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Abstract

In this thesis, the work on simulation of wrinkled surfaces by Jim Blinn
is revisited. Approximations for first–order derivatives were used for eval-
uation of perturbation of normals but an analysis of the impact of this
approximation was never provided. Furthermore, Blinn only provides
a solution for his simulation on shapes with a known bivariate surface
parametrization which excludes triangular meshes with normals assigned
at vertex level. Today, triangular meshes is the de facto standard, in the
3D graphics industry, to approximate arbitrary shapes including surfaces
which are piecewise smooth. Blinn used the restriction that the 2D coor-
dinate passed to evaluate the surface position is also used as the texture
sampling coordinate. To tile or rotate a texture on a patch, modulation of
the sampling coordinate is required. This restriction is significant, espe-
cially for triangular meshes, since texture coordinates assigned to each tri-
angle is a modulation of the barycentric coordinate. This thesis remedies
all these shortcommings. Finally, recent research on bump map filtering
is described and evaluated.

A method known as normal mapping was introduced in recent years
and it will be shown here how this approach relates to Jim Blinn’s work.
Today, normal mapping is almost as common as texture mapping and
directly supported in a wide range of graphics tools. However, normal
mapping is hard to get right without following a strict set of rules. A
wrong implementation can lead to discontinuities in the shading. This
thesis is focused on eliminating these visual artifacts. The result is an
improved and consistent bump/normal mapping method that results in
error and artifact free lighting of bumpy surfaces. The results are veri-
fied and compared visually and shown to outperform leading commercial
graphics tools.
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1 Introduction

In 1978, James Blinn published his paper [Bli78] on simulation of wrinkled
surfaces. The aim of his paper was to mimic the high frequency surface irreg-
ularities that we see in reality on objects everywhere. His work is particularly
focused on parametric surface patches and as Blinn points out these are smooth
surfaces and tend to look artificial because of this. Since modeling such rich de-
tail using patches would be very expensive and most likely a very daunting task,
Blinn proposes recording such detail in a bump function/map over the surface
patch. Hence the method is known as bump mapping. Conceptually the idea is
to displace every point on the original patch by the assigned bump value along
the surface normal (see figure 1). In particular this will perturb the surface

(a) original surface (b) height map

(c) new surface (d) perturbed normals

Figure 1: The process of normal perturbation is shown here in
figures 1(a)-1(d).

normal of the original patch. Blinn argues that for simulation of wrinkles the
displacement height is relatively small so the primary effect of the bumps will
be in how the perturbation of the normal influences the reflection of the light
and not so much the displaced position itself. Thus the initial surface is drawn
but the perturbed normal is given, as opposed to the actual surface normal of
the patch, as input to the lighting model. By this method, completion of an
actual displacement of the surface patch is avoided.

Later on, it is pointed out by Cook [Coo84] that though the illusion is con-
vincing, the lack of actual detail is revealed particularly in the silhouette around
the patch as seen from the camera. His suggestion is to apply an actual dis-
placement of a dense tessellation of the patch and then draw this instead. Of
course for high frequency detail this tessellation must be very dense. He refers
to this technique as displacement mapping.
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Blinn bases his work on the assumption that the displacements can be con-
sidered arbitrarily small relative to the patch itself. As a result of this an
approximation is made which will be covered in section 2.1. Though displace-
ment mapping might provide pleasing results for significantly larger displace-
ment values then those of wrinkled surfaces and minor surface irregularities the
significance of Blinn’s approximation was not reevaluated by Cook. In section
2.3 we will derive an accurate equation for the evaluation of the perturbed nor-
mal and provide a closer study of what the actual requirements are for Blinn’s
approximate perturbation to be successful. Computer graphics has a tendency
to be very forgiving in terms of approximations made so it is quite possible the
difference in terms of visual appearance in this case could be negligible. Nev-
ertheless, our work in section 2.3 will be a study of the criteria necessary for
a mathematical success and not a visual one. We will follow up in section 2.6
with a comparison of the visual differences.

In 1998, an alternative to Blinn’s bump mapping was proposed by J. Cohen
[Coh98] to simply replace the perturbed normals entirely by a normal map. In
section 2.2, we will show how this method relates mathematically to Blinn’s
work.

In Blinn’s paper, the patch and the bump map are both functions of the
same parameter space. In general, this is not the case. For instance the posi-
tion on a triangle is generally given as a function of the barycentric coordinate.
The bump value, on the other hand, is given as a function of the texture co-
ordinate. A reparametrization will allow us to specify both as functions of the
same parameter space. This will be covered in section 2.4.

A significant problem never dealt with by Blinn is how to bump map tri-
angular meshes. For such meshes it is common to let adjacent triangles share
vertex normals derived from some weighted averaging process of face level nor-
mals. Such surface descriptions are approximations of a collection of curved
surfaces of generally unknown parametrizations. Since Blinn’s paper is based
on the presence of a known surface parametrization, this initially appears to be
a dead-end. As discussed in section 3.2 the problem has been identified before,
but the amount of existing documentation is sparse and a thorough analysis of
it has not been documented until now. Commercial products provide their own
proprietary and thus undocumented solutions to the problem. The implications
of this in terms of compatibility issues and other related problems are discussed
in sections 3.2, 3.3 and 3.4. Specifically, several tests are presented which show a
selection of leading industry products failing to provide good results given topo-
logical circumstances which will be explained. In most cases, the error appears
as a discontinuity in the shading. Solutions are provided in these sections.

Ironically, when using rasterization–based algorithms for rendering, parametrized
surfaces are tesselated and subsequently rasterized as triangular meshes with av-
eraged vertex normals. Surprizingly, Blinn never addresses this issue nor does
he indicate that his method should somehow depend on a ray tracing–based
algorithm. We will discuss this further in section 2.5.3.

Technically, bump maps cannot be filtered like textures which represent
color. The problem was identified by Blinn himself in his paper. Doing so
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anyway will simply smooth the bumps and thus neutralize the effect. Details
are given in section 2.5.1 and a follow-up is made in section 4.1 of novel research
on the subject which was presented at Siggraph 2007.

The reader is expected to be familiar with introductory level differential
geometry and computer graphics. Furthermore, the reader must also be ac-
quainted with the principles of mip mapping and trilinear filtering.

The source code was written in C++ and is available in a printable copy on
the accompanying CD. Furthermore, a pdf version of this thesis is also available
on the CD. The pictures in this thesis may, in some cases, not appear clear in
the printed copy. In such a case the reader is referred to the pdf version.
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2 Approximation and Reparametrization

Blinn’s approximation of the perturbed normal is derived and given in section
2.1. Next, the close relation to the more recent technique normal mapping is
explained in section 2.2. Specifically, the distinction between sampled normal
maps and converted bump maps is made.

Since Blinn never gave an analysis of the implications of his approximation,
or a clear justification for it, such an analysis will be given in section 2.3 along
with a derivation of two equations for evaluation of the exact perturbed normal
as opposed to Blinn’s approximate normal. Additionally Jim Blinn uses the
restriction that the 2D coordinate passed to evaluate the surface position is also
used as the texture coordinate. This limitation is removed in section 2.4.

Blinn points out in his paper that applying a traditional filtration technique
to a bump map will blur the bumps which simply cancels the effect of bump
mapping. This is discussed in section 2.5.1. Furthermore, in section 2.5.2 a
technique is given which converts a bump map, initially given as a single channel
bitmap, into the form described in section 2.2. This makes it possible to deal
with sampled normal maps and bump maps during shader execution in a uniform
way. Finally in section 2.6 results are given.

2.1 Blinn’s original simulation

Let β : (u, v) → R represent a given height map (see figure 1(b)) and let the
surface to be bump mapped be given as σ : (u, v)→ R3 where (u, v) ∈ R2 (see
figure 1(a)). The corresponding unit normal on σ is ~n = σu×σv

‖σu×σv‖ .
Furthermore, let τ : (u, v)→ R3 be the displaced surface defined as τ = σ+β ·~n
which corresponds to the illustration shown in figure 1(c).
The first–order derivatives of τ are computed by the following equations

τu = σu + βu · ~n+ β · ~nu
τv = σv + βv · ~n+ β · ~nv

The aim is to obtain an expression for the normal on τ shown in figure 1(d).
Blinn argues that for simulation of wrinkles we can assume that β is small
relative to the extent of the surface and subsequently the approximation is
made that the first–order derivatives can be obtained as

τu ' σu + βu · ~n
τv ' σv + βv · ~n

Which leads to

τu × τv ' (σu + βu · ~n)× (σv + βv · ~n)
= σu × σv + βu · ~n× σv + βv · σu × ~n (1)

This will be referred to as Blinn’s normal or alternatively the approximate
surface normal of τ . Note that the vector given by equation (1) is generally
not a unit vector and will have to be normalized before use in the shader.
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2.2 Normal Mapping

While bump mapping perturbs the existing normal on a surface, normal map-
ping [Coh98] replaces the normal entirely by doing a look-up into a normal map.
In [Coh98] the normals of the normal map are stored in the space in which σ is
contained, ie. object space. By using normal maps instead of bump maps, we
are no longer limited to perturbation of the existing normals on σ. As an exam-
ple of this acquired generality, a method to enhance visual quality is suggested
by [Coh98], where normals are sampled from a detailed high resolution surface
description τ and stored as a texture map. These will be referred to as sampled
normal maps.

Each mapped texel corresponds to a point on a low resolution surface σ and
from this point a ray is traced along the surface normal of σ and onto τ . The
surface normal on τ at the intersection point is then stored in the current texel
of the texture map (see figure 2).

n

Ra
y

p

Figure 2: For every texel, a ray is shot from the corresponding
surface point p on the low resolution surface and along the nor-
mal ~n. At the intersection with the high resolution surface, the
normal there is sampled and recorded.

Normal mapping can also be used to achieve bump mapping. As an offline
process, for every texel in the normal map which corresponds to a surface po-
sition on σ, we evaluate the perturbed normal using equation (1). Note that
normal maps are three–channel textures as opposed to bump maps which consist
of a single channel only.

A downside is that such object space normal maps depend on the surface
σ. In contrast, when bump mapping, β is independent of σ and can be used
to perturb the normals of any surface. This is clearly a very strong advantage
that should be preserved. It will be explained in the following how reusability
of bump maps can be preserved by using tangent space normal maps as opposed
to object space.
In differential geometry, tangent space is defined as a two-dimensional space
such that for any (u, v) ∈ R2, the vector u · σu + v · σv is contained in tangent
space. In the graphics community, tangent space is generally defined as a three-
dimensional space and its basis is the linearly independent set {σu, σv, ~n} (see
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[Kil00]). This definition is also used in this thesis. The extended transforma-
tion out of tangent space for a vector (u, v, w) ∈ R3 is achieved by the linear
combination u ·σu + v ·σv +w ·~n. This transformation can be applied using the
matrix

N =
[
σu σv ~n

]
and the inverse transformation can easily be determined using the following

det(N) = σu • (σv × ~n)
= σv • (~n× σu)
= ~n • (σu × σv)
= ‖σu × σv‖

where the symbol • denotes the dot product between two vectors. The inverse
is thus given as

N−1 =
1

‖σu × σv‖

 σv × ~n
~n× σu
σu × σv


since the dot product between the ith row of N−1 and the jth column of N is
zero when i 6= j and one otherwise for i, j ∈ {1, 2, 3}.

Let ~γ : (u, v) → R3 represent a tangent space normal map. Since normals
like planes are transformed using the inverse transposed, we obtain the object
space normal given the following expression

(N−1)T · ~γ =
~γ1 · σv × ~n+ ~γ2 · ~n× σu + ~γ3 · σu × σv

‖σu × σv‖

Here ~γ1, ~γ2 and ~γ3 denote the first, second, and third component function of ~γ.
Let h : (u, v)→ R3 be the graph of β such that h(u, v) = (u, v, β). Now let

us examine the special case where ~γ = hu × hv, that is the case where hu × hv
by definition equals the accurate tangent space normal map of σ. If we apply
the transformation to this map we obtain the following result.

(N−1)T · ~γ = (N−1)T · hu × hv
= (N−1)T · (1, 0, βu)× (0, 1, βv)
= (N−1)T · (−βu,−βv, 1) (2)

=
σu × σv + βu · ~n× σv + βv · σu × ~n

‖σu × σv‖

Since the normal will have to be normalized before use, we can omit the denom-
inator in which case we rediscover Blinn’s original equation (1). However since
the problem has been redefined the equation is technically no longer based on
approximation, in practice the result for this particular case is the very same.
Given equation (2), bump maps will be converted, into normal maps, by storing
(−βu,−βv, 1) as the tangent space normal. These are clearly defined indepen-
dently of σ and will be referred to as converted bump maps. Transformation by
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(N−1)T is applied in the shader which completes the transformation into object
space.

In order to achieve a uniform processing of sampled normal maps and con-
verted bump maps, we will transform the sampled normals into tangent space
by applying NT to them since (N−1)T ·NT is the identity. This way in either
case, we obtain the final object space normal in the shader by applying (N−1)T .
Note that unlike converted bump maps, sampled normal maps transformed into
tangent space depend on σ. The transformation applied in the shader should
be the exact inverse of the transformation applied when the normal map was
generated. This is the only way to obtain the original sampled object space
normal which is used during execution of the lighting model.

2.3 Removing Blinn’s Approximation step

In this section, we will retrace Blinn’s steps and reevaluate equation (1), but
this time we will omit the part which is based on approximation.
Let the coefficients of the first fundamental form be given as

E = σu • σu
F = σu • σv
G = σv • σv

and those of the second fundamental form as

e = σuu • ~n
= −~nu • σu

f = σuv • ~n
= −~nu • σv

g = σvv • ~n
= −~nv • σv

Furthermore, we define the symmetric 2× 2 matrices

FI =
[
E F
F G

]
FII =

[
e f
f g

]
The matrix W = FI−1FII is known from differential geometry as the Wein-
garten matrix. Let the negated coefficients be defined as[

w1 w2

w3 w4

]
= −W (3)

=
1

EG− F 2

[
fF − eG gF − fG
eF − fE fF − gE

]
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it is additionally known from differential geometry that

~nu = w1σu + w3σv (4)
~nv = w2σu + w4σv (5)

This is also given in proposition 6.4 of [Pre01]. The principal curvatures κ1

and κ2 are the eigenvalues of W. By definition, if
(
ξ η

)T is the eigenvector
corresponding to κi then ~pi = ξσu + ησv is the principal vector corresponding
to κi.
The matrixW is generally not a symmetric matrix so the spectral theorem does
not apply. However, proposition 6.3(i) of [Pre01] tells us that W does in fact
have eigenvalues which by definition are real. Proposition 6.3(ii) tells us that
if κ1 = κ2, then any direction in the tangent plane is a principal vector and
finally from proposition 6.3(iii) it follows that when κ1 6= κ2, then ~p1 and ~p2

are perpendicular to each other. From corollary 8.16 of Robert Messer [Mes97]
an m×m matrix with m distinct, eigenvalues is diagonalizable. We know that
the eigenvalues of W exist so if they are additionally distinct it follows that W
is diagonalizable.

W = −
[
w1 w2

w3 w4

]
=

1
ad− bc

[
a c
b d

] [
κ1 0
0 κ2

] [
d −c
−b a

]
(6)

=
1

ad− bc

[
adκ1 − bcκ2 ac(κ2 − κ1)
bd(κ1 − κ2) adκ2 − bcκ1

]
(7)

Which by definition of the principal vectors leads to

~p1 = aσu + bσv (8)
~p2 = cσu + dσv (9)

If ‖~p1‖ 6= 1 we can substitute a by a
‖~p1‖ and b by b

‖~p1‖ . By applying the same
principle to ~p2 we can proceed under the assumption that ~p1 and ~p2 are both
unit vectors and it follows that {~p1, ~p2, ~n} is an orthonormal set.
Furthermore, proposition 7.1 in [Pre01] tells us that the determinant ofW equals
the Gaussian curvature κ1κ2 and the trace equals κ1 + κ2. This gives us the
following equations.

κ1κ2 = w1w4 − w3w2 (10)
κ1 + κ2 = −(w1 + w4) (11)

From equation (7) it follows that[
w4 −w3

−w2 w1

]
=

−1
ad− bc

[
adκ2 − bcκ1 bd(κ2 − κ1)
ac(κ1 − κ2) adκ1 − bcκ2

]
=

1
ad− bc

[
d −b
−c a

] [
−κ2 0

0 −κ1

] [
a b
c d

]
(12)
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which we will be using shortly. The exact perturbed normal is evaluated by
crossing the first–order derivatives of τ .

τu × τv = (σu + βu · ~n+ β · ~nu)× (σv + βv · ~n+ β · ~nv)
= σu × σv + β2~nu × ~nv + β (~nu × σv + σu × ~nv) +

βu~n× σv + βvσu × ~n+
β (βu~n× ~nv + βv~nu × ~n)

This expression is complicated but using equations (4) and (5) allows us to get
rid of the terms ~nu and ~nv and provides a nice matrix formulation.

τu × τv =
(
1 + β2 (w1w4 − w3w2) + β (w1 + w4)

)
σu × σv +

βu~n× σv + βvσu × ~n+
β (βu~n× ~nv + βv~nu × ~n)

=
(
1 + β2 (w1w4 − w3w2) + β (w1 + w4)

)
σu × σv +

βu~n× σv + βvσu × ~n+
β (βuw4~n× σv − βvw3~n× σv) +
β (−βuw2σu × ~n+ βvw1σu × ~n)

= (βu + β (βuw4 − βvw3))~n× σv +
(βv + β (−βuw2 + βvw1))σu × ~n+(
1 + β2 (w1w4 − w3w2) + β (w1 + w4)

)
σu × σv

= ‖σu × σv‖(N−1)T

 1 + βw4 −βw3 0
−βw2 1 + βw1 0

0 0 1 + β2 (w1w4 − w3w2) + β (w1 + w4)

 −βu−βv
1


This leaves us with two matrices on the left side. Let

A = ‖σu × σv‖(N−1)T

=
[
σv × ~n ~n× σu σu × σv

]
M =

 1 + βw4 −βw3 0
−βw2 1 + βw1 0

0 0 1 + β2 (w1w4 − w3w2) + β (w1 + w4)

(13)

Now we can write the normal as

τu × τv = A ·M ·

 −βu−βv
1


By using equations (10) and (11) we can express the coefficient M33 as

1 + β2 (w1w4 − w3w2) + β (w1 + w4) = 1 + β2κ1κ2 − β (κ1 + κ2)
= (1− βκ1) (1− βκ2)
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When κ1 and κ2 are distinct we can use equation (12) and write the matrix M
given the following equation

M =
1

ad− bc

 d −b 0
−c a 0
0 0 1

 1− βκ2 0 0
0 1− βκ1 0
0 0 (1− βκ1) (1− βκ2)

 a b 0
c d 0
0 0 1


and subsequently by defining the following matrices

B =

 a b 0
c d 0
0 0 1


S =

 1− βκ2 0 0
0 1− βκ1 0
0 0 (1− βκ1) (1− βκ2)


the matrix M is given by the equation

M = B−1 · S ·B (14)

As previously mentioned, {~p1, ~p2, ~n} is an orthonormal set which means the
matrix

P =
[
~p1 ~p2 ~n

]
= N ·BT (15)

is orthogonal which leads to P−1 = PT . Furthermore, equation (15) follows
from equations (8) and (9) and from equation (15) we are given

B =
(
N−1 · P

)T
= PT ·

(
N−1

)T
We can now rewrite the transformation sequence as

A ·M = A ·B−1 · S ·B
= A ·NT · (P−1)T · S · PT · (N−1)T

= ‖σu × σv‖ · P · S · PT · (N−1)T

= P · S · PT ·A

And the final normal of τ is

τu × τv = A ·M ·

 −βu−βv
1

 (16)

= P · S · PT ·A ·

 −βu−βv
1

 (17)
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In practice, we will be using equation (16) for evaluation of the perturbed normal
because it is simpler since it does not require that we find the principal curva-
tures nor the principal vectors and it does not have a singularity at κ1 = κ2.
However, what is very interesting about the form seen in equation (17) is the
insight it gives us into the nature of Blinn’s approximate form (1). On the right
side of (17) we have the transformation by A which according to section 2.2
and the definition of A is the original approximate perturbed normal. On the
left side, we have P · S · PT which is symmetric and corresponds to scaling by
(1− βκ2), (1− βκ1) and (1− βκ1) (1− βκ2) along the directions ~p1, ~p2 and ~n
respectively. It is obvious that P ·S ·PT approaches the identity matrix as βκ1

and βκ2 approach zero. This observation provides a more accurate interpreta-
tion of the approximation used by Blinn. The fact is the approximation holds
well when β is small relative to the principal curvatures or vice versa. Blinn is
not entirely wrong when he says small relative to the extent of the surface since
the curvature is diminished as σ is physically enlarged (scaled up). However, if
at a given point on σ there is an extreme amount of curvature, then σ would
have to be scaled up accordingly by a very large value for the approximation
to hold. On the other hand, for a plane since the curvature is zero it does not
matter how far up or down the plane is scaled, in this case equation (1) will
provide accurate results.

Technically equation (17) is only valid when κ1 6= κ2. However, as previously
mentioned, any direction in the tangent plane is a principal vector when κ1 = κ2.
So in this case we can arbitrarily choose ~p1 and ~p2 as any orthonormal set in the
tangent plane such that P remains an orthogonal matrix. And so our analysis
based on equation (17) of Blinn’s approximation is still valid when the principal
curvatures are not distinct.

2.4 Reparametrized Surface

In Blinn’s paper, the surface σ and the height map β are both functions of
(u, v). Since texture coordinates are often specified or manipulated by artists,
we instead generalize by allowing these to be given as a diffeomorphism of
(u, v). The concept is illustrated in figure 3. In other words, we allow the bump
map to be given as a reparametrization of β and the surface to be given as a
reparametrization of σ. In this section, we will examine how reparametrization
of β and σ affects evaluation of the perturbed normal on τ . Let the map
Φ : (s, t)→ (u, v) ∈ R2 be a diffeomorphism and let

Λ(s, t) = τ(Φ(s, t))
χ(s, t) = σ(Φ(s, t))
α(s, t) = β(Φ(s, t))

such that Λ, χ and α are reparametrizations of τ , σ and β. The objective is to
find nice forms similar to equations (16) and (17) to evaluate the normal of τ

13



(a) (b)

s

t

(c)

Figure 3: The image in 3(c) represents the bump map. The
surface σ is shown in figures 3(a) and 3(b), but in 3(a) the
sampling coordinate is not subjected to modulation which maps
the bump map directly onto the surface. In 3(b) modulation
takes place prior to sampling.

as a function of (s, t), that is τu × τv(Φ(s, t)).

J(Φ) =
[

dΦ1
ds

dΦ1
dt

dΦ2
ds

dΦ2
dt

]
χs × χt =

(
dΦ1

ds
σu +

dΦ2

ds
σv

)
×
(
dΦ1

dt
σu +

dΦ2

dt
σv

)
=

(
dΦ1

ds

dΦ2

dt
− dΦ2

ds

dΦ1

dt

)
σu × σv

= det[J(Φ)]σu × σv (18)

Since χ is the reparametrization of σ, we will interpret σu × σv as the true
orientation of the surface which is important in the evaluation of τ since we
displace along the normal and, as equation (18) indicates, the orientation of
the surface is reversed due to reparametrization when det[J(Φ)] < 0 and the
orientation is preserved when det[J(Φ)] > 0. The function Φ is only a permis-
sible reparametrization if det[J(Φ)] 6= 0 everywhere and since Φ is smooth and
thereby continuous, it follows that

ρ =
det[J(Φ)]
|det[J(Φ)]|

= ±1

is constant and either one or minus one. Let ~m be the unit normal of χ equivalent
to ~n of σ

~m =
χs × χt
‖χs × χt‖

~n = ρ · ~m (19)
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As previously mentioned, displacement takes place along ~n so using equation
(19) the reparametrization of τ is given as

Λ(s, t) = χ(s, t) + α(s, t)(ρ · ~m)

If we use the following rewrite of Λ

δ(s, t) = ρ · α(s, t)
Λ(s, t) = χ(s, t) + δ(s, t) · ~m (20)

where δ is the new bump map, then equation (20) corresponds to the definition
of τ in section 2.1 which allows us to evaluate the surface normal of Λ using
equation (16). In order to do so, the matrices A and M of section 2.3 need to
be evaluated. The matrix A is trivially initialized using the vectors χs, χt and
~m as input but the matrix M requires work. We need to analyze what happens
to the weingarten map under reparametrization. The first–order derivatives are
given by the chain rule as

χs =
dΦ1

ds
σu(Φ(s, t)) +

dΦ2

ds
σv(Φ(s, t))

χt =
dΦ1

dt
σu(Φ(s, t)) +

dΦ2

dt
σv(Φ(s, t))

and the resulting second–order derivatives are as follows

χss =
(
dΦ1

ds

)2

σuu +
(
dΦ2

ds

)2

σvv + 2
dΦ1

ds

dΦ2

ds
σuv +

d2Φ1

ds2
σu +

d2Φ2

ds2
σv

χst =
dΦ1

ds

dΦ1

dt
σuu +

dΦ2

ds

dΦ2

dt
σvv +

(
dΦ1

ds

dΦ2

dt
+
dΦ2

ds

dΦ1

dt

)
σuv +

d2Φ1

dtds
σu +

d2Φ2

dtds
σv

χtt =
(
dΦ1

dt

)2

σuu +
(
dΦ2

dt

)2

σvv + 2
dΦ1

dt

dΦ2

dt
σuv +

d2Φ1

dt2
σu +

d2Φ2

dt2
σv

From the first–order derivatives, the first fundamental form is

Eχ = χs • χs

=
(
dΦ1

ds

)2

Eσ + 2
dΦ1

ds

dΦ2

ds
Fσ +

(
dΦ2

ds

)2

Gσ

Fχ = χs • χt

=
dΦ1

ds

dΦ1

dt
Eσ +

(
dΦ1

ds

dΦ2

dt
+
dΦ1

dt

dΦ2

ds

)
Fσ +

dΦ2

ds

dΦ2

dt
Gσ

Gχ = χt • χt

=
(
dΦ1

dt

)2

Eσ + 2
dΦ1

dt

dΦ2

dt
Fσ +

(
dΦ2

dt

)2

Gσ
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and next the second fundamental form yields

eχ = ~m • χss

= ρ

((
dΦ1

ds

)2

eσ + 2
dΦ1

ds

dΦ2

ds
fσ +

(
dΦ2

ds

)2

gσ

)
fχ = ~m • χst

= ρ

(
dΦ1

ds

dΦ1

dt
eσ +

(
dΦ1

ds

dΦ2

dt
+
dΦ1

dt

dΦ2

ds

)
fσ +

dΦ2

ds

dΦ2

dt
gσ

)
gχ = ~m • χtt

= ρ

((
dΦ1

dt

)2

eσ + 2
dΦ1

dt

dΦ2

dt
fσ +

(
dΦ2

dt

)2

gσ

)

And from these we obtain the following matrix formulations

FχI =
[
Eχ Fχ
Fχ Gχ

]
= J(Φ)T · FσI · J(Φ)

FχII =
[
eχ fχ
fχ gχ

]
= ρ ·

(
J(Φ)T · FσII · J(Φ)

)
Now, similar to equation 3, we define the following matrix[

ζ1 ζ2
ζ3 ζ4

]
= −J(Φ)−1 · Wσ · J(Φ) (21)

such that by evaluation of the weingarten matrix, it follows that

Wχ = FχI−1 · FχII
= ρ ·

(
J(Φ)−1 · FσI−1 · FσII · J(Φ)

)
= ρ ·

(
J(Φ)−1 · Wσ · J(Φ)

)
(22)

= (−ρ) ·
[
ζ1 ζ2
ζ3 ζ4

]
Now, similar to section 2.3, we evaluate the matrix A and use −Wχ and δ(s, t)
to evaluate the matrix M .

Aχ = ‖χs × χt‖
([

χs χt ~m
]−1
)T

(23)

=
[
χt × ~m ~m× χs χs × χt

]
Mχ,δ =

 1 + δ · (ρ · ζ4) −δ · (ρ · ζ3) 0
−δ · (ρ · ζ2) 1 + δ · (ρ · ζ1) 0

0 0 1 + δ2ρ2 (ζ1ζ4 − ζ3ζ2) + δ · ρ · (ζ1 + ζ4)


=

 1 + αζ4 −αζ3 0
−αζ2 1 + αζ1 0

0 0 1 + α2 (ζ1ζ4 − ζ3ζ2) + α (ζ1 + ζ4)

 (24)
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This completes evaluation of the matrices Aχ and Mχ,δ and using equation 16
gives the normal Λs×Λt. The normal we actually need though is τu×τv(Φ(s, t))
but similar to equation (18) we have Λs × Λt = det[J(Φ)]τu × τv and as in
equation (19) it follows that

τu × τv
‖τu × τv‖

= ρ · Λs × Λt
‖Λs × Λt‖

Since the perturbed normal must be normalized before use anyway, the length
is insignificant so the above equation can be scaled on both sides by ‖Λs × Λt‖
and thus using equation (16) on Λs × Λt, the result is

‖Λs × Λt‖
‖τu × τv‖

· τu × τv = ρ · Λs × Λt

= ρ ·Aχ ·Mχ,δ ·

 −δs−δt
1


= ρ ·Aχ ·Mχ,δ ·

 −ρ · αs−ρ · αt
1


= ρ ·

[
ρ · χt × ~m ρ · ~m× χs χs × χt

]
·Mχ,δ ·

 −αs−αt
1


= ρ ·

[
χt × ~n ~n× χs χs × χt

]
·Mχ,δ ·

 −αs−αt
1


= ρ · (ρ · ‖χs × χt‖) ·

([
χs χt ~n

]−1
)T
·Mχ,δ ·

 −αs−αt
1


= ‖χs × χt‖ ·

([
χs χt ~n

]−1
)T
·Mχ,δ ·

 −αs−αt
1


The above equation provides a consistent evaluation equation for τu × τv even
under reparametrization.
In the following, a similar result will be derived for equation (17). Using equation
(22) and assuming κ1 and κ2 are distinct, we can write the weingarten matrix
as

Wχ =
1

ad− bc
J(Φ)−1 ·

[
a c
b d

] [
ρ · κ1 0

0 ρ · κ2

] [
d −c
−b a

]
· J(Φ)

where equation (6) is used for Wσ. By defining the matrix

Q =
[
q1 q3

q2 q4

]
= J(Φ)−1 ·

[
a c
b d

]

17



the columns of Q are the eigenvectors ofWχ so by definition the principal vectors
are

~pχ1 = q1 · χs + q2 · χt
~pχ2 = q3 · χs + q4 · χt

If we rewrite this to matrix form and take advantage of the first–order derivative
equations[
~pχ1 ~pχ2

]
=

[
χs χt

]
·Q

=
([

σu(Φ(s, t)) σv(Φ(s, t))
]
· J(Φ)

)
·
(
J(Φ)−1 ·

[
a c
b d

])
=

[
σu(Φ(s, t)) σv(Φ(s, t))

]
·
[
a c
b d

]
=

[
~pσ1(Φ(s, t)) ~pσ2(Φ(s, t))

]
we rediscover the principal vectors we had before reparametrization, so they are
unchanged and we will continue to refer to these as ~p1 and ~p2. As in section
2.3, we proceed by evaluating the matrices P and S but for the reparametrized
surface.

Pχ =
[
~p1 ~p2 ~m

]
= Pσ ·

 1 0 0
0 1 0
0 0 ρ


Sχ,δ =

 1− δρκ2 0 0
0 1− δρκ1 0
0 0 (1− δρκ1) (1− δρκ2)


=

 1− ακ2 0 0
0 1− ακ1 0
0 0 (1− ακ1) (1− ακ2)


= Sσ,β

Since we have Sχ,δ = Sσ,β , we will henceforth refer to the matrix simply as S.
Next we will use Pχ and S to evaluate equation (17) which gives us the second
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form under reparametrization.

‖Λs × Λt‖
‖τu × τv‖

· τu × τv = ρ · Λs × Λt

= ρ · Pχ · S · PTχ ·Aχ ·

 −δs−δt
1


= Pσ · S · PTσ · (ρ ·Aχ) ·

 −ρ · αs−ρ · αt
1


= Pσ · S · PTσ · ‖χs × χt‖ ·

([
χs χt ~n

]−1
)T
·

 −αs−αt
1


The matrices Pχ and Pσ are generally not the same. However, given the result
of the equation above, we only have a need to refer to Pσ which will henceforth
be denoted simply P .

Based on the findings of this section, we clean up notation by replacing the
matrices A and M by N ′ and M ′ respectively

M ′ =

 1 + αζ4 −αζ3 0
−αζ2 1 + αζ1 0

0 0 1 + α2 (ζ1ζ4 − ζ3ζ2) + α (ζ1 + ζ4)


N ′ =

[
χs χt ~n

]
where M ′ as given by equation (24) corresponds to M but evaluated based on
the coefficients given by (21) as opposed to those given by (3). The matrix
N ′ corresponds to N but using the forward facing unit normal in the third
column and the first–order derivatives of the reparametrized surface in the first
and second column. So in conclusion, what we have established is that un-
der reparametrization of σ and β the direction of the perturbed normal in the
intended orientation is evaluated using the following equation

τu × τv
‖σu × σv‖

=
(
N ′−1

)T ·M ′ ·
 −αs−αt

1

 (25)

= P · S · PT ·
(
N ′−1

)T ·
 −αs−αt

1

 (26)

Here the change in scalars on both sides is the result of

‖χs × χt‖ = |det[J(Φ)]| · ‖σu × σv‖
‖Λs × Λt‖ = |det[J(Φ)]| · ‖τu × τv‖
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2.5 Practicalities

The bump map α(s, t) is interpreted as a smooth function but is often simply
supplied by artists as a grayscale texture. However this data is still interpreted
as a fixed finite selection of sampled data from some unknown smooth (or at least
continuous) function in the way filtering is performed during sampling. Blinn
mentions that for color textures filtering is performed by averaging the region
of texels covered by the current pixel to be drawn. He adds that applying the
same approach to bump textures would simply smooth the bumps as opposed
to average the varied light intensities that result from the bumps. Blinn argues
that the correct solution is to sample all the bumps covered by the current pixel,
computing the light intensity for every perturbed normal and then average these
intensities instead. This approach is of course ineffective and Blinn himself does
not follow this path and comments that for the more offensive aliasing artifacts
filtering the bumps using a traditional approach such as for color textures will
do.

2.5.1 Bump map representation and filtering

In Blinn’s paper, only the normal is replaced by the perturbed variant during
light intensity calculation. The position used lies on σ and not the displaced
surface τ and the matrix N ′ is also entirely derived from surface properties of σ.
Given these observations we could consider it an approximation that in terms of
filtering for each pixel on the screen only one matrix N ′ and only one position
on σ is used in the execution of the lighting model regardless of the amount
of bump map texels in the coverage. This results in a single vector towards
the light and subsequently also a single vector towards the camera and finally
a single halfway vector (see section 16.1.4 in [FvDFH95]) used for Blinn-Phong
specular high–lights. Filtering the dot product between such a fixed direction ~l
and each of the perturbed normals using a fixed N ′ is equal to simply filtering
the derivatives αs and αt

I∑
i=1

wi ·~l •

(N ′−1)T ·

 −α[i]s
−α[i]t

1

 = ~l •

(N ′−1)T ·
I∑
i=1

wi ·

 −α[i]s
−α[i]t

1


where I is the amount of texels covered and wi is the weight assigned to each
texel such that

∑I
i=1 wi = 1. Of course this does not fully justify simply filtering

the derivatives since for actual evaluation of a diffuse intensity, you also need
clamping against zero which does not result in the same inside the summation
as opposed to outside. The same problem exists in regards to the exponent
associated with the specular intensity. A recent paper [HSRG07] provides new
research in the area of normal map filtering and this will be covered in section
4.1.

As mentioned in section 2.2, there exists a close correspondence between
bump mapping and normal mapping. We can achieve a uniform processing of
the two forms by always using a four-channel texture with the tangent space
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normal in the first three channels and the height in the fourth. Bump maps
must initially be converted such that the tangent space normal is computed
as
[
−αs −αt 1

]T . Conversely sampled normal maps by definition already
have the normal handy but are not equipped with heights, so these will have the
fourth channel set to zero. When the heights are zero the matrix M ′ will result
in the identity matrix which yields the correct equation for normal mapping as
covered in sections 2.2 and 2.3. While rendering, these four-channel textures
will be sampled using traditional trilinear filtering as described in [EWWL98].
A thorough walkthrough of trilinear filtering is considered beyond the scope of
this thesis and so only details specific to parametrized surfaces, which are not
covered in [EWWL98], will be discussed in the following. The interested reader
is referred to the paper itself.

To use the method described in this paper, the texture coordinates must be
expressed as a linear function of the surface position p = (x, y, z). The paper
provides an equation to achieve such a map for triangles specifically.

s(x, y, z) =
[
s1 s2 s3

]
·
[
p1 p2 p3

]−1 ·

 x
y
z


t(x, y, z) =

[
t1 t2 t3

]
·
[
p1 p2 p3

]−1 ·

 x
y
z


In order to make the approach work not just for triangles but also for parametrized
surfaces, we take advantage of the fact that we know the first–order derivatives
χs and χt. In the following these and the intersection point p0 are assumed to
be given in camera space. So for such a given intersection point p0 with the
corresponding texture coordinate (s0, t0) we substitute in the above equation
using the following positions p0, p0 +χs and p0 +χt and the texture coordinates
(s0, t0), (s0 + 1, t0) and (s0, t0 + 1). After substitution we obtain the equations

s(x, y, z) =
[
s0 s0 + 1 s0

]
·
[
p0 p0 + χs p0 + χt

]−1 ·

 x
y
z


=

s0 · (χs × χt) + χt × p0

p0 • (χs × χt)
•

 x
y
z

 (27)

t(x, y, z) =
[
t0 t0 t0 + 1

]
·
[
p0 p0 + χs p0 + χt

]−1 ·

 x
y
z


=

t0 · (χs × χt) + p0 × χs
p0 • (χs × χt)

•

 x
y
z

 (28)

An expression for the reciprocal of z as a function of the pixel coordinate is also
required by [EWWL98] for filtering. We may provide such a function from the
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first–order derivatives and the intersection point.

(χs × χt) •

 x
y
z

− p0

 = 0

⇐⇒

(χs × χt) •

 x
y
z

 = p0 • (χs × χt)

⇐⇒

(χs × χt) •

 x
z
y
z
1


p0 • (χs × χt)

=
1
z

(29)

As in [EWWL98] the following substitutions X = x
z and Y = y

z are used to
represent pixel coordinates. Let the coefficients given in equations (27), (28)
and (29) be known as

~v1 =
s0 · (χs × χt) + χt × p0

p0 • (χs × χt)

~v2 =
t0 · (χs × χt) + p0 × χs

p0 • (χs × χt)

~v3 =
χs × χt

p0 • (χs × χt)

From this it follows that we can express the texture coordinate divided by z and
the reciprocal of z as functions of the pixel coordinate.

s(x, y, z)
z

= ~v1 •

 X
Y
1

 (30)

t(x, y, z)
z

= ~v2 •

 X
Y
1

 (31)

1
z

= ~v3 •

 X
Y
1

 (32)

The optimal choice for texture dimension is given by [EWWL98] as

d(z) =
1√
|k · z3|

(33)

where the value k is given as the determinant of the 3× 3 matrix containing ~v1,
~v2 and ~v3 in the columns.

V =
[
~v1 ~v2 ~v3

]
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Since input is given in camera space, (X,Y ) = (xz ,
y
z ) does not really correspond

to actual pixel coordinates. If we assume that sx and sy are user–defined values
which will scale X and Y into the proper range, then we can substitute X and
Y by sx·x

z and sy·y
z respectively. To preserve results in equations (30), (31) and

(32), the first and second component of ~v1, ~v2 and ~v3 is scaled by 1
sx

and 1
sy

respectively. As an alternative, since it is the objective to evaluate equation (33),
we can simply adjust evaluation of k. The constant k is the determinant of the
matrix V and scaling a single row or column results in scaling the determinant.
From this it follows that k equals

k =
1

sx · sy
· det(V )

=
1

sx · sy
· ~v1 • (~v2 × ~v3)

=
1

sx · sy
· 1
p0 • (χs × χt)

We can now reevaluate the optimal texture dimension as

d(z) =
1√
|k · z3|

=

√∣∣∣∣ (sx · sy) · p0 • (χs × χt)
z3

∣∣∣∣ (34)

This evaluation is based on properties which are known for a parametrized
surface, that is the surface point and the first–order derivatives. When a ray
tracing algorithm is used, equation (34) is evaluated using the third component
of the intersection point p0 as the input into d(z). Note that the term p0 •
(χs × χt), which is also seen in the denominator for ~v1, ~v2 and ~v3, is zero exactly
when the tangent plane contains the eye-point of the camera. In such a limit
case the surface at the intersection point is invisible seen from the camera. We
need, however, to convince ourselves that the result in equation (34) still makes
sense as this term approaches zero. In this case the requested resolution d will
also approach zero which corresponds to a small, in terms of resolution, mip
map level. This makes sense since when the surface is almost perpendicular
to the view-plane of the camera, a larger area of the surface is covered by a
single pixel which means more texels are covered. As for the third component
of the intersection point in the denominator, we know this is non zero since the
intersection point would otherwise not have been determined visible.

Trilinear mip mapping does not take the shape or the orientation of the cov-
erage into account when sampling is performed. It is referred to as an isotropic
method which means directionally independent. The concept is shown in figure
4(b) where the red region represents the true coverage, in the texture map, of
the screen pixel shown in figure 4(a). The square transparent green region with
a dashed outline represents the approximation of the true coverage used in trilin-
ear mip mapping. The square region is chosen such that its area size is identical
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Figure 4: In 4(b) the red region represents the coverage in a tex-
ture map by the screen pixel shown in 4(a). The green transpar-
ent square represents the approximate sampling area used when
performing trilinear sampling. The green oriented rectangular
region shown in 4(c) represents the approximate sampling area
used when performing anisotropic texture filtering.

to the true coverage. Anisotropic texture filtering takes the shape and orienta-
tion into account as shown in figure 4(c) where the coverage is approximated
by an oriented rectangular region. Trilinear sampling is performed repeatedly
along the rectangular region, roughly as many times as the width tiles along the
height. Different techniques and variants of trilinear sampling and anisotropic
texture filtering exist. Such techniques are used to determine the distribution of
weights associated with the texels prior to sampling. A detailed description of
such techniques is beyond the scope of this thesis. The primary concern in sec-
tion 4.1 is how the chosen distribution of weights should be used in conjunction
with bump/normal mapping. For additional details on trilinear sampling and
anisotropic texture filtering, the reader is referred to [EWWL98] and [MPFJ99]
respectively.

2.5.2 Conversion of bump maps

To convert a bump map into a normal map as explained in section 2.5.1, a
procedure for evaluation of the derivatives αs and αt must be determined. This
presents a problem since an exact function which describes the applied bump
map is generally not known, only a two dimensional array of samples is known.
For such an array of m×n samples, these are typically considered to be recorded
values of an unknown function α(s, t)→ [0; 1] where (s, t) ∈ [0; 1]× [0; 1] and the
distance between consecutive samples is 1

m and 1
n in the horizontal and vertical

directions respectively. For a given coordinate (s0, t0), an approximation for the
first–order derivatives with respect to s and t can be determined based on the
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surrounding texels using central differencing.

αs '
α(s0 + 1

m , t0)− α(s0 − 1
m , t0)(

s0 + 1
m

)
−
(
s0 − 1

m

)
=

m

2
·
(
α(s0 +

1
m
, t0)− α(s0 −

1
m
, t0)

)
(35)

αt '
α(s0, t0 + 1

n )− α(s0, t0 − 1
n )(

t0 + 1
n

)
−
(
t0 − 1

n

)
=

n

2
·
(
α(s0, t0 +

1
n

)− α(s0, t0 −
1
n

)
)

(36)

If we apply equation (35) at a given texel of the height map, then clearly the
term on the right side of the product is the difference between the sample on
the right and the one on the left. Similarly for equation (36), it is the difference
between the upper sample and the lower. We can calculate these differences for
every texel using the edge detection kernel in a convolution.

Es =
[
−1 0 1

]
Et =

 1
0
−1


Optionally, to reduce noise, we can apply a Gaussian blur in the opposite di-
rection of the edge detection. Due to separability, this translates into the Sobel
kernels.

Gs =

 −1 0 1
−2 0 2
−1 0 1

 =

 1
2
1

 ∗ [ −1 0 1
]

Gt =

 1 2 1
0 0 0
−1 −2 −1

 =
[

1 2 1
]
∗

 1
0
−1


The operator ∗ represents convolution. If sobel is used to evaluate the difference,
then a scale by 1

4 must be applied to normalize the blur.
As previously mentioned, the recorded values are considered to be in the

range [0; 1]. Proportionally, this range might not be suitable relative to the
extent of the surface χ(s, t). To solve this, a user–defined scalar value λ is
introduced which is applied to α(s, t). As a result of this, the derivatives αs and
αt are scaled by the same value.

2.5.3 Drawing parametrized surfaces

As mentioned in the introduction, Blinn’s paper is based on surfaces for which
the parametrization is known. However, rasterizers cannot render such surfaces
accurately and do so simply by tessellation to a triangular mesh. As tessellation
takes place, the parameter value (u, v) corresponding to each generated vertex
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is stored, and as rasterization takes place, these are barycentrically interpo-
lated and at pixel level the resulting parameters are used to evaluate (s, t) and
subsequently the matrices M ′ and N ′ as defined in section 2.4.

Alternatively, ray tracing could be used to avoid the tessellation step. How-
ever, even ray tracers have problems when it comes to parametrized surfaces.
Often the expression for the intersection between a ray and a parametrized sur-
face is either unknown or too complex for evaluation. A good example of this
is Bezier patches, the approach often used today by ray tracers (see [Ben06]) is
subdivision followed by Newton–Raphson.

2.6 Results

As mentioned in section 1, a significant aspect of Blinn’s original work we wish
to reevaluate is an approximation on which his work is based (see section 2.1).
In other words, we would like to compare the results we get using Blinn’s bump
mapping to an accurate implementation. As explained throughout section 2, we
need a surface parametrization to explore this issue in order to have accurate
first– and second–order derivatives. It is tempting to resort to a graphics API
like OpenGL for the implementation. However, as mentioned in section 2.5.3, we
cannot accurately render a parametrized surface because tessellation is required.
Additionally graphics chips internally use approximations for math functions
and interpolation of attributes across triangles. As mentioned, ray tracing does
not provide a general solution to these problems. However, we do not need
a solution which works for all parametrized surfaces. We can make do with
a few chosen test-cases on which the intersection can be determined using an
exact approach. Furthermore, with a ray tracer we still have the ability to draw
triangular meshes. So for these reasons, ray tracing has been chosen for this
implementation.

2.6.1 Monkey Saddle

For the first test, the monkey saddle as a parametrized surface is used.

z = x3 − 3x · y2, x, y ∈ [−1; 1]× [−1; 1]

By inserting the parametrization of the ray into this equation we obtain a poly-
nomial of third degree and the intersections are given by the roots.
Since (u, v) ∈ [0; 1], we define the equations

x(u, v) = 2 · u− 1
y(u, v) = 2 · v − 1

and furthermore, the diffeomorphism Φ : (s, t) → (u, v) initially mentioned in
section 2.4 is in this case set to the identity map. So (u, v) is used directly for
sampling of the converted height map. The initial height map which is applied
to this surface is seen in figure 5(a). The stored values of the first three texel
components of the converted texture are (−αs,−αt, 1). The logic behind this
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was explained in section 2.2 and 2.5.1. In the fourth and last component the
height value itself is stored. The height is used for evaluation of the matrix M ′

given at the end of section 2.4. For accuracy and convenience, the converted
texture is stored as 32–bit floating point values. As mentioned in section 2.5.2,
the heights are understood by default to be values between zero and one, so a
user-defined value is given which scales the displacements into a range which is
proportionally suitable relative to the surface. Figures 5(b), 5(c) and 5(d) show
the first three channels of the converted maps given the user–defined scales 1

32 ,
1
16 and 1

4 . To be able to show these as images, a normalization is applied and

(a) (b) (c) (d)

Figure 5: In 5(a) a bump map is shown. In 5(b) the correspond-
ing converted bump map is shown given a small user–scale 1

32
applied to the heights. It appears blue because the normals tend
to point upward in the Z-direction. The user–scale is doubled
in 5(c) and doubled again in 5(d). Based on the diminished
presence of blue we can see that the normals are pulled outward
in the tangent plane.

finally to fit the range to [0; 1], the resulting three channels are scaled and added
by 1

2 . As mentioned in section 2.5.2, when the displacements α(s, t) are scaled
by the user–defined value so are the derivatives αs and αt. We see the effect of
this when comparing the three conversions since 5(b) appears to be more blue
compared to the other two. This is due to the smaller derivative values stored
in red and green. In contrast, figure 5(d) has a lot of variance in red and green
and the amount of blue is diminished.
In the following, a single point light (see section 16.1.4 in [FvDFH95]) is used for
illumination of each scene. Figure 6(a) shows the results of an exact evaluation
compared to Blinn’s approximate evaluation, figure 6(b). Both were made with
the scale set to 1

32 . There does not appear to be any significant visual distinction
between the two. Overall the illusion appears convincing though as pointed out
in section 1 the true shape of the surface is revealed at the silhouette. For a
comparison, in figure 7(a) we see the same scene with the actual displacement
physically applied to the surface. The interior looks much the same as before
but the silhouette has changed and now looks correct. In figure 6(c), we see the
results of the scale value set to 1

16 . Again there does not appear to be any clear
distinction between the exact and the approximate (see figure 6(d)) evaluation.
The effect of having doubled the scale to the previous value is evident from
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(a) (b)

(c) (d)

(e) (f)

Figure 6: The bump–mapped monkey saddle is shown in 6(a)
using 1

32 for a user–scale and shaded using the exact perturba-
tion of the normal. In 6(b) we see the same test using Blinn’s
approximate normal and visually there appears to be no dif-
ference. In figures 6(c) and 6(d) we see the same test with the
user–scale 1

16 and still there is no visual distinction. The surface
does appear more rugged though because the scale was doubled.
In figures 6(e) and 6(f) the scale was doubled again and the ef-
fect no longer appears convincing. Nevertheless, there still does
not appear to be a visual difference.
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(a) (b) (c)

Figure 7: The displacement mapped monkey saddle is shown
in figures 7(a)-7(c) with the user–scales 1

32 , 1
16 and 1

4 applied
respectively. The surface appears more rugged as the scale is
increased.

the rugged appearance of the surface. The result still seems convincing though
the lack of surface irregularities along the silhouette has become increasingly
obvious. We can observe the displaced surface in figure 7(b) which, as opposed
to before, now also deviates from the interior seen in the bump mapped result.

Finally, we see the same scene in figure 6(e) where the scale this time was
set to 1

4 and again there does not appear to be any clear distinction between
the exact and the approximate evaluation. The displacements have now become
too large relative to the surface itself to obtain convincing results from bump
mapping. In contrast we see the corresponding displaced surface in figure 7(c)
which looks extremely different. We now see the presence of very large surface
irregularities, in some cases these occlude the light which results in shadows.
Since, for these three cases, we did not find any significant visual differences
between the exact and the approximate evaluation of the normal, we will try
a different approach where we compare the normals themselves as opposed to
comparing the effect they have on the lighting.
In section 2.3, we discovered that the difference between the exact perturbed
normal and the approximate one depends on the product between the height and
the principal curvatures. For every pixel which represents a valid intersection,
we see in figure 8(a) the value

κmax = max (|κ1|, |κ2|)

In pixels with a low intensity, a small value for κmax was found, those with
a bright intensity had a large maximum curvature. The smallest maximum
curvature found was approximately 0.0026 and the highest was 2.4495. At the
origin, we see very dark intensities. This is where the monkey saddle is known to
attain a curvature of zero. Furthermore, we see on the figure, at a few selected
points, the calculated tangent spaces. The concept of tangent space used in this
thesis was initially explained in section 2.2. The red vector shows χs, the green
vector shows χt and the blue one shows the forward facing normal which was
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(a) (b) (c)

(d) (e) (f)

Figure 8: The maximum principal curvature κmax is shown in
8(a). Figures 8(b) and 8(c) also show this but multiplied by
the height from the bump map α(s, t). Furthermore, Blinn’s
normal is shown in green and the exact perturbed normal is
shown in red. In 8(b) a user–scale of 1

16 was used as opposed
to figure 8(c) where 1

4 was used. The corresponding close–ups
are shown in figures 8(d)-8(f). Notice that deviation between
the exact and the approximate perturbed normal is primarily
found at brighter intensities and more so when the user–scale is
increased.
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clarified in section 2.4. The magnitude of the displayed vectors was set to a
fixed length.

In figure 8(b), we see the product between the sampled height and κmax.
Furthermore, the accurate perturbed normal is shown as a red vector and Blinn’s
approximate normal is shown in green. In figure 8(b), the scale 1

16 was used
and we see very little deviation between the two normals. Figure 8(c) was done
using the scale 1

4 and it shows several instances of deviations. According to the
analysis, differences between the two can only occur where we find nonzero in-
tensities since the matrix M ′ will otherwise be the identity matrix. The brighter
the intensity is, the more M ′ will deviate from the identity matrix. However,
this alone does not result in deviation of the accurate and the approximate per-
turbed normal. The reason for this is that when αs and αt are zero, evaluation
of equation (25) after normalization equals the forward facing normal ~n which
is the original surface normal. In other words, the two vectors will be almost
identical when sampling occurs where there is a local minimum or maximum of
α(s, t). Figure 8(c) confirms this quite well since no deviations are found where
the intensity is close to black, but several are found in the brighter locations
where the slope of α(s, t) appears to be steep.

2.6.2 Torus

For an additional case, we will perform the same tests on the torus. The torus
is given by two radii a, b ∈ R such that a > b > 0 and the level surface

(x2 + y2 + z2 + a2 − b2)2 − 4a2(x2 + y2) = 0

As in the previous case, we find the intersection by inserting the parametrization
of the ray into this equation and finding the roots of the resulting polynomial
which in this case is a fourth degree polynomial.
The corresponding surface parametrization is given by

σ(θ, ϕ) = ((a+ b · cos(ϕ)) cos(θ), (a+ b · cos(ϕ)) sin(θ), b sin(ϕ))

Where the angles θ and ϕ are given as

θ = π · (2u− 1)
ϕ = π · (2v − 1)

The first fundamental form with respect to u and v of this surface is equal to

E = (2 · π)2 · (a+ b · cos(ϕ))2

F = 0
G = (2 · π)2 · b2

and the second fundamental form is

e = − (2 · π)2 · (a+ b · cos(ϕ)) · cos(ϕ)
f = 0
g = − (2 · π)2 · b

31



From this it follows that the principal curvatures are

κ1 =
− cos(ϕ)

a+ b · cos(ϕ)

κ2 =
−1
b

The first principal curvature reaches its maximum when cos(ϕ) = −1 and the
value here is 1

a−b . From this we conclude that if b < a
2 , we have κmax = |κ2| = 1

b
which is constant.

In figure 9(a) we see the results of rendering the torus with the radii a = 1
and b = 0.3 which means κmax = 3 1

3 . Once again, the diffeomorphism Φ is the
identity and the bump map is similar to the one used for the monkey saddle.
When looking at the subfigures in figure 9, just as for the monkey saddle, we
see no clear distinction between results based on the exact evaluation of the
perturbed normal and those based on the approximation and once again the
illusion of bump mapping is no longer convincing for user value 1

4 . For comple-
tion the corresponding displaced results are supplied in figures 10(a), 10(b) and
10(c). Notice the strong resemblance between the bump mapped result and the
displaced result for user value 1

32 and in contrast observe the explicit differences
for user value 1

4 .
In figure 11(a), we see the product between the height and κmax. However,

since κmax is constant the intensities seen in the image are actually the sam-
pled heights. As before, the red vector shows the accurate perturbed normal
and the green vector shows Blinn’s approximation. The result was generated
with user–scale 1

16 and as for the monkey saddle we see only few examples of
deviation between the two. Figure 11(b) on the other hand - which was made
with user–scale 1

4 - appears to have more instances of deviation compared to the
monkey saddle (see figure 8(c)) and these are found everywhere on the surface
of the torus. This is due to the consistent value of κmax which for the torus
of the chosen radii is higher than the maximum value of κmax found on the
monkey saddle. Figures 11(c) and 11(d) show the same two tests but with the
radii set to a = 1 and b = 1

10 . The value κmax = |κ2| = 10 is three times that
of the previous figure which is quite visible in the results. This time, we see
several instances of deviation for user–scale 1

16 and an increase in deviation for
user–scale 1

4 compared to figure 11(b).
Up until now, the results were done using the identity map for generation

of the texture coordinates. The following tests show the effect of using an
invertible affine transformation, which is a diffeomorphism, to modulate the
sampling coordinate. The user–scale is set to 1

32 in each case and the height
map is seen in figure 12(a) with the corresponding conversion in figure 12(b).
The first example in figure 13(a) shows the texture tiled twelve times along
the torus in the u direction and four times along v. This is done by using the
following scale matrix on (u, v).

S =
[

12 0
0 4

]
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(a) (b)

(c) (d)

(e) (f)

Figure 9: The bump mapped torus is shown in 9(a) using 1
32

for a user–scale and shaded using the exact perturbation of the
normal. In 9(b) we see the same test using Blinn’s approximate
normal and visually there appears to be no difference. In figures
9(c) and 9(d), we see the same test with the user–scale 1

16 and
still there is no visual distinction. The surface does appear more
rugged though because the scale was doubled. In figures 9(e)
and 9(f), the scale was doubled again and the effect no longer
appears convincing. Nevertheless, there still does not appear to
be a visual difference.
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(a) (b) (c)

Figure 10: The displacement mapped torus is shown in 10(a)-
10(c) with the user–scales 1

32 , 1
16 and 1

4 applied respectively.
The surface appears more rugged as the scale is increased.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 11: In these figures, Blinn’s normal is shown in green and
the exact perturbed normal is shown in red, and furthermore,
κmax is constant. Figures 11(a) and 11(b) show a comparison
given user–scales 1

16 and 1
4 respectively. Based on the corre-

sponding close–ups in figures 11(e) and 11(f), we see that devi-
ation between the exact and the approximate perturbed normal
is primarily found at brighter intensities and more so when the
user–scale is increased. The same test is shown in figures 11(c)
and 11(d) with a smaller outer radius which increases κmax.
The corresponding close–ups in figures 11(g) and 11(h) show
that the deviation becomes more extreme.
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(a) (b)

Figure 12: A bump map is shown in 12(a) and using the scale
1
32 the converted bump map is shown in 12(b).

Furthermore, the figure shows the evaluated tangent space at various selected
points. The red vectors which represent χs show the orientation of the horizontal
lines of the texture and the green vectors which represent χt show the orientation
of the vertical lines. Since F of the first fundamental form is zero, these two
directions are perpendicular to each other, which appears to be the case on
the figure as well. Finally, as previously mentioned, the blue vectors show the
original forward facing normal.
The next example in figure 13(b) is the result of applying a shear matrix K
after the scale by S.

K =
[

1 2
5

0 1

]
The effect of this transformation is quite evident on the figure and also the
fact that χs and χt are no longer perpendicular to each other but still follow
the horizontal and vertical lines of the texture. Furthermore, when looking at
the inner surface region of the torus, we now see a discontinuity which was
not visible before. The discontinuity occurs where v = 0 meets v = 1 on the
torus which was not visible before since the texture itself is tileable (meaning
periodic). The next example in figure 13(c) is the result of replacing the shear
matrix with a counterclockwise rotation R by thirty degrees.

R =
[

cos(π6 ) − sin(π6 )
sin(π6 ) cos(π6 )

]
As we see on the figure, the map is transformed clockwise around the front
facing normal which is correct since to transform (s, t) to (u, v) the inverse
is applied and the inverse of R is the corresponding clockwise rotation. For
the last test, we try an orientation reversing parametrization. We do this by
rewriting the matrix S such that a negative scale in the u direction is applied
and subsequently the same rotation R as before is applied.

S =
[
−12 0

0 4

]
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(a) tiling (b) shearing

(c) rotation (d) reversal

Figure 13: In 13(a), we see a torus with a tiled bump map
applied. Reparametrization is performed in 13(b) by shearing
the domain. In 13(c), rotation is applied on the domain and
finally a negative scale in 13(d) which results in an orientation
reversing reparametrization.

The result is seen in figure 13(d) and as we see the map on the torus including the
assigned tangent spaces are reversed. In particular, the tangent spaces are now
all left–hand coordinate systems as opposed to the previous tests where they
were right–hand coordinate systems. Furthermore, the blue vectors sampled
from the assigned tangent spaces are still forward facing as they should be
according to the analysis of section 2.4. The tiles on the torus appear to bulge
which agrees with the given height map and the previous test results.

2.6.3 Filtering

In figure 14(a), we see a simple bump–mapped infinite plane and in figure 14(b),
we see the same plane but color-coded to identify transitions through mip map
levels. A close–up of figure 14(a) is shown in figure 14(c) and the result is clearly
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more desirable compared to the same close–up shown in figure 14(d) which has
mip mapping disabled. This supports Blinn’s choice to enable traditional tex-
ture filtering as opposed to no filtering at all. The result seen with filtering
enabled, however, is not ideal either but this is caused by the perspective pro-
jection squeezing the circular bumps faster in the vertical direction compared
to the horizontal one which causes a deviation in ideal choice of mip map level
between the two.

(a) (b)

(c) (d)

Figure 14: In 14(a), a plane is shown with a tiled bump map
applied to it. Transition through mip map levels is shown in
color-codes in 14(b) where the color yellow corresponds to the
initial full resolution mip map level. A close–up is shown in
14(d) with filtering disabled. The same close–up is shown in
14(c) with filtering enabled and though it is not perfect, it is
clearly superior to filtering disabled.
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3 Triangular meshes

In this section the problem of bump/normal mapping a triangular mesh is
treated. For the case of a single triangle, it is shown in section 3.1 how assigned
texture coordinates can be understood as a reparametrization. Furthermore,
the first– and second–order derivatives are derived. When a triangular mesh
is used to approximate a model which is either entirely smooth or piecewise
smooth, then tangent space evaluation is a nontrivial problem. An introduction
to the complexity of tangent space evaluation at vertex level is given in section
3.2 along with test results from two existing commercial products. In section
3.3 a suggestion for vertex level tangent space evaluation is made, initially based
on intuition, and the analysis of section 2.4 on reparametrized surfaces. Sub-
sequently, a series of mathematical observations are made to confirm the logic
behind the approach.

A triangular mesh, used to represent a smooth surface, is by definition an
approximation. Assuming the true parametrization of the surface is unknown
then there is no correct way to determine tangent space at a given point on the
mesh. This problem is identified and discussed in section 3.4. An additional
very important observation of this section is that tangent space evaluation at
such a point must be determined the same way in the tool used to sample normal
maps as in the shader. Otherwise they are technically incompatible. This is a
result of the observation made in section 2.2, i.e., that the exact inverse must
be used in the shader to obtain the original sampled normal. Finally, in section
3.6 results are given.

3.1 Evaluation of derivatives

As mentioned in the beginning of section 2.4 artists are permitted to generate
texture coordinates as diffeomorphisms of (u, v). In practice the most common
case for such a map is of the following form[

s
t

]
=
[
m11 m12

m21 m22

]
·
[
u
v

]
+
[
k1

k2

]
(37)

where k1, k2 ∈ R2 is constant and the matrix [mij ] is nonsingular. This map is
smooth and has a smooth inverse.
For any parametrized surface, for instance a Bezier patch, this map (37) might
typically be the composition of rotations, scalings and translations specified by
an artist. We are of course not limited to these, in fact we are not even limited
to the form (37). It is only pointed out here because it is the most common
form.
Though it may initially not be obvious, a classic example of such a case is a
simple triangle defined counterclockwise by three distinct vertices p1, p2, p3 ∈ R3

and three distinct corresponding mapping coordinates t1, t2, t3 ∈ R2. One valid
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parametrization for a plane through this triangle is

σ(u, v) = (p2 − p1) · u+ (p3 − p1) · v + p1

= p1 · (1− u− v) + p2 · u+ p3 · v (38)

and given this parametrization a point is exactly inside the boundary of the
triangle when u, v ≥ 0 and u+v ≤ 1. The coordinates t1, t2, t3 define a triangular
area in R2 and points inside the triangle in R3 are mapped to this area by a
linear function f : R3 → R2 such that t1 = f(p1), t2 = f(p2) and t3 = f(p3).
The 2× 3 matrix C that fits these criteria is unique and it is given by

C ·
[
p1 p2 p3

]
=

[
t1 t2 t3

]
⇔

C =
[
t1 t2 t3

]
·
[
p1 p2 p3

]−1

Note that f , as a linear function, only exists when the plane given in equation
(38) is not a hyperplane of R3 which implies span{p1, p2, p3} = R3, thus for any
point p on σ we obtain the corresponding mapping coordinate by (s, t) = C · p.
We are now ready to identify the diffeomorphism as

(s, t) = Φ−1(u, v)
= C · σ(u, v)
= C · (p1 · (1− u− v) + p2 · u+ p3 · v)
= t1 · (1− u− v) + t2 · u+ t3 · v
= (t2 − t1) · u+ (t3 − t1) · v + t1 (39)

The result in equation (39) is very similar in form to equation (38) and fur-
thermore does not depend on whether or not f is linear. Next, by defining the
matrix

T =
[
t2 − t1 t3 − t1

]
it follows that the expression can be rewritten to the previously (eq. (37))
mentioned form [

s
t

]
= T ·

[
u
v

]
+ t1

and by inverting this function we obtain the equation[
u
v

]
= Φ(s, t)

= T−1 ·
([

s
t

]
− t1

)
(40)

and from this we can evaluate the first–order derivatives of Φ

J(Φ) = T−1 (41)

=

[
(t3 − t1)y − (t3 − t1)x
− (t2 − t1)y (t2 − t1)x

]
(t2 − t1)x · (t3 − t1)y − (t2 − t1)y · (t3 − t1)x
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In this case, the notation tx and ty is understood as first and second component
of t and not the first–order derivative.

And now, given the chain rule and the reparametrization χ(s, t) = σ(Φ(s, t))
the first–order derivatives and the forward facing normal follow as

χs =
dΦ1

ds
· σu(Φ(s, t)) +

dΦ2

ds
· σv(Φ(s, t))

=
(t3 − t1)y · (p2 − p1)− (t2 − t1)y · (p3 − p1)
(t2 − t1)x · (t3 − t1)y − (t2 − t1)y · (t3 − t1)x

(42)

χt =
dΦ1

dt
· σu(Φ(s, t)) +

dΦ2

dt
· σv(Φ(s, t))

=
− (t3 − t1)x · (p2 − p1) + (t2 − t1)x · (p3 − p1)
(t2 − t1)x · (t3 − t1)y − (t2 − t1)y · (t3 − t1)x

(43)

~n =
σu(Φ(s, t))× σv(Φ(s, t))
‖σu(Φ(s, t))× σv(Φ(s, t))‖

=
(p2 − p1)× (p3 − p1)
‖ (p2 − p1)× (p3 − p1) ‖

(44)

Since the second–order derivatives are zero, the weingarten matrix will have
zero in all entries which results in M ′ being the identity matrix. The matrix N ′

on the other hand, as given in section 2.4, simply contains χs, χt and ~n in the
columns.

An interesting observation is that equations (42), (43) and (44) are all inde-
pendent of the sequence in which the vertices of the triangle are given. Since the
vertices must be defined counterclockwise relative to the intended visible side,
this leaves us with the existing cyclic permutations only as valid options: The
initial assumed to be valid order (p1, p2, p3) but also (p3, p1, p2) and (p2, p3, p1)
and of course the texture coordinates are given accordingly. Given these options,
equation (44) is independent of the sequence since it is the surface normal. We
can observe that equations (42) and (43) are also order independent by rear-
ranging the terms in both the nominator and the denominator.

χs =
(t2 − t3)y · p1 + (t3 − t1)y · p2 + (t1 − t2)y · p3

(t1x · t2y − t1y · t2x) + (t2x · t3y − t2y · t3x) + (t3x · t1y − t3y · t1x)

=

∑2
i=0 (t2⊗i − t3⊗i)y · p1⊗i∑2
i=0 det(

[
t1⊗i t2⊗i

]
)

(45)

χt =
(t3 − t2)x · p1 + (t1 − t3)x · p2 + (t2 − t1)x · p3

(t1x · t2y − t1y · t2x) + (t2x · t3y − t2y · t3x) + (t3x · t1y − t3y · t1x)

=
∑2
i=0 (t3⊗i − t2⊗i)x · p1⊗i∑2
i=0 det(

[
t1⊗i t2⊗i

]
)

(46)

In fact, given equations (45) and (46), the first–order derivatives χs and χt do
not even depend on the vertices being defined counterclockwise. In contrast σu
and σv do clearly depend on the input ordering. The operator ⊗ was used here
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to represent a periodic version of the standard plus operator such that 4 7→ 1,
5 7→ 2.

In summary, it has been shown in this section that texture coordinates as-
signed to a triangle is equivalent to a surface reparametrization. The first–order
derivatives of the reparametrized surface have been derived and are given by
equations (42) and (43).

3.2 Shading continuity across patches

Bezier–patches can represent surfaces of arbitrary topological type by parti-
tioning the model into a collection of individual Bezier–patches. Commercial
modeling tools provide functionality which allows artists to stitch patches to-
gether and maintain various levels of continuity G0, C0 and C1 between adjacent
patches.

Each patch is a surface parametrization of (u, v) ∈ [0; 1] × [0; 1] and each
patch is supplied with a diffeomorphism Φ−1(u, v) to generate texture coordi-
nates from (u, v). If these maps are chosen so they provide a smooth transition
in (s, t) between adjacent patches, then continuity levels of the reparametrized
surface σ(Φ(s, t)) are inherited from the original. This follows from the chain
rule. A good example of how such maps may be chosen can be found by once

σ11

σ12

σ13

σ21
σ22

σ23

Figure 15: This figure shows 2×3 patches stitched together with
a coherent mapping of the bump map shown in figure 3(c).

again using equation (37). If for some n,m ∈ N we imagine a collection of
patches double indexed σij by the order in which they are stitched together (see
figure 15) where i ∈ {0, 1, ...,m − 1} and j ∈ {0, 1, ..., n − 1}, then we simply
replace (u, v) with (u+ i, v+ j) before use in equation (37). This way the local
parametric coordinate is mapped to a larger global grid followed by a shared
linear map and a translation which provides an entirely smooth transition in
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(s, t) between adjacent patches.[
s
t

]
=
[
m11 m12

m21 m22

]
·
[
u+ i
v + j

]
+
[
k1

k2

]
(47)

The preservation of continuity levels after reparametrization of σ is significant
because it is necessary in order for the perturbed normal to maintain a contin-
uous transition between adjacent patches.

Blinn’s paper unfortunately does not cover triangular meshes. If we in-
terpret a mesh as the exact shape formed by the collection of triangles from
which it is constructed, then the face normal of each triangle is used in the il-
lumination process and any two adjacent triangles which are not coplanar form
a hard edge between them. Given this interpretation, we know the piecewise
parametrizations from which the mesh is formed and subsequently we can apply
bump mapping to the mesh. If on the other hand we allow averaged normals at
vertex level, we face several problems to solve. Such configurations are used to
approximate curved surfaces usually of an unknown parametrization.
The amount of existing documentation on bump mapping applied to a trian-
gular mesh is surprizingly sparse, nevertheless, the problem has been identified
before. It was suggested by Nelson L. Max in [Max88] that one could simply
average at each vertex the first–order derivatives of the surrounding triangles. A
different path however is chosen by Nelson: Instead of averaging, interpolation
is done of the vertex normal only and subsequently as rasterization takes place,
the first–order derivatives of the triangle parametrization are used. These were
shown in section 3.1 to be constant. This idea was recently also adopted in
[Sch06] which suggests a method specifically intended for 3D accelerated ren-
dering. The method evaluates the first–order derivatives of the triangle in the
fragment shader using specialized instructions, known as ddx and ddy. Either
way, the concept is a very bad idea because it leads to discontinuities in tan-
gent spaces between adjacent triangles. This causes the surface normal, after
perturbation, to have a discontinuous transition across edges. There is also a
problem in regards to sampled normal maps because as the sampled normals
are transformed into tangent space, as explained in section 2.2, they are stored
as a texture with discontinuities between adjacent triangles. These discontinu-
ities will not be taken into account when texture filtering takes place and thus
averaging of normals stored in distinctly different spaces will occur.

Since preservation of continuity of normals is an issue, a solution which main-
tains a continuous transition of tangent space is needed. One way to achieve this
could be, as suggested in [Max88], to simply average the first–order derivatives
at each vertex. This principle is used by the middleware tool Melody by Nvidia
which is used for sampling of normal maps as explained in section 2.2. However,
the solution is naive because we cannot simply average the contribution of any
two triangles which share a vertex and a normal since some of the triangle level
first–order derivatives surrounding a vertex can point in significantly different
directions depending on the assigned texture coordinates.

A 3D model of a character-head, used in the game ”Kane & Lynch: Dead
Men”, has been provided by IO-Interactive for testing. Two versions are given,
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one in low resolution with texture coordinates and one in high resolution with
no texture coordinates. Both models are mirrored such that the left half is a
copy of the right half with a negative scale by one applied along the X-axis.
Subsequently, two indices are flipped in every copied triangle to maintain a
counterclockwise ordering. The texture coordinates are directly copied with no
modifications applied.

3.2.1 Shading continuity in Melody

The normal mapped result output by Melody is shown in figure 16(a) with the
high resolution model on the left side and the low resolution model on the right
side. If we zoom in on the low resolution model generated by Melody, we see
errors down the middle of the face, see figure 16(b). The normal map generated
by Melody is shown in figure 16(d) and there are very clear signs of errors along
the part of the border which corresponds to the middle of the head. Figure 16(c)
shows the tangent spaces assigned by Melody. The tangent spaces assigned to
each half are clearly oriented in separate directions which is the result of the
model being mirrored. Only one space is assigned to every vertex along the
middle which causes extreme variations in the assigned tangent spaces. To
summarize: Discontinuity in tangent space between all triangles is not a good
solution but the results made with Melody indicate that forcing one tangent
space at every vertex does not provide a general solution either. Some form
of occasional discontinuity is required. It might seem tempting to simply solve
the problem using a vector quantization algorithm. However, such an algorithm
generally requires the user to provide the size of the codebook in the first step
at which point it is unknown to us but more importantly such algorithms are
order dependent. The significance of this is due to the dependency between
sampled normal maps and σ as explained in section 2.2. To preserve continuity
of normals, tangent spaces assigned to the copied half must be the exact mirrored
tangent spaces of the original half.

3.2.2 Shading continuity using Crytek source code

As a case study, tangent space on a mirrored triangular mesh is evaluated using
source code provided by the company Crytek. The source code is also used
in their tool Polybump, for generation of sampled normal maps. It has been
given to me upon request and is generally not available, not even to those who
purchase Polybump.

Looking at figure 17(f) shows that, unlike Nelson’s approach, tangent spaces
are definitely shared at most vertices. Unlike Melody, the Crytek code has as-
signed two tangent spaces for every shared vertex between the two halfs, so it
is clear that Crytek has also identified the requirement for occasional disconti-
nuity in tangent space assignment at vertex level. Nevertheless, it appears they
have not identified the need for an order independent algorithm. A close–up is
shown in figure 17(a) where the triangles in question have been marked red and
additionally the three tangent spaces assigned to each of the two triangles have
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(a) (b)

(c) (d)

Figure 16: The normal map sampling tool Melody by the com-
pany Nvidia is shown in 16(a). On the left side a high resolu-
tion head is seen and on the right side the corresponding normal
mapped low resolution head is shown. A close–up of the normal
mapped head is shown in 16(b) and reveals some very notice-
able errors. In 16(c) the vertex level tangent spaces assigned
by Melody is shown. Only one tangent space is assigned per
vertex down the middle of the head. The normal map gener-
ated by Melody is shown in 16(d) and there are several problem
locations along the parts which correspond to the middle of the
head.
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(a) (b)

(c) (d)

(e) (f)

Figure 17: A mirrored female body is shown in 17(f) where ver-
tex level tangent spaces were generated with source code pro-
vided by the company Crytek. An instance of a location where
the source code failed to provide matched results between, the
left side and the right side, is marked with red triangles. The
three tangent spaces assigned to each of the two triangles have
been drawn using thicker lines and brighter colors. A close–
up is shown in 17(a) and removal of the red triangles reveals a
shading seam on the right side shown in 17(b). The correspond-
ing results using the algorithm of this thesis is shown in figures
17(c) and 17(d). Setting the angular threshold to a strict value
such as 2◦ still provides a perfectly mirrored matching triangle
pair as shown in 17(e). 45



been drawn using thicker lines and with brighter colors. The figure reveals that
though the selection of tangent spaces available on each side are quite similar,
the three spaces assigned to the triangle on the right side are not the correct
mirrored results of the spaces assigned to the triangle on the left side. Since the
normal map is sampled entirely based on the left side, a shading seam appears
on the right side due to an inconsistency in tangent space evaluation (see figure
17(b)). The problem will be analyzed further in section 3.3.

3.3 Averaging tangent spaces

In section 3.1, it was explained how a triangle can be given by the surface
parametrization in equation (38) defined on the domain U = {u, v ∈ R|u, v ≥
0, u + v ≤ 1}. Additionally, the reparametrization Φ in equation (40) is given
such that the domain is the triangular area defined by the assigned texture
coordinates. Intuitively, it makes sense to consider two triangles as part of an
approximation for a single surface parametrization of (s, t) if they are adjacent
in object space as well as the domain. In figure 18(a) we see a vertex p with a
vertex normal ~n assigned to it and a collection of surrounding triangles. The
corresponding domains are shown in figure 18(b). Triangles which are sequen-
tially adjacent (in the domain as well) are grouped and shown in color. Each

(a)

s

t

(b)

Figure 18: Triangles surrounding an arbitrary vertex of a mesh
are shown in 18(a). Furthermore, the triangles have been
color–coded to identify triangles which are adjacent in the do-
main where the domains are defined by the texture coordinates.
These domains are shown in 18(b).

group corresponds to a surface parametrization χ(s, t), and so conceptually a
tangent space, dependent on the location of p on χ(s, t), should be assigned to
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p for each surrounding group. Since tangent space on a single triangle is con-
stant, this will be approximated by averaging the first–order derivatives with
respect to s and t separately. The motivation behind averaged tangent spaces is
preservation of a continuous transition of the surface normal, used for shading,
between adjacent triangles. For this to be of any relevance, the two triangles
must also share two normals (soft edge) for there to be an initial continuity
between them to preserve.

3.3.1 Connectivity rules

In section 2.4 it was said that a reparametrization is not permissible if det[J(Φ)] =
0 anywhere on the given domain. Specifically, such a case would cause the sur-
face normal to vanish, meaning attain a magnitude of zero. We also know from
section 2.4 that the orientation is reversed when det(J(Φ)) < 0 and preserved
when det(J(Φ)) > 0. So to consider adjacent triangles as belonging to the same
parametrization, they must both be orientation preserving or both orientation
reversing. Equation (41) leads to the following

det(J(Φ)) = det(T−1)

=
1

det(T )

which tells us, the orientation is reversed exactly when det(T ) < 0 and it follows
that

det(T ) = (t2 − t1)x · (t3 − t1)y − (t2 − t1)y · (t3 − t1)x (48)

is less than zero exactly when t1, t2 and t3 are defined clockwise. It was men-
tioned in section 3.2 that, when mirroring, two indices of every copied triangle
are flipped to maintain a counterclockwise ordering of the triangle vertices.
However, since the operation also reorders the texture coordinates, the sign of
det(T ) will be flipped. If the original triangle is orientation preserving, then the
copy will be orientation reversing, and similarly if the original triangle is orien-
tation reversing, then the copy will be orientation preserving. Thus it follows
that triangles on separate sides of the middle must not share tangent space as
they do in figure 16(c).

To summarize: Two triangles can be considered adjacent and part of the
same surface parametrization when the following four rules are obeyed:

1. two vertices are shared.

2. vertex normals at the two vertices are shared.

3. texture coordinates at the two vertices are shared.

4. the triangles must have the same sign of det(T ).

So, henceforth, a group as shown in figure 18(a), is understood as triangles
surrounding p and sequentially connected edge by edge such that the above

47



four rules are obeyed. By this definition, the groups surrounding p are disjoint.
Additionally, all triangles in a group, will at p, be assigned the accumulated
tangent space associated with the group. Finally, multiple tangent spaces as-
sociated with p, i.e., multiple surrounding groups, will henceforth be known as
tangent space splits. As an example there is a tangent space split in figure 17(b)
near the region of the shading seam. To evaluate the tangent space of a group,
we proceed as follows

1. Set for the current group the initial value of the two accumulated first–
order derivatives and their magnitudes to zero.

2. For each triangle in the group

(a) Evaluate first–order derivatives of the current triangle.

(b) Accumulate the magnitudes.

(c) Project the first–order derivatives χs and χt into the tangent plane
specified by the vertex normal ~n at p.

(d) Normalize the projected χs and χt and subsequently accumulate
them.

3. Divide the two accumulated magnitudes by the amount of triangles in the
group.

4. Normalize the two accumulated first–order derivatives.

Since triangles which at an endpoint share a vertex, a vertex normal and a
texture coordinate do not necessarily belong to the same group, it should be
clear that tangent space splits may occur. Note that the algorithm given here is
independent of the order in which the triangles are given. Evaluation using this
algorithm as opposed to the source code by Crytek leads to correct results, see
figure 17(c). Subsequently, there is no resulting shading seam, see figure 17(d).

It may initially not be clear how the four rules also guarantee adjacency in
the domain. To explain this, let two adjacent triangles be given, and let the first
triangle be defined by the vertices p1, p2 and p3 and the texture coordinates
t1, t2 and t3. Furthermore, the second triangle is defined by the vertices q1, q2

and q3 and the texture coordinates r1, r2 and r3. By definition, the vertices
of each triangle are defined counterclockwise. Let the triangles share an edge
at p2 = q3 and p3 = q2 as shown in figure 19(a). This confirms the first rule.
Assume that vertex normals at these two vertices are also shared, this confirms
the second rule. The third rule dictates that the texture coordinates must be
shared at the shared vertices so we know t2 = r3 and t3 = r2. This is obeyed in
both configurations, in the domain, shown in figures 19(b) and 19(c). However,
in figure 19(b) the domains are actually overlapping and cannot be considered
adjacent. This is because the fourth rule is being violated. The texture coordi-
nates r1, r2 and r3 are defined clockwise which as previously mentioned, given
equation (48), results in a negative sign. The texture coordinates t1, t2 and t3
on the other hand are defined counterclockwise which results in a positive sign.
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Figure 19: Two triangles which are adjacent in object space
are shown in 19(a). In 19(b) and 19(c) the assigned texture
coordinates are shown which define the respective domains. The
fourth rule is violated in 19(b) but not in 19(c).

The configuration in figure 19(c), on the other hand, obeys the fourth rule as
well. The fourth rule is there to guarantee that the texture coordinates t1 and
r1 are assigned to different sides of the dashed line through the shared segment
t2t3, thus adjacency of the domains is guaranteed by the fourth rule. Note that
mirroring is actually a special case of a violation of the fourth rule.

3.3.2 Coherency of first–order derivatives

It is important that the alignment of the first–order derivatives within a group
is approximately uniform since they are to be averaged into two representative
directions, i.e., one for each of the two parameters s and t. The following is
an analysis of, to what extent, can we expect first–order derivatives of adjacent
triangles within a group to be coherent. The projection of χs into the tangent
plane in step 2c is performed using the traditional equation

χ′s = χs − ~n · (χs • ~n)

and similar for χt. This map is in fact linear and the corresponding matrix is
defined as

G =

 1− ~nx · ~nx −~nx · ~ny −~nx · ~nz
−~ny · ~nx 1− ~ny · ~ny −~ny · ~nz
−~nz · ~nx −~nz · ~ny 1− ~nz · ~nz


A vector is projected by simply transforming it by G. The projection of an
arbitrary vertex v into the tangent plane is done by

g(v) = p+G · (v − p)

As it turns out, step 2c actually corresponds to projecting each triangle into the
tangent plane specified by p and ~n before evaluation of tangent space. We can
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see this by simply applying this projection to equation (42).

G · χs =
G ·
(

(t3 − t1)y · (p2 − p1)− (t2 − t1)y · (p3 − p1)
)

(t2 − t1)x · (t3 − t1)y − (t2 − t1)y · (t3 − t1)x

=
(t3 − t1)y ·G · (p2 − p1)− (t2 − t1)y ·G · (p3 − p1)

(t2 − t1)x · (t3 − t1)y − (t2 − t1)y · (t3 − t1)x

=
(t3 − t1)y · (g(p2)− g(p1))− (t2 − t1)y · (g(p3)− g(p1))

(t2 − t1)x · (t3 − t1)y − (t2 − t1)y · (t3 − t1)x

The same principle applies to (43). Next, let two times the area of the triangle
defined by p1, p2 and p3 be known as A > 0. This area can be computed
by crossing any two distinct edge vectors on the triangle such as p2 − p1 and
p3 − p1 and then computing the length of this cross product. From this, and
since triangles are defined counterclockwise, we may evaluate A given either of
the two following equations

A = det
[
p3 − p2 p1 − p2 ~n

]
= (p1 − p2) • ~n× (p3 − p2)
= (p2 − p1) • (p3 − p2)× ~n (49)

A = det
[
p1 − p3 p2 − p3 ~n

]
= (p1 − p3) • (p2 − p3)× ~n
= (p3 − p1) • (p3 − p2)× ~n (50)

where ~n is as given by equation (44).
Now, due to the previous observation that projection of the first–order

derivatives into the tangent plane corresponds to projection of the triangle ver-
tices into the tangent plane, and thus evaluate the first–order derivatives there,
we may proceed under the assumption that the two triangles are coplanar and
the normal to this plane is given by ~n. It will now be shown that there exists
a vector in the tangent plane such that the first–order derivative with respect
to s of both the first and the second triangle deviate from this vector by at
most 90◦. We will do this by dotting equation (42) by ~d = (p3 − p2) × ~n and
by using equations (49) and (50). Note that ~d is contained in the tangent plane
and perpendicular to the dashed line through the shared line segment p2p3.

χs • ~d =
(t3 − t1)y · (p2 − p1) • ~d− (t2 − t1)y · (p3 − p1) • ~d

(t2 − t1)x · (t3 − t1)y − (t2 − t1)y · (t3 − t1)x

=
A1 · (t3 − t2)y

(t2 − t1)x · (t3 − t1)y − (t2 − t1)y · (t3 − t1)x

Here A1 represents the area of the first triangle times two. As for the second
triangle the same procedure on equation (42) is applied, but ~d remains the
same as before. By observing that ~d = (p3 − p2) × ~n = − (q3 − q2) × ~n and
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that (t3 − t2)y = − (r3 − r2)y, we get the nominator (−A2) ·
(
− (t3 − t2)y

)
=

A2 · (t3 − t2)y. Since A1 and A2 are both greater than zero, we know that the
sign of the nominator will be the same in both cases. As for the denominator we
know from equation (48) and the fourth rule that these will also have the same
sign. So this tells us that the first–order derivatives with respect to s dotted
against ~d will result in the same sign. In other words, they are contained in
the same closed half-plane. A similar process can be done for the first–order
derivative with respect to t in which case we get the nominator A1 · (t2 − t3)x
for the first triangle and A2 · (t2 − t3)x for the second. Furthermore, we get the
very same denominator as before. Note that (t3 − t2)y and (t2 − t3)x are not
necessarily of the same sign which means that χs and χt are not necessarily in
the same half-plane.

So what we have shown here is that for two adjacent triangles for which the
four rules hold the first–order derivatives to be averaged are to a given extent
similar in direction. At first glance this threshold may still seem too large but
in practice these first–order derivatives to be averaged will be quite similar in
direction. This is due to the natural piecewise coherency that exists between
triangles in a group and the associated parameter space, see figure 18. This claim
is further supported by the observation that χs and χt show how horizontal and
vertical lines in the parameter space, map to the surface of χ. However, for
the more extreme cases, we can solve the problem in code by introducing a
user–defined angular threshold such that derivatives may only be averaged if
the angle between them is smaller than the given threshold. Let us once again
consider a collection of triangles in the same group and surrounding p. If, for
every iteration of accumulation, we simply compare the given threshold with
the angle between the current contribution and the current accumulated result,
this would introduce an order dependency. To solve this, we use a different
approach where the way groups are determined is adjusted. By the initial
explanation given earlier, each triangle around p belongs to a single group and
these groups around p are disjoint. This time, for each triangle in such a derived
group, a list is made of which of the other triangles within the group are similar
enough in first–order derivatives to be accumulated with. Such a list will initially
result in a subgroup for every triangle and these unlike their parent groups
are not disjoint. Finally, redundancies are removed so only unique subgroups
remain and subsequently accumulation is performed. This approach preserves
order independence because compatibilities are determined before accumulation
is performed. This gives more control and may result in more tangent space
splits since groups are potentially divided into several subgroups. For instance,
setting the threshold to a strict value such as 2◦ results in a lot of tangent space
splits, see figure 17(e). Notice however that the assigned tangent spaces are still
correctly mirrored.

The actual parametrizations for such a triangular mesh are unknown so
for these we will only support bump mapping in Blinn’s approximate form.
Additionally, since the first–order derivatives of each triangle are constant, the
second–order derivatives are zero so accumulation of these would not make sense.
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3.4 Pitfalls in the rendering process

An algorithm has been determined in section 3.3 to evaluate, for a triangular
mesh, tangent space at vertex level. However for actual rendering of such a
mesh, we must be able to determine tangent space for any position within a
triangle which corresponds to the current pixel. It is interesting that there exists

(a) (b)

Figure 20: A character in the game ”Doom 3” by the name Dr.
Malcolm Betruger is shown in 20(a). The character is mirrored
and normal mapped. The normal map is shown in 20(b) and
does not appear to exhibit any errors. A shading seam is visible
in 20(a) in the middle of the face.

no unique or correct way to interpret what is the accurate reconstruction of
tangent space at pixel level. This problem is further complicated by the fact that
there is no unique way to determine the approximations for vertex level tangent
space either. These two observations are a strong indication of a compatibility
problem in terms of sampled normal maps generated by different software. As
explained at the end of section 2.2: To obtain the correct sampled normal,
the transformation applied in the shader should be the exact inverse of the
transformation applied when the normal map was generated. If the exact inverse
is not used, the result will deviate from the original sampled normal. We have
made it a point to average tangent spaces specifically to preserve continuities
and subsequently if two triangles share an edge, and vertex level tangent spaces,
the normal will have a continuous transition between the triangles even if there
is deviation due to the exact inverse not being used. However, when there are
tangent space splits, the result depends significantly on the exact inverse being
used because in this case the transition of the deviation will be discontinuous
and subsequently so will the transition of the transformed normal. This creates
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a discontinuity in the shading which is henceforth referred to as a shading seam.
The problem is seen on several characters in the game ”Doom 3” by ID

Software, where there is a destinct shading seam in character faces, see figure
20(a). The mirrored model provided by IO-Interactive is tested with the normal
map sampling tool Polybump by the company Crytek, see figure 21(a). Unlike
the tool Melody, tangent space splits are correctly determined down the middle.
However, since the shader in their viewer fails to use the correct inverse of the
transformation used to make the normal map, there is a shading seam. Finally,

(a) (b)

Figure 21: The normal map sampling tool Polybump by the
company Crytek is shown in 21(a) with the model provided by
IO-Interactive loaded. On the right side the high resolution
version is seen and on the left side the corresponding normal
mapped low resolution version is shown. A shading seam is
visible in 21(a) in the middle of the face. The normal map
generated by Polybump is shown in 21(b) and does not appear
to exhibit any errors.

the model is tested using the product XSI by the company SoftImage which is a
full modeler and animation tool also equipped with a normal map sampler. The
normal map in this case was generated from the right side. Looking closely at
the result in figure 22(a), the left side appears smudged and slightly distorted
compared to the right side. This could be the result of an order dependency in
tangent space evaluation, internally in XSI. Looking at the top of the head in
figure 22(b) we see a clear shading seam in the middle region. Looking at the
neck in figure 23(b), there appears to be a strange series of discontinuities there.
Since XSI does not show its evaluated tangent spaces like Melody does, it is
difficult to say for sure if it is related to tangent space splits. However, there are
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no clear signs of discontinuities in the generated normal map, see figure 23(d).
An additional artifact visible in figure 23(c) is a shading seam down the middle
of the head. Figures 20, 21, 22 and 23 are all cases where the normal map and
the viewer was provided by the same company. As previously mentioned in this
section, there exists no unique interpretation of tangent space on a triangular
mesh, which is potentially a significant compatibility issue. Figure 24 shows the
visual implications of using a Polybump–generated normal map with XSI and
vice versa. There is a very evident problem when using the imported normal
map. The details are heavily distorted.

None of the current middleware tools document their method for vertex level
tangent space evaluation or pixel level tangent space evaluation. Since they are
evidently error prone, they are not a good source of inspiration. Because there
is no correct or unique way to determine tangent space at pixel level, we must
choose a procedure. A sensible strategy might be to try and approximate the
properties known about χs, χt and ~n as much as possible. We know that χs and
χt are both perpendicular to ~n, we know that ~n is a unit vector and that for a
triangular mesh the surface normal is traditionally determined using barycentric
interpolation of the vertex normal. Following in this foot-step by barycentrically
interpolating the first–order derivatives, χs and χt will correspond exactly to a
barycentric interpolation of the matrix N ′ defined in section 2.4. This initially
presents a problem since linear interpolation of matrices generally results in
skewing. As an example, linear interpolation of orthogonal matrices does in
general not result in an orthogonal matrix. An additional example is rotation
by more than 180◦ around some arbitrary direction, we could not approximate

(a) (b)

Figure 22: The modeling and animation package XSI by the
company SoftImage is shown in 22(a). The normal mapped low
resolution head by IO-Interactive is shown in the view and ap-
pears smudged on the left side and slightly distorted compared
to the right side. Furthermore, a shading seam is visible on the
top of the head in 22(b).
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(a) (b)

(c) (d)

Figure 23: In 23(a) a series of discontinuities in the shading
along the neck are revealed. The normal map generated by XSI
(see 23(d)) does not appear to exhibit any errors or discontinu-
ities.
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(a) (b)

Figure 24: To the left in 24(a) the normal map made with Poly-
bump is applied and to the right the map was made by XSI.
Similarly we see Polybump in 24(b) with a normal map made
using XSI applied to the head on the left and with Polybump’s
own normal map applied to the right.

intermediate steps for such a case using linear interpolation between a source
and a destination matrix. This tells us we need a good correspondence between
the three tangent spaces which are assigned to a triangle at the corner vertices.
In section 3.3.1, groups are determined based on connectivity rules and it was
additionally argued in section 3.3.2 that we generally expect to find a good
correspondence in first–order derivatives between triangles which obey the four
rules. Furthermore, a user-defined angular threshold was introduced to control
the correspondence required between the tangent space of a single triangle and
the tangent spaces assigned at its vertices. Even though we should have a good
correspondence, barycentric interpolation of N ′ will make the vectors χs, χt
and ~n deviate from their intended lengths and also make χs and χt fail to be
perpendicular to ~n. In this thesis the following steps will be used to reconstruct
a deformed tangent space at pixel level.

1. Normalize the interpolated normal ~n.

2. The first–order derivatives are projected into the tangent plane which is
determined by ~n.

3. And finally these are scaled to the lengths determined by the barycentri-
cally interpolated magnitudes corresponding to χs and χt respectively.

This will allow us to evaluate N ′ and thus equation (25) to obtain the approxi-
mate normal. It is important to acknowledge that the same procedure will have
to be built into the software used to generate sampled normal maps to be used
by this shader. It is also important that the same vertex level tangent spaces
are supplied. In summary, when applying a sampled normal map to a triangular
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mesh, there is a dependency between the shader used for rendering and the tool
used to generate the normal map.

Section 3.5 describes how the theory so far and the observations made in
this section can be applied to real–time rendering while maintaining seamless
shading.

3.5 Application to real-time rendering

For real-time rendering the three steps given in section 3.4 to interpolate be-
tween tangent spaces are expensive. The tests of section 2.6 showed that visual
results are very resilient to Blinn’s approximation. In contrast, shading seams
will diminish the quality of the image. In this section examples of less accu-
rate, but much faster, interpolation methods of tangent space will be given.
These methods will not compromize continuity of the resulting surface normal.
Furthermore, sampled normal maps will not be affected by this simplification
as long as the same procedure is implemented in the normal map sampler to
preserve compatibility with the shader.

3.5.1 Simplified normal perturbation

Let the normalized first–order derivatives be given as

~t =
χs
‖χs‖

~b =
χt
‖χt‖

From this it follows that N ′ from section 2.4 can be written as

N ′ =
[
~t ~b ~n

] ‖χs‖ 0 0
0 ‖χt‖ 0
0 0 1


(
N ′−1

)T
=

([
~t ~b ~n

]−1
)T  1

‖χs‖ 0 0
0 1

‖χt‖ 0
0 0 1

 (51)

In section 2.5.2 derivatives for an m × n bump map are precomputed using
equations (35) and (36). In this section the precomputation will be changed
such that the scale by m and n is not premultiplied onto the derivative.

α′s ' λ

2
·
(
α(s0 +

1
m
, t0)− α(s0 −

1
m
, t0)

)
(52)

α′t '
λ

2
·
(
α(s0, t0 +

1
n

)− α(s0, t0 −
1
n

)
)

(53)
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Note that λ represents the user–defined scalar value introduced at the end of
section 2.5.2. It follows that −αs−αt

1

 =

 m 0 0
0 n 0
0 0 1

 ·
 −α′s−α′t

1

 (54)

and by defining the following matrices

T =
[
~t ~b ~n

]
S =

 m
‖χs‖ 0 0

0 n
‖χt‖ 0

0 0 1


the perturbed normal can be rewritten the following way

(
N ′−1

)T  −αs−αt
1

 =
(
T−1

)T · S
 −α′s−α′t

1

 (55)

Three approximations will be applied to simplify interpolation of tangent space
and evaluation of the perturbed normal. The first approximation is m

‖χs‖ '
n
‖χt‖ and that this factor is a constant k which simplifies S.

S '

 k 0 0
0 k 0
0 0 1


The intuitive interpretation of the factor m

‖χs‖ is the amount of texels covered
when we move one unit along χs. From this it follows that the intuitive inter-
pretation of k = m

‖χs‖ = n
‖χt‖ is that one unit along χs covers the same amount

of texels as moving one unit along χt. So given the simplification of S we get

(
N ′−1

)T  −αs−αt
1

 ' (T−1
)T  −k · α′s−k · α′t

1

 (56)

Since k is constant, we can simplify equation (56) further by premultiplying k
onto the user–defined scalar value λ or possibly ignore k altogether and consider
it a user responsibility to tweak the product of the two as one value.

The matrix T has unit length vectors ~t, ~b and ~n in the columns. Vectors ~t
and ~b are perpendicular to ~n but not necessarily perpendicular to each other,
so T is in general not an orthogonal matrix. The second approximation is
that we can replace

(
T−1

)T in equation (56) with the matrix T itself. This
approximation holds well when T is close to orthogonal which is the case when
the bump map is a conformal map onto the surface χ. Such a conformal map
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will also ensure that the first approximation holds well m
‖χs‖ = n

‖χt‖ . The second
approximation leads to the following

(
N ′−1

)T  −αs−αt
1

 ' T
 −α′s−α′t

1

 (57)

where k is now premultiplied onto λ on the right side of equation (57).
For a triangular mesh specifically, the matrix T is defined at vertex level and

made using the algorithm outlined in section 3.3. Note that the accumulated
magnitudes are unused here. The third and final approximation made
in this section is that the matrices T during rasterization are barycentrically
interpolated with no additional modifications applied. So unlike section 3.4, the
vectors ~t, ~b and ~n are not normalized and no projection of ~t, ~b into the tangent
plane takes place. The interpolated coefficients of T are simply used directly
in equation (57). Note that the resulting perturbed normal after evaluation of
equation (57) will of course have to be normalized before use in the lighting
model.

The important thing to acknowledge is that although the three approxima-
tions applied in this section will cause the perturbed normal to deviate from the
accurate one when bump mapping, they will not prevent a continuous transi-
tion of it. This is particularly important when using sampled normal maps. As
stated in section 3.4, continuity is preserved by using the exact same evaluation
of tangent space in the normal map sampling tool such that the exact inverse
can be created.

Let T1, T2 and T3 for a given triangle be the matrices for T assigned at
vertex level and let (u, v) represent the barycentric coordinate. Equation (57)
is evaluated in the shader based on

T = T1 · (1− u− v) + T2 · u+ T3 · v (58)

T−1 = (T1 · (1− u− v) + T2 · u+ T3 · v)−1 (59)

equation (58) and subsequently the sampler tool must use equation (59). On a
GPU, equation (58) is evaluated in hardware before pixel shader execution.

3.5.2 Customization of tangent space

Whether to use the procedure explained in section 3.4, the procedure presented
in section 3.5.1 or any other interpretation of tangent space, an important sub-
tlety to notice is that since the sampler tool is used for preprocessing, the choice
of T should be based on the purpose and the requirements of the shader used.
The sampler tool should subsequently be customized to accommodate the choice
made for the shader and not the other way around. This is a problem with cur-
rent middleware software because they do not offer user customization of T . In
fact, as previously mentioned the vendors do not even provide documentation
for their own interpretation of T used in their tool.
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The concept of customizing T to fit the needs of the shader or the application,
using the normal map makes way for several interpretations of T . For instance,
the footprint can be reduced by only storing two vectors of T per vertex in
memory. As an example let us say we keep the vectors ~n and ~t in memory.
Using this concept, ~b is optimized away by using the following approximation
in the vertex shader.

~b ' ±~n× ~t (60)

The problem with this approximation is determination of the sign. The algo-
rithm given in section 3.3.1, for vertex level tangent space evaluation, categorizes
every triangle as orientation preserving or orientation reversing. Averaging only
takes place between triangles which belong to the same category. This moti-
vates the idea of splitting the triangular mesh into two parts such that each part
consists of triangles which belong to one category only. When the part consist-
ing of triangles which belong to the orientation preserving category are drawn,
approximation (60) should be evaluated using + and correspondingly the part
which consists of triangles which belong to the orientation reversing category
should use − in approximation (60) during execution of the vertex shader. This
sign can trivially be passed as a shader parameter value and subsequently does
not need to be stored per vertex.

GPUs today only provide a limited set of interpolaters and sometimes it
can be a struggle to design a shader so it stays within this limit. To reduce
the overhead on the amount of interpolaters used, evaluation of approximation
(60) can be moved to the fragment shader. As a result of this, ~b is no longer
passed to an interpolater from the vertex shader. The previously mentioned
sign is thus passed as a parameter value to the fragment shader and not the
vertex shader. Given the optimization described here, a cross product and a
vector scalar multiply is inserted into the fragment shader. Note that evaluation
of ~b in the vertex shader as opposed to evaluation of ~b in the fragment shader
does not provide the same result of the matrix T . It is essential that the chosen
procedure must be properly matched in the normal map sampling tool such that
the accurate inverse is evaluated there. Thus avoiding shading seams at edges
surrounding tangent space splits.

3.6 Results

I have implemented a simple tool to generate sampled normal maps as explained
in section 2.2 and using the algorithm described in section 3.3 for vertex level
tangent space evaluation. During rendering, reconstruction of tangent space at
pixel level, is done using the procedure outlined in section 3.4 as opposed to
the alternatives suggested in section 3.5. This is because performance is not the
focus of this thesis and because the procedure provides a better approximation
for the first–order derivatives with respect to s and t which are used in my
texture filtering implementation as explained in section 2.5.1. Additionally, the
choice, given the improved accuracy, corresponds better to the theory of section
2. Furthermore, I have implemented the same procedure in the sampling tool
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for reconstruction of tangent space at texel level to maintain compliance with
the shader used for rendering.

(a) (b)

(c) (d)

Figure 25: Here we see the effect of setting the angular threshold
to different values. In 25(a) the angular threshold was disabled.
In figures 25(b)-25(d) the threshold was set to 45◦, 25◦ and 2◦

respectively. The amount of tangent space splits increases as
the threshold is lowered.

The first test is on vertex level tangent space evaluation given different an-
gular thresholds. The test is performed on a triangular mesh which resembles a
dented ball (see figure 25(a)). The ball is made from two pieces similar to the
topology of a tennis-ball, these are shown in gray and yellow on the figure. Each
piece in texture coordinates is given exactly one half of the texture space, the
gray piece is assigned the left half and the yellow piece receives the right half.
The dents were applied using a noise modifier in 3D Studio Max and the coor-
dinate systems seen on the figure are tangent spaces at vertex level generated
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(a) (b)

Figure 26: In 26(b) we see a high resolution version of the dented
ball. In 26(a) we see the normal mapped low resolution version
of the ball. The normal map was sampled with the angular
threshold disabled.

by the algorithm described in section 3.3. To generate the result seen in this
particular figure, the angular threshold described in section 3.3.2 was disabled.
If we consider every vertex of the mesh given as a tripple of the form (p, ~n, t)
where the position is p, the vertex normal is ~n and the texture coordinate is t,
then this particular mesh is constructed from 450 unique tripples. Applying the
tangent space generation with the angular threshold disabled in this particular
case resulted in exactly 450 unique pentuples of the form (p, ~n, t, χs, χt) where
χs and χt are the generated tangent vectors, so in this specific case there were
no splits caused by tangent space generation. Looking at the figure we also see
that all coordinate systems are right–handed, so the orientation is preserved
everywhere which confirms that there are no violations of the fourth rule given
in section 3.3.1.

The figure 25(b) shows the same model but with the angular threshold set to
45◦ which resulted in 475 unique pentuples. In particular, we see on the figure
the tangent space splits where the corner of the yellow piece is. The coordinate
system that was split up coincides with the surrounding tangent spaces of the
gray piece so from this we conclude the split tangent space belongs to this piece.
This conclusion is also supported by the rapid change in orientation of tangent
space we can observe on the gray piece near this corner in figure 25(a).
In figure 25(c) the angular threshold was set to 25◦ which resulted in 701 unique
pentuples. The effect is confirmed by the presence of multiple tangent space
splits on the figure. Finally, in figure 25(d) the angular threshold was lowered
to 2◦ which generated 1988 unique pentuples. Correspondingly, tangent space
splits can be observed everywhere on the figure. In the next test, a high resolu-
tion version of the ball is created in 3D Studio Max by making a dense sphere
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(a) (b)

Figure 27: In 27(a) a normal map is shown. It was gener-
ated based on the low and the high resolution versions of the
dented ball and with the angular threshold disabled. There is a
discontinuity down the middle of the normal map. Such a dis-
continuity can cause problems when filtering. We see in 27(b)
a close–up where the domain assigned to each half of the ball
has been shrunk. This creates the gap between the two parts
which is shown in grey. Each pixel in the gap is subsequently
replaced by the closest valid normal. This creates a dilation of
the domains.

and by applying the same noise modifier to it, the result is shown in figure
26(b). The tool mentioned at the beginning of this section was used to gener-
ate a sampled normal map, where the angular threshold was disabled during
tangent space generation. The normal map is shown in figure 27(a) and the
resulting normal mapped ball is shown in figure 26(a). The similarity between
this result and that of figure 26(b) is convincing, the primary differences are
seen mainly at the silhouette.

Taking a closer look at the normal map in figure 27(a) reveals a distinct
discontinuity between the two half domains, based on section 2.5.1 we should
be able to observe artifacts as a result of this. In figure 29(a) we see a close–up
of the same scene as in figure 26(a) but this time tangent spaces are also shown
in the figure. The close–up is of the previously examined corner and clearly
we now see a filtering seam where the two pieces meet. Ideally two textures
instead of one should be used to preserve the discontinuity between the two
halves. However, this could for more complex cases result in a lot of individual
textures. As a possible alternative the two halves can be shrunk such that a
small surrounding margin is created. A close–up is shown in figure 27(b) where
the margin is represented by the color gray. Next, dilation is applied such that
every gray pixel is replaced by the closest pixel which is not gray, this can be
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(a) (b)

Figure 28: In 28(a) we see the effect of setting the angular
threshold to a strict value, in this case the value is 2◦ and as a
result discontinuities are visible in the sampled normal map. In
contrast we see the effect of disabling the angular threshold in
figure 28(b), no discontinuities are found here.

done easily either in code or in Photoshop. The result, which is successful, is
shown in figure 29(b). However, the approch is not ideal since, depending on the
thickness of the extra margin used, the two shrunken halves will eventually for
some mip map level begin to mix also known as bleeding. However, at distance
due to mip mapping, the details will begin to fade and hide such issues, for
instance the smallest level is a 1× 1 texture which is one normal only.

In figure 28(a) we see a close–up of the normal map generated with the
angular threshold set to 2◦, and as predicted in section 2.5.1, we see as a result
of this discontinuities in the normal map. In figure 28(b), we see the same
location of the normal map, but this time the angular threshold was disabled
and here we see no discontinuities. We can see the result of applying the normal
map based on the 2◦ threshold and the corresponding set of tangent spaces in
figure 30(b). We do see filtering seams between adjacent triangles, but they
are not as explicit as those seen in figure 29(a). This is because the difference
in orientation of tangent space between the two pieces is much more extreme
than the differences found between the split tangent spaces due to the strict 2◦

threshold. In figure 30(a), we see the same close–up but based on the angular
threshold disabled and, as we see, the filtering seams are now gone.

Finally, the model of the head provided by IO-Interactive is tested using the
code of this thesis. The first test shows the tangent spaces evaluated, see figure
31(a). Since it is shown without normal mapping applied, it does not appear
very detailed. The tangent spaces were generated with the angular threshold
disabled, furthermore tangent space splits appear down the middle as predicted
in section 3.3.1 since mirroring is a special case of a violation of the fourth rule.
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(a)

(b)

Figure 29: A close–up of the normal mapped low resolution
dented ball is shown in 29(a). The figure shows a filtration seam
caused by the discontinuity down the middle of the normal map.
The result of shrinking the two domains and performing dilation
is shown in 29(b). As we see, the error is no longer visible here.
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(a)

(b)

Figure 30: A close–up of the normal mapped dented ball is
shown in 30(b). The result is based on the angular threshold set
to 2◦. The strict threshold creates tangent space splits which
result in discontinuities in the generated normal map. These
cause the filtration seams seen in the figure. In 30(a) we see
the result when the angular threshold is disabled. The filtration
seams are gone.
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(a) (b)

Figure 31: The low resolution head provided by IO-Interactive
is shown in 31(a) with no normal mapping applied to it. Vertex
level tangent spaces generated with the algorithm of this thesis
with the angular threshold disabled are shown in the figure. The
generated normal map is shown in 31(b).

An additional sign of mirroring is that the tangent spaces on one side appear
to be the result of reflecting the tangent spaces of the opposite side. On the
left side of the head, the tangent spaces are left–hand coordinate systems as
opposed to the right side where they are right–hand coordinate systems.
In figure 32(b), we see a similar model but in much higher resolution and with
much more fine detail. From the low resolution and the high resolution version
of this head, a normal map is sampled and shown in figure 31(b). The visual
result of applying the normal map to the low resolution model is shown in figure
32(a) and clearly the result is very convincing and there are no visible errors.
All the fine detail we see in figure 32(b) is inherited and applied to the low
resolution model and as before the silhouette is the primary location where the
illusion is revealed.

In figures 32(c) and 32(d) we see a similar comparison between the two but
seen from the side. As we can see, all the nice surface irregularities on the
side of the high resolution head appear the same on the low resolution head and
additionally the details and curves inside the ear also appear the same. In figure
32(c), a special case of the silhouette problem is revealed on the shadow across
the throat and neck. The shape of a shadow is the projection of the silhouette
as seen from the light source so since the properties of the high resolution model
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(a) (b)

(c) (d)

Figure 32: Here a comparison between a normal mapped low
resolution head and a high resolution version is shown. In 32(a)
and 32(c) we see the normal mapped head from the front and the
side respectively. In 32(b) and 32(d) we see the corresponding
results using the high resolution model.
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(a) (b)

(c) (d)

Figure 33: Here the head provided by IO-Interactive is shown,
normal mapped and with a diffuse and a specular texture ap-
plied. The diffuse texture is shown in 33(c) and the specular
texture is shown in 33(d). The result seen from the front and
from the side is shown in figures 33(a) and 33(b).
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are unused in the generation of these, this results in the distinction we see in
the figure.
In figures 33(c) and 33(d), we see the diffuse and specular textures of the head,
both were hand drawn in Photoshop by an artist at IO-Interactive. The end
result achieved by applying these to the head is shown in figure 33. The result
looks convincing though the subtle details of the normal map are not as apparent
as they were before the diffuse texture was applied. In exchange, we get new
details such as: the tattoo on the neck, various skin color irregularities, the
more accurate color of the lips and also the subtle appearance of veins and dark
tones under the eyes.
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4 Recent research on normal map filtering

As explained in section 2.5.1, normal maps and subsequently bump maps cannot
be filtered the traditional way. Previous authors have tried to solve the problem
by approximating the distribution of normals in the coverage of a texel by some
chosen function. For instance in [Sch97], the distribution of bump derivatives
(αs, αt) in the coverage are approximated by an ellipse, and in [ON97] a single
3D Gaussian is fitted onto the distribution of normals. Since the normals in the
coverage can gather in more complex distributions, such as a set of clusters, an
approach to support fitting of multiple Gaussians is given in [TLQ+05]. Fitting
in this paper is applied to the first and second components of the tangent space
unit normals in the coverage which corresponds to an initial parallel projection
into the tangent plane.

In this section, the recent work on normal map filtering by Charles Han et
al. [HSRG07], presented at Siggraph 2007, will be explained in detail. Like his
predecessors, Han tries to solve the problem by approximation of the distribu-
tion of normals. Two novel techniques are presented, the first uses Spherical
Harmonics for the approximation and is described in section 4.1. This technique
is primarily suitable for low-frequency materials such as a Lambertian surface
so an alternative based on clustering is suggested in [HSRG07] and is described
in section 4.2. The second technique, similar to the work in [TLQ+05], uses
a mixture of Gaussian-like functions but defined on the spherical domain as
opposed to the planar Gaussian fits used in [TLQ+05]. This technique and the
mixture of functions used is described in section 4.3 and fitting of this mixture
onto a distribution of normals is achieved using a method known as spherical
EM [BDGS05] which is described in section 4.4. Finally in section 4.5 results
are given.

4.1 Representation of the normal distribution

As mentioned in section 2.5.1, Blinn states that a more correct approach to
the filtering problem is to evaluate the shading against every resulting normal
and then averaging these. Han follows this path and states more explicitly: In
screen space, the exitant radiance or pixel color at a surface location x should
represent the average radiance at the N corresponding finer-level texels q.

Let ρeff (~ωi, ~ωo;~n) denote the effective BRDF, that is the bidirectional re-
flection distribution function. Furthermore, ~ωi is the incident light direction and
~ωo is the direction towards the eye-point and ~n in this context corresponds to
the final replaced normal received from the normal map. The pixel to be shaded
corresponds to some region in the normal map as shown in figure 34(b). Let
the normals in this coverage be given by the following sequence, {~n1, ~n2, ..., ~nN}
where N is the amount of normals in the coverage. The effective BRDF is subse-
quently rewritten as the following summation, also given in [HSRG07], yielding
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the averaged result.

ρeff (~ωi, ~ωo;x) =
1
N

N∑
q=1

ρ(~ωi, ~ωo, ~nq) (61)

As shown in section 2.5.1, filtering bumps or normals directly does not provide
an accurate result. The key idea in [HSRG07] is to rewrite equation (61) such
that it is expressed as convolution on the spherical domain. The function ρ is
the filter and γ which is the normal distribution function (NDF) is the function
(see figure 34(c)) to be convolved and is given as

γ(~n) =
1
N

N∑
q=1

δ(~n− ~nq)

where δ is Dirac’s delta function on the spherical domain. This definition allows

x

y

(a)

s

t

(b) (c)

Figure 34: Each pixel to be drawn 34(a) covers in the full resolu-
tion normal map some selection of normals 34(b). This selection
of normals 34(c) is represented on the spherical domain by the
normal distribution function γ.

us to rewrite equation (61) into its following continuous form

ρeff (~ωi, ~ωo;x) =
∫
S2
ρ(~ωi, ~ωo, ~n) · γ(~n) d~n (62)

At first glance, it appears as if this rewrite only made matters worse, however,
the idea here is to project the functions ρ and γ onto an orthonormal set of
functions. This results in a sequence of coefficients which, as opposed to the
normals, can be filtered. In this case, the basis functions being used are the
Real Spherical Harmonics functions which are defined on the domain (θ, ϕ) ∈
[0;π]× [0; 2π[ and given as

Km
l =

√
2l + 1

2π
(l − |m|)!
(l + |m|)!

Y ml (θ, ϕ) =


Km
l cos (mϕ)Pml (cos θ) m > 0

Km
l sin (−mϕ)P−ml (cos θ) m < 0

1√
2
K0
l P

0
l (cos θ) m = 0

(63)
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And for l ∈ N0 and m ∈ {0, ..., l} the functions Pml : [−1; 1] → R are the
Associated Legendre Polynomials which for a given l define a real orthogonal
set of functions. We can evaluate these using the following recurrence relations.

P 0
0 (t) = 1

Pmm (t) = (1− 2m)
√

1− t2Pm−1
m−1 (t)

Pml (t) = t

(
2l − 1
l −m

)
Pml−1(t)−

(
l +m− 1
l −m

)
Pml−2(t)

Pmm+1(t) = t(2m+ 1)Pmm (t)

Note from equation (63), that Y 0
l (θ, ϕ) only depends on θ. These basis functions,

of m = 0 and l ∈ N0, are referred to as being radially symmetric. The basis
function of lowest order is Y 0

0 (θ, ϕ), which is constant over the entire domain,
and thus represents a sphere. As the value of l increases so does the frequency
level of Y ml (θ, ϕ).
A thorough introduction to Spherical Harmonics or the Associated Legendre
Polynomials is beyond the scope of this thesis. For additional information, the
reader is referred to [Mac48] and [Gla94].

As previously mentioned, the Real Spherical Harmonics functions are an
orthonormal set so the following property holds∫

S2
Y ml (~n)Y m

′

l′ (~n) d~n = δll′ · δmm′ (64)

Now let f : S2 → R be a bounded and Riemann integrable spherical function.
As usual projection onto the chosen basis is achieved by integration of the
product between the given function and each basis function.

fml =
∫
S2
Y ml (~n)f(~n) d~n (65)

We then define the series associated with f as

F (~n) =
∞∑
l=0

l∑
m=−l

fml Y
m
l (~n)

Given an integer L ∈ N we denote the partial sums of this series by

sL(f)(~n) =
L−1∑
l=0

l∑
m=−l

fml Y
m
l (~n) (66)

For each l we sum up 2l+ 1 terms which in total results in L2 terms for sL(f).
Of course sL(f) 6= f and unfortunately even for high values of L there is no
guarantee that max |sL(f)(~n) − f(~n)| is close to zero for all ~n. However, if we
switch metric to the following

∫
S2 (sL(f)(~n)− f(~n))2 d~n, then it can be shown

that this converges uniformly to zero as L→∞. So in this sense, the function
f and the associated series are similar.

73



Let g(~n) be another bounded and Riemann integrable spherical function
with corresponding partial sums sL(g)(~n), then the following property is a direct
result of equation (64).∫

S2
sL(f)(~n)sL(g)(~n) d~n =

L−1∑
l=0

l∑
m=−l

fml g
m
l

So in other words, the integration is reduced to a simple dot product over the
Spherical Harmonic coefficients.
The overall idea in [HSRG07] is to use this principal for a limited set of coeffi-
cients to evaluate equation (62). This is done by considering the partial sums
sL(ρ) and sL(γ) as approximations of ρ and γ respectively. This optimization
is demonstrated on f and g by the following equation.∫

S2
f(~n)g(~n) d~n '

∫
S2
sL(f)(~n)sL(g)(~n) d~n

=
L−1∑
l=0

l∑
m=−l

fml g
m
l (67)

We can apply the same optimization to equation (62). However, the fact that ρ
depends on six angles, two for each direction, will result in a very large amount
of coefficients. In order to reduce this amount significantly two assumptions
about the BRDF are made.
The first assumption is that we can reduce the complexity of the BRDF to two
input directions instead of three ρ(~ω, ~n) where the direction ~ω(~ωi, ~ωo) depends
on ~ωi and ~ωo. As examples of such cases, we have Lambertian reflectance where
the transfer function is simply the cosine of the incident angle. Subsequently
~ω = ~ωi and the BRDF is given as

ρ(~ωi, ~n) = max(~ωi • ~n, 0)

Another example is the Blinn-Phong specular model, given a specular exponent
s >= 1 and using the direction ~ωh = ~ωi+~ωo

‖~ωi+~ωo‖ , which is also known as the
halfway vector. The transfer function is given by the following equation

ρ(~ωh, ~n) = max(~ωh • ~n, 0)s

Unfortunately, this assumption excludes the traditional Phong Specular model
since the reflection vector ~R depends on ~ωi and the normal ~n.

The second assumption made is that the transfer function can be determined
from cosine to the angle between the vectors ~n and ~ω. By this assumption, the
BRDF is restricted to functions which are radially symmetric about the normal.
Because of this, the projection of such a transfer function onto the spherical
harmonic basis functions can only lead to nonzero coefficients when m = 0,
that is the basis functions of the form Y 0

l . By this observation, the amount of
coefficients needed has been reduced to L coefficients instead of L2.
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In the remainder, we will only focus on one transfer function which is given by
the equation

fs(u) = max(u, 0)s (68)

Based on equation (68) the Blinn-Phong specular model is given by ρ(~ωh, ~n) =
fs(~ωh • ~n) and Lambertian reflection by ρ(~ωi, ~n) = f1(~ωi • ~n).

Let the normal ~n be given by its spherical coordinates (θ1, ϕ1) and similarly
the direction ~ω by (θ2, ϕ2) and as previously mentioned the domain is [0;π] ×
[0; 2π[. Given this domain, we use the following parametrization of the unit
sphere

S(θ, ϕ) = (sin(θ) cos(ϕ), sin(θ) sin(ϕ), cos(θ)) (69)

Let the matrix R~n denote some chosen rotation such that ~n → (0, 0, 1). Ad-
ditionally, let (θ′2, ϕ

′
2) be the spherical coordinates of ~ω after rotation by R~n.

In this space θ′2 is the angle between ~n and ~ω so the BRDF can be established
entirely from this parameter as

ρs(~ωi, ~n) = fs(cos(θ′2))
= max(cos(θ′2), 0)s

To establish the spherical harmonics series associated with this transfer function,
we need to evaluate the projection of it onto each Y 0

l using equation (65). Note
that cos(θ′2) = ~ω • ~n and additionally that θ′2 is zero at the north pole and π
at the south pole, so the poles are reversed. This must be taken into account
when we integrate in spherical coordinates. We do this by replacing cos(θ′2)
with cos(π − θ) during integration.

ρl =
∫
S2
fs(~ω • ~n)Y 0

l (R~n · ~ω) d~n

=
∫ 2π

0

∫ π

0

fs (cos(π − θ))
√

2l + 1
4π

P 0
l (cos(π − θ)) sin θ dθdϕ

=
√
π(2l + 1)

∫ π

0

fs(− cos θ)P 0
l (− cos θ) sin θ dθ

Next substitution is applied using u = − cos θ and du = sin θ dθ.

ρl =
√
π(2l + 1)

∫ 1

−1

fs(u)P 0
l (u)du

=
√
π(2l + 1)

∫ 1

0

usP 0
l (u)du (70)

The remaining problem is to solve the second term, which is the integral. The
following formula is given by [Mac48] in equations 19 and 20 of chapter 5 and
is valid for any real value s ≥ 0.∫ 1

0

usP 0
l (u)du =

{
(s−1)(s−3)...(s−l+2)

(s+l+1)(s+l−1)...(s+2) when l is odd
s(s−2)...(s−l+2)

(s+l+1)(s+l−1)...(s+1) when l is even
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Thus we now have a closed form which provides an exact evaluation of ρl.
For a fixed number of coefficients we can precompute these {ρ0, ρ1, ..., ρL−1}.
Alternatively, the following approximation when s > l − 1

ρl '
√
π(2l + 1)

e−
l2
2s

s+ 1
(71)

is given by Ravi Ramamoorthi [RH01]. However, because of the restriction that
s > l−1, the approximation is unsuitable for the diffuse term, since in this case
we have s = 1. The approximation is intended for high order specularity, so for
the general case we use the exact form instead.

For a user–defined value s and by using equation (66) we are ready to define
the partial sums of the given transfer function.

sL(ρ)(R~n · ~ω) =
L−1∑
l=0

ρlY
0
l (R~n · ~ω) (72)

sL(γ)(~n) =
L−1∑
l=0

l∑
m=−l

γml Y
m
l (~n) (73)

Now the idea is to use equation (67), but there is a problem: Equation (72) is
a composite function. According to [HSRG07] the result of the integration is∫

S2
sL(ρ)(R~n · ~ω)sL(γ)(~n) d~n =

L−1∑
l=0

l∑
m=−l

√
4π

2l + 1
ρlγ

m
l Y

m
l (~ω) (74)

However, no proof is given. To remedy this, one will be given here, based on the
Spherical Harmonic Addition Theorem which, for the real spherical harmonics,
states: When φ is defined by

cosφ = cos θ1 cos θ2 + sin θ1 sin θ2 cos(ϕ1 − ϕ2) (75)

then the Legendre polynomial of argument φ is given by

Pl(cosφ) =
4π

2l + 1

l∑
m=−l

Y ml (θ1, ϕ1)Y ml (θ2, ϕ2) (76)

Now as previously mentioned, let (θ1, ϕ1) represent the spherical coordinates
for ~n and let (θ2, ϕ2) represent ~ω. Using equation (69), we can express the dot
product between the two vectors as

~n • ~ω = ~S(θ1, ϕ1) • ~S(θ2, ϕ2)
= cos(θ1) cos(θ2) + sin(θ1) sin(θ2) (cos(ϕ1) cos(ϕ2) + sin(ϕ1) sin(ϕ2))
= cos(θ1) cos(θ2) + sin(θ1) sin(θ2) (cos(ϕ1) cos(−ϕ2)− sin(ϕ1) sin(−ϕ2))
= cos(θ1) cos(θ2) + sin(θ1) sin(θ2) cos(ϕ1 − ϕ2)
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Since this corresponds directly to the initial criteria given in equation (75), we
can consider φ the angle between ~n and ~ω. As previously mentioned, (θ′2, ϕ

′
2)

represents the spherical coordinates of R~n ·~ω and since ~n in this space is (0, 0, 1)
we know that θ′2 is the angle between ~n and ~ω which tells us that θ′2 = φ.

sL(ρ)(R~n · ~ω) =
L−1∑
l=0

ρlY
0
l (R~n · ~ω)

=
L−1∑
l=0

ρlY
0
l (φ, ϕ′2)

=
L−1∑
l=0

ρl
K0
l√
2
P 0
l (cosφ)

=
L−1∑
l=0

ρl

√
2l + 1

4π
4π

2l + 1

l∑
m=−l

Y ml (θ1, ϕ1)Y ml (θ2, ϕ2)

=
L−1∑
l=0

l∑
m=−l

ρl

√
4π

2l + 1
Y ml (~n)Y ml (~ω) (77)

The value Y ml (~ω) is constant under integration over ~n so given what we have

just derived, we can consider ρl
√

4π
2l+1Y

m
l (~ω) the coefficients of sL(ρ)(R~n · ~ω).

Now using this form for sL(ρ)(R~n ·~ω) and still using equation (73) for γ, through
insertion into equation (67), we obtain the result in equation (74).

The only thing that remains is evaluation of γml . For the full resolution
normal map this is trivial since each texel represents exactly one normal. Let
~n0 denote the normal of some arbitrary texel, then at this texel γ(~n) = δ(~n−~n0)
is the NDF. By insertion of γ into equation (65) we obtain

γml =
∫
S2
Y ml (~n)δ(~n− ~n0) d~n

= Y ml (~n0)

which is the spherical harmonic basis function sampled at ~n0. A texel of any
mip map level (which is not of full resolution) represents 2× 2 texels of the mip
map level one iteration above. By averaging the coefficients for γml of these four
texels, we obtain the values for γml in the current iteration. The fact that we
can do this is a direct result of equation (74) since filtering the left side of the
equation for multiple NDFs is identical to filtering the coefficients γml on the
right side for the given NDFs. So unlike the normals, the coefficients of the
NDFs can be filtered. This procedure is intended as an offline process.

As previously mentioned in this section, ρl does not depend on m so only
L coefficients are needed. The NDF, on the other hand, depends on both, so
it requires L2 coefficients. For high frequency reflection models, many terms
are needed, specifically since the frequency of Y 0

l is determined by P 0
l (u), and

since P 0
l (u) is a polynomial of degree l. This suggests that an approximation of
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equation (68) requires L to be at least as big as s. In practice however, it turns
out that this is not the case. A comparison of the exact and the approximate
evaluation of ρl for s = 1, s = 16 and s = 128 is shown in figures 35(a)-35(c).
Notice in figure 35(c) how the coefficients tend to zero already at l ≥ 35. Overall,

(a) (b) (c)

Figure 35: The exact and the approximate evaluation of ρl for
s = 1, s = 16 and s = 128 is shown in 35(a)-35(c) respec-
tively. The exact evaluation is given in equation (70) and the
approximate is equation (71).

the figures suggest that the approximation by Ramamoorthi works well, and as
expected, in particular when s is large. Ramamoorthi uses the exponential part
of his approximation to predict when to discard coefficients. Choosing e−2 as
the threshold leads to

e−
l2
2s < e−2

⇔

− l
2

2s
< −2
⇔

l >
√

4s

which is exactly the cut-off suggested in [HSRG07]. Nevertheless, this still leaves
us with an unrealistic footprint of the NDF when used with high frequency
reflection models. For instance, for s = 128 we get

L = b
√

4 · 128c+ 1
= 23

which results in L2 = 529 coefficients for the NDF. A possible solution to this
problem is suggested in [HSRG07] and will be described in section 4.2.

4.2 Spherical Harmonic clustering

Spherical harmonics are a suitable basis for representing low-frequency func-
tions, but are impractical for higher-frequency functions due to the large number
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of coefficients required. For some NDFs, normals tend to gather in a limited set
of clusters. This is typically the case when the normal map represents piecewise
approximately planar surfaces. For such cases, we can resort to basis functions
which are radially symmetric about some central direction ~µ. For one such clus-
ter, the effective BRDF corresponding to equation (62), is thus rewritten to the
current form.

ρeff (~ω; {γ, ~µ}) =
∫
S2
ρ(R~n · ~ω) · γ(R~n · ~µ) d~n (78)

Since γ is now defined to be radially symmetric about ~µ, it entirely depends on
the angle between ~n and ~µ. Thus, we can use the spherical harmonic addition
formula the same way we did in equation (77) to derive the partial sums of γ.

sL(γ)(R~n · ~µ) =
L−1∑
l=0

l∑
m=−l

γl

√
4π

2l + 1
Y ml (~n)Y ml (~µ) (79)

Next, let φ denote the angle between ~µ and ~ω, subsequently, using the partial
sums given by equations (77) and (79) we can approximate equation (78) using
equation (67) which will give us∫

S2
sL(ρ)(R~n · ~ω) · sL(γ)(R~n · ~µ) d~n =

L−1∑
l=0

ρlγl
4π

2l + 1

l∑
m=−l

Y ml (~ω)Y ml (~µ)

=
L−1∑
l=0

ρlγlPl(cosφ)

=
L−1∑
l=0

ρlγl

√
4π

2l + 1
Y 0
l (φ, 0) (80)

Here we have used equation (76) to remove the summation over m. The rele-
vant thing to acknowledge here is that the coefficients of γ are no longer double
indexed which reduces the footprint significantly. In practice however, it is unre-
alistic to rely on a single cluster. So let us assume the NDF can be approximated
by J ∈ N clusters and let j ∈ {1, 2, ..., J} be the cluster index. Subsequently,
the approximation for equation (78) becomes.

ρeff (~ω; {γj , ~µj}Jj=1) '
J∑
j=1

L−1∑
l=0

ρlγl,j

√
4π

2l + 1
Y 0
l (φj , 0) (81)

Where φj denotes the angle between ~ω and each direction ~µj . Notice that the
coefficients of γ in equation (81) have once again become double indexed since
the set of coefficients are specific to each cluster. The difference however is that
unlike m, the range of j does not depend on l and subsequently L, so instead
of having L2 coefficients we now have J · L. Another key difference is that
J does not depend on the frequency of the reflection model. For NDFs, that
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can be approximated by a small amount of clusters, this makes a significant
reduction in the amount of coefficients needed. Nevertheless, we shall see in the
next section how a careful choice of basis function leads to a footprint of only
J entries.

4.3 von Mises–Fisher clustering

In order to encapsulate clusters of normals, a Gaussian-like distribution on the
unit sphere known as vMF or von Mises–Fisher is chosen. Such a distribution
is based on the function eκ(~n•~µ) where κ is the reciprocal width and ~µ is the
central direction. As required by a probability distribution function, it must
integrate to 1. Note, the NDF γ(~n) integrated over the sphere is also 1. To
normalize, the function is divided by∫

S2
eκ(~n•~µ) d~n =

∫ 2π

0

∫ π

0

eκ(cos(π−θ)) sin θ dθdϕ

= 2π
∫ π

0

eκ(− cos θ) sin θ dθ

Next, substitution is applied using u = − cos θ and du = sin θ dθ.

2π
∫ 1

−1

eκudu =
4π
κ

eκ − e−κ

2

=
4π
κ

sinhκ

So finally we have
N (~n; {~µ, κ}) =

κ

4π sinhκ
eκ(~n•~µ) (82)

In order to encapsulate some limited number of clusters of normals (see figure
36) we must support a mixture of vMFs, that is some linear combination of
vMFs such that the coefficients αj > 0 obey

∑J
j=1 αj = 1. Let Θ store the

parameters {αj , κj , µj}Jj=1, the NDF is thus given as

γ(~n; Θ) =
J∑
j=1

αjN (~n; {~µj , κj}) (83)

Note that equation (83) still integrates to one given that
∑J
j=1 αj = 1. In order

to use equation (83) with equation (81), the contribution for each j must be
projected onto Y 0

l . Given equation (65), projection is achieved by the following
equation

γl,j = αj

∫
S2
Y 0
l (R~n · ~µj)

κj
4π sinhκj

eκj(~n•~µj) d~n

Since the form is the same for all, we can omit the j for now and focus on
the projection of a single vMF. Solving this integral is quite difficult and it is
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(a) (b)

Figure 36: A distribution of normals is shown in 36(a) and a
representation of an optimal fitting of a mixture of vMF distri-
butions is shown in 36(b). In this case, four vMF distributions.

only solved in [HSRG07] through a series of approximations. Given a prediction
made in [HSRG07] that the vMFs will, generally, have a thickness greater than
zero and smaller than half, κ is assumed to be greater than two. From this, the
first approximation is applied, that sinhκ ' eκ

2 which leads to

γ(~n; {~µ;κ}) =
κ

4π sinhκ
eκ(~n•~µ) (84)

' κ

2π
e−κ(1−~n•µ) (85)

Let β be the angle between ~n and ~µ such that 1− ~n • ~µ = 1− cosβ. Next, it is
argued in [HSRG07] that for moderate κ, β must be small for the exponential
to be nonzero, in such cases 1− cosβ ' β2

2 and from this it follows

γ(~n; {~µ;κ}) ' κ

2π
e−κ

β2

2 (86)

Note that β2

2 is really just a second–order Taylor approximation of 1− cosβ at
β = 0 (see figure 37). An approximation for projection of equation (86) is given
in [RH01] and is used by [HSRG07]. Since the derivation of the approximation
is rather evolved, it will not be described here but the reader is referred to
the appendix of [RH01] for details. The approximation leads to the following
coefficients

γl '
√

2l + 1
4π

e−
l2
2κ

Let a variant s′ of the user–defined value s, used in conjunction with the
transfer function, be given as

s′ =
sκ

κ+ s
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Figure 37: A comparison between the three curves given by: the
exact equation (82), the initial approximation (85) and finally
using the additional second–order Taylor approximation (86) is
shown here. The variable β corresponds to the angle between ~n
and ~µ and κ has been set to its minimum expected value, which
is 2.

Next, by using the approximation (71) of Ramamoorthi and thus inserting it and
our expression for γl into equation (80), we obtain the following simplification∫
S2
sL(ρ)(R~n · ~ω) · sL(γ)(R~n · ~µ) d~n =

L−1∑
l=0

ρlγl

√
4π

2l + 1
Y 0
l (φ, 0)

'
L−1∑
l=0

√
π(2l + 1)

e−
l2
2s

s+ 1
e−

l2
2κY 0

l (φ, 0)

=
L−1∑
l=0

√
π(2l + 1)
s+ 1

e
− l2

2( sκ
κ+s )Y 0

l (φ, 0)

=
s′ + 1
s+ 1

L−1∑
l=0

√
π(2l + 1)

e−
l2

2s′

s′ + 1
Y 0
l (φ, 0)

' s′ + 1
s+ 1

max(cosφ, 0)s
′

As we see here, the summation over l has been optimized away, which leads to
a reduction of the footprint as well as the execution time. To support the full
vMF mixture, the summation over j, is reintroduced and thus, the following is
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obtained

s′j =
sκj
κj + s

(87)

ρeff (~ω; Θ) '
J∑
j=1

αj
s′j + 1
s+ 1

max(~ω • ~µj , 0)s
′
j (88)

An intuitive interpretation of what has been achieved here by [HSRG07], is to
apply a form of vector quantization on each NDF where the influence of each
resulting vector ~µj is specified by αj and κj . Specifically, if κj is small, then s′j
is small which, given equation 88, will flatten the specular high–light. If on the
other hand κj is large, then s′j approaches the original specular power s. This
makes sense since clusters which are thick have a small κj and those which are
thin, and thus reflect light in a uniform direction, have a large κj .
For this technique to be successful, the normals of the normal map must gather
in a small amount of clusters. Additionally, the technique covered in this sec-
tion implies the presence of a high frequency reflection model. The fact that
[HSRG07] uses equation (71) confirms this statement since, as explained in sec-
tion 4.1, the approximation is based on the presence of a large value for s such
that s > l. In [HSRG07] the technique is used for s > 12.

In section 4.1, it was shown that the coefficients for γ can be filtered. A
problem with equation (88) is that these coefficients have been optimized away.
Technically, it is not correct to filter {α, ~µ, κ} as it is for the coefficients of γ so
the most accurate solution is to filter the results of equation (88). It is pointed
out in [HSRG07], that the most hardware efficient solution, is to ignore this
technicality and simply filter {α, ~µ, κ} anyway and then execute equation (88)
on the filtered input data. However, doing so requires arranging the J vMFs in
a consistent ordering such that filtering is performed between vMFs which are
similar in orientation and appearance. The solution suggested in [HSRG07] will
be discussed in section 4.4.5.

This section up until now has assumed that the parameters of the mixture
stored in Θ are already known. In practice, however, an algorithm is needed
to find a suitable choice for Θ, in [HSRG07] a method known as spherical EM
or Expectation Maximization is used. This technique will be covered in section
4.4.

4.4 Spherical Expectation Maximization

The EM algorithm [DLR77] is commonly used in statistics for fitting a distri-
bution model onto a set of data by finding maximum likelihood estimates. It is
an iterative method, with each iteration consisting of two steps known as the
E-step and the M-step. The more recent work by [BDGS05] on Spherical EM
is an analysis of the EM algorithm applied to a set of directional data using a
mixture of vMFs as a distribution model specifically.

The form of the probability distribution function γ is given in equation (83).
The NDF is determined from some finite selection of normals {~n1, ~n2, ..., ~nI}
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where I ∈ N and the normals are assumed to be independent. The best choice
for Θ is the one that maximizes the likelihood of drawing from the distribution
γ, exactly the selection of I normals which we are given. This is also known as
maximum likelihood estimation and can be written the following way

Θ̂ = arg max
θ

γ({~ni}Ii=1|Θ)

Let X and Y be two random variables, in probability theory, the syntax p(X,Y )
denotes the joint probability and obeys the symmetry property p(X,Y ) = p(Y,X).
Furthermore, the following two equations are rules of probability.

p(X) =
∑
Y

p(X,Y )

p(X,Y ) = p(Y |X)p(X)

These are known as the sum rule and the product rule respectively. Additionally,
when X and Y are independent, then p(Y |X) = p(Y ) and so from the product
rule it follows that p(X,Y ) = p(X)p(Y ). Since the normals are independent,
the maximization of Θ can be rewritten

Θ̂ = arg max
θ

γ({~ni}Ii=1|Θ)

= arg max
θ

I∏
i=1

γ(~ni|Θ) (89)

= arg max
θ

I∑
i=1

ln γ(~ni|Θ) (90)

However, since a mixture γ, is given in the form of a summation, finding a
maximum for equation 89 or even 90 is, generally speaking, not easy. For this
reason, the EM algorithm is based on a study of a related problem, that is what
if for every observation ~ni we had a corresponding variable zi ∈ {1, 2, ..., J}
which tells us which cluster ~ni belongs to.

p(z = j) = αj

p(~n|z = j) = N (~n; {~µj , κj})
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From this we can write the joint probability the following way

p({~ni}Ii=1, {~zi}Ii=1|Θ) = p({~n1, z1}, {~n2, z2}, ..., {~nI , zI}|Θ)

=
I∏
i=1

p(~ni, zi|Θ)

=
I∏
i=1

p(~ni|{zi,Θ})p(zi|Θ)

=
I∏
i=1

J∏
j=1

p(~ni|{zi = j, µj , κj})1j(zi)p(zi = j|αj)1j(zi)

=
I∏
i=1

J∏
j=1

(αjN (~ni; {~µj , κj}))1j(zi)

And if we apply the natural logarithm to both sides, we get the following simpler
version.

ln p({~ni}Ii=1, {~zi}Ii=1|Θ) =
I∑
i=1

J∑
j=1

1j(zi) (lnN (~ni; {~µj , κj}) + lnαj) (91)

This looks promising, αj has been isolated and can therefore be maximized in-
dependently from ~µj and κj . Additionally, since every normal ~ni is tied to a
specific cluster, this gives us exactly J disjoint, nonempty, subsets of {~ni}Ii=1,
one for each vMF. Subsequently, each vMF can be maximized independently
of the other J − 1 vMFs. There is only one problem and unfortunately it is a
deal–breaker: We do not actually have the answers to 1j(zi). The EM algorithm
solves this problem by using the expectation, denoted Ez(ln p({~ni}Ii=1, {~zi}Ii=1|Θ)),
which is also the mean with respect to the distribution of z. Additionally, the
principal of conditional expectation with respect to a conditional distribution is
specified by equation (1.37) of [Bis07] and reads

Ex(f |y) =
∑
x

p(x|y)f(x)
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for some arbitrary function f of x. Subsequently, the mean is

Ez(ln p({~ni}Ii=1, {~zi}Ii=1|Θ)) =
I∑
i=1

Ez(ln p(~ni, zi|Θ))

=
I∑
i=1

J∑
j=1

p(zi = j|~ni) ln p(~ni, zi = j|{αj , µj , κj})

=
I∑
i=1

J∑
j=1

p(zi = j|~ni) ln ( p(~ni|{zi = j, µj , κj}) · p(zi = j|αj) )

=
I∑
i=1

J∑
j=1

p(zi = j|~ni) ( ln p(~ni|{zi = j, µj , κj}) + ln p(zi = j|αj) )

=
I∑
i=1

J∑
j=1

p(zi = j|~ni) ( lnN (~ni; {~µj , κj}) + lnαj ) (92)

Notice how equation (92) is very similar to equation (91). The term 1j(zi) has
now been replaced by p(zi = j|~ni). Unfortunately, we do not have the values
for this term either:

cij = p(zi = j|~ni) (93)
The EM method is based on two steps, the first is the E-step and its purpose is
to provide an estimation for the coefficients cij . The second is the M-step and
its purpose is to maximize with respect to Θ the following rewrite of equation
(92)

Ez(ln p({~ni}Ii=1, {~zi}Ii=1|Θ)) '
I∑
i=1

J∑
j=1

cij lnN (~ni; {~µj , κj}) +
I∑
i=1

J∑
j=1

cij lnαj

(94)
where the coefficients cij are interpreted as constants during maximization. Af-
ter the M-step, the coefficients cij are reevaluated again, and thus refined, in
a subsequent E-step. Next, the M-step follows and so on. This process forms
an iterative approach which is to be terminated once equation (94) no longer
increases during maximization or if the amount of iterations which have taken
place exceeds some user–defined maximum. Intuitively, the estimates for cij and
for Θ̂ are improved for every iteration and eventually convergence takes place
at some local maximum. For a proof of convergence, the reader is referred to
section (9.4) of [Bis07].

4.4.1 The expectation step

To explain how the E-step provides an estimate of the coefficients cij , based on
the current iteration of Θ̂, consider once again the random variables X and Y .
From the symmetry property and the product rule it follows that

p(Y |X) =
p(X|Y )p(Y )

p(X)
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which is also known as Bayes’ theorem. By using the sum rule, the product rule
and the symmetry property on the denominator of Bayes’ theorem we get

p(Y |X) =
p(X|Y )p(Y )∑
Y p(X|Y )p(Y )

(95)

We can think of the denominator in equation (95) as being the normalization
constant required to ensure that the sum of the conditional property on the
left-hand side over all values of Y equals one. Using equation (95) on equation
(93) specifically yields

cij = p(z = j|~ni)

=
p(z = j)p(~ni|z = j)∑J
k=1 p(z = k)p(~ni|z = k)

=
αjN (~ni; {~µj , κj})∑J
k=1 αkN (~ni; {~µk, κk})

(96)

The most recent iteration of Θ̂, which is refined in every M-step, is used to
evaluate equation (96) which completes the E-step. As mentioned, in regards
to equation (95), summation over all Y equals one. Similarly for equation (96)
we have

J∑
j=1

cij = 1 (97)

Maximization of equation (94) is covered in section 4.4.2.

4.4.2 The maximization step

Initially, the parameter set on the right side of equation (94) is maximized, that
is {αj}Jj=1. Let

f({αj}Jj=1) =
I∑
i=1

J∑
j=1

cij lnαj

The function f is maximized by evaluating the derivative of f with respect to
every αj and thus solving df

dαj
= 0 for all J equations. Note however that the

constraint in equation (97) needs to be taken into account. This is done by
introducing the following function

g({αj}Jj=1) = −1 +
J∑
j=1

αj

= 0
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and the Lagrange multiplier λ. Instead, differentiation is performed on f + λg,
with respect to αh for h ∈ {1, 2, ..., J}.

d(f + λg)({αj}Jj=1)
dαh

=
d

dαh

I∑
i=1

J∑
j=1

cij lnαj + λ

−1 +
J∑
j=1

αj


= λ+

1
αh

I∑
i=1

cih

Next, d(f+λg)
dαh

= 0 is solved for all J equations. For additional detail on the
concept of maximizing a function given a constraint, the reader is referred to
pp. 721–728 in [Ada94].

d(f + λg)({αj}Jj=1)
dαh

= 0

⇔

λ+
1
αh

I∑
i=1

cih = 0 (98)

Next both sides of equation (98) are multiplied by αh, which leads to the equa-
tion

I∑
i=1

cih = −λαh (99)

Since this equation applies to any chosen h ∈ {1, 2, ..., J} summation over j can
be applied on both sides.

J∑
j=1

I∑
i=1

cij =
J∑
j=1

−λαj

⇔
I∑
i=1

J∑
j=1

cij = −λ
J∑
j=1

αj

⇔
I∑
i=1

1 = −λ

⇔
λ = −I

Finally, substitution of λ = −I back into (99) provides the result,

αh =
1
I

I∑
i=1

cih
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which completes maximization of the set {αj}Jj=1, given the estimate for cij
provided by the E-step. Next, the other half of equation (94) is maximized in a
similar fashion.

f({~ni}Ii=1, {µj , κj , λj}Jj=1) =
I∑
i=1

J∑
j=1

cij lnN (~ni; {~µj , κj})

=
I∑
i=1

J∑
j=1

cij (κj · (~ni • ~µj) + lnκj − ln(4π)− ln(sinhκj))

g({~µj , λj}Jj=1) =
J∑
j=1

λj (1− ~µj • ~µj)

= 0

Again, f is maximized given the constraint g = 0, initially the derivatives are
evaluated.

d(f + g)({~ni}Ii=1, {µj , κj , λj}Jj=1)
dµh

= −2λh~µh + κh

I∑
i=1

cih · ~ni (100)

d(f + g)({~ni}Ii=1, {µj , κj , λj}Jj=1)
dλh

= 1− ~µh • ~µh

d(f + g)({~ni}Ii=1, {µj , κj , λj}Jj=1)
dκh

=
I∑
i=1

cih ·
(
~ni • ~µh +

1
κh
− cothκh

)
By setting these derivatives equal to zero the following three equations are
obtained.

~µh =
κh
2λh

I∑
i=1

cih · ~ni (101)

~µh • ~µh = 1 (102)(
cothκh −

1
κh

) I∑
i=1

cih = ~µh •
I∑
i=1

cih~ni (103)

Now given equation (102), if ~µh is applied as a dot product on both sides of
equation (101), this leads to

λh =
κh
2

I∑
i=1

cih · (~µh • ~ni)

Since κh > 0 and cih ≥ 0, the sign of λh will depend on the outcome of the sum
on the right. However, the objective is to maximize the probability of obtaining
{~n1, ~n2, ..., ~nI} from the distribution and since cih increases (see eq. (82) and
(96)) as the angle between ~µh and ~ni is overall diminished, which maximizes
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~µh •~ni, the value of λh is considered greater than zero. From this and equation
(101), it follows after normalization that

~µh =
∑I
i=1 cih · ~ni

‖
∑I
i=1 cih · ~ni‖

(104)

By substitution of this into equation (103) we get(
cothκh −

1
κh

) I∑
i=1

cih = ‖
I∑
i=1

cih~ni‖ (105)

Next, let A(x) = cothx − 1
x , it follows that the objective is to find the inverse

such that

κh = A−1

(
‖
∑I
i=1 cih~ni‖∑I
i=1 cih

)
Unfortunately, no closed form exists for A−1, in [BDGS05] the following ap-
proximation

~rh =
∑I
i=1 cih~ni∑I
i=1 cih

κh ' 3‖~rh‖ − ‖~rh‖3

1− ‖~rh‖2

is empirically found to provide good results and is also used in [HSRG07]. In
conclusion, the M-step is achieved by the following equations:

αh =
1
I

I∑
i=1

cih (106)

~rh =
∑I
i=1 cih~ni∑I
i=1 cih

(107)

~µh =
rh
‖rh‖

(108)

κh ' 3‖~rh‖ − ‖~rh‖3

1− ‖~rh‖2
(109)

Given the mutual dependence between the E–step and the M–step, an ini-
tial rough estimate for Θ̂ must be provided before any iterations take place.
However, since there is a risk of tracking down some arbitrary local extrema,
it is important that this be a good estimate for the initial value. This will be
discussed in section 4.4.3.

4.4.3 Initial estimate

The objective of the initialization step is to choose for every texel J vMFs such
that the mixture is close to the best fitting onto the NDF of the texel. The
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full resolution normal map has only one normal per texel so initialization is
done, simply by setting ~µ = ~n, α = 1 and κ to an unspecified large value which
corresponds to a thin vMF (as in [HSRG07]).
A texel of a mip map level represents 2 × 2 texels of the mip map level one
iteration above. Initialization, in [HSRG07], is done by choosing J vMFs from
the 4 · J vMFs assigned to these 2× 2 texels. The choice is made such that the
shortest angular distance between any two vMF central directions is maximized.
This is done using a heuristic known as Hochbaum Shmoys clustering [HS85].
Let the initial 4 · J central directions be known as V = {~µi}Ii=1 where I =
4 · J . The work in [HS85] operates on a complete graph G = (V,E) where
E = {e1, e2, ..., em} with m = |E|. For every edge ej and j ∈ {1, 2, ...,m} there
is an associated weight wej ≥ 0 which in [HSRG07] is the angular distance.
The edge list E is assumed to be given ordered such that we1 ≤ we2 ≤ ...wem .
Let Gk = (V,Ek) denote the subgraph of G where Ek = {e1, e2, ..., ek}. The
subgraph Gk thus only contains links between vertices with a weight less than
or equal to wek . Removing vertices in V connected to an entry ~µi ∈ V , through
edges in Ek, results in S ⊆ V . We can consider S a trimmed version of V
using the threshold wek . Thus by iteratively performing trimming for entries of
~µi ∈ V , the result S only contains entries connected by edges with an associated
weight, greater than or equal to wek . Unfortunately, this alone does not provide
|S| = J , so bisection over k is applied using 1 and m as the initial lower and
upper index. This locates the k that brings |S| as close to J as possible.
Let the syntax ADJk(~µi) denote the set of entries in V connected to ~µi through
edges in Ek. The algorithm in pseudo code is given below.

low← 1

high← |E|

while high > low + 1

mid← b low+high
2 c

S ← ∅
T ← V

while ∃~µ ∈ T
S ← S ∪ {~µ}
for all ~v ∈ ADJmid(~µ)

T ← T −ADJmid(~v)− {~v}
if |S| ≤ J

high← mid
S′ ← S

else low← mid

outputS′
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Ideally, better initialization could be done by choosing J central directions based
on the full coverage of a texel. However, since the algorithm operates on the
complete graph associated with V , the edge list is |E| = O(|V |2) entries long.
As an example, the smallest mip map level is only a single texel and so the
coverage corresponds to every normal in the full resolution normal map. To
minimize execution time significantly, the choice in [HSRG07] is made based on
the 4 ·J vMFs assigned to the 2×2 texels previously described. The subsequent
Spherical EM algorithm, however, operates on the full coverage

4.4.4 The algorithm

Preprocessing of the normal map is performed as follows: Every texel of each
mip map corresponds to some axis–aligned coverage in the full resolution normal
map. Let J be a user–defined integer constant. For each texel, a mixture of J
vMFs is fitted to the distribution of normals in the coverage. This fitting is done
using Spherical EM as described in the previous sections. First initialization is
performed as explained in section 4.4.3. Next, the E–step and the M–step are
performed in turn until convergence is reached. Convergence is reached once the
probability of drawing the normals, in the coverage, from the mixture of vMFs is
no longer significantly maximized or once a maximum number of iterations have
been performed. The algorithm is given in pseudo–code below where I defines
the amount of normals in the coverage of the texel currently being processed.

repeat

% The E–step

for all samples ~ni
for j = 1 to J

cij ← αjN (~ni;{~µj ,κj})∑J
k=1 αkN (~ni;{~µk,κk})

% The M–step

for j = 1 to J

αj ←
∑I
i=1 cij
I

~rj ←
∑I
i=1 cij~ni∑I
i=1 cij

κj ← 3‖~rj‖−‖~rj‖3
1−‖~rj‖2

~µj ← ~rj
‖~rj‖

until convergence

The assignment made to cij in the E–step is given by equation (96) and the
four assignments in the M–step are given by equations (106), (107), (108) and
(109).

92



It should be mentioned that in [HSRG07] the assignment in the E–step is given
(without multiplication by α) as

cij ←
N (~ni; {~µj , κj})∑J
k=1N (~ni; {~µk, κk})

Since this does not correspond to equation (96), I have asked Charles Han
regarding the matter and he has confirmed that it is an error in his paper.

4.4.5 Filtering the clusters

It was pointed out in section 4.3 that there are no coefficients to filter when
performing lighting calculations using equation (88). The correct approach is
to collect the mixtures of the texels sampled, use equation (88) on each mixture
separately and finally filter the results. For trilinear filtering, this results in
eight individual mixtures sampled and thus equation (88) is evaluated eight
times before filtering takes place.

In order to make his work applicable to real-time rendering, though it is
technically incorrect, Han proposes an alternative where mixtures are filtered
instead of the results. The problem is that the order of the vMFs in the mixture
is arbitrary. To filter the vMFs (~µj , κj , αj) there has to be a certain coherency
and similarity between those assigned to neighboring texels at the same entry j.
Han solves this problem by changing the probability which is maximized such
that it takes results of the previously processed mip map level into account.
This is explained in the following. Let the sets X and Y be given as

X = {~ni}Ii=1

Z = {~zi}Ii=1

In section 4.4.2, fitting was done by maximizing equation (92) which is the
maximization of Ez(lnP (X,Z|Θ)). In order to achieve better coherency for
filtering, Han replaces maximization of this probability with P (Θ, X, Z|N(Θ))
where N(Θ) is the cluster arguments of the 2 × 2 texels from the processed
previous mip map level at the corresponding location. Let these four texels be
referenced by k ∈ {1, 2, 3, 4}, the elements of N(Θ) are known and given by µjk,
κjk and αjk. Using the product rule, we can use the following expansion

P (Θ, X, Z|N(Θ)) = P (Θ|N(Θ)) · P (X,Z|Θ)

where the left term is chosen in [HSRG07] as a product of vMF distributions

P (Θ|N(Θ)) =
J∏
j=1

K∏
k=1

αjkC
′

4π sinh(αjkC ′)
eαjkC

′(~µj•~µjk) (110)

Thus the reciprocal thickness of each vMF is given by αjkC
′ where C ′ is a

user-defined scale used to tweak the distribution and K = 4. The probability
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P (Θ|N(Θ)) is independent of Z which leads to the expectation

Ez(lnP (Θ, X, Z|N(Θ))) = Ez(lnP (Θ|N(Θ))) + Ez(lnP (X,Z|Θ))
= lnP (Θ|N(Θ)) + Ez (lnP (X,Z|Θ)) (111)

Maximization is applied to equation (111) instead of equation (92). Note that
the second term in equation (111) is identical to equation (92). In section 4.4.2,
maximization was done by evaluating the first–order derivatives with respect to
µh, κh and αh. The first term in equation (111) does not depend on κh or αh so
only the derivative with respect to µh needs to be reevaluated. The derivative
of the first term with respect to µh, given equation (110), is

d lnP (Θ|N(Θ))
dµh

= C ′
K∑
k=1

αhk~µhk

This is added to the derivative of the second term which is given by equation
(100) and the result is subsequently set to zero to find the local extrema. This
yields the following

0 = −2λh~µh + κh

I∑
i=1

cih · ~ni + C ′
K∑
k=1

αhk~µhk

⇔

2λh~µh = κh

I∑
i=1

cih · ~ni + C ′
K∑
k=1

αhk~µhk (112)

As in section 4.4.2 λh > 0 so it follows

~µh =
κh
∑I
i=1 cih · ~ni + C ′

∑K
k=1 αhk~µhk

‖κh
∑I
i=1 cih · ~ni + C ′

∑K
k=1 αhk~µhk‖

(113)

Equation (113) is also given in the appendix of [HSRG07]. At the end of the
appendix, Han says that by introducing C where C ′ = C · κh, equation (113)
can be replaced by the following

~µh =
~rh + C

∑K
k=1 αhk~µhk

‖~rh + C
∑K
k=1 αhk~µhk‖

(114)

However, given equation (107), substitution of
∑I
i=1 cih · ~ni with ~rh implies a

division by
∑I
i=1 cih which given equation (106) is the same as I · αh. Since

division must be applied to both terms, this substitution is only valid if C is
defined such that

C ′ = C · I · κh · αh (115)

I have contacted Han and he agrees that C ′ = C · κh is a mistake in his paper.
During this correspondence I also asked which constant value he uses for C ′

in his implementation. Surprizingly, Han told me, he sets C directly to the
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constant 2 in equation (114). Given equation (115), interpreting C as constant
means C ′ is no longer a constant and makes it depend on I, αh and κh. This
changes P (Θ|N(Θ)) given in equation (110) and subsequently invalidates the
result, obtained by maximization, given in the appendix of [HSRG07] (and
equation (113) of this thesis). Han agrees this is an error in his implementation
but suspects it might not make a significant difference in terms of results in
practice. Intuitively there is some sense to what Han is saying since equations
(114) and (113) are both identical to the initial equation (108) when C ′ = 0.
When C ′ > 0 the central directions αhk · ~µhk in N(Θ) at entry h are added to
~rh which, as intended, makes it probable that convergence of ~µh will be similar
to the central direction of the most dominant vMF in N(Θ). However, the scale
applied to this adjustment is different in the two cases. Even in the unlikely
event that κh and αh stay the same as we transcend through the mip map
levels, the integer I which is the amount of normals in the coverage of a texel
quadruples for each subsequent mip map level.

In section 7.3 in [HSRG07], it is said that the only thing that needs to
be changed in the Spherical EM process is to use equation (114) to replace
the assignment made to ~µj in the M–step. Whether you use equation (114)
or (113), this claim is wrong. The problem is that equation (103) which is
used to maximize κh depends on ~µh which was previously given by equation
(104) in section 4.4.2. Equation (104) does not depend on κh and insertion into
equation (103) gives a relatively nice result (105). Nevertheless, it is pointed out
in [BDGS05] that κh cannot be isolated in this equation and it is the purpose
of their paper to provide an approximation for κh as given by equation (109).
Since, in [HSRG07], the central direction ~µh is replaced by equation (113) this
appears to invalidate use of the approximation for κh given in [BDGS05]. The
correct thing to do would be to follow in the foot–steps of [BDGS05] and insert
equation (113) into (103) and try to isolate κh or, as in [BDGS05], provide a
new approximation. The resulting equation, however, is very complex and since
it was a difficult problem to solve the first time, it would most likely be very
hard given the new and more complex form. I will not attempt to solve the
problem in this thesis, but it might be interesting to pursue this in a future
project. I have informed Han of the problem and he has confirmed this was an
oversight in his paper.

Though it is technically wrong, it could be argued that continuing to use
equation (109) to evaluate κh can be considered an approximation. Unfortu-
nately, equation (109) does not take N(Θ) into account, but since the E-step
evaluates cij based on the chosen central directions of the M–step, κh is in fact
influenced by N(Θ) in each subsequent iteration. This is because equation (109)
is evaluated based on the coefficients cij .
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4.5 Results

In addition to normal mapping with standard filtering I have implemented the
method based on spherical harmonics described in section 4.1, the method based
on clustering as described in sections 4.2, 4.3 and 4.4 and finally a method which
will henceforth be known as ground-truth. This method calculates the exact

Figure 38: A normal map is shown in 38 with five surface ori-
entations and noise.

coverage, as shown in figure 34(b), and accumulates the light intensity based on
the normal of every texel inside the coverage. Texels which are only partially
inside are clipped against the outline of the coverage and the area of the resulting
region is applied as a scale to the light intensity before accumulation. After all
contributions have been accumulated, the total is divided by the area of the
coverage. This process filters the light intensities as opposed to the normals.
The method will, in the following, serve as a reference model of the correct
result. Since it has a very long execution time, it is not considered a realistic
alternative in practice.

The normal map which will be used for the following tests is shown in figure
38. It consists of five primary surface orientations with noise distributed across
the map. Figure 39 shows every normal represented by a point on the unit–
sphere. There appears a cluster for each of the five orientations where the
thickest cluster represents the middle surface of the normal map. This surface
has more noise in it which is why the cluster is fuller compared to the remaining
four.

Figure 40 shows the first test which is a tea pot with the normal map tiled 60
times in the horizontal direction, 36 times in the vertical and the specular power
s is set to 64. The result generated using ground–truth is shown in figure 40(b).
Specular high–lights appear for each of the five surfaces. Specifically, a high–
light formed as a cross appears as a result of the four sides. Standard filtering
of normals was used in figure 40(a) and the result is different compared to figure
40(b). In particular, the cross shape is not as explicit as that of ground–truth.
To create a large amount of over–sampling the same normal map is now tiled
480 times in the horizontal direction and 280 times in the vertical. In figure
41(c), the result obtained by ground–truth is shown and in contrast the result
obtained by standard filtering of normals in figure 41(a) appears not only aliased
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(a) (b)

Figure 39: A normal map is shown in figure 38 with five surface
orientations. The distribution of normals is shown in 39(a) and
with a top–down view in 39(b). Each normal is visualized as a
point on the unit–sphere.

(a) (b)

Figure 40: The result seen in 40(a) was generated using standard
filtering of normals. A more accurate result is shown in 40(b)
and was generated using ground–truth. The specular high–light
appears as a cross on the surface due to the four sides of the
normal map in figure 38.

but also completely different from the reference model. An alternative way to
prevent normals across a large coverage from being averaged is to disable mip
mapping. This is shown in figure 41(b) and though the specular high–lights do
appear in the same locations as for the reference model, an excessive amount of
noise is now visible in the result.

Figure 39 represents the true NDF of the last mip map level which consists
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(a) (b) (c)

Figure 41: Standard filtering of normals is shown in 41(a) and
appears different from ground–truth shown in 41(c). Disabling
mip mapping, which is shown in 41(b), confirms the result in
41(c) but has noise.

of a single texel. The coverage of this single texel is the entire normal map.
For the next test, the NDF of every texel of any mip map level is approximated
using spherical harmonics as explained in section 4.1 and the light intensity is
evaluated using equation (74). In figure 42(a), the result is shown using L = 4

(a) (b) (c)

Figure 42: The results obtained by using spherical harmonics
approximation of the NDF is shown in figures 42(a)-42(c) and
using 16, 64 and 144 coefficients respectively per texel.

which is a total of 16 spherical harmonic coefficients. No specular high–lights
appear in the figure. Next, using L = 8, which is 64 coefficients, is shown in
figure 42(b) and now specular high–lights appear, but they look blurred and
not as bright as they need to be. Finally, in figure 42(c), we see the result using
L = 12 which is 144 coefficients. The specular high–lights now appear much
brighter and not as blurred as for L = 8. Nevertheless, the result does still
not correspond exactly to ground–truth. The specular high–lights still appear
blurred and they are also slightly dimmer than they should be. In conclusion,
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the spherical harmonics based method achieves better results than standard
filtering of normals, but it is also confirmed that, due to the large memory
foot–print, the solution is not suitable for higher values of the specular power.

In the following, testing is done using clustering and fitting of a mixture of
von Mises–Fisher (vMF) distributions. Given figure 39, we know that there are
five primary clusters in the distribution of normals. As previously mentioned,
the last mip map level is a single texel and the corresponding coverage is the
entire normal map and subsequently all five clusters need to be represented.
With this in mind, it seems intuitive that a single vMF (J = 1) will not provide
adequate results. The result (~µ1, κ1, α1) after spherical EM applied on the
full coverage for J = 1 is given in table 1. The central direction is given in

Index j θ ϕ κ α
1 2.278◦ 334.4◦ 2.922 1.0

Table 1: This table shows the result of spherical EM applied
to the complete distribution of normals into a single vMF. The
central direction is given by (θ, ϕ).

degrees as ~µ1 = (θ, ϕ), and since θ is close to zero, which is up, the central
direction approximately coincides with the Z-axis. Furthermore, since all five
clusters are represented with a single vMF, this becomes a very thick vMF which
corresponds to a small κ. This is confirmed by the result κ1 = 2.922 listed in
the table. Finally, α1 = 1.0 since there is only one vMF in the mixture. This
mixture is illustrated in figure 43(b). Note that origo is at the bottom and not
the center of the volume and additionally the ranges are not the same along
each axis. The result obtained by using equations (87) and (88) for lighting is
shown in 43(a). At the end of section 4.3 it was explained that a small κ will
flatten the frequency of the specular high–light and additionally scale down the
intensity of it. This is verified here.

The result (~µj , κj , αj) after spherical EM applied on the full coverage for
J = 3 is given in table 2. The first entry j = 1 has the smallest θ and thus

Index j θ ϕ κ α
1 20.981◦ 318.204◦ 4.869 0.717
2 64.217◦ 90.424◦ 233.027 0.140
3 62.492◦ 181.298◦ 228.74 0.143

Table 2: This table shows the result of spherical EM applied
to the complete distribution of normals into three vMFs. The
central direction is given by (θ, ϕ).

represents the vMF with the central direction closest to the Z-axis. This entry
also has the smallest κ of the three and thus corresponds to the thick middle
cluster of figure 39. The two last entries both have approximately θ = 63◦ and
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(a) (b)

Figure 43: The result, using a single vMF in every texel, is
shown in 43(a). The vMF obtained from the full coverage is
shown in 43(b). Each vMF is fitted using spherical EM.

ϕ as 90◦ and 181◦ respectively. These correspond well to the left and upper
sides of the normal map. They also have a much larger κ which agrees with the
fact that the clusters of the sides are thinner. An illustration of the mixture is
shown in figure 44(b). The final lit tea pot is shown in figure 44(a) and now the

(a) (b)

Figure 44: The result, using a mixture of three vMFs in every
texel, is shown in 44(a). The mixture obtained from the full cov-
erage is shown in 44(b). Each mixture is fitted using spherical
EM.

specular high–lights which, according to ground–truth, should occur from the

100



left and upper sides of the normal map appear in the result.
The result (~µj , κj , αj) after spherical EM applied on the full coverage for

J = 5 is given in table 3. Again, the first entry j = 1 has the smallest θ and

Index j θ ϕ κ α
1 2.910◦ 340.587◦ 15.529 0.426
2 62.435◦ 181.314◦ 220.148 0.144
3 63.897◦ 270.384◦ 229.626 0.142
4 64.191◦ 90.418◦ 226.349 0.141
5 63.777◦ 359.5◦ 232.69 0.147

Table 3: This table shows the result of spherical EM applied
to the complete distribution of normals into five vMFs. The
central direction is given by (θ, ϕ).

thus represents the vMF with the central direction closest to the Z-axis. This
entry also has the smallest κ of the five and thus corresponds to the thick middle
cluster of figure 39. The four remaining entries all have θ ' 63◦ and ϕ as 181◦,
270◦, 90◦ and 359◦ respectively. These four entries correspond to the clusters
of the four sides and an illustration of the full mixture is shown in figure 45(b).
The final lit tea pot is shown in figure 45(a) and now all specular high–lights

(a) (b)

Figure 45: The result, using a mixture of five vMFs in every
texel, is shown in 45(a). The mixture obtained from the full
coverage is shown in 45(b). Each mixture is fitted using spheri-
cal EM.

appear in the result. In fact the result is almost identical to ground–truth.
For the next test a different normal map will be used where the distribution

does not gather in a small collection of clusters, see figures 46(a) and 46(b).
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The result after spherical EM applied on the full coverage for J = 5 and J = 16
is shown in figures 46(c) and 46(d) respectively and they appear the same.
However, this is specifically when applied to the full coverage, for texels of mip
map levels with bigger dimensions than 1×1 there will be differences. To reduce

(a) (b)

(c) (d)

Figure 46: A normal map is shown in 46(a) with the corre-
sponding distribution of normals shown in 46(b). Each normal
is represented as a point on the unit–sphere. The mixture ob-
tained from the full coverage is shown in 46(c). The mixture was
fitted using spherical EM with five vMFs. The same principle
applied using sixteen vMFs in the mixture is shown in 46(d).

the over–sampling, the tiling is changed to 120 times in the horizontal direction
and 72 times in the vertical. The normal map in figure 46(a) is applied to the
tea pot and a close–up using J = 5 is shown in figure 47(a). In contrast the

102



result using ground–truth is shown in figure 47(c) and the specular high–lights
appear a lot less blurred. The result in figure 47(b) was generated using J = 16
and though it appears less blurred than the result obtained using J = 5, the
specular high–lights are not as high–frequency as that of ground–truth.

(a) (b) (c)

Figure 47: In 47(a) the lit tea pot, using a mixture of five vMFs
per texel, is shown. Similarly in 47(b) the result is shown for
sixteen vMFs per texel. Finally, in 47(c) ground–truth is shown
as a reference and the specular high–lights are less blurred.
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5 Conclusion

A thorough analysis of Blinn’s approximation has been given, for the first time,
in this thesis. Furthermore, a derivation of an equation for the exact perturbed
normal has been given. According to Blinn, his approximation holds well un-
der the assumption that the bumps are considered small, relative to the extent
of the surface. The exact equation presented here reveals that a more correct
interpretation is that the approximation holds well when the product between
the bump value and each principal curvature is close to zero. As initially sus-
pected, the visual results showed no significant difference in terms of lighting.
This indicates that the approximation is sensible, and at least for rendering, we
can continue to use it. Nevertheless, the presented analysis on the subject is
significant because it provides a fundamental understanding of the approxima-
tion made and confirms its application. Furthermore, examples have been given
here showing a very detectable difference between the exact and the approxi-
mate perturbed normal as the principal curvatures and the bump value increase
which also confirms the analysis. It is likely that the exact equation will prove
useful in other contexts of 3D graphics, such as physics, or possibly even within
other areas of computer science.

Furthermore, we have managed to extend Blinn’s work to function under
reparametrizations of the surface which preserve the orientation as well as those
which do not. This includes a valid expression for the exact normal as well as
the approximate one. The use of reparametrizations of the surface enables us
to perform manipulations of the texture coordinate prior to texture sampling.
Such manipulations were not covered by Blinn, but in fact any diffeomorphism
on the input coordinate to the surface is a valid manipulation. A special case
of such a diffeomorphism is an affine map with an inverse. This means that
graphic artists can, for example, rotate, scale, shear and translate texture sam-
pling coordinates. Such an operation simply reorients the bump map on the
surface. Bump mapping under reparametrizations is a common practice but a
complete proof and derivation of the perturbation equation has, to the author’s
knowledge, not been given before this thesis. Additionally, the analysis on the
subject provided here has proven useful in terms of studying and perfecting
bump mapping applied to triangular meshes.

Bump mapping as defined by Jim Blinn requires the presence of a known
surface parametrization to evaluate the first–order derivatives of the surface.
The theory for extending bump mapping to work for triangular meshes has, until
now, been poorly documented. It was briefly suggested in a paper by Nelson L.
Max that one could approximate the derivatives at vertex level by averaging the
first–order derivatives of the surrounding triangles. The accumulated derivatives
are subsequently interpolated across each triangle as rasterization is performed.
Today, this strategy has been adopted by most, if not all, commercial products,
because it is very hardware efficient. Nevertheless, it has been shown in this
thesis that it is a nontrivial solution which, if not carefully planned, easily leads
to visual errors. In particular, several examples have been given showing leading
commercial graphics tools exhibiting such errors in their results.

104



Based on a thorough analysis and by observing flaws in methods used by
predecessors and current commercial products, a new algorithm for vertex level
tangent space evaluation is presented in this thesis. The technique is based on a
set of coherency rules, defined in this thesis, which are used to determine which
triangles surrounding a vertex should share tangent space. These rules are to
a large extent the result of studying reparametrized surfaces in general and the
proof made in this thesis that texture coordinates assigned at the vertices of a
triangle is in fact an instance of reparametrization using an affine map. Another
important aspect of the algorithm is that it has been defined to provide results
independently of the order in which triangles of the mesh are given. This is
important to provide consistency but as shown in this thesis also important to
preserve mesh symmetries. Failing to do so can lead to discontinuities in the
lighting between adjacent triangles.

As shown in this thesis, bump maps can be converted into tangent space
normal maps, and similarly normals sampled from a 3D surface/mesh can be
transformed into tangent space and are then also stored as a tangent space nor-
mal map. This enables a uniform processing of the two and today the concept
is an industry standard. An important observation made in this thesis is that,
although converted bump maps can be applied to any surface, the same does not
fully apply to sampled normal maps. Since each sampled normal is transformed
by a matrix into tangent space, it is important to use the exact inverse during
rasterization to obtain the original sampled normal to be used in the lighting
calculation. Not doing so will cause a deviation between the sampled normal
and the final normal passed to the lighting model. Such a deviation alone is
not a problem. However, for adjacent triangles which share vertex normals but
not averaged vertex level derivatives, and subsequently do not share tangent
space, it is a problem. This is because the discontinuity in tangent space, at
the edge between the two triangles, will lead to a discontinuity in the deviation
which leads to a discontinuity in the final normal passed to the lighting model.
Finally, this creates what is known as a shading seam, i.e., an unwanted discon-
tinuity in the lighting at an edge between two triangles. If, on the other hand,
tangent spaces are shared at the edge, then the deviation (and the final nor-
mal) will transition continuously across the edge and thus preserve continuity
of the lighting calculations. A problematic, yet typical, test–case provided by
IO-Interactive tested with several leading graphics tools resulted in such shad-
ing seams. Since in each case the sampler and the viewer was provided by the
same middle–ware company, this is a clear indication that their developers failed
to acknowledge the dependency in terms of chosen transformation between the
sampler and the viewer. In contrast, respecting the dependency and using the
technique presented in this thesis to assign vertex level tangent spaces provided
very nice and completely artifact–free results.

It has been pointed out in this thesis that there exists no single right method
to calculate tangent space at a point within a triangle based on the barycentric
weights and the three tangent spaces assigned at vertex level. Additionally,
there exists no single right way to determine the tangent spaces assigned at
vertex level. There does not even exist a generally accepted standard for an
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approximation. This, combined with the aforementioned dependency between
the normal map sampler and the application using the normal map for rendering,
means there are compatibility problems between different tools and renderers.
Though such a problem might be solved by having a final standard introduced,
it seems unlikely that one single standard might be generally accepted. In
this thesis alone, four different strategies for interpolated tangent space were
suggested with different strengths and weaknesses. To make matters worse,
existing middleware tools for sampling normal maps generally do not reveal
their strategies for interpolated tangent space nor those assigned at vertex level.
This means that even if a developer is willing to adopt the concept of tangent
space used by the sampling tool in use, he/she does not have access to the
information needed and thus cannot reconstruct the accurate inverse in the
shader as required.

In conclusion, there are two sensible options for developers who use sampled
normal maps. One is to have every such developer write his/her own tool for
sampling which will allow him/her to control the notion of tangent space used in
their application. The second option is to develop a customizable sampling tool
which will allow developers to overwrite tangent space if they are not satisfied
with the default implementation. Furthermore, full documentation and source–
code must be provided for the default implementation of every tool. In terms
of future work, it would be interesting to pursue this idea and more specifically
analyze how such an interface to the sampling tool should be provided.

In this thesis, the work on filtering normal maps by Charles Han et al. has
been thoroughly described, closely studied and additionally implemented and
tested. A large portion of the work involved in this thesis has been spent on
interpreting the comprehensive math used by Han and also on finding deriva-
tions to equations given, but not shown, in his paper. Additionally, getting well
acquainted with the underlying theoretical principles of spherical EM has also
been very time–consuming.

The work describes two primary techniques, the first uses spherical har-
monics to approximate the distribution of normals and also to approximate the
material reflectance. The results were compared to an accurate brute–force im-
plementation, referred to as ground–truth. This comparison showed that using
spherical harmonics does approach the results achieved by ground–truth as the
amount of coefficients used for the approximation is increased. However, the
test also confirmed the comment by Han that a very large amount of coefficients
is required for high–order specularity.

The second technique described by Han approximates the distribution of
normals using a mixture of a small user–defined amount of Gaussian–like dis-
tributions on the spherical domain known as von Mises–Fisher. This mixture is
fitted to the distribution of normals using a recent technique known as spher-
ical EM. The analysis and tests performed in this thesis confirmed that the
method is remarkably successful when the distribution of normals gather in a
small amount of thin clusters. Under different circumstances, the results were
visually appealing but appeared as if the specular high–lights had been heavily
blurred compared to ground–truth. An additional test showed that this blurring
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is reduced as the amount of von Mises–Fisher distributions used in the mixture
is increased. However, doing so also increases (linearly) the foot–print and the
execution time.

Finally, three errors in Han’s paper were discovered during the development
of this thesis. The first error is in the E–step (see section 4.4.4 for details) and
the second is equation (23), in his paper, which has an error due to an incorrect
substitution (see section 4.4.5). Fortunately, both errors are easy to solve. The
third error, on the other hand, is difficult to solve. By changing the distribution
in use, Han is no longer compliant with the form used in spherical EM. Han does
reevaluate the equation in the M–step for the central direction, but overlooks
that in spherical EM the maximized thickness κ depends on the central direction
and subsequently it is, at least from a technical standpoint, no longer correct
to evaluate κ the same way. However, as pointed out in section 4.4.5, since EM
is about iterative refinement, it is possible that it is a usable approximation.
For future work, it would be interesting to analyze this specific issue in greater
detail and possibly try to determine a new and more accurate approximation
for κ in the M–step given the modified distribution. Another possible course of
future work might be to try to extend the method such that the amount of von
Mises–Fisher distributions used in the mixture is automatically chosen by the
algorithm as opposed to being user–defined. Such features are already available
in existing standard EM algorithms.
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