
I3D 2005 Posters Session

Steep Parallax Mapping

 Morgan McGuire* Max McGuire
 Brown University Iron Lore Entertainment

Abstract. We propose a new bump mapping scheme that
can produce parallax, self-occlusion, and self-shadowing for
arbitrary bump maps yet is efficient enough for games when
implemented in a pixel shader and uses existing data formats.

Related Work

Let E and L be unit vectors from the eye and light in a local
tangent space. At a pixel, let 2-vector s be the texture
coordinate (i.e. where the eye ray hits the true, flat surface)
and t be the coordinate of the texel where the ray would have
hit the surface if it were actually displaced by the bump map.
Shading is computed by Phong illumination, using the
normal to the scalar bump map surface B at t and the color of
the texture map at t. It is common practice to pack a
combined map NB with heights in α and normals in rgb.

Blinn’s original Bump (a.k.a. Normal) Mapping uses the
approximation t = s, which produces no parallax. Parallax
Mapping is the state of the art for 2D bump maps. It adds
self-occlusion through the observation: t ≈ s + B[s](Ex, Ey),
for low-frequency bump maps. For high-frequency maps
containing steep bumps, this breaks down.

There exist several real-time approaches (e.g., [1]) that ray-
trace 3D voxel maps and accurately render steep bumps. The
advantage of our technique is that we use only 2D bump
maps, which are faster and are already supported by art tools.
Because 2D maps require less memory, we can afford high
enough resolution to represent fine details like fur. However,
we are limited to heightfield surfaces.

The Shell method of fur rendering [2] wraps an object in a
series of concentric shells textured with 2D slices of a voxel
map. When the slices are identical, this also takes advantage
of high resolution and fast operations for 2D textures.
However, shells can be slow because their high depth
complexity consumes fill rate and the alpha blending is
limited by frame buffer bandwidth.

Steep Parallax Mapping

Our Steep Mapping algorithm combines the strengths of
previous methods. We simplify Donnelly’s method [1] to use a
traditional bump map as input and optimize performance. For
developers already using Parallax Mapping, this is a drop-in
replacement that changes the offset computation but leaves
the art pipeline, existing art assets, and other code unchanged.

In tangent space, the intersections between the eye ray and
n discrete depth planes of the bump map are easy to compute;
they occur at ti = s + (Ex, Ey) i / (n Ez) for integer 0 ≤ i < n.

We choose t to be the first ti for which NB[ti]α > 1.0 – i / n
and then shade as with other bump mapping methods:

float step = 1.0 / n
vec2 dt = E.xy * bumpScale / (n * E.z)

float height = 1.0;
vec2 t = texCoord.xy;
vec4 nb = texture2DLod(NB, t, LOD);

while (nb.a < height) {
 height -= step; t += dt;
 nb = texture2DLod(NB, t, LOD);
}
// ... Shade using N = nb.rgb

Here, LOD is the MIP-map level; holding it constant during the
ray trace reduces the cost of the texture reads.

Self-Shadowing

Because we have a small ray tracer inside the pixel shader,
we can just as easily trace shadow rays as eye rays. The
shadow loop is the same as the above listing except we
increase height each iteration and increment t along the light
vector, by ∆t = –Lxy * bumpScale / (n Lz).

Fur and Grass

Our method can render short, straight fur and grass (Fig. 3),
faster but with comparable quality to the Shell method.

Three factors allow high performance. Because the bump
map is dense with tall structures, the marching loop is likely
to terminate after few iterations, which can be optimized on
true hardware with true branches. Unlike Shells, we have
zero overdraw and do not use alpha blending. Instead of
shadow rays, we use a trick from [2] to approximate self-
shadowing as simply increasing with depth.

References

[1] Donnelly, Per-Pixel Displacement Mapping with Distance
Functions, to appear in GPU Gems 2, 2005

[2] Lengyel, Praun, Finkelstein, and Hoppe. Realtime
fur over arbitrary surfaces. in I3D 2001.

Fig. 1 A single polygon with a high-frequency bump map.

Fig. 3 a) Fur by our method b) Close up of one polygon

Bump
Surface

True
Surface I

E E

I x

 Parallax Mapping Steep Parallax Mapping

Fig. 2 The viewer perceives an intersection at (P) from
shading, although the true intersection occurred at (I).

P

I

E E

I
P

N

P
P

Bump Mapping Parallax Mapping Steep Parallax Mapping

* morgan@cs.brown.edu

