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DIRECTIONAL REFLECTANCE AND EMISSIVITY
OF AN OPAQUE SURFACE

Fred E. Nicodemus

1. ABSTRACT.

‘Concepts, terminology, and symbols are presented
for specifying and relating directicnal variations in
reflectance and emissivity of an opague surface element.
Their relationship to more familiar concepts, including
those of perfectly diffuse and specular rcflectance, is
given, and they are applied to illustrative examples. It
is shown that, when the usual reciprocity relationship
holds, the reilectance for a ray incident on an opaque
surface elernent is related by Kirchhoff's Law to the
emissivity of that element for a ray emitted along the
same line in the opposite sense.
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2. _ INFRODUC LION,

Reflectance and emissivity of the surface of an opaque body
are considered as properties of the surface material and of its micro-
scopic configuration (roughness) but aot of its gross configuration
(curvature). This distinction between microscopic and gross details
of the surface configuration, which Is to some extent an arbitrary one,
will be discussed further below. But reflectance and emissivity are
commonly defined or specified in ways which laclude an implicit
(and often overlooked) dependence on the geometry of the radiation
tbeam (Including incident, emitted, and reflected rays and the effects
on those rays of the gross surface features). Even when this depen-
dence is recognized, the specified reflectance or emissivity is usually
applicable only to situations which reproduce the same geometry. On
the other hand, it Is possible to specify the reflectance and emissivity
of an opaque surface (1.e., of any planar surface element) concisely
and unamblguously as functions of direction (with reference to the

orientation of the surface element) which can be applied quite generally.

The purpose of this paper is, first, to describe such a way of
specifying the directional reflectance and emissivity of an opaque surface,

to recommend approprilate termlnology and symbols, and to relate them

-2 -
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to those In common use. Second, a relationship will be established
between the directional reflectance of a surface element (1. e , its
reflectance for a ray {ncident from a particular direction) and the
directional emissivity of the surface element for radiation emitted
in that same direction. In other words, the related quantities are
the reflectance for a ray incident along a line which Intersects the
surface elem=nt and the emisslivity for a ray emitted along the same

line in the opposite sense.

The radlometric quantities used are listed in Table I, repro-
duced from an earlier paperl, The radiometric relations will be
analyzed below primarily In terms of the baslic quantity radiance (N}.
In the earlier paperl it was shown that when radlance is defined, as
in Table I, as the radiant flux or power (P) per unit solid-angle ( Q) =

in-the-direction-of-a-ray per unit projected-area (Acosf)-perpendic-

ular-to-the-ray, it has the same value at any point along this ray with-

in an {sotroplc medium, in the absence of losses by absorption,
scattering. or reflectlon, More generally, the gquantity N/n2 (where
n i{s the Index of refraction) In the direction of a ray was shown to be
{invariant along that ray, even across & smooth boundary between

different lossless media,

1. See list of references in Section &.

-3 <
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Paain |
Quantity Svinbal Defuing relations
Radiaat encrgy [ ]
al
Radiant energy density u 75= T Joem 3
av
aU
Radiaut power P Pm— watt (W)
at
ar
Ruadiant ttensivy J - Woesrt
952
Radiant emittance W Wl [: 2l
-— Weem™
lrradiance H H] a4
anr
Radiance N Now-— W.cm™. g0~
c0s89. 490
Wavelength A micron (u)
P
Spectral radiant power Py Prm— Wep™t
ax
aJ
Spectral radiaat intensity Iy J=— Woesr™ey™!
ax
R 1%
Spectral radiant emittance 5% Hi=—v Weem=2 47t
2N
> . aH -
Spectrai irradiance Hy Hym— Weem=2. 71
(28
N B
Spectral radiance N Nym— Weem™2sr~lymt
N
Radiant emissivity [ Ratio of "'emitted’” radiant power to that
from an ideal blackbody at the same tem-
perature. .
Recdiant absorptance « Ratio of “absorbed” radiant power to incident
radiant power. _ L
Ra H e efleriance 2 Ratio of “‘reflected” radiant power to incident
) radiant power.
Radiant transmittance T Ratic of “transmitted” radiant power to

Nore:

incident radiant power.

The spectral radiant emissivity e{\) = W5 ‘Wi sse/on. Heance, the subscript notation e, which
coitd be confused with de/an, is not recommended, although ttis often used. Slmilariy,_ it is recommended
that the spertral abssrptance, spectral reflectance, and spectral transmittance be written as a(A), p(A),

anmd rix, respectively.

e e, el et i Paen et

se i




EDL-G206

In Table I, the definitions givcn for radiant em ssivity and
radiant reflectance take no account of the effects of the gecometzy of
the radiation beam. The following treatment will refine these
definitions to recognize explicitly the way in which these quimtities
may vary with orientation (relative to the surface). Only opaque
surtaces (of zero transmittance) and the geometrical ray optics of

incoherent radiation will be considered.

3. DIRECTIONAL REFLECTANCE

Consider a radiation field, where the radiance Ni is a function
of both position and direction, incident on the surface 6f an opaque body
where some of the radiation is absorbed and the rest is reflected (as
used here, ''reflected" includes diffuse reflectance or scattering) to
form a second radiation field, where the‘radiance Nr of the reflected
radiation is also a function of position and direction. Nr is dire‘ctly
proportional to Ni in the sense that, if the value of Ni is multiplied by
a constant that is independent of position and direction, the resulting
values of ;\'r will all be multiplied by the same Constant factor. It will

be seen below that the interdependence of the spatial and directional

distributions of N_ and .\’i 15 more complex.

14

Next, consider only the radiant power incident on a particular
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element § A of a reflecting surface through an elementary beam of

solld angle §1, from a dirvection ( Gi, :pi), where Giir the angle from

i
the normal to §A and ] is the azimuth about that normal (see Figure

1).  This incident radiant power is given by :

8P ( 91, <p1) = N1 (6{, cpl) cos 8, 8A 60{

t i
= N (8. @) 80 6A [w], (n
where éfs'i = cos 91 5Q
= sin ei cos Gid eid@i
is the ''projected solld angle" ™’ of the elementary beam. Corre-
spondingly, the irradiance at §A is
SHy (8, @) = M (8.9) 8 QY [w.em™]. (2)

Then the radiant intensity of the surface element A, due to reflection
(scattering) of radiation from thls incident elementary beam, in the

direction (Gr, qu) is

83, (0 @) = o' (8,9,8 9 )cos § 6P, (8,,9,) [w-sr] (3

or, by dividing both sides of Equation (3) by GAcoser, we obtaln the

reflected (scattered) radiance

. . -2 .71
6Nr (er, q:r) = p'(ei, Py ef.c,pr) 6H1(81. wi) [w.cm sr '], (4)
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Figure 1 Geometry of incident and reflected elementary
beams. (Z-axis is chosen along the normal to the
surface element at O.)
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SN (0, ) N (AL, pp) -
whe ve o' (9, ¢ 8 L)) PR v =g ]‘"‘Lﬁmi | [se] (5)
I S ¢ v qII1 (ﬁi,q\{) Ni(gi,qai) A Qi

C‘,
Is the parvtial reflectance or "reflection-distribution function'  of the
surface element 8 A for radiation incident from the direction ( ni. m{)
and reflected (scattered in the direction (er,cpr). Furthermore, by

s

a reciprocity theorem of wide generality 7 first enunclated by Helmholtz, *
we may write

P! (91’%’99"99) =p'(82"92’91"91) [sr1]. (6)
Thus p' (el, @y By (pz) is ordinarily the partial reflectance between the two
directions (91"391) and(eg, (pz), where either direction may be that of

the incident elementary beam and the other that of the reflected (scattered)

elementary beam.

Hence, we can write the expression for the radlance at a point
of the reflecting surface (taken as the origin for spherical coordinates)
in the direction (er’ qpr) due to reflection (scattering) of all beams of

incident radlation as

* A search for a proof (in English) of this important theorem also turned
up a number of authors who referred to,or made use of,the theorem in

3
8,9,10,11, 12 including Von Helrnholtzl ,

various ways without giving a proof
although Planckl4 states, without specific citation, that Von Helmholtz
"proved" the theorem. DeHQOp7 not only gives a proof (essentially the

same as that of Kerré).but also includes an explicit statement of the

requisite conditions.
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2T e
- h ;8 I " e
N (8 .:pl_) :f J. p (61, Py Qr. q)r) Ni(gi.(pi) sin 81 cos Gldgi d(pi
(o] o

r

-l

p'(@r L Gr.cpr) N, (Bi,ml) d QY [w-em-7sr=1],  (7)
h

where we adopt the following notation to designate integration over a

hemisphere:

- o 3T WY
| f(8e)an=| J f(a,¢)sinedodg

“h o o
f A2

and [ feoan =] J' £(8,0) sin 8 cos 6d 8 d g.
h o o

This relation -~ Equation (7) -- 1s for a particular point, or for the
surface element §A at that point. For a more general expression, we
must also establish the reflected radiance from other points., When p'
and Ni are expressed as functions of spatial location (as well as direction)
for all points on the reflecting surface, Equation (7) glves the reflected
radiance Nr as a function of position for these points on the reflecting
surface, as well as for direction (er’ cPr) at each such point. However,

It is Important in that case to recognize that Equation (7) is written above
in coordinates which, for convenlence, are specially orlented with
regpect to the surface element § A, Appropriate adjustments must be
made when dealing with {rregular surfaces where the direction of the

normal, with respect to flxed coordinates, changes in going from one

surface element to another.
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Whether surface {rvegularities are treated as microscoplce,
{in the sense that thelr effects are integrated ov averaged In the dis-
tribution function ov partial reflectance p' (€, .1,.08;, @5)), or as
macroscopic (in the sense that they may be analyzed lnto smaller
surface elements §A for treatment as in the preceding paragraph) can
be arbitrary, depending on the degree of resolution desired, or can be
dependent on circumstances limiting achievable resolution. For example,
in examining the reflectance of a highly irregular surface containing |
deep cavities, such as a piece of volcanic scoria, or a coarse, blackened
cellulose sponge in the laboratory, it may be possible to consider the
reflectance of different portions of the walls of single cavities (which
are ther regarded as macroscoplc irregularities)., But when studying
the possible effects of similar surfaces which may exist on the moon,
where such fine detall cannot possibly be resolved by the best telescopes
on earth, these are necessarily treated as microscopic Irregularities. 15.16
Still more complicated considerations are introduced when microscopic
irregularities are small enough to have dimensions of the order of, or
less than, the wavelength of the incldent light or other eleciromagnetic

radlation. 17,18,19, 20

The total reflectance p of a surface element A {s defined in

general as

[ dimensionless], (8)

o
U}

§P / &P
r i

- 10 -
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where SP[ [ the total radiant power incldent (from all directions) on

SAL and éPr iz the total vesulting retlected radlant power (in all
divections), As stated above, the value of p depends upon the geometry
and spectrum of the incldent beam of vadiation, which may be different
fn each particular case, Here for the moment we are concerned
primarily with the geometrical relatious. Hence, for the remainder

of this paper, except where otherwise stated, we will ellminate spectral
considerations by restricting the spectrum of the incldent radiation

to a region over which o does not change significantly with wave-
length. It i{s then useful to consider some speclal cases of inclident-

beam geometry,

If the incident radiation is well collimated, within a small

element of solid angle 5.71 = sin Gideid;oi from the direction(ei, cpi) the

total radiant power incident on 8A is
8P, = SH, (€,,4,) SA [w]. (9)
Then. from Equation (5),

N 5 5 = L =T ¢
81 ( I d ) p ( ’ ri‘ erx‘Pr) 5Hl (eil (pi)

= p' (5.9, 0,.9,) 6P /8A [w.cm ?.sr71]  (10)

- 11 -
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But sPo=8A ¢ SN (8, ¢ ) d
T . vl Yr v
h
= ) F(a , = dn!
Spl,. P (xil»in Gr.wr) s -
h
= T 1
= Spi P i (Gi.qai) Lw], (11)

where P4y ei'w‘) {s the {total) directional reflectance, for a well-
collimated incident beam, given by

- i 1
Pai (in w) = ‘jrh p' {8 @ 8, cpr) da' [ dimensionless]. (12)

For {sotropic surfaces, there is no dependence on the azimuth ¢ and

Ecuation (12) simplifies to the frequently recognized dependence on §:
Pat B rpi) = pg (8) IUthe well-collimated beam is incident perpen-
dicularly on a plane surface, we have the commonly-reported normal

reflectance, p = P4y (0). If a point on the surface of a solid Is uniformly
n

irradiated from all external directions, L.e.,1if N, is a constant, the

i

reflected radiance in the direction (er s qpr), from Equation (7) is given by

1 E ! !
N (8_0) =N, fh p' (6,0 8 . p,) da’,
= Par (9000 Ny [w-em=2-s7r71];  (13)
where Par (gr, @r) = J-h p' (ei, 9 er' cgr) dﬂ'r [ dimensionless]. (14)

But, from the reciprocity relation, Equation (6), and Equations (12)

and (14) we can write

Pat (8,0, = Pdr (81, m,) = Pq (8, ) [ dimensionless] . {15)

- 12 -
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Thus, the (total) divectional reflectance oy (Gl, qwl) for a well-collimated
beam incident from the divection (8‘, cpl) is also the ratio between the
reflected radiance .\'r (91, ;,;l) in that same direction anu the incident
radiance .\".L when the surface is uniformly irradiated from all directions
{hemispherical irradiation). This relation -- Equations (13) and (15) --

15 the basis for a reflectometry technique described by McNicholas.

4. DIRECTIONAL EMISSIVITY (AND ABSORPTANCE)

More importaat, Equations (11), (13) and (15) are the basis for
evaluating and equating the directional absorptance and directional
emissivity of the surface element $A in a simple relation which has the
same form as the Kirchhoff's-Law relation --see Equation (18) below.
If, in Equation (13), the uniform incident radiance Ni is equal to Nb (TY,
the blackbody radiance (either total or spectral, i.e., in a smali wave-
length interval at a given wavelength) in an isothermal enclosure at
TOK, and if, in fact, the reflecting surface forms the wall of such an
enclosure so that it, too, is at this same temperature, then the radiance
in the direction (8., ¢ ) from the element of wall surfaze 8A is made up
of an emitted radiance and a reflected radiance, as follows:

N # NL =6 (B9 ) Ny AT) + 0, (87 9)) N (T)

1
Z

p (T [w-cm™. sr-1], (16a)

Similarly, of the rad.ance N_ {T) incident on the element §A from a direction

b
(4,,,), a portion N_ is absorbed and the remairder Nir is reflected
d

(scattered) in all directions (into a hemisphere):

- 13 -
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Nd + N“‘ = ay (81, :4‘1) Nb (0 + “4i (91. @) Nb ('r)
= Ny {mT) [w.cm . spm? (16b)

Here, t'd (2., ) i the dirvectional emissivity (at temperature T) of the
element §A for radiation emitted in the direction (8,, ¢, ) and oy (8, )
is the absorptance (at T) for radiation incident from that direction,
Consequently, from Equation (15),

g tSew) = - ar (8, 4)

=1 - %i {8, , ) = 2g (81, @) [ dimensionless]. (17)

Note that equilibrium maintenance with conservation of energy (Kirchhoff's
Law) by itself would justify only each line of Equation (17) independently,
and the Helmhotz Reciprocity Law (which is the basis for Equation (6)
and, in turn, Equation (15)) must also be invoked in order to eguate
them to each other and so to relate emissivity for radiation emitted into
a given direction to the absorptance for radiation incident from that same
direction (See Appendix A concerning a contrary position.)

In the more familiar form of Kirchhoff's Law,
£=1-p=g [ dimensionless], (18)
directional quantities are not considered. Instead, the total emissivity
for radiation emitted in all directions (into a hemisphere) is related to
the total reflectance (in all directions into a hemisphere) for uniform
incident radiance (from all directions, i.e., from a hemisphere) and to
the total absorptance for uniform incident radiance (from all directions,
i.e., from a hemisphere). The total reflectance o in Eguation (18), for
uniform incident radiance (Ni = a constant independent of direction) is then

- 14 -
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.
N St &3 N
P /5P 5A‘lh Nrés. T\Ti ulh pd( L@) de
p = IS = —— = -
B ' SA N 5 N A
v i fJ
h h
| S -
=5 .k P4 (8, ) d3 [ dimensionless]. (19)

The quantities in Equation (18) are those involved {n heat-transfer
computations where the interest is in the net flow of energy across a
bounding surface, Involving radiation received, emitted, or reflected

in all directions,

Equations {17) and (18) apply In all cases to spectral radiation
(i.e., the radiation ia a very small wavelength Interval about a specified
wavelength) and hence also to any spectral interval in which p or Pq (and
therefore also € or Ed and v or czd) do not change significantly with
wavelength. When thermal equilbrium exists (I,e.. when Ni = Nb {T) =
A '\;Xb(T’ A) d A, where l?}\b (T, ) is the spectral radiance of a blackbody
ar TOK). they also apply to total radiation (all wavelengths), even though
the spactral reflectance varles with wavelength, However, if the spectral
reflectance is not a constant and the spectral distribution of the incident
radiation is arbltrary (non-equilibrium condition), Equations (17) and (18)

do not necessarlly hold for the total (all wavelengths) reflectance,

absorptance, and emissivity.

- 15 -
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ENAMPLYS,

In arder to clariiv the foregoing treatment of reflectance, It

may be helpful to apply it to some f~ Juently encountered slituations.

In reflectance measurements, it is a common practice to make compar-

2o
",
7]

ons with standard surfaces which approximate the limiting cases of
periectly diffuse reflectance (MgQ is often used) and specular reflectance

- {a highly polished mirror),

l,]

ir

t, a perfectly diffuse reflector Is characterized by a

h

constant value of partial reflectance p' in all directions. If such a

ace is dilfusely irradiated (N, constant over a hemisphere) and the

"

ur 1 ‘
reflectecd racdiation in 2 well-collimated beam in any particular direction
is measured, or., in the reverse situation, if weil—conimated incident
raclation {5 reflected int§ a hemispherical receiver (e.g., an integrating
. sphere), the ratio of reflected power {flux) from a given surface area

to the incident power on that area is given {n either case by the direc-

tional reflectance Pa which, by Ecuation (12). {s also a constant:
Pe = p’.J-}_ ¢l =wp! [ dimensionless]. (20)

Hence, irom Equation (13), the total reflectance for any arbitrary

configuration of incident radiation is given by

-16 -
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TN dnda oo TN dardA
psz s csb v 4ot
Py o N, datda rr N, dtdA
‘' 'h * *h
=Py T ~p! [ dimecnsionless], {21

where the Integration with respect to dA is carried out over the same
ared {n both numerator and denominator, and Ni may be any function
of direction and position. “When the Incident radiation is uniformly
distributed over the surface (even though {t is not necessarlly uniform
with respect to incldent direction), the reflected radlance Nr in any

direction Is related to the irradiance H, by the partial reflectance p'

i
defined in Equation (5), as follows:
o = Nr/Hi =p/r [sr1]. (22)
Second, a perfectly specular reflew . .haracterized by the
relation
N_ (8, 9% ) =p, (89) N (8, 9) [w: . “.sr-1]. (23)

By comparing this with the general relationship between incldent and
reflected radiances, it can be seen that Equation (23) will result if the
partial reflectance p' In Equation (7) has the form
Pt (9p @ 8,0 ) = 2p, (8 0) §(sin? g_ - sin? 8;)
5(@r- @ + ) [sr'l] (24)
where 5 (sin? B -5in% ;1) and 5(@1_ -9 +y) are Dirac delta~functions which

satisfy the deflnlng relations

- 17 -
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< ) =0 for u # 0,

¢ ju) du =1, and

-

f ) ¢ qu) du =1 {0),
when the integration i{s carried out over the full range of the varlable,

O~/ and 0o 27, {n each case.

Sometimes attempts are made to state appatently simple
relationships between the output of a given reflectometer for a diffuse
standard surface and a specular standard surface. This {s not a simple
matter. It depends critically upon the configuration, and a wide variety

of contigurations are employed.

As an illustration, assume that a sample surface is uniformly

{rradiat~1 by a well-collimated beam of uniform radiance Ni within a

small solid angle Afji incident from the direction (g, ¢). Assume also that
a detector is placed with appropriate optics (stops and, if necessary,
focussing elements) to insure that it receives radiation only from a well-
defined portion of the irradlated surface, of area 4 A, through a well-
defined solid angle, Aﬁr < 531’ in the direction (g, w+ ). Flrst, If the
reflecting surface s perfectly diffusing, the reflected radiance is con-

stant in all directions and is related to the incident irradiance, Hl = Ni A

Gy cos ei= NiA ;‘_’1, by Equatlons (5), and (21). The total power (flux)
recelved by the detector is then
L .
Pd':' . A\rd,ArdA

v o

= (p/) 2\'1 A Q’i ‘r f‘ cos 8, dnr, dA

U

(o) Ny AQ' AT AA (25)

- 18 -




DL -Glon

Note that {f there Is vignetting, so that the selld angle A “r through which
the detector recelves vadiatlion {s not exactly the same tor each point of

the surface A A, [t may be difficult to evaluate the integrals,

Nex¢, if a specular standard surface {s substituted for the
diffuse surface (and if {t is carefully aligned to insure that the solid angle
A [:!_ is completely filled with reflected radiation), then, from Iquation
(23), the total power (flux) recelved by the detector can be written as

P :J' j‘.\* a’ dA

s r

=pg (80 Npa &' a4 [w]. (26)

i
If these were ldeal standards, with reflectance values of unity in each
case (p = Pq = 1), the ratio of the detector outputs (proportional to
received power) for the two surfaces under the described conditions

would then be

i3 ™

P
s
—_ = = dir . 2
= e T eos G, [ dimensionless] (27)

It is obvious that this relation depends directly (Inversely) on the solid-
angle spread of the incident colllmated team. The dependence on the
other factors in the configuration -- the alignment, the solld angle of
acceptance of the detector, etc, -- is clear from the foregoing discussien

and specification of the conditions for which this relation was derlved.

_]9_
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Jaly what might be termed the external radiometric relations
have been consldered {n the foregolng treatment and no attempt has
been made to deal with the deeper theory relating reflectance, emlssiv-
itv. and absovptance to the optical constants of the materials, A good
summary of the most {mportant aspects of that approach is given in

Reference 22,

o, SUMMARY,

The partial reflectance of a surface element p' (& ,¢,,8,,9 )
iz defined In Equation (5) as the ratio between the refiected radiance
in the direction (2,, v;) and the {ncident irradiance from the direction
(& . z,) which produces it. Integration of this quantity over the solid
angle of 2 hemlsphere in Equation(12) yields the directional reflectance
I :1), which is the fraction of the radiant power incident from the
direction (ei, $i) that Is reflected In all directions (into a hemisphere),
Furthermore, if the reciprocity theorem--Equation (6) -- is applicable,
as |t ordinarily Is, at least to a good approximation, then this direc-
tional reflectance is also the ratio between the radiance in the given

direction and the incident radiance when the surface element is

uniformly irradlated from all directions, as indicated in Equation (15). !

- 20 -




The emissivity of an opagque sarface element In the direction

sV is related to the divectional reflectance p

:1.:1 (v

.\'yl) as shown

dv' 1

in Tauation 17TV, When the reciprocity theorem {s applicable (as Is
wsually the case). the emissivity {n a glven dirvection Is equal to the
abzorptivity for vadiation {ncident from that divection, which is also

eaual to one minus the directional reflectance for that same direction.

A perfectly diffuse reflector is characterized by uniform
reflectance in all directions, It is shown In Equation (21} that this
is egqual to pi times the partial reflectance. The relationship
between the partial and directional reflectances for a perfectly
specular reflector involves Dirac delta-functions, as given in Equation

i24),

The completely general expression, relating the reflected
radiance of a surface element in a given direction Nr(er’ cpr) to the
incident field of radiation, specified by expressing the incident

radiance as a function of direction N1 (8 },is given in terms of the

v #
partial reflectance p'(ei, Dy Br. :pr)by Equation (7). This holds true
regardless of the geometrical conflguration of the Incident beam, The
radiant power in a reflected beam {s then computed by integrating

the resulting value of reflected radiance, as a function of direction,

over the appropriate projected area and solid angle as indicated in

-21 -
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the first line of Equation {23) and discussed in greater detall in

Reference 1.

As with many idealized physical quantities, partial and
directional reflectances can never be measured exactly, even with
pé::'ect instrumentation. Since a measurement requlres a beam
of racdlation of non-zero cross section and solid angle. the measure-
ment at best can only ylelé average values over these intervals of
projectec area anc solid angle. However, the concepts, ter?nlnology.
and symbols presented here make it possible to specify explicitly
and unambiguously the interrelationships and approximations
involved in dealing with real situations. Also, the application of
Xirchhoii's Law -- Sc_uation (18) -- to the directional quaﬁtlties can

be stated explicitly, as in Equaticn (17).

- 22 -
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7 APPENDIX A -- Reciprocity in an Isothermal Enclosure

tJ
"

A paper by Bauer  presents an alleged proot of the Helmhoits
reciprocisy law for diffuse reflection as a consequence of equilibrium
conditions in an isothermal enclosure. The argument hinges on the

statement that the seconé law of thermodynamics requires that there

be no net exchange of energy by radiation between any two individual
elements of the internal {opague) surrace of an isothermal enclosurec.

However, it seems :0 me that the requirements of the second law apply

25 the ¢o23l flow of energy, taking inld account radiation emitted into,

full hemisphere) by such a surface

[
H}
n.
'
o
n
(8]
"
U
[} ]
n.
e,
1]
i
¢
e
19
[
3]
re
4]
o
(4]
(34
128
9]
13
tn

element, as the basis {or Rirchholi's Law(Z quation 18).
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