intersection 
point towards the light source into texture space and seeing 
if an intersection results. Our implementation uses as much 
knowledge about the base surface as possible to speed up 
the ray-surface intersection calculation. We have limited 
our treatment to spheres, cones, cylinders and planes, and 
our rendering method to ray casting, in order to contain the 
scope of this work up to the present. The inverse displace- 
ment mapping technique can, however, be applied more 
widely, for example as part of a full ray-tracer, and also as 
part of the rendering pipeline for a wider class of smooth 
surfaces. 

1. Introduction 

In this paper we present a new way of achieving the effects 
of displacement mapping' in the rendering of three- 
dimensional objects. Displacement mapping is one of a 
range of texture mapping techniques2 which add detail to 
the appearance of a parameterized three-dimensional sur- 
face by using the surface parameters to index a texture map 
of one or more shading parameter values. Typical entries 
in a texture map include colour3,4 roughness5, and tran- 
sparency6. 

One texture mapping technique which is especially 
notable for being able to promote realistic detail is bump 
mapping7. Exceptionally, the texture map for bump map- 
ping contains height value entries, which are not of them- 
selves shading parameter values. The height values are 
used instead to determine the angle and direction to rotate 
the normal for the mapped surface and it is the normal 
which is used in the shading calculation. However, bump 
mapping is not suitable for textures whose height values are 
large enough to be distinguishable on the silhouette of the 
mapped object. In fact one of the terms in the equations 
describing how the normal is modified is discarded on the 
assumption that the heights in the bump map are negligibly 
small compared with the spatial extent of the surface7,8. 
Figure 1 shows an image of a sphere tiled with copies of a 
spike specified by the small bump map shown in Figure 3 
and rendered using Blinn's bump-mapping technique, 
although in fairness to Blinn we should note that the fore- 
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going assumption about relative dimensions has been 
clearly (and deliberately) invalidated. The viewer would 
expect the spikes near the sides of the sphere to break the 
silhouette yet this does not happen. We should also note 
that the interior of the sphere’s image looks quite convinc- 
ing nonetheless and it is a tribute to Blinn that he recog- 
nized just how far his simplifying assumptions could take 
him. In particular, he made no attempt to displace the sur- 
face or to achieve the identical effect to displacing the sur- 
face, which is what this paper is all about. 

Figure 2 shows the same object as Figure 1, rendered 
from the same database, but now rendered with the form of 
displacement mapping to be described in this paper. The 
rendering method used throughout, in conjunction with the 
various texture mapping techniques illustrated here, is ray- 
casting with no attempt at anti-aliasing. When comparing 
the two figures we see immediately that the spikes in the 
vicinity of the pole and the silhouette edge of the mapped 
surface have a quite different appearance in each image. 
Close examination reveals that even the spikes near the 
centre do not have quite the same appearance. The reason 
for this can be seen in Figure 4 which shows a cir- 
cumstance in which quite different solutions are obtained 
by the two methods for the equivalent probing ray. To 
obtain images using Blinn’s formula on a surface S, as 
shown in Figure 4, for which a bump map defines displace- 
ments giving a bump M, an incident ray first intersects the 
surface at A, the bump map defines the height AB, and 
Blinn’s formula determines the rotation of the normal 
by to By contrast, in displacement mapping (or 
inverse displacement mapping) the intersection of the ray 
with the surface defined by the same map is at point C and 
the normal is rotated in the opposite direction by an amount 

Figure 3a. Tile entries for single-valued spike 

Figure 3b. Shaded image of spike tile 

Figure 4. Comparative ray-intersection geometry 

to give a quite different result for the sample. 
Supersampling will not materially change this outcome. 

Although displacement mapping1,9 is described using 
the terminology of texture mapping and is regarded by 
some as being part of the rendering process, there is some 
controversy over this10. If all texture mapping techniques 
are described in terms of perturbing something, bump map- 
ping perturbs normals, while displacement mapping per- 
turbs the object’s actual geometry. The references to dis- 
placement mapping are for the most part quite short on 
detail, treating displacement mapping as just another tex- 
ture mapping technique and by implication subject to the 
usual problems, such as aliasing. However, to have a 
geometry to perturb, a polygon mesh fine enough to convey 
the appearance of a smooth surface has first to be built. 
Such a mesh could for example originate from a patch 
rendering process. Once built, the vertices of the mesh are 
then displaced as specified by the texture map along the 
normals defined there for the surface. Setting aside the 
question of whether the polygon mesh has to be subdivided 
further to match the resolution of the texture map, or 
whether the polygons themselves have to be split further to 
deal with the ambiguous non-planarities that result, the 
resulting polygon mesh originating from a smooth surface 
is going to be huge if constructed in its entirety prior to 
rendering. The real point here is that the geometry has to 
be built explicitly then perturbed before any rendering and 
the question is whether this is properly done in the modeller 
or in the renderer. Blinn7, after all, introduced bump map- 
ping in order to avoid having to explicitly model fine detail 
not only because of the problem of specifying such detail to 
the modeller, which displacement mapping avoids, but also 
because of the problem of handling the detail within the 
modeller, which displacement mapping, as implemented so 
far. does not avoid. 

2. Principles 

We show here that in some cases the displacement mapping 
process can be handled in a quite different way to that 
described, albeit sketchily, in the literature. This is the 
method of inverse displacement mapping which does 
everything in ‘the opposite way’ to the forms of displace- 
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Figure 5. Object-space geometry for direct displacement 
mapping 

ment mapping we have described so far. Essentially direct 
displacement mapping requires that texture height samples 
define patches in object space which are then projected into 
image space, as shown in Figure 5a, while inverse displace- 
ment mapping projects the rays used to collect image-space 
samples into texture space and determines the point of 
intersection as shown in Figure 5b. In Figure 5a it can be 
seen that the intersection point B of probe AB is actually 
used to determine the image value for some other point in 
image space somewhere along CD, while in Figure 5b it 
can be seen that the projected probe A’B‘ intersects the tex- 
ture at B ’ ,  determining at C’ the surface parameters needed 
to complete the calculation of the shade colours sought by 
the original probe. 

As is done for (direct) displacement mapping we start 
with the vector equation for a smooth base surface 
S(u,v)=0 and a rectangular texture map of height values 
T(u, v ) ,  both parameterized by a pair of coordinates u, v in 
the range The appearance of the surface 
resulting from applying the texture map to S is determined 
by probing within the projection of the region between the 
bounding volumes and onto 
the screen, where 

with rays originating from an eye-point e and passing 
through a screen-point s paramaterized by t as 

Here we indicate vectors in bold and the normalization of 
vector x as The values of S for equation (2) lie 
within the projection of the region between and 

The next step is to project the ray into texture space 
and thus determine whether or not it intersects the surface 
defined by the height samples there, and where. The result- 
ing u, v values for the first intersection are then used to 

establish first the unit normal at parametric point u, v on the 
surface S(u, v), which is and then the 
modification to the normal according to the Blinn7 formula: 

The vectors l, m are the tangent components in the u and v 

directions, that is The derivatives of T in either 
AT 

parametric direction is approximated with differences 

etc. Max1 suggests a variation in this model, when calcu- 
lating the shadows bump maps should produce if they were 
actual displacements, but, as will be seen, we derive 
shadows in a way which is unaffected by the normal pertur- 
bation formula so we have not used this variation here. 

We can calculate shadows by firing a ray towards the 
light source (or sources) taking e as the point of intersection 
of the original ray with the texture in object space and s as 
a point along the vector towards the light source. This ray 
is again projected into texture space and the same pro- 
cedure as before is applied to see whether it intersects any 
other part of the texture before passing out through the 
outer bounding volume. If so, the point of origin is in sha- 
dow for that light source, and, if not, the normal N’ partici- 
pates in the calculation for the illumination provided by 
that light source. An example of a sphere with displace- 
ment-mapped spikes with shadows calculated for a single 
light source can be seen in Figure 6a. The spike tile used is 
visualized in Figure 6b. 

We contend that this form of displacement mapping is 
a true texture-mapping process because it can be carried out 
during rendering in a straightforward way. There is no 
need to build a model which is then displaced locally and 
rendered, and in fact all our images were produced from 
samples obtained in scan-line order. Direct displacement 
mapping, by contrast, would have to build a model and then 
render it at a later stage. In this context shadow-casting is 
problematical, but not impossible12. Like other texture- 
mapping methods our method is and in particular 
our method converges on a solution in constant time for a 
given texture resolution, although it has to be said that our 
undeveloped renderer is consistently at least one order of 
magnitude slower than a similar bump mapping renderer. 
However, developments are in hand to exploit Mip- 
Mapping13 to effect significant improvements in both speed 
and image quality. 

as as 
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Figure 6a. Displacement map with shadows 

Figure 6b. Tile for spike 

3. Application to Quadrics 

Our method for solving for the intersection of the ray in 
texture space is repetitive and relies upon bounding 
volumes as described in the next section. A reasonably 
efficient way of calculating the intersection of a ray of the 
form of equation (2) with a bounding volume as described 
by equation (1) is essential to the success of the method. If 
S(u,v) is linear, that is, it defines a plane, then also 
defines a plane displaced a distance h from the original. 
The case of inverse displacement mapping on a plane is 
straightforward, for example rays in texture space are still 
straight lines, and we will not deal with it further here. The 
methods we described are quite powerful enough to deal 
with this case as well. 

If, however, S(u,v) is quadratic then for arbitrary qua- 
drics is of degree six, and for S(u,v) cubic, 

is of degree ten. Neither of these cases are at all 
pleasant to deal with and we have avoided tackling even the 
general closed quadric form so far. However, for regular 
quadrics; spheres, semi-cones, and cylinders of circular 
section, the bounding volumes are all quadratic, being 
scaled or translated versions of the original surface. We 
have therefore, for the time being, restricted our attention to 
these surfaces, although quite satisfactory results can be 
obtained by subsequently applying non-uniform scaling to 
produce near-spheres etc., or by restricting the range of 
relative heights in the texture map T.  

As introduced elsewhere (eg Hanrahan14), it is very 
convenient to be able to handle the many coefficients of a 
three-dimensional quadric in matrix notation, and also to 
use 4-space or homogeneous coordinates. The equation of 
a sphere radius g is given by: 

where x is the homogeneous vector [x, y, z ,  w] and the 
coefficient matrix is 

If we want to transform this sphere into something else we 
map each point x satisfying the equation (4) into the point 
x' on the new surface, by a transformation of the form 

where M = G.L.R.V and G is the global scaling matrix, L 
the local scaling matrix, R the composite rotation matrix 
for rotations about the origin, and V the translation matrix. 
Since global scaling is normally carried in A8, we can take 
G = I, the unit matrix, here. Postmultiplying (5) by 
gives 

and substituting for x in (4) gives 

where We can then make a sphere 
any radius we want by setting the appropriate value of g, 
and re-shape and reposition it by providing appropriate 
component matrixes for M. Further, if there is no scaling 
inside M, that i s  L = I, then, in our earlier notation, 

and 

To determine the intersections of rays of the form of (2) 
with (7) we substitute e + (s - e ) .  t for x' yielding the qua- 
dratic 
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which gives solutions iff 

where D is the discriminant for the quadratic equation (8). 

The equation D = 0 is also a quadratic (in screen coor- 
dinates which can be used to determine the scanline 
and y-bounds for rays which could intersect the mapped 
surface. The formulae for these are given in Appendix 1 .  
For given values of t and hence can be obtained 
from (8). 

The reason that we have been coy about the parame- 
terization of S (and S ’ )  is that these equations are really 
implicit equations, although we can turn them into the true 
parametric form by a modified form of the standard spheri- 
cal polar mapping for a sphere. For a sphere radius g at the 
origin this is 

where u.v lie within the usual parametric bounds 
It is evident from the form of (10) 

that a left-handed coordinate system is used with positive z 

going into the screen as is usual in 3-D graphics. The 
parametric form of the sphere equation is thus obtained by 
postmultiplying by M and applying equation (5). Usually 
we obtain surface or bounding volume intersections in 
terms of Cartesian coordinates and we need to obtain the 
corresponding u,v parameter values to continue the working 
in texture space. Safe formulae for deriving u,v are given 
in Appendix 2. 

In order to be able to use the perturbation formula (3) 

we need to know the two vectors I ,  m respec- 

tively) from which we can derive the surface normal for S 
at point u, v (or corresponding x or x ’ )  as N = Ixm. Here I 
and m are 3-space vectors, and since N is subsequently nor- 
malized, we can use equation (5) to derive them as 

where 

Taking derivatives from equation (10), and substituting 
Cartesians, we get 

where 

and 

Figure 7 shows the orientations of tangent vectors I 
and m with associated normal N on the surface of a sphere. 
If we take M = I this sphere is the unit sphere at the origin. 
Taking g = 1 makes no difference for 1 and m if N is subse- 
quently normalized. Solutions in object space involve solu- 
tions of equation (7), but equations (5) and (6) allow us to 
move in and out of another space in which the sphere is 
centred at the origin with a consistent size and orientation. 
This space, which we call ‘sphere space’, is more con- 
venient to work with and we can use it to map both 
arbitrarily-sized and -oriented spheres and near-spheres 
without noticeable errors. However, the affine transforma- 
tions carried in the matrix M do not preserve angles so 
solving in sphere space and transforming back into object 
space at the end does not give correct results if the sphere 
has been noticeably scaled in a non-uniform manner. In 
fact, this is the source of the restrictions we stated earlier. 

The final step which is dependent on the geometry of 
S is the projection of the ray into texture space. This is 
done from three-dimensional’ sphere space (that is, not 
invoking the homogeneous coordinate w) as the parameteri- 
zation is straightforward there. Let us say that the ray in 
sphere space is given by 

where (in the terminology of equations (2) and (5)), 

When projected into texture space, the ray represented by 
equation (12) is no longer a straight line. In order to estab- 
lish the projected ray’s  intersection with the texture we will 
be interested at all times in the texture space coordinates (u,  
v, h) of a typical point on the line. We are helped in this by 
the observation that the position vector x in sphere space is 
also a normal to the unit sphere at the origin. That is, all 

Figure 7 .  Tangent vectors l,m on sphere 
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points along the line of the vector have the same u, v coor- 
dinates and distances along it are texture-space h-values. 
Assuming we have these coordinates then we get h from 
(10) as 

Values of u and v can be obtained from x (or originally x') 
using the safe equations in Appendix 2, with (6) if neces- 
sary. 

We can obtain the equation of the projection of the 
ray onto the plane u, v directly as follows from an 
argument in sphere space. If r is a radius vector to the unit 
sphere at the origin which interesects the ray at point R (in 
figure 8), then it i s  given by equation (12). Figure 8 shows 
the geometry of the situation where the ray passes by the 
sphere (although this is not significant of itself). In the 
figure OE is the vector p in sphere space (originally e in 
object space) and the line ER gives the direction of the vec- 
tor q (ES, with S being originally s in object space). Since 
p x q is normal to the plane OES, 

Taking in which case 

and substituting for r = [x, y ,  z] using (lo), we get 

which simplifies to 

where and 

Figure 9. Appearance of a typical projection of a ray into 
texture space 

The derivatives of this are 

and 

from which we can get slopes, maxima, minima, and turn- 
ing points for the projection of the ray into the plane u,v. 
The typical appearance of a plot of equation (13) in texture 
space is shown in Figure 9. 

From equation (13) we see that there are four cases 
which will guide an implementation, shown as i, ii, iii and 
iv in Figure 10. In the upper hemisphere (u > 0) this arises, 
i: when the ray passes through the axis of the sphere, ii: in 
the unexceptional cas: not near the edge of the hemisphere 
map, iii: when the ray passes near the pole, and iv: when 
the ray crosses the equator. A similar set of cases arise in 
the lower hemisphere (u < 0). 

4. Implementation Issues 

The mechanism for finding the intersection of the projected 
ray with the texture map T(u,v) is the dominant component 
of the inverse displacement mapping algorithm and all the 
novel implementation issues revolve around this com- 
ponent. We rely on no particular assumptions about the 
surface whose sample heights are in the texture map other 
than that it is a continuous sheet. There is no require- 

Figure 8. Geometry for computation of ray projection                  Figure 10. Projections of the ray onto the plane u, v 
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Figure 1 I. Ray intersections with bounding volumes 

ment, for example, for differentiability everywhere 
although the differences gloss over this 
point. The continuous sheet assumption is necessary to 
ensure that if we have two points on the projected ray and 
one is unambiguously above the local texture, that is, 
higher than all the heights around it, and the other is clearly 
below; that is, lower than all the heights around it, then 
there is guaranteed to be a point on the ray between them 
which actually intersects the texture surface. 

Although there are a number of special cases that 
need to be examined in the end our description will start 
with the most common and straightforward type of inter- 
section illustrated in Figures 10 ii, 11 and 12. In this case 
the ray in sphere space intersects both of the bounding 
volumes, between which all intersections are constrained to 
lie, and has a trajectory in the u, v plane of the appearance 
shown in Figure 10 ii, that is, not like that in Figure 10 i, iii 
or iv. In all cases the algorithm finds intersections by first 
establishing the intersection of the ray with two bounding 
volumes in sphere space. These two bounding volumes just 
contain all of the height values for the portions of the tex- 
ture within which an intersection could still be found. Ini- 
tially these bounding volumes are defined by , 

and the values of and are established (a 
priori) by searching the entire texture, as suggested by the 
discussion surrounding equation ( 1 ) .  This algorithm 
progresses by repetitively refining these bounding volumes 
until the u, v parameters of their intersections with the ray 

Figure 12.  Texture fields for bounding volume calculations 

in sphere space lie within a single texel (a region in texture 
space bounded by just four texture samples). These u, v 
values are then used to produce a synthetic u, v solution 
within the texel. The method used to produce the pictures 
in this paper was to synthesize a mid-point and solve for 
the intersection of the projected ray with one of the four tri- 
angles defined by each edge of the texel and the mid-point. 
The u,v values resulting from this intersection was then 
used to synthesize by linear interpolation. 

The repetitive step in the process leading to 
this conclusion starts with two bounding volumes, an outer 
bounding volume at height above the unperturbed sur- 
face, and an inner bounding volume at a depth below 
the unperturbed surface. The incident ray intersects these 
at points H and D in Figure 11. To guarantee convergence 
the intersection with a third surface typically midway 
between the outer and inner bounding volumes (at con- 
sistent height is also calculated. This gives us 
point M. These points H, M, D are now projected into tex- 
ture space as shown in Figure 12 and the next part of the 
algorithm is carried out there. The pairs of points H, M and 
M, D can be seen in Figure 12 to define two rectangles of 
sample points in texture space each of which is available to 
establish new bounding volumes. The rectangle defined by 
HM is used first, and is searched to find new maxima and 
minima If the height for point M, is not 
greater than then there is a possible intersection with 
the surface along arc HM. The values are now 
used to establish new bounding volumes 

and the process is repeated, starting with 
establishing a new half-way volume at 
However, it is possible that is greater than in 
which case no intersection is possible as the projection of 
the ray segment HM lies in this case wholly above the tex- 
ture surface in this part of the texture space, so segment 
HM is abandoned and segment MD examined in the same 
way in its place. The repetition is most conveniently 
implemented recursively and if neither HM or MD yields 
an intersection solution then the recursive step returns to 
the previous level at which there may be an alternative to 
be tried. 

The first difficulty with this process is illustrated by 
the u, v trajectory of Figure 10 iii, where there is a turning 
point in the trajectory between points H and D at some 
stage in the iteration. Such turning points can arise when 
v =0 (which fortunately is dealt with by the normal 
mechanisms) or in the terminology of equation 
(13), which gives us a trajectory like Figure 10 iii. In this 
case the search areas we have assumed in Figure 12 are 
wrong. This can be corrected by calculating tangents at H 
and M (or M and D) and seeing if they are of the same sign. 
If they are, the search area is correct, but if they are not we 
have to calculate the intersections of the tangents to the tra- 
jectory in texture space and determine the search box size 
as the smallest rectangle which encloses three points, the 
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two points for which tangents are determined, and the inter- 
section of these tangents. This works everywhere except 
where the points M,D straddle the equator (i.e. the v coordi- 
nates have opposite signs). In this case there is a point of 
inflexion at the equator which could invalidate the forego- 
ing method of calculating a search box. The solution here 
is to take the equator as the mid point and calculate the u 
value for v = 0. This is given by 

otherwise 

Another case which can cause the tangent test to give 
invalid results is the one in which 0. In this case the 
slopes of the tangents are infinite (or close to it) and this is 
caused by the ray trajectory being in the plane containing 
the axis of the sphere in sphere space. In texture space this 

between two points U and D with the same u coordinate, or 
could appear either as a continuous vertical trajectory Figure 13, Another inverse displacement mapped sphere 

a split vertical trajectory which goes to or comes back from 
the top or bottom boundary of the texture map at in 
which case the u coordinates for U and D will differ by 
exactly 1. 

All these special cases have to be handled separately 
for the case in which the incident ray does not intersect the 
initial inner bounding volume. This could typically involve 
features seen near the silhouette edge. These rays also have 
trajectories in u, v space but they might not lead to intersec- 
tions. The process starts by splitting the ray in two at the 
point at which the ray is nearest to the inner bounding 
volume which, in sphere-space, will be the midpoint 
between the two intersections with the other bounding 
volumes. Each half of the ray is then examined separately 
starting from the segment which has the outer bounding 
volume intersection nearest to the eyepoint e. The mid 
point substitutes for the inner bounding volume intersection 

Although this case has to be handled separately, it only 
causes problems when the ray also crosses the equator. In 
this case the ray has to be split into three segments, 
separated internally by the v = 0 point and the mid-point. 

in the first repetition of the ray -surface intersection finder. Figure 14a. Perspective view of texture map for Figure 13 

5. Conclusion 

The kind of results we get with this algorithm can be seen 
in Figures 3, 6, 13 and 15. Despite appearances to the con- 
trary, Figures 13 and 15 are both spheres which have been 
displacement mapped by our method. The texture maps in 
each case are slightly different. In Figure 13 the entries are 
all real numbers calculated by reverse-engineering a cube. 
The texture map for Figure 13 visualized here as a 
smooth-shaded surface, is shown in two views in Figure 
14a, and b. The sharp edges and comers have been 

Figure 14b. Plan perspective view of texture map for Fig- 
ure 13 
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Figure 15. Sphere mapped with cube texture with trun- 
cated integer heights 

retained only by virtue of the fact that the texture is a high- 
resolution texture of 800 x 400 texels. The outcome, in 
applying this texture to a sphere, is Figure 13 which is a 
scaled version of the cube used to determine the texture 
samples in the first place. 

The slight bending of the large flat areas is caused by 
the use of linear interpolation to reconstruct the height sam- 
ple within a texel. This results in a slight error in the 

terms which affects the final normal direc- 
tion and results in the systematic variation in the shading 
value which shows up as an apparent bend. The effect is 
not caused by the approximations in the Blinn formula 
since the terms which are assumed to be zero are in fact 
exactly zero for the special case of normal perturbation on a 
sphere. It is instead a true aliasing effect because the errors 
reinforce each other rather than cancel one another out. A 
high-frequency variation is reappearing as a low-frequency 
one in texture-normal space. 

In Figure 15, the texture map entries were produced in 
the same way, but in this case the real number height values 
were truncated to integers. The attractive patterns on the 
surface are caused entirely by truncation error, and the 
intriguingly inconsistent shading is caused by a similar kind 
of normal aliasing effect to that in Figure 13. It should be 
noted that neither the texture nor the surface it is being 
mapped on to are flat anywhere. One curved surface is 
being ‘bent’ onto another so that the curvature is neutral- 
ized. Nobody would model a cube like this and nobody 
would notice the slight error resulting from using linear 
interpolation (as Blinn3, who also used linear interpolation, 
observes). However the problem could be solved directly 
by using cubic interpolation. 

Figure 16. Bump-mapped sphere using same map as Fig- 
ure 15 

It may seem a little disappointing to have to work so 
hard to produce results for only a limited class of surfaces, 
but the various special cases can be dealt with, albeit more 
slowly, by more general methods which can be applied to a 
wider range of surfaces. Although our method is still not 
well developed, and quite slow as a consequence, it is still 
fast compared to the brute-force divide-and conquer tech- 
nique one of us tried in order to see if it would be practica- 
ble to avoid handling any of the special cases. It wasn’t. 
We note that Kajiya15 used a non-linear space in which to 
ray-trace volumes of rotation. However, his space was 
designed just to simplify the computation rather than to 
correspond to some other specific space in which picture 
information could be exploited. Our method will also 
extend to texture-mapped cylinders, all the shapes Kajiya’s 
method can handle, and asymmetric cylindrically-centred 
shapes as well. 

To finish, Figure 16 shows the application of Blinn’s 
bump-mapping technique to the database used to produce 
Figure 15. The remarkable thing about this picture is that 
the result is easily recognizable as a corner of a cube. 
However, some consequences of not performing any dis- 
placement can be clearly seen in that the visible parts of the 
‘edges’ of the cube can be seen to be curving towards the 
edges of the (unperturbed) silhouette. Thus these two pic- 
tures (Figures 15 and 16) complement the pair (Figures 1 
and 3) in showing the relative merits of displacement map- 
ping over bump mapping in any form. 
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Appendix 1: Scan-Line and Y-Bounds for Closed Qua- 
drics 

The formula in condition (9) is not only used to determine 
whether or not there is a ray-surface intersection, but also 
to derive scan-line and y-bounds for the projection of the 
quadric onto the screen. The geometry is shown in Figure 
17. We note that the vector S contains the screen coordi- 
nates and they can be brought out as components as shown 
in Figure 17. 

To get the scan-line bounds for scan-line we take 

where 

z is the z-distance of the screen from 
would expect w = 1. The condition (9) 

the origin, and we 

can now be expressed as a quadratic equation in x whose 
solutions are the bounds for the scan-line 

If this quadratic is 

then 

and 

We can now get the y-bounds as the values of y 
for which the equation in x has equal roots. That is when 

This equation is of the form 

where 
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Figure 17. Geometry for scan-line and y-bounds calculations 

Appendix 2: Safe Calculation of u, v from x,y, z 

The safe formulae for u and v given here are calculated for 
x rather than x’ in the terminology of equations (6) and (7). 
Equation (7) does the conversion from x’ to x. If 
x = [x, y ,  z ,  1] that is x is divided through by w, then equa- 
tions for u, v corresponding to the parametric equations 
(10) can be computed as follows: 

If 
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