
129

Inverse Displacement Mapping

J.W. Patterson*, S.G. Hoggar‡, and J.R. Logie*

Abstract

Inverse displacement mapping is a variant of displacement
mapping which does not actually perturb the geometry of
the surface being mapped. It is thus a true texture mapping
technique which can be applied during rendering without
breaking viewing pipeline discipline. The method works
by first projecting probing rays into texture space and solv-
ing for a ray-texture intersection there. Shadows can also
be determined by mapping a probe from the intersection
point towards the light source into texture space and seeing
if an intersection results. Our implementation uses as much
knowledge about the base surface as possible to speed up
the ray-surface intersection calculation. We have limited
our treatment to spheres, cones, cylinders and planes, and
our rendering method to ray casting, in order to contain the
scope of this work up to the present. The inverse displace-
ment mapping technique can, however, be applied more
widely, for example as part of a full ray-tracer, and also as
part of the rendering pipeline for a wider class of smooth
surfaces.

1. Introduction

In this paper we present a new way of achieving the effects
of displacement mapping' in the rendering of three-
dimensional objects. Displacement mapping is one of a
range of texture mapping techniques2 which add detail to
the appearance of a parameterized three-dimensional sur-
face by using the surface parameters to index a texture map
of one or more shading parameter values. Typical entries
in a texture map include colour3,4 roughness5, and tran-
sparency6.

One texture mapping technique which is especially
notable for being able to promote realistic detail is bump
mapping7. Exceptionally, the texture map for bump map-
ping contains height value entries, which are not of them-
selves shading parameter values. The height values are
used instead to determine the angle and direction to rotate
the normal for the mapped surface and it is the normal
which is used in the shading calculation. However, bump
mapping is not suitable for textures whose height values are
large enough to be distinguishable on the silhouette of the
mapped object. In fact one of the terms in the equations
describing how the normal is modified is discarded on the
assumption that the heights in the bump map are negligibly
small compared with the spatial extent of the surface7,8.
Figure 1 shows an image of a sphere tiled with copies of a
spike specified by the small bump map shown in Figure 3
and rendered using Blinn's bump-mapping technique,
although in fairness to Blinn we should note that the fore-

This paper was presented at the 9th Annual EUROGRAPH-
ICs (UK) Conference, Sheffield, UK. April 10-12, 1991.
*Department of Computing Science
University of Glasgow
Glasgow G12 8QQ, UK
‡Department of Mathematics
University of Glasgow
Glasgow G12 8QQ, UK

Figure 1 . Rump-mapped sphere Figure 2 . Displacement-mapped sphere

North-Holland
Computer Graphics Forum 10 (1991) 129-139

http://www.eg.org
http://diglib.eg.org

130 J.W. Patterson et al. / Inverse Displacement Mapping

going assumption about relative dimensions has been
clearly (and deliberately) invalidated. The viewer would
expect the spikes near the sides of the sphere to break the
silhouette yet this does not happen. We should also note
that the interior of the sphere’s image looks quite convinc-
ing nonetheless and it is a tribute to Blinn that he recog-
nized just how far his simplifying assumptions could take
him. In particular, he made no attempt to displace the sur-
face or to achieve the identical effect to displacing the sur-
face, which is what this paper is all about.

Figure 2 shows the same object as Figure 1, rendered
from the same database, but now rendered with the form of
displacement mapping to be described in this paper. The
rendering method used throughout, in conjunction with the
various texture mapping techniques illustrated here, is ray-
casting with no attempt at anti-aliasing. When comparing
the two figures we see immediately that the spikes in the
vicinity of the pole and the silhouette edge of the mapped
surface have a quite different appearance in each image.
Close examination reveals that even the spikes near the
centre do not have quite the same appearance. The reason
for this can be seen in Figure 4 which shows a cir-
cumstance in which quite different solutions are obtained
by the two methods for the equivalent probing ray. To
obtain images using Blinn’s formula on a surface S, as
shown in Figure 4, for which a bump map defines displace-
ments giving a bump M, an incident ray first intersects the
surface at A, the bump map defines the height AB, and
Blinn’s formula determines the rotation of the normal
by to By contrast, in displacement mapping (or
inverse displacement mapping) the intersection of the ray
with the surface defined by the same map is at point C and
the normal is rotated in the opposite direction by an amount

Figure 3a. Tile entries for single-valued spike

Figure 3b. Shaded image of spike tile

Figure 4. Comparative ray-intersection geometry

to give a quite different result for the sample.
Supersampling will not materially change this outcome.

Although displacement mapping1,9 is described using
the terminology of texture mapping and is regarded by
some as being part of the rendering process, there is some
controversy over this10. If all texture mapping techniques
are described in terms of perturbing something, bump map-
ping perturbs normals, while displacement mapping per-
turbs the object’s actual geometry. The references to dis-
placement mapping are for the most part quite short on
detail, treating displacement mapping as just another tex-
ture mapping technique and by implication subject to the
usual problems, such as aliasing. However, to have a
geometry to perturb, a polygon mesh fine enough to convey
the appearance of a smooth surface has first to be built.
Such a mesh could for example originate from a patch
rendering process. Once built, the vertices of the mesh are
then displaced as specified by the texture map along the
normals defined there for the surface. Setting aside the
question of whether the polygon mesh has to be subdivided
further to match the resolution of the texture map, or
whether the polygons themselves have to be split further to
deal with the ambiguous non-planarities that result, the
resulting polygon mesh originating from a smooth surface
is going to be huge if constructed in its entirety prior to
rendering. The real point here is that the geometry has to
be built explicitly then perturbed before any rendering and
the question is whether this is properly done in the modeller
or in the renderer. Blinn7, after all, introduced bump map-
ping in order to avoid having to explicitly model fine detail
not only because of the problem of specifying such detail to
the modeller, which displacement mapping avoids, but also
because of the problem of handling the detail within the
modeller, which displacement mapping, as implemented so
far. does not avoid.

2. Principles

We show here that in some cases the displacement mapping
process can be handled in a quite different way to that
described, albeit sketchily, in the literature. This is the
method of inverse displacement mapping which does
everything in ‘the opposite way’ to the forms of displace-

J.W. Patterson et al. / Inverse Displacement Mapping 131

Figure 5. Object-space geometry for direct displacement
mapping

ment mapping we have described so far. Essentially direct
displacement mapping requires that texture height samples
define patches in object space which are then projected into
image space, as shown in Figure 5a, while inverse displace-
ment mapping projects the rays used to collect image-space
samples into texture space and determines the point of
intersection as shown in Figure 5b. In Figure 5a it can be
seen that the intersection point B of probe AB is actually
used to determine the image value for some other point in
image space somewhere along CD, while in Figure 5b it
can be seen that the projected probe A’B‘ intersects the tex-
ture at B ’ , determining at C’ the surface parameters needed
to complete the calculation of the shade colours sought by
the original probe.

As is done for (direct) displacement mapping we start
with the vector equation for a smooth base surface
S(u,v)=0 and a rectangular texture map of height values
T(u, v) , both parameterized by a pair of coordinates u, v in
the range The appearance of the surface
resulting from applying the texture map to S is determined
by probing within the projection of the region between the
bounding volumes and onto
the screen, where

with rays originating from an eye-point e and passing
through a screen-point s paramaterized by t as

Here we indicate vectors in bold and the normalization of
vector x as The values of S for equation (2) lie
within the projection of the region between and

The next step is to project the ray into texture space
and thus determine whether or not it intersects the surface
defined by the height samples there, and where. The result-
ing u, v values for the first intersection are then used to

establish first the unit normal at parametric point u, v on the
surface S(u, v), which is and then the
modification to the normal according to the Blinn7 formula:

The vectors l, m are the tangent components in the u and v

directions, that is The derivatives of T in either
AT

parametric direction is approximated with differences

etc. Max1 suggests a variation in this model, when calcu-
lating the shadows bump maps should produce if they were
actual displacements, but, as will be seen, we derive
shadows in a way which is unaffected by the normal pertur-
bation formula so we have not used this variation here.

We can calculate shadows by firing a ray towards the
light source (or sources) taking e as the point of intersection
of the original ray with the texture in object space and s as
a point along the vector towards the light source. This ray
is again projected into texture space and the same pro-
cedure as before is applied to see whether it intersects any
other part of the texture before passing out through the
outer bounding volume. If so, the point of origin is in sha-
dow for that light source, and, if not, the normal N’ partici-
pates in the calculation for the illumination provided by
that light source. An example of a sphere with displace-
ment-mapped spikes with shadows calculated for a single
light source can be seen in Figure 6a. The spike tile used is
visualized in Figure 6b.

We contend that this form of displacement mapping is
a true texture-mapping process because it can be carried out
during rendering in a straightforward way. There is no
need to build a model which is then displaced locally and
rendered, and in fact all our images were produced from
samples obtained in scan-line order. Direct displacement
mapping, by contrast, would have to build a model and then
render it at a later stage. In this context shadow-casting is
problematical, but not impossible12. Like other texture-
mapping methods our method is and in particular
our method converges on a solution in constant time for a
given texture resolution, although it has to be said that our
undeveloped renderer is consistently at least one order of
magnitude slower than a similar bump mapping renderer.
However, developments are in hand to exploit Mip-
Mapping13 to effect significant improvements in both speed
and image quality.

as as

132 J.W. Patterson et al. / Inverse Displacement Mapping

Figure 6a. Displacement map with shadows

Figure 6b. Tile for spike

3. Application to Quadrics

Our method for solving for the intersection of the ray in
texture space is repetitive and relies upon bounding
volumes as described in the next section. A reasonably
efficient way of calculating the intersection of a ray of the
form of equation (2) with a bounding volume as described
by equation (1) is essential to the success of the method. If
S(u,v) is linear, that is, it defines a plane, then also
defines a plane displaced a distance h from the original.
The case of inverse displacement mapping on a plane is
straightforward, for example rays in texture space are still
straight lines, and we will not deal with it further here. The
methods we described are quite powerful enough to deal
with this case as well.

If, however, S(u,v) is quadratic then for arbitrary qua-
drics is of degree six, and for S(u,v) cubic,

is of degree ten. Neither of these cases are at all
pleasant to deal with and we have avoided tackling even the
general closed quadric form so far. However, for regular
quadrics; spheres, semi-cones, and cylinders of circular
section, the bounding volumes are all quadratic, being
scaled or translated versions of the original surface. We
have therefore, for the time being, restricted our attention to
these surfaces, although quite satisfactory results can be
obtained by subsequently applying non-uniform scaling to
produce near-spheres etc., or by restricting the range of
relative heights in the texture map T.

As introduced elsewhere (eg Hanrahan14), it is very
convenient to be able to handle the many coefficients of a
three-dimensional quadric in matrix notation, and also to
use 4-space or homogeneous coordinates. The equation of
a sphere radius g is given by:

where x is the homogeneous vector [x, y, z , w] and the
coefficient matrix is

If we want to transform this sphere into something else we
map each point x satisfying the equation (4) into the point
x' on the new surface, by a transformation of the form

where M = G.L.R.V and G is the global scaling matrix, L
the local scaling matrix, R the composite rotation matrix
for rotations about the origin, and V the translation matrix.
Since global scaling is normally carried in A8, we can take
G = I, the unit matrix, here. Postmultiplying (5) by
gives

and substituting for x in (4) gives

where We can then make a sphere
any radius we want by setting the appropriate value of g,
and re-shape and reposition it by providing appropriate
component matrixes for M. Further, if there is no scaling
inside M, that i s L = I, then, in our earlier notation,

and

To determine the intersections of rays of the form of (2)
with (7) we substitute e + (s - e) . t for x' yielding the qua-
dratic

J.W. Patterson et al. / Inverse Displacement Mapping 133

which gives solutions iff

where D is the discriminant for the quadratic equation (8).

The equation D = 0 is also a quadratic (in screen coor-
dinates which can be used to determine the scanline
and y-bounds for rays which could intersect the mapped
surface. The formulae for these are given in Appendix 1 .
For given values of t and hence can be obtained
from (8).

The reason that we have been coy about the parame-
terization of S (and S ’) is that these equations are really
implicit equations, although we can turn them into the true
parametric form by a modified form of the standard spheri-
cal polar mapping for a sphere. For a sphere radius g at the
origin this is

where u.v lie within the usual parametric bounds
It is evident from the form of (10)

that a left-handed coordinate system is used with positive z

going into the screen as is usual in 3-D graphics. The
parametric form of the sphere equation is thus obtained by
postmultiplying by M and applying equation (5). Usually
we obtain surface or bounding volume intersections in
terms of Cartesian coordinates and we need to obtain the
corresponding u,v parameter values to continue the working
in texture space. Safe formulae for deriving u,v are given
in Appendix 2.

In order to be able to use the perturbation formula (3)

we need to know the two vectors I , m respec-

tively) from which we can derive the surface normal for S
at point u, v (or corresponding x or x ’) as N = Ixm. Here I
and m are 3-space vectors, and since N is subsequently nor-
malized, we can use equation (5) to derive them as

where

Taking derivatives from equation (10), and substituting
Cartesians, we get

where

and

Figure 7 shows the orientations of tangent vectors I
and m with associated normal N on the surface of a sphere.
If we take M = I this sphere is the unit sphere at the origin.
Taking g = 1 makes no difference for 1 and m if N is subse-
quently normalized. Solutions in object space involve solu-
tions of equation (7), but equations (5) and (6) allow us to
move in and out of another space in which the sphere is
centred at the origin with a consistent size and orientation.
This space, which we call ‘sphere space’, is more con-
venient to work with and we can use it to map both
arbitrarily-sized and -oriented spheres and near-spheres
without noticeable errors. However, the affine transforma-
tions carried in the matrix M do not preserve angles so
solving in sphere space and transforming back into object
space at the end does not give correct results if the sphere
has been noticeably scaled in a non-uniform manner. In
fact, this is the source of the restrictions we stated earlier.

The final step which is dependent on the geometry of
S is the projection of the ray into texture space. This is
done from three-dimensional’ sphere space (that is, not
invoking the homogeneous coordinate w) as the parameteri-
zation is straightforward there. Let us say that the ray in
sphere space is given by

where (in the terminology of equations (2) and (5)),

When projected into texture space, the ray represented by
equation (12) is no longer a straight line. In order to estab-
lish the projected ray’s intersection with the texture we will
be interested at all times in the texture space coordinates (u,
v, h) of a typical point on the line. We are helped in this by
the observation that the position vector x in sphere space is
also a normal to the unit sphere at the origin. That is, all

Figure 7 . Tangent vectors l,m on sphere

134 J.W. Patterson et al. / Inverse Displacement Mapping

points along the line of the vector have the same u, v coor-
dinates and distances along it are texture-space h-values.
Assuming we have these coordinates then we get h from
(10) as

Values of u and v can be obtained from x (or originally x')
using the safe equations in Appendix 2, with (6) if neces-
sary.

We can obtain the equation of the projection of the
ray onto the plane u, v directly as follows from an
argument in sphere space. If r is a radius vector to the unit
sphere at the origin which interesects the ray at point R (in
figure 8), then it i s given by equation (12). Figure 8 shows
the geometry of the situation where the ray passes by the
sphere (although this is not significant of itself). In the
figure OE is the vector p in sphere space (originally e in
object space) and the line ER gives the direction of the vec-
tor q (ES, with S being originally s in object space). Since
p x q is normal to the plane OES,

Taking in which case

and substituting for r = [x, y , z] using (lo), we get

which simplifies to

where and

Figure 9. Appearance of a typical projection of a ray into
texture space

The derivatives of this are

and

from which we can get slopes, maxima, minima, and turn-
ing points for the projection of the ray into the plane u,v.
The typical appearance of a plot of equation (13) in texture
space is shown in Figure 9.

From equation (13) we see that there are four cases
which will guide an implementation, shown as i, ii, iii and
iv in Figure 10. In the upper hemisphere (u > 0) this arises,
i: when the ray passes through the axis of the sphere, ii: in
the unexceptional cas: not near the edge of the hemisphere
map, iii: when the ray passes near the pole, and iv: when
the ray crosses the equator. A similar set of cases arise in
the lower hemisphere (u < 0).

4. Implementation Issues

The mechanism for finding the intersection of the projected
ray with the texture map T(u,v) is the dominant component
of the inverse displacement mapping algorithm and all the
novel implementation issues revolve around this com-
ponent. We rely on no particular assumptions about the
surface whose sample heights are in the texture map other
than that it is a continuous sheet. There is no require-

Figure 8. Geometry for computation of ray projection Figure 10. Projections of the ray onto the plane u, v

J.W. Patterson et al. / Inverse Displacement Mapping 135

Figure 1 I. Ray intersections with bounding volumes

ment, for example, for differentiability everywhere
although the differences gloss over this
point. The continuous sheet assumption is necessary to
ensure that if we have two points on the projected ray and
one is unambiguously above the local texture, that is,
higher than all the heights around it, and the other is clearly
below; that is, lower than all the heights around it, then
there is guaranteed to be a point on the ray between them
which actually intersects the texture surface.

Although there are a number of special cases that
need to be examined in the end our description will start
with the most common and straightforward type of inter-
section illustrated in Figures 10 ii, 11 and 12. In this case
the ray in sphere space intersects both of the bounding
volumes, between which all intersections are constrained to
lie, and has a trajectory in the u, v plane of the appearance
shown in Figure 10 ii, that is, not like that in Figure 10 i, iii
or iv. In all cases the algorithm finds intersections by first
establishing the intersection of the ray with two bounding
volumes in sphere space. These two bounding volumes just
contain all of the height values for the portions of the tex-
ture within which an intersection could still be found. Ini-
tially these bounding volumes are defined by ,

and the values of and are established (a
priori) by searching the entire texture, as suggested by the
discussion surrounding equation (1) . This algorithm
progresses by repetitively refining these bounding volumes
until the u, v parameters of their intersections with the ray

Figure 12. Texture fields for bounding volume calculations

in sphere space lie within a single texel (a region in texture
space bounded by just four texture samples). These u, v
values are then used to produce a synthetic u, v solution
within the texel. The method used to produce the pictures
in this paper was to synthesize a mid-point and solve for
the intersection of the projected ray with one of the four tri-
angles defined by each edge of the texel and the mid-point.
The u,v values resulting from this intersection was then
used to synthesize by linear interpolation.

The repetitive step in the process leading to
this conclusion starts with two bounding volumes, an outer
bounding volume at height above the unperturbed sur-
face, and an inner bounding volume at a depth below
the unperturbed surface. The incident ray intersects these
at points H and D in Figure 11. To guarantee convergence
the intersection with a third surface typically midway
between the outer and inner bounding volumes (at con-
sistent height is also calculated. This gives us
point M. These points H, M, D are now projected into tex-
ture space as shown in Figure 12 and the next part of the
algorithm is carried out there. The pairs of points H, M and
M, D can be seen in Figure 12 to define two rectangles of
sample points in texture space each of which is available to
establish new bounding volumes. The rectangle defined by
HM is used first, and is searched to find new maxima and
minima If the height for point M, is not
greater than then there is a possible intersection with
the surface along arc HM. The values are now
used to establish new bounding volumes

and the process is repeated, starting with
establishing a new half-way volume at
However, it is possible that is greater than in
which case no intersection is possible as the projection of
the ray segment HM lies in this case wholly above the tex-
ture surface in this part of the texture space, so segment
HM is abandoned and segment MD examined in the same
way in its place. The repetition is most conveniently
implemented recursively and if neither HM or MD yields
an intersection solution then the recursive step returns to
the previous level at which there may be an alternative to
be tried.

The first difficulty with this process is illustrated by
the u, v trajectory of Figure 10 iii, where there is a turning
point in the trajectory between points H and D at some
stage in the iteration. Such turning points can arise when
v =0 (which fortunately is dealt with by the normal
mechanisms) or in the terminology of equation
(13), which gives us a trajectory like Figure 10 iii. In this
case the search areas we have assumed in Figure 12 are
wrong. This can be corrected by calculating tangents at H
and M (or M and D) and seeing if they are of the same sign.
If they are, the search area is correct, but if they are not we
have to calculate the intersections of the tangents to the tra-
jectory in texture space and determine the search box size
as the smallest rectangle which encloses three points, the

136 J.W. Patterson et al. / Inverse Displacement Mapping

two points for which tangents are determined, and the inter-
section of these tangents. This works everywhere except
where the points M,D straddle the equator (i.e. the v coordi-
nates have opposite signs). In this case there is a point of
inflexion at the equator which could invalidate the forego-
ing method of calculating a search box. The solution here
is to take the equator as the mid point and calculate the u
value for v = 0. This is given by

otherwise

Another case which can cause the tangent test to give
invalid results is the one in which 0. In this case the
slopes of the tangents are infinite (or close to it) and this is
caused by the ray trajectory being in the plane containing
the axis of the sphere in sphere space. In texture space this

between two points U and D with the same u coordinate, or
could appear either as a continuous vertical trajectory Figure 13, Another inverse displacement mapped sphere

a split vertical trajectory which goes to or comes back from
the top or bottom boundary of the texture map at in
which case the u coordinates for U and D will differ by
exactly 1.

All these special cases have to be handled separately
for the case in which the incident ray does not intersect the
initial inner bounding volume. This could typically involve
features seen near the silhouette edge. These rays also have
trajectories in u, v space but they might not lead to intersec-
tions. The process starts by splitting the ray in two at the
point at which the ray is nearest to the inner bounding
volume which, in sphere-space, will be the midpoint
between the two intersections with the other bounding
volumes. Each half of the ray is then examined separately
starting from the segment which has the outer bounding
volume intersection nearest to the eyepoint e. The mid
point substitutes for the inner bounding volume intersection

Although this case has to be handled separately, it only
causes problems when the ray also crosses the equator. In
this case the ray has to be split into three segments,
separated internally by the v = 0 point and the mid-point.

in the first repetition of the ray -surface intersection finder. Figure 14a. Perspective view of texture map for Figure 13

5. Conclusion

The kind of results we get with this algorithm can be seen
in Figures 3, 6, 13 and 15. Despite appearances to the con-
trary, Figures 13 and 15 are both spheres which have been
displacement mapped by our method. The texture maps in
each case are slightly different. In Figure 13 the entries are
all real numbers calculated by reverse-engineering a cube.
The texture map for Figure 13 visualized here as a
smooth-shaded surface, is shown in two views in Figure
14a, and b. The sharp edges and comers have been

Figure 14b. Plan perspective view of texture map for Fig-
ure 13

J.W. Patterson et al. / Inverse Displacement Mapping 137

Figure 15. Sphere mapped with cube texture with trun-
cated integer heights

retained only by virtue of the fact that the texture is a high-
resolution texture of 800 x 400 texels. The outcome, in
applying this texture to a sphere, is Figure 13 which is a
scaled version of the cube used to determine the texture
samples in the first place.

The slight bending of the large flat areas is caused by
the use of linear interpolation to reconstruct the height sam-
ple within a texel. This results in a slight error in the

terms which affects the final normal direc-
tion and results in the systematic variation in the shading
value which shows up as an apparent bend. The effect is
not caused by the approximations in the Blinn formula
since the terms which are assumed to be zero are in fact
exactly zero for the special case of normal perturbation on a
sphere. It is instead a true aliasing effect because the errors
reinforce each other rather than cancel one another out. A
high-frequency variation is reappearing as a low-frequency
one in texture-normal space.

In Figure 15, the texture map entries were produced in
the same way, but in this case the real number height values
were truncated to integers. The attractive patterns on the
surface are caused entirely by truncation error, and the
intriguingly inconsistent shading is caused by a similar kind
of normal aliasing effect to that in Figure 13. It should be
noted that neither the texture nor the surface it is being
mapped on to are flat anywhere. One curved surface is
being ‘bent’ onto another so that the curvature is neutral-
ized. Nobody would model a cube like this and nobody
would notice the slight error resulting from using linear
interpolation (as Blinn3, who also used linear interpolation,
observes). However the problem could be solved directly
by using cubic interpolation.

Figure 16. Bump-mapped sphere using same map as Fig-
ure 15

It may seem a little disappointing to have to work so
hard to produce results for only a limited class of surfaces,
but the various special cases can be dealt with, albeit more
slowly, by more general methods which can be applied to a
wider range of surfaces. Although our method is still not
well developed, and quite slow as a consequence, it is still
fast compared to the brute-force divide-and conquer tech-
nique one of us tried in order to see if it would be practica-
ble to avoid handling any of the special cases. It wasn’t.
We note that Kajiya15 used a non-linear space in which to
ray-trace volumes of rotation. However, his space was
designed just to simplify the computation rather than to
correspond to some other specific space in which picture
information could be exploited. Our method will also
extend to texture-mapped cylinders, all the shapes Kajiya’s
method can handle, and asymmetric cylindrically-centred
shapes as well.

To finish, Figure 16 shows the application of Blinn’s
bump-mapping technique to the database used to produce
Figure 15. The remarkable thing about this picture is that
the result is easily recognizable as a corner of a cube.
However, some consequences of not performing any dis-
placement can be clearly seen in that the visible parts of the
‘edges’ of the cube can be seen to be curving towards the
edges of the (unperturbed) silhouette. Thus these two pic-
tures (Figures 15 and 16) complement the pair (Figures 1
and 3) in showing the relative merits of displacement map-
ping over bump mapping in any form.

6. Acknowledgements

Two of us (SGH and JWP) gratefully acknowledge a 1988
Tektronix travelling scholarship in support of this work.

138 J.W. Patterson et al. / Inverse Displacement Mapping

One of us (JRL) acknowledges a studentship from the SED
and a research studentship from SERC during the time he
has been involved in this work. We would also like to
thank Colin Dunlop (Computing Science) for the shaded
images of textures in Figure 2, 14a and 14b, and also our
anonymous referees for their helpful suggestions.

References

1 .

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

Cook, R., “Shade Trees,” Computer Graphics, proc

Heckbert, P., “Survey of Texture Mapping,” IEEE
CG & A , pp. 56-67 (November 1986).

Catmull, E., A Subdivision Algorithm for Computer
Display of Curved Surfaces, PhD Thesis, University
of Utah (1976).

SIGGRAPH ’84 18(3), pp. 223-231 (July 1984).

Blinn, J.F. and Newell, M.E., “Texture and
Reflection in Computer Generated Images,’ Comm

Blinn, J.F., “Models of Light Reflection for Com-
puter Synthesized Pictures,” Computer Graphics,
proc SIGGRAPH ’77 11(3), pp. 192-198.

Gardner, G.Y., “Visual Simulation of Clouds,”
Computer Graphics, proc SIGGRAPH ’ 8 5 19(7),

Blinn, J.F., “Simulation of Wrinkled Surfaces,”
Computer Graphics, proc SIGGRAPH 78 12(2),

Watt, A., Fundamentals of Three-Dimensional Com-
puter Graphics, Addison-Wesley, Reading, Mass.
(1989).

ACM 19(10), pp. 542-547 (Oct 10’6).

pp. 297- 303 (July 1985).

pp. 286-292 (August 1978).

Upstill, S., The RenderManTM Companion, Addison-
Wesley, Reading, Mass (1990).

Heckbert, P., ‘‘Texture Mapping and Image Filtering
Notes,” in State of the Art in Computer Graphics,
International Summer Institute, Edinburgh (1 990).

Max, N.L., “Horizon Mapping Shadows for Bump-
Mapped Surfaces,” The Visual Computer 4(2),

Reeves, W., et al., “Rendering Anti-Aliased Sha-
dows with Depth Maps,” Computer Graphics, proc

Williams, L., “Pyramidal Parametrics,” Computer
Graphics, proc SIGGRAPH ’ 8 3 , pp. 1-11.

Hanrahan, P., “A survey of Ray-Surface Intersection
Algorithms,” in An Introduction to Ray Tracing, ed.
Glassner, A., Academic Press, San Diego (1989).

Kajiya, J.T., “New Techniques; for Ray Tracing
Procedurally- Defined Objects,” Computer Graph-
ics, proc SIGGRAPH ’ 8 3 17(3), pp.91-102 (July
1983).

pp. 109-117 (1988).

SIGGRAPH ’87 21(4), pp. 283-291.

Appendix 1: Scan-Line and Y-Bounds for Closed Qua-
drics

The formula in condition (9) is not only used to determine
whether or not there is a ray-surface intersection, but also
to derive scan-line and y-bounds for the projection of the
quadric onto the screen. The geometry is shown in Figure
17. We note that the vector S contains the screen coordi-
nates and they can be brought out as components as shown
in Figure 17.

To get the scan-line bounds for scan-line we take

where

z is the z-distance of the screen from
would expect w = 1. The condition (9)

the origin, and we

can now be expressed as a quadratic equation in x whose
solutions are the bounds for the scan-line

If this quadratic is

then

and

We can now get the y-bounds as the values of y
for which the equation in x has equal roots. That is when

This equation is of the form

where

J.W. Patterson et al. /Inverse Displacement Mapping 139

Figure 17. Geometry for scan-line and y-bounds calculations

Appendix 2: Safe Calculation of u, v from x,y, z

The safe formulae for u and v given here are calculated for
x rather than x’ in the terminology of equations (6) and (7).
Equation (7) does the conversion from x’ to x. If
x = [x, y , z , 1] that is x is divided through by w, then equa-
tions for u, v corresponding to the parametric equations
(10) can be computed as follows:

If

	1. Introduction
	2. Principles
	3. Application to Quadrics
	4. Implementation Issues
	5. Conclusion
	6. Acknowledgements
	References
	Appendix 1: Scan-Line and Y-Bounds for Closed Quadrics
	Appendix 2: Safe Calculation of u, v from x,y, z

