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Abstract. Up until recently, the use of reinforcement learning (RL) in
chess programming has been problematic and failed to yield the expected
results. The breakthrough was finally achieved through Gerald’s Tesauros
work on backgammon, which resulted in a program that could beat the
world champion of backgammon in the majority of the matches they
played. Our chess engine proved that reinforcement learning in combina-
tion with the classification of board state leads to a notable improvement,
when compared with other engines that only use reinforcement learning,
such as KnightCap. We extended KnightCap’s learning algorithm by us-
ing a bigger and more complete board state database, and adjusting and
optimizing the coefficients for each position class individually. A clear
enhancement of our engine’s learning and playing skills is reached after
only a few trained games.

1 Introduction

The complexity of chess makes it impossible for computers to explore every pos-
sible move throughout the whole space of possible variants and pick the best one.
Most chess engines therefore focus on a brute force strategy to search in the space
of the next possible moves up to a certain depth only. Many pruning-processes are
used, as well as linear position evaluation which incorporates knowledge based
approaches in order to evaluate a special position. However, the main problem
still lies in the correct tuning of the coefficients used in these functions. The
method presented in this paper optimizes the evaluation functions and its coeffi-
cients by automating the use of temporal differences [2,3] and thereby increasing
it’s own understanding of chess after each game.

1.1 Related Work

Temporal difference was first tested in the program SAL by Michael Gherrity [5].
The structure of SAL allows the realisation of a move generation for different
games and the determination of the best next move using a search-tree based al-
gorithm. SAL learns good and bad moves from the played games. The evaluation



of individual moves is performed using an artificial neuronal network. TD was
used for the optimization of the networks parameters by comparing the evalua-
tion values for the root nodes of the search tree. In a test against the prominent
chess program GNUChess [18], where SAL was using 1031 position evaluation
factors, 8 remis could be achieved in 4200 games (while the rest was lost).

The chess program NeuroChess, developed by Sebastian Thrun, also uses a
neuronal network as position evaluation and a TD-method based on the root
nodes to modify the coefficients. In contrast to SAL, NeuroChess only learns
from itself. Games from a grand master database have mostly been used as en-
try points of the learning process (90%), while only 10% of the training games
where played from the initial positioning. Later experiments with other pro-
grams showed that a learning strategy based on playing against oneself, does
not yield satisfying results. In an experiment against GNUChess, where both
programs where calculating a move depth of 2 and using the same evaluation,
316 out of 2400 games could be won by NeuroChess and the learned coefficients.
Thrun, the main developer of NeuroChess admitted two fundamental problems
of his approach: the large training time and the incompleteness of the evaluation
coefficients. Thrun concludes that it is unclear whether TD-based solutions will
ever find usage in chess programming.

Tesauro describes a better application of TD for the adjustment of the evalua-
tion coefficients [8]. By using the open source chess program SCP he demonstrate
that TD with a search depth of 1 will never yield good results. SCP works with
an alpha-beta-algorithm with fixed search depth and the evaluation of 165 fac-
tors. The clear separation of the search and the evaluation procedure in SCP
allows a stronger focus on the learning of evaluation factors by keeping a fixed
search solution. A version of this algorithm has also been used at Deep Blue [12]
to improve the king security in the game (1).

Tridgell implemented the chess program KnightCap [9,10], which has a paral-
lel nature. The main idea was not to work on the root nodes, but rather applying
the learning procedure on the best forced move-path of the search-tree. Small
changes had to be made, e.g. storing all evaluation factors in a vector. Even the
first experiment was a major success: in only three days and 308 games played on
the Internet Chess Server(ICC) the rating of KnightCap increased from 1650 to
2150. The usage of ToPiecesBoard as an internal board representation allows an
evaluation that can quickly identify complex patterns. The move selection algo-
rithm MTD(f) [11] was chosen. A naive classification of the game situation into
four different categories was made by the evaluation function: opening, midgame,
endgame and mate positions. For each position class 1468 different evaluation
factors were defined, so that KnightCap could evaluate a total of 5872 different
coefficients. The version using a opening book reaches an ELO rating around
2400 − 2500 and beats international masters (2400 − 2600 ELO points) on a
regular basis.



Fig. 1. Deep Blue versus Garry Kasparov, game 2 in 1997. At this position Deep Blue,
using the normal coefficients, would have played the typical computer move Qb6 in
order to win a pawn. Kasparov and the viewers were quit surprised by Deep Blues
move Be4. This positionally strong move almost chokes every counter play and makes
the threatening move Qb6 now even stronger. Kasparov eventually lost this game.

2 Reinforcement Learning and Temporal Difference

In this section we introduce a reinforcement learning method known as Tempo-
ral Difference (TD) and the learning algorithm TD(λ). This methodology was
first introduced by Samuel in 1959 [13], but our discussion adopts notation and
concepts first introduced by Sutton in 1988 [14]. Even though we explain the
learning algorithm in the context of chess, it can easily be regarded as a general
discussion about the methodology.

Let us denote with S the set of all possible states (chess positions) and with
xt ∈ S the state at time t. The index t also means that xt was obtained after t
played “actions”. For simplicity, we also assume that each game has a fix length
of N moves. Each state xt defines a set Axtof possible actions (legal moves). An
agent selects one action a ∈ Axt that produces a new state xt+1 from xt to xt+1

with probability p(xt, xt+1, a). The next state xt+1denotes the position when
both own and opponent moves have been performed. Hence only these positions
will be examined, at which the agent can perform an action.

The agent will receive after each finished game a reward for the final move
r(xN ), which in chess takes the values 0 for remis, 1 for victory and -1 for a
defeat. The expected value of the reward with an ideal evaluation function J∗(x)
is J∗ := ExN |xr(xN ). The main goal of the learning process is to approximate the
unknown and (probably non-linear) evaluation function with a linear function
J ′ : S × Rk → R:

J ′(x, ω) =

k∑
i=1

ωiJi(x),



where ω = (ω1, ..., ωk)T is the parameter vector. This assumption reduces the
problem to find ω the for the corresponding J ′(·, ω) that best approximates the
function J∗(·).

The learning algorithm TD(λ) consist of an iterative update of the coefficients
ω. Each iteration consist of playing a complete game with a fixed parameter ω
to obtain a state sequence x1, . . . , xN . Thus, the TD(λ)-algorithm computes the
temporal difference dt between the evaluations of consecutive positions xt and
xt+1 in the game:

dt := J ′(xt+1, ω)− J ′(xt, ω)

Since the function J ′(xN , ω) for the last state xN can be set to r(xN ), we
can compute the temporal difference for the predecessor state using dN−1 =
r(xN ) − J ′(xN−1, ω). It is expected for any ideal evaluation function that if
the evaluation of the state xt at any time t is positive, then the outcome of the
complete game will also be positive (that is, a victory). If the temporal difference
is positive, then the actions of the agent improved. Since the player and the
opponent played during the transition from xt to xt+1, it is possible that the
opponent made an error. Therefore positive temporal differences are not taken
into account, because they can degrade the approximation. Playing errors of
opponent are not forced and should not be learned. If the temporal difference
was negative, then the state xt was not correctly evaluated. This evaluation needs
to be degraded, since the chosen move turned out to be worse than expected.
We therefore search the smallest change to the set of parameters holding the
biggest effect towards this goal. The direction of the correction is obtained by
computing the gradient ∇J ′(·, ω). The strength of the correction ∆t is defined
as:

∆t :=
N−1∑
j=t

λj−tdj

The update of ω is performed is

ω := ω + α
∑N−1

t=1 ∇J ′(xt, ω)
[∑N−1

j=t λj−tdj

]
.

The value ∆t is the weighted sum of the differences in the rest of the game.
A value ∆t > 0 means that the position xt was probably undervalued. Therefore
a positive multiplier of the gradient is added to the vector ω, which will result
in a better evaluation with the updated parameters. If ∆t < 0 holds, then the
position xtwas overestimated and therefore w will be updated with a negative
multiplier of the gradient. The positive parameter α is the learning rate and will
slowly converge stepwise after each learned game to 0. The parameter λ controls
the contribution of the temporal difference from a position xtuntil the end of a
game. With λ = 0 no succeeding positions will be taken into account, and with
λ = 1the complete state sequence influences the learning update. It has been
shown that λ = 0.7 gives the most satisfying results [10].



In 1995 Tesauro published an article on the use of TD in his backgammon
program. His solution trained the coefficients of the very complex evaluation
function with the TD(λ)-algorithm. The performance of the program was aston-
ishing. In its first appearance at the backgammon world championship in 1992 a
version participated that had been trained with 800.000 games. From a total of
38 tournaments encounters, only seven were lost. The succeeding version which
had been trained with 1.5 million games, lost only one of 40 games against one
of the world strongest players, Bill Robertie.

2.1 Combining the Min-Max-Algorithm with Temporal Differences

Even though some learning approaches have successfully been applied to backgam-
mon, they can not be applied to chess directly. There are fundamental differences
between the two games. For example, small changes in the position of a backgam-
mon game will result in only small changes of position evaluation. This represents
a big difference in chess, where the main focus of the search lies in the chosen
future tactic. More computational effort should therefore be spent in order to
quickly analyze the search tree and make a prediction about the probable course
of the game. Thus, a fast evaluation of the position is required, which makes the
application of neuronal networks inadvisable.

A neuronal network seems suitable to correctly classify and cluster a current
position into position types. Unfortunately, a small change in the position can
result in a strong difference of the evaluation. This becomes obvious in chess
programming, where two position differing in only one figures location, may need
to be evaluated totally different. Hence a combination of forward computation
in a search tree and the usage of a temporal difference algorithm TD(λ) seems
to be logical solution.

The strategy used in the backgammon engine consists on the selection of the
action a out of a position x, which minimizes the chances of the opponent to
increase its evaluation:

a(x) := arg min
a∈Ax

J ′(x′a, ω),

where xa denotes the position reached after the action α has been performed
on x. Since the approach only to look forward a single move is not yet satisfying
in chess, some modifications had to be made, in order to use a search procedure
taking into note all future possible game situation until a specific depth. It seems
reasonable that modified algorithm TD-Leaf(λ) will work on the best forced leaf
nodes of the search tree rather then just working on the root node like TD(λ).

Let J ′d(x, ω) denote the evaluation value of the position x, when forward
looking d steps starting at x. The modified temporal algorithm is now using a
new temporal difference definition:

dt := J ′d(xt+1, ω)− J ′d(xt, ω)

and a new the update step for ω



ω := ω + α
∑N−1

t=1 ∇J ′d(xt, ω)
[∑N−1

j=t λj−tdj

]
In an experiment made by KnightCap, all evaluation coefficients but the

material values (pawn 1, bishop and knight 4, rook 6, queen 12) were set to 0.
Playing on the Internet chess server FICS the initial elo rating of 1650 of the
program was computed in 25 non learning played games using this coefficient
vector. In the fallowing three days and 308 played games with the usage of TD
the rating could be raised to 2150.

3 State Classification

During a typical opening phase the figures bishops and knights should advance,
the king castle, and the pawns assume control of the center. The midgame is
most difficult to learn, since it can contain many different advantageous pat-
terns such as the opening of lines, defense of open line with rooks, and attack
possibilities on the opponent king. In other words, many typical constellations
and short term goals are possible. In the endgame the king becomes a more
important and active figure. It holds the opponent away from his own pawns,
which are crucial due to their ability to transform into higher figures by reaching
the endline. Most beginners are thought to correctly differentiate between these
three position types, in order to avoid bringing the queen or king too early into
the game. With further experience and game practice one quickly learns further
criteria to distinguish between more position types in order to improve one’s
game evaluation. For example, opposing castle direction (large castle vs small
castle) are most often followed by a tactical attack, which should result in a dif-
ferent evaluation of the position. Closed positions require a more strategical and
long termed based plan. In chess programming these observations are often not
taken into account. Chess-specific knowledge is not reflected enough in the im-
plementation of a evaluation function. A main goal of the FUSc# development
was to include the Plan im Schach (the chess plan) and give the chess engine the
ability to search for its decision according to the current position type. Smaller,
short termed plans exist, such as the exchange of a strong opponent bishop,
the control of key fields, strong figure patterns and long termed plans such as a
coordinated attack on the king side wind.

3.1 Chess Programming: Opening, Middle Game and End Game

Only a few open-source chess programs can be found that differ between position
types beyond opening, mid, and end-game. A popular approach is to stress the
importance of king security in the opening phase and evaluate it highly, while
assigning a poor evaluation to the use of the center fields as target fields. This
is done in order to prevent the king from going forward and instead bring him
to safety on one side to allow the mid-game to start . In the endgame however,
the king is a key figure which should be brought to the center fields. The same



applies to the other figures. In the beginning development is important, and in
the mid-game the control of the center and attacks on the opponent king.

In contrast, a method using TD-Leaf(λ) to optimize coefficients, succeeded
in maintaining each position type represented in one game. On the other hand,
shortcomings include the fact that on average the mid-game is over-represented,
which results in very well learned mid-game coefficients, but others, like the
endgame coefficients get left out.

The planed future approach of FUSc# is to use a grandmaster database to
classify position types with the use of few important position properties, and
evaluate these position types with their own coefficients. It is not possible to
use TD-Leaf(λ)to achieve this, since some position types occur more often than
others. This would mean, that for example, after 1000 games the position type
x was optimized 400 times, but the position type y only 5 times.

3.2 Classification Types of the Chess Engine FUSc#

FUSc# extends the basis set of position classes with the 32 combinations of these
boolean rules: both queens on the board (yes/no), kings position (left, middle,
right). Additionally a position vector for the endgame is added, which applies
when no more queen is on the board and the sum of bishops, knights, and rooks
is smaller then six or this sum is smaller then 3, when queens are still on the
board.

Only a few basic operations are required to decide which evaluation vec-
tor is chosen for its detected position type. For each of the 33 position types
a respective vector containing 1706 coefficients is stored, to a total of 56298
adaptable position criteria. KnightCap used 4 different position classes through-
out the training phase which each had1468 position criteria, differentiating 5872
coefficients.

4 TD-Leaf with Complex Evaluation

When using a very complex evaluation function, based on the differentiation of
various position classes and therefore differentiating the evaluation coefficients
of each class, a global learning rate α for the TD learning method would falsify
the learning process. This is due to the fact, that the distribution of the position
classes may not be normal and hence some classes will learn stronger than others,
depending on their detection frequency in the best move search routine. Like
many other chess programs, KnightCap only used three different position classes,
so that the learning difference between these classes grew negligibly small, since
most trained games had positions in each position class. The chess engine FUSc#
deals with a wider set of position classes, so that it is likely to happen, that
some classes will be detected significantly less often then others. A local learning
rate solves this problem: for each position coefficient vector s1, s2, ..., ska local
learning rate α1, α2, ... αk is defined, that is individually adjusted depending on
its detection accuracy.



(a) (b)

Fig. 2. Distribution of the position classes. (a) The learning rate of the 33 position types
after 7 played games. Initially the learning rate was set to 1.0. After each learning step
the rate was decreased for each detected position type. The classes 23 and 24 have
detected most often. (b) The distribution of the 33 position types detected in the 72
learned games. Position class 23 represents the opening phase.

The update function for the coefficient vector ω, containing all 56298 val-
ues of all partial position vectors ω1, ω2, ..., ω33 has to be adapted, so that the
α1, α2, ..., α33 local learning rates are assigned to the position vectors:

ωk := ωk + αk

∑N−1
t=1 ∇J ′d(xt, ωk)

[∑N−1
j=t λj−tdj

]
,

where k = 1, 2, ..., 33 denotes the position class to the employed position xt.
The difference to TD-Lear(λ)-algorithm used by KnightCap therefore lies in

the usage of the data gained during a game and by the independent optimization
of each position class detected in a trained game. Further improvements can be
achieved by using information gathered during a game, for example the main
variant and its computed position class values, and to use them in the learning
process.

5 Conclusion and Experimental Results

To determine FUSc#’s performance, it was tested on human players in 50 games
with different time settings (1 − 5 minutes time consideration). The evaluation
on the chess server resulted in a strength around 1800 ± 50. A manually created
vector was assigned to each position type. FUSc# thus did not. The initial
values for the learning rates α1, α2, ..., α33 were 1.0 and λ set to 0.7. After a few
games a small increase in performance was observable, since FUSc# was making
first adaptions to the evaluation of the figure position and their effects on the
game. One problem was that some position classes were not detected at all and
therefore could not be learned, while others were found and learned regularly.
The distribution of the 33 position classes after 7 played games is shown in Fig. 2.

At the end of the experiment FUSc# had played 119 games and increased
its performance from 1800 to 2016 (see 3). The position classes 23 and 24 were
found most often. The position type 23 represents an opening position, with both
kings on their ground lines. Position type 24 is detected when the black player



Fig. 3. Evaluation in the chess server after 119 games.

has made a short castle, 28 means that both players have made a short castle.
From the 119 played games 72 have been used to adapt the coefficients and learn
from the outcome of the game. The distribution of all detected position types is
shown in Fig. 2b.

Improved performance was notably after playing only few games. It is crucial
that all position types receive enough information for a correct adjustment of
the coefficients. We estimate that FUSc# requires more then 50000 training
games to correctly adapt all 56000 of the 33 position types and correctly learn
them. This has not been verified yet. Looking at the results, it is clear that the
optimization of the manually set values (all class types were set to the same
initial values) increased the game quality remarkable. After 72 trained games
the elo rating raised up to more then 2000. A main factor here was the king’s
security, which was correctly learned by FUSc#, activating the king in some of
the position types and bringing him to the center of the board.

The successful usage of TD-Leaf(λ) in the chess engine KnighCap could be
confirmed with FUSc#. Since the evaluation function of FUSc# takes into ac-
count many more position types, it needs a much greater sum of games to train
with in order to achieve results comparable to KnightCap. Not even human
players can become grand masters over night. It remains difficult to compare
the learning progress of both programs, since KnightCap calculates its moves
deeper then FUSc# and therefore has more success in finding tactical moves.
Often, FUSc# appeared to be in a superior position and could have developed
its strategy pretty good, but oversaw tactical implications and for this reason
lost the respective games. To extend the automatization of the learning process
the UCI-protocol needs to be changed. The chess engine should e.g. be informed
about the outcome of a game and be allowed to perform a thinking phase, where
learning parameters can be updated and allowing for learning to take place.
Tests on the chess servers showed that the choice of the 33 different position
types was a little unfortunate. e.g no differentiation was made whether both or
just one queen was on the board or not. FUSc# classification does not take this
information into account. Also some of the classifications occurred seldom or not



at all. The opening phase needs some rethinking. At the moment only one vector
is used to train it, but it seams that more diversified features are needed.
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