

Natural Language
Identification for OCR

Applications
Bachelor thesis

Freie Universität Berlin, Department of Mathematics and Computer Science

June, 8th 2010

Author Do, Hoang Viet

1st Advisor Prof. Dr. Raúl Rojas

2nd Advisor Dr. Marco Block-Berlitz

Table of Contents

INTRODUCTION 1

I THEORETICAL BASICS 2
1 BASIC IDEA OF LANGUAGE IDENTIFICATION 2

1.1 BASIC TERMS 2

1.2 STATE OF THE ART 3

2 LANGUAGE IDENTIFICATION APPROACHES 3

2.1 USING WORDS AS FEATURE TYPE 3

2.2 USING N-GRAMS AS FEATURE TYPE 4

3 N-GRAM BASED APPROACHES 5

3.1 AD HOC RANKING 5

3.1.1 Test Result 6

3.2 VECTOR SPACE MODEL 7

3.2.1 Test Result 7

3.3 BAYESIAN DECISION RULES AND MARKOV MODEL 8

3.3.1 Markov Model 8

3.3.2 Bayes Decision Rules 9

3.3.3 Test Result 11

4 LANGUAGE IDENTIFICATION FOR OCR APPLICATIONS 11

4.1 THE BASIC IDEA 11

4.2 ALPHABETIC CHARACTERS 12

4.3 NUMBERS 12

4.4 WHITESPACES 13

4.5 SPECIAL CHARACTERS 13

II DEVELOPING MILID 14
5 SETTINGS 14

5.1 REQUIREMENTS ELICITATION 14

5.2 TOOLS AND API 14

5.3 RESTRICTIONS 14

5.4 ISO 639-3 14

6 THE COMMON INTERFACE CCLASSIFIER 15

6.1 TRAIN 15

6.2 SAVECLASSIFIER 15

6.3 LOADCLASSIFIER 16

6.4 CLASSIFYMODEL 16

6.5 GETRESULTMAP 16

7 INHERITED CLASSES 16

7.1 CNGPROFCLASSIFIER 16

7.1.1 Constructor 16

7.1.2 The index file 17

7.1.3 The model file 17

7.2 CVECTSPCLASSIFIER 18

7.2.1 Constructor 18

7.2.2 The index file 18

7.2.3 The model file 18

7.3 CMARKOVCLASSIFIER 18

7.3.1 Constructor 19

7.3.2 The index file 19

7.3.3 The model file 19

III EVALUATION 20
8 COMPARE THE 3 APPROACHES 21

8.1 RELATED WORK 22

9 COMPARE TOKANDCOUNT WITH NOSPACE 22

10 IDENTIFY NOISE TAINTED SAMPLES 23

11 COMPARE COMPUTING TIME 24

IV CONCLUSION / FUTURE WORK 26

BIBLIOGRAPHY 27

1

Introduction
The writing system is one of the oldest and most used methods to exchange information. It is

unfortunate when one is excluded due to visually handicaps. To compensate such disadvantages, the FU

Berlin has started the project “Mikrooptik”1. An intelligent reading-glass, containing an active camera,

captures documents in range and reads them using a synthesizer. To ensure a correct pronunciation of

each language, the application must identify the document’s natural language.

The present thesis evaluates the currently available approaches of natural language identification and

introduces a new feature extraction method “NoSpace” to enhance the precision when dealing with

OCR applications. In the evaluation, NoSpace could increase the precision by around 10% to 15%

depending on the approach. All approaches are implemented and evaluated using MiLiD [Minimal

Language Identification (System)], a new framework for language identification.

Starting with a general introduction of language identification including its states of the art, the first part

discusses the 3 most important approaches and the new feature extraction method for OCR applications

“NoSpace”. The second part depicts the implementation of MiLiD and its essential components and

classes. The approaches are evaluated in the last part. In contrast to previous works, all approaches use

the same feature extraction methods in order to ensure a more comparable result.

1 http://www.inf.fu-berlin.de/groups/ag-ki/Drittmittelprojekte/Mikrooptik.html accessed on May, 1st 2010

http://www.inf.fu-berlin.de/groups/ag-ki/Drittmittelprojekte/Mikrooptik.html

2

I Theoretical Basics
The first part consists of three chapters.

In the first chapter, the basic terms used in the matter of language identification, the basic idea and the

state of the art are described. In the second chapter, the available feature types are introduced and

compared. In chapter 3, the approaches are discussed and in chapter 4, the new counting method is

described.

1 Basic idea of language identification
In this chapter, basic terms used in the matter of language identification and the basic idea of language

identification are described as well as the state of the art.

1.1 Basic Terms

In the present thesis, the term language identification (abbr. LID) describes the (automatic) process of

determining the natural language of written texts2. It can be subdivided into the training phase and the

classification phase.

In the training phase, the system extracts language features from the given training corpus to generate

language. A corpus is a (large) collection of electronically stored written texts. Since the languages are

given, this training phase can be classified as supervised learning in the matter of machine learning.

In the classification phase, the system classifies the language of the given document:

1. A model is generated for the given document.

2. Afterwards, the similarity between the document’s model and each language models is

computed.

3. The language model, which is most likely, is chosen as the language used in the document.

Ultimately, the LID problem is a classification problem with the languages as the classes and the

unknown document’s language as the query. The questions are “which feature types and similarity

measure is most suitable”?

Figure 1 illustrates the general architecture of a language classifier.

2 In case of spoken text, the process is called speech recognition.

3

1.2 State of the art

Different approaches have achieved a precision of 100% using sufficient data, c.f. (Grothe, et al. 2008,

984, Artemenko and Shramko 2005, 119 ff., Prager 1999, 5). For example, Prager has reported, that his

system “Linguini” requires 500 bytes to identify 13 languages3 with a precision of 100%, cf. (Prager

1999). Using 200 bytes, the precision is still about 99%! Dunning reported a precision of about 92% using

his approach to identify test strings of 20 bytes. But his classifier only recognized English and Spain

(Dunning 1994, 16). As Padró has proven, the precision depends on i. a., the number of language, the

similarity of the languages, cf. (Padró Cirera and Padró Cirera 2004, 4 ff.). Therefore 500 bytes is a

parameter depended value. E.g. by decreasing the number of languages, the data required might

decrease.

Silvia et al. proposed an approach for identifying language variant, cf. (Ferreira da Silva und Pereira

Lopes 2006). The team reported that several lines of a document are required to achieve sufficient

precision.

2 Language identification approaches
As mentioned in the previous chapter, the LID problem is a classification problem. In this chapter, the

available feature types are discussed.

2.1 Using words as feature type

A system, using words as feature type, is looking for frequent words and short words such as

conjunctions in the training process. In the classification process, the system is looking for these words

in the document. The language model, causing the most hits, is chosen.

3 Catalan, Danish, Dutch, English, Finnish, French, German, Icelandic, Italian, Norwegian, Portuguese, Spanish, and
Swedish

Figure 1: General architecture of a language identifier; cf. (Padró Cirera and Padró Cirera 2004, 2).

4

In the present thesis, word based approaches won’t be discussed in more details. Since it has been

proven by previous works, that word based approaches are not suitable for very short texts since the

amount of information available is lower in comparison to N-gram based approaches (Artemenko and

Shramko 2005, 22 - 26).

In addition, the precision of word based approaches is greatly reduced when processing languages with

high morphology such as German since .

Furthermore, it is highly sensitive to spelling errors. These errors occur in optical character recognition

systems such as the Mikrooptik Project.

Interested readers are referred to Artemenko’ & Shramko’ master thesis (Artemenko and Shramko

2005, 16 - 21).

2.2 Using N-grams as feature type

An N-gram is a contiguous sequence of characters of the length N (Cavnar and Trenkle 1994, 2). 1-grams

are called uni-gram, 2-grams are called bi-grams, 3-grams are called tri-grams, and so on (quad, pent,

hex, and so on). E.g. the word “text” contains the following N-grams:

1. Uni-grams:

2. Bi-grams:

3. Tri-grams:

4. Quad-grams:

Using high N-grams leads to higher more memory since there are more different letter combinations.

E.g. in German there is around 26 different 1-Grams, whereas the amount of 4-grams is hardly

countable).

In some approaches, the query document is tokenized and the beginning and the ending of each word is

marked with a special character such as the underscore. In addition, this character is used to expand the

N-grams to match a certain length (Cavnar and Trenkle 1994, 2-3, Ferreira da Silva und Pereira Lopes

2006, 2). E.g. the word “text”:

1. Uni-grams:

2. Bi-grams:

3. Tri-grams:

4. Quad-grams:

In general, a blank-padded string of length k has -bi-grams, tri-grams, and so on (Cavnar and

Trenkle 1994, 3).

Performing a tokenization, more language information can be gathered. On the other hand, this makes

the particular approaches unsuitable for languages, that are hardly tokenized such East Asian languages

such as Chinese and Japanese.

5

3 N-gram based approaches
In this chapter, 3 N-gram based approaches are discussed:

1. Ad-hoc Ranking (Cavnar and Trenkle 1994)

2. Vector Space Model (Damashek 1995, Prager 1999)

3. Bayes Decision Rules and Markov Chain (Dunning 1994)

In general, other approaches are mainly enhancement, combination or customization of these 3

approaches.

3.1 Ad hoc Ranking

In this approach, the language models and document models are ordered lists of N-grams (N=1, 2, 3, 4,

5). The N-grams are sorted by their absolute frequencies within the language (training-corpus). The list

sizes are limited to 300. This value has been chosen based on their observations. Cavnar and Trenkle

recommend the customizing of this value as it fits the application. The very highest ranking N-grams are

mostly uni-grams and simply reflect the distribution of the alphabet. Whereas starting around 300, N-

grams are specific to the subject. The lists are named profiles. The language profiles are named category

profiles. (Cavnar and Trenkle 1994, 4,5).

As discussed in chapter 2.2 Using words as feature type on page 4. Cavnar and Trenkle have performed a

tokenization step and added an underscore as a marking character for the beginning and ending of each

word.

Language profiles are computed in the training phase. In the classification phase, the document profile is

computed and the distances

between the document model

and each language model are

computed based on the rank of

each N-gram of the two profile.

Figure 2 illustrates the calculation.

For each N-gram, the “out-of-

place”-value is calculated. This is

the absolute difference in rank of

an N-gram in the document

profile and its counterpart in the

language profile. Ultimately, N-

grams, having the same rank in

the document profile and

language profile, have the out of

place value 0.

The “total distance” is the sum of all out-of-place values. If an N-gram of the document profile cannot be

found in the language profile, a certain “max-value” is added to the total distance. This max-value is not

Figure 2 Calculating the Out-Of-Place measure between two profiles (Cavnar and
Trenkle 1994, 6)

6

Table 1 Ratio of Incorrect Classifications to Total Possible Classifications (Cavnar
and Trenkle 1994, 9)

specified in the paper. Grothe et al. have used a dynamic max-value, which results in a higher precision

in comparison the precision obtained with a static chosen max-value (Grothe, et al. 2008, 984). In the

end, the language profile, causing the smallest total distance, is chosen.

The present system MiLiD supports dynamic max-value. Depending on the parameters the language

profile size or document profile size is scaled and used as the max-value. The best precision could be

achieved with a max-value equal to twice the size of the language profile size.

3.1.1 Test Result

Cavnar & Trenkle have tested their classifier on 3713 language samples collected from 14 -

newsgroups. All samples were encoded using standard ASCII, with few typographical conventions to

handle such things as diacritical markings. 7 Languages were used: French (France), Italian (Italy),

Spanish (Latin-American, Mexico and Spain), Dutch (Netherlands), Polish (Poland), Portuguese (Brazil

and Portugal), and English (Australia, Britain, Canada, and Celtic). Inappropriate samples, e.g. mixed

languages, were removed. The resulting test set consisted of 3478 usable articles. (Cavnar and Trenkle

1994, 6 - 7)

The samples were subdivided into 2 groups “ ” and “ ” and classified using 4 different profile

length including 100, 200, 300 and 400. (Cavnar and Trenkle 1994, 7 - 9)

The result is shown in Table 1.

The profile length seems to

improve the precisions slightly.

E.g. Span, Italy

The advantage of this approach

is the very low consumption of

memory. Let n be the profile

length. Since we can only save n

N-grams, the maximal memory

consumption is

Since n is independent of the

training size, we actually

have ().

 A disadvantage of this approach

lays in the use of a tokenization

step. Languages such as Chinese, Japanese, and so are hardly tokenized.

7

3.2 Vector Space Model

In this approach, language models and document models are vectors of a multi-dimension space. The

similarity is measured through the cosine distance of the document vectors and the language vectors.

Given the language model and the document model , the cosine distance is defined as

 ⃗ ⃗

| ⃗| | ⃗|

∑()

√(∑)
 (∑)

 []

The language model, causing the smallest cosine value, indicates the used language, cf. (Prager 1999, 6).

Prager has used the absolute frequency of the features weight by the inverse document frequency idf, a

term well known from the field of document retrieval. Given as the number of documents, in which

the N-gram i occurs despite its frequency in this document, the idf is defined as

Prager has tested more aggressive and less aggressive weighting and reported the present weighting as

the best performing, cf. (Prager 1999, 3).

Given as the absolute frequency of the N-gram in the training corpus, we can apply filtering using

an arbitrary k as follow

 will be excluded if the present condition is true. Prager has evaluated the parameter k in the range of 1

to 10 and reported values in range of 3 to 5 as best performing. (Prager 1999, 3)

3.2.1 Test Result

Prager has trained his classifier Linguini to identify 13 Western European languages using different

training size for each language, ranging from 19,759 to 99,743 bytes.

For the evaluation, a collection of about 100 Kbytes was gathered from the internet and inspected

manually for “any obvious inclusions” of foreign language text strings. The texts were split into chunks

respecting word-boundaries. This caused the chunk sizes to be at least 20, 50, 100, 200, 500 and 1000

then precisely 20, 50 and so on, cf. (Prager 1999, 3).

Prager has used stationary N-grams with N ranging between 2 and 5. In addition, he evaluated his

approach using short words, common words and a combination of N-grams, short words and common

words. In case a string required double-byte encoding, Linguini compared byte sequences instead of N-

grams (character sequences), c.f. (Prager 1999, 4 - 5).

8

The result is illustrated in Table 2. Using

combined feature type performed best.

Quad-grams performed best with text

less than 500 bytes when using N-grams

only.

For languages with different dialects,

multiple language vectors were

generated using the same language label.

This increased the performance. For

instance, Norwegian has two major

dialects (Bokmal and Nynork). Using merely one profile with an equal share of each dialect results in

lower precision since Danish is more likely to Bokmal than the 50-50 profile. Figure 3 illustrates the

situation

3.3 Bayesian Decision Rules and Markov Model

In this approach, the insights of the probability theory are applied to identify languages. Markov Chain is

used to model the language information and the Bayes Decision Rules are used to identify the

languages.

3.3.1 Markov Model

A Markov Model is a random process in which the probability distribution of the next state depends

solely on the current state. More formally, a Markov Model defines a random variable whose values are

sequences of states. The probability of a particular variable S is defined as

 () () ()∏ (|)

Figure 3 Illustration of the misclassification of document d when using one profile for the 2 major
dialects of Norwegian (Prager 1999, 7).

Table 2 Performance of Linguini depends on feature type and chunk
size. (Prager 1999, 5)

9

The probability of S is completely characterized by the initial state distribution () and the transition

probabilities (|). The initial state distribution () describes the probability of state . The

transition probabilities (|) describe the probabilities for the transition from the previous state

 to the current state . (Dunning 1994, 6)

Applied to the LID, S is a string defined as a character sequence (), where each character is a

state. The transition probabilities define the probabilities, that the next character of is . E.g. the

string “text” is defined as

 () () () (|) (|) (|)

Dunning has broadened the definition to capture more language features: bi-grams, tri-grams, etc. By

using the last k states as the label for the current state, the transition probabilities for the relabeled

model become

 (|) (|)

Thus the probability for a particular string S is

 () () () ∏ (|)

These models are known as Markov models of order k. Such model is completely described by the initial

state distributions () and the transition probabilities (|). Although low order

Markov model does not capture very much structure of a language in comparison to higher order

Markov model, it is not necessarily better in the purpose of language identification since the amount of

training data required to accurately estimate the parameters is roughly exponential in the order of the

model (Dunning 1994, 7).

3.3.2 Bayes Decision Rules

Given the task of deciding which of the given phenomena has caused a particular

observation , we can minimize our probability of error by computing which most likely to has caused

the observation. Applied to the purpose of language identification, the phenomena are the available

languages and the particular observation is the document.

Since we know, that the used language affects the observation, we can apply the Bayes’ Theorem (A is

used without lack in generality) (Dunning 1994, 8):

 (|) () (|) ()

The a priori probability () is set to 1 since it is the actual observation and it is constant for each

language

 (|) (|) ()

10

The a priori probability () is truly unknown. It describes the probability of the language A. Good

results can often be achieved by assuming that they are equal (Dunning 1994, 9). It is often set to

 () used in the training stage (Artemenko and Shramko 2005, 37).

Using the concept of Markov model, the probability of observing string S, given a particular Markov

model , is (Dunning 1994, 9)

 (|) (|) ∏ (| |)

 (|) describes the probability of the initial string of length k of the language A.

 (| |) describes the probabilities, that the characters are the next characters of the

substrings () of length k.

Dunning simplified this formula by grouping all likely terms

 (|) ∏ (| |)

 ()

 () quantifies the occurrences of the -grams in the string S. This product is calculated

for all -grams founded in the string S. (Dunning 1994, 9).

To avoid numerical underflow, the logarithm is used instead

 () ∑ () (| |)

The language model, which caused the largest result, is picked as the used languages (assuming equal a

priori probabilities!). (Dunning 1994, 9)

As described in the formula, the language models are matrices storing the transition probabilities while

the document model is a list storing the N-grams and its frequencies.

The transition probabilities can be estimated using the ratio of counts derived from the training. In case,

the training data of the language A is given as a string

 (| |)
 ()

 ()

 () describes the absolute frequency of the -grams counted from the training data.

 () describes the same for -grams. The ratio describes the transition probability. This

method is known as the maximum likelihood estimator (Dunning 1994, 10).

 -grams, which do not appear in the training data, will cause (|) in the classification

process and leads to misclassification. To avoid this problem, an approximation is used instead

11

 ̂
 ()

 ()
 | |

 is the size of the alphabet of the language A. This is called Laplace’s sample correction. In this thesis,

the derivation of this formula from above is skipped. Interested readers are referred to (Dunning 1994,

10 - 12).

3.3.3 Test Result

Dunning has collected a bilingual (English/Spanish) test corpus and training corpus. The training corpus

consists of 50 training texts: 10 training documents for each length of 1000, 2000, 5000, 10.000 and

50.000. The test corpus consists of 600 test texts: 100 test samples for each length of 10, 20, 50, 100,

200 and 500 bytes. The test samples were examined manually. Any strings which were not “clearly”

(Dunning 1994, 13) Spanish or English were replaced with “newly generated” (Dunning 1994, 13) strings.

In addition, Spanish samples containing English language were excluded and vice versa (Dunning 1994,

13 - 14).

In the evaluation, Markov models of order 0 to 4 have been used. The result is shown in Figure 4. An

accuracy of about 92% has been achieved

with test documents of only 20 bytes

using a classifier trained with 50K training

data. The precision were improved up to

about 99.9% when classifying test

documents of 500 bytes using model

order of 3 and 4. For shorter documents

or less training data bigrams (mode order

1) were most suitable. While with larger

documents only the unigrams (model

order 0) had relative high error rates

(Dunning 1994, 16).

Dunning also applied and evaluated his

approach for genetic sequences.

Interested readers are referred to

(Dunning 1994, 14 - 15).

4 Language Identification for OCR Applications
In the traditional LID, the system classifies documents with no (or at least minimal) errors such as

misspell. But these errors are common and in the matter of OCR they are quite frequent. To improve the

precision, the feature extraction method “NoSpace” is introduced in this chapter.

4.1 The basic idea

Assuming the system does not have the original document, it is hard to say whether a character is an

error, produced by the OCR or not. In addition, assuming the “best approaches” of OCR has been used, it

might be impossible for the system to say even if the original document is available.

Figure 4 Test result of a classifier trained with 50K bytes training data
(Dunning 1994, 29).

12

So, the data has to be taken as it is and the system musts decide whether how fault-prone and

important the particular information is. For high fault-prone information, the particular information shall

be dropped in a way that does not disturb other information.

The characters of a document can be classified in 4 categories:

1. Alphabetic characters including accents

2. Numbers. E.g. 1 2 3 4

3. Whitespace (including line break, tab and so on).

4. Special characters such as punctuation (all other characters). E.g.

Each category is discussed in the following chapters.

4.2 Alphabetic characters

The first character type “alphabetic characters including accents” is the main information source of the

document. It is essential and must remain unchanged even with errors.

4.3 Numbers

Numbers does not contain much information about a language. But just removing them is quite risky.

For example: l (lowercase of L) is recognized as 1 resulting in a word like “mies” (German, means bad)

instead of “mi1es”. The original word was “miles”. By removing the number an English word becomes a

German, which is actually more troublesome.

The present system removed all numbers in the training corpus. But during the classification, the

numbers are kept. In this way, information captured by the lower (valid) N-grams remains valid, whereas

the erroneous information provided by (higher) N-grams are dropped since they cannot be found in the

language model, some default value (e.g. max-value by N-Gram Profile of Cavnar & Trenkle) are used

instead. E.g. mi1es

 Valid Dropped information

Unigrams m,i,e,s 1
Bigrams mi, es i1, 1e
Trigrams mi1, 1es
Quadgrams mi1e, i1es
Pentagrams mi1es

6 N-grams remains valid and no invalid N-grams have been generated. If the number is just dropped, the

result will be:

 Valid Invalid

Unigrams m,i,e,s
Bigrams mi, es ie
Trigrams mie, ies
Quadgrams mies

6 N-grams remains valid but 4 invalid N-grams have been generated.

13

4.4 Whitespaces

Whitespaces are primary used to mark the word boundaries. Therefore they seem to be essential

information. On the other hand, the OCR algorithm can easily be confused by optical distortion and

produces a lot of false whitespaces. For example: “word” can be recognized as “ ” or “ ” or

something worst.

The present system removed whitespaces in the testing corpus. In this way, the additional whitespace

are removed but the word boundaries are destroyed. To solve this problem, the whitespaces in the

training corpus are removed as well, resulting the training and testing documents become a single

“word”. This information provided by whitespaces is dropped completely!

NoSpace does not perform tokenization since it drops all whitespaces. In contrast, it captures words

sequences as information. E.g. quadgrams of “HelloWorld”: Hell, ello, lloW, loWo, and so on.

4.5 Special characters

Special characters are neither part of the actual language nor part of any words. Therefore they can be

removed without any consequence.

14

II Developing MiLiD
In the second part, the core components and classes of “MiLiD” are discussed, as well as the tools and

API used and the restrictions and ISO applied.

5 Settings
In this chapter, the tools and API used and the restrictions and ISO applied are discussed.

5.1 Requirements Elicitation

As mentioned in the introduction, the present thesis is initiated by the Mikrooptik Project. It is an OCR-

Application on an embedded device (with limited resources). As the pre-processing of a real-time

application, the system has to optimize its memory consumption and CPU usages while still keeping a

high precision.

Additionally, the present system has to be fault-tolerate since OCR systems tend to generate spelling

errors.

5.2 Tools and API

Microsoft Visual Studio Team Systems 2008 has been used as the development environment on a PC

running Windows Seven. The code documentation has been automatically generated using Doxygen4

1.6.3. “Refactor! For C++“5 was used for Refactoring.

C++ has been supervised as the programming language based on the project’ programming language.

No additional API has been used for the actual language classifier except for _wfopen_s6. This function

provides the same functionality as fopen from the Standard C Library except for the Unicode support.

Its invocation is almost the same as fopen and can be replaced by a more STL compatible user-defined

function.

5.3 Restrictions

Althought it is possible to use multiple character encodings, the present system supports only Little

Endian. The BOM (byte order mark), which indicates the encoding Little Endian or Big Endian, is read. An

exception is thrown when Little Endian has not been used or the BOM is missing.

All training datas and testing datas are encoded in Little Endian. The system always processes characters

as of type wchar_t.

5.4 ISO 639-3

The present system uses a 3 character string to present language identifiers, along the lines of the ISO-

639-3 standard.

4 http://www.doxygen.org accessed on March, 13th 2010
5 http://www.devexpress.com/Products/Visual_Studio_Add-in/RefactorCPP/ accessed on March, 14th 2010
6 http://msdn.microsoft.com/en-us/library/z5hh6ee9.aspx accessed on March, 13th 2010

http://www.doxygen.org/
http://www.devexpress.com/Products/Visual_Studio_Add-in/RefactorCPP/
http://msdn.microsoft.com/en-us/library/z5hh6ee9.aspx

15

However, the language identifiers are not validated whether it is confirmed to the ISO-693-3. But all

language identifier will be trimmed to a 3 character string whenever necessary, e.g. saving and loading

the language model. This might lead to false-misclassification in the case of multiple language identifiers

having the same beginning.

6 The Common Interface CClassifier

All classes are defined in the namespace dph.

The classifiers of the system have the common interface CClassifier. The interface itself is a

template class with one abstract model data type T. It defines 4 abstract methods and 1 constant

method:

1. Train,

2. LoadClassifier,

3. SaveClassifier,

4. ClassifyModel, and

5. GetResultMap.

The 5 methods are briefly discussed in the next chapters.

6.1 Train

Train is specified as

virtual int Train(const std::map<std::wstring, std::set<std::wstring>>

&corpus, size_t limit =-1) =0;

The first parameter corpus is a standad STL map datatype. The language identifiers are assosiated with

the respective set of training files. The amount of characters used for training can be optionaly limited

by the second parameters.

If the training corpus contains any not-Little-Endian-documents, this method throws an exception. If a

document could not be opened, an exception is thrown as well.

6.2 SaveClassifier

To save the classifier including all languages models, the interface specifies

virtual void SaveClassifier (const std::wstring &path) =0;

The parameter path specifies the saving folder (not file!). A folder is required since multiple files are

used to save the classifier. If a non-existing folder is passed, an exception will be thrown instead of

creating a new folder since the STL provides no functionality for creating folders. No warnings or errors

will be created when existing files are overwritten. In addition, the naming schema is not changeable.

Therefore it is recommend to put each classifier in an empty folder.

16

A model file is created for each language model. In addition, an index file is created, which contains a list

of all model-files and all parameters of the classifier. This modular way of saving enables an easier way

of adding and removing additional language models.

The structure of the model-files and index-files are individual and discussed in the respective chapters.

6.3 LoadClassifier

To load the classifier including all languages models, the interface specifies

virtual void LoadClassifier (const std::wstring &path) =0;

Loading behaves almost similar to saving the classifier, discussed in the previous chapter.

6.4 ClassifyModel

For the classification process, the interfaces specifies

virtual std::wstring ClassifyModel(const T &model) =0;

A document model is expected as parameter. The language identifier of the model, which is mostly

similar to document models, is returned. In case, 2 models causing the same similiarity measures “???”

will be returned. But this is in general mostly unlikely unless the classifier has one languages model

twice.

All models of the present systems have a document model creating constructors. This enables calls such

as

obj.ClassifyModel(T(...));

6.5 GetResultMap

GetResultMap is a constant method, which returns a constant reference to a map object. The language

identifier is used as the key, where the respective similarity measures from the last ClassifyModel-

call used as the value. This enables a closer look at the last classification.

7 Inherited Classes
In this chapter, the implementation of the approaches will be discussed briefly. A full list of all class

member functions and class member variables can be found in the documentations.

7.1 CNGProfClassifier

The CNGProfClassifier uses Cavnar’ and Trenkle’ approach to identify the language. A custom class

CNGProfModel is defined to store the N-Grams profiles.

7.1.1 Constructor

The standard constructor is defined:

CNGProfClassifier (unsigned max_profile_size, EMaxValType max_val_type, float

max_val_scl =1.0f, unsigned min_n =5, unsigned max_n =5)

17

The maximum profile size is specified using the first parameters. All profiles are trimmed to this size

after the training process (the remaining information is dropped). The document profiles are not

trimmed, but for classification the specified amount is used only. A loading process will fail if any

provided profile has a lower maximum profile size. There is actually a current profile size (cf.

m_uProfileSize) and a maximum profile size (cf. m_uProfileMaxSize). The current profile size is

the value used in most case. It can be set using SetProfileSize with the maximum profile size as its

upper bound.

The max-value is specified using the next 2 parameters. The classifier supports dynamic max-values. One

can use whether the language profile size or the document profile size. In addition, this value can be

scaled by the second parameters.

The two last parameters specify the under and upper bound of N-grams type to be used:

[].

7.1.2 The index file

The index file is a human-readable plain text file encoded with Little Endian. Each line represents an

independent piece of data. The following order is used:

1. Version Number: Currently 1. For any other version number, LoadClassifier will throw an

exception.

2. Maximum Profile Size: If the specified maximum profile size is too high, LoadClassifier will throw

an exception.

3. Language Profile List: Starting from line 3, every line presents another file-path of a new model.

It doesn’t matter if there is an empty last line or not.

Adding a new language model is easily done by adding a new text line. There is no addition validation

mechanism for the maximum profile size. Adding a language model with a higher maximum profile size

is stable. But entries of the affected profile above the specified maximum will never be used but it is still

loaded, resulting in the consequence of wasting loading time.

In contrast, adding a language model with a lower maximum profile size leads to a higher error-rate

because of an inappropriate max-value. The affected profiles will have a reduced probability of being

chosen since the evaluation has shown that the optimum of the max-value depends on the language

profile size (in case, the language profile is larger than the document profile size, otherwise it depends

on the document’s profile size).

7.1.3 The model file

The model files are binary files, having the following structure

1. File Version number: The first 4 bytes is interpreted as file version number of data type

unsigned (4 bytes)

2. Language Identifier: 4 wide character including the ‘\0’ (8 bytes).

3. MaxN: 4 bytes (unsigned).

18

4. Mapping Field Size: 4 bytes

5. Mapping Field: variable length. The mapping field is a continuously enumeration of N-Gram

length. The ‘\0’ is counted as well.

6. N-Grams: variable length. The N-grams are encoded using Little Endian. The first N-gram is the

profile’s first item.

7.2 CVectSPClassifier

The CVectSPClassifier use the Vector Space Model as described in the previous chapter to identify

language. A custom class CVectSPModel is defined to represents the vectors.

The classifier contains a filtering mechanism. The N-grams are counted and normalized by their total

amount. Afterwards a threshold value is used for filtering.

7.2.1 Constructor

The standard constructor is defined

CVectSpClassifier (double threshold, unsigned min_n =1, unsigned max_n =5)

threshold is the threshold value used for filtering. The two last parameters specify the under and

upper bound of N-grams type to be used: [].

7.2.2 The index file

The index-file is quite similar to the index-file of CNGProfClassifier. Instead of the Maximum Profile

Size, the threshold is written in the file.

There is no validation for the loading or saving process except for the version number. Adding language

models to the classifier with a different threshold might leads to a higher error-rate. A model with a

lower threshold contains more data, resulting in more hits (less 0-values) when comparing the language

model and document model’ N-Grams. Ultimately, this leads to a lower distances than a model with a

higher threshold could get! In contrast, a model with a higher threshold contains less data, resulting in

more miss (more 0-values) and ultimately in higher distances.

7.2.3 The model file

Same as CNGProfClassifier. The respective frequency of each N-gram is saved directly after the N-gram

itself:

7.3 CMarkovClassifier

CMarkovClassiifier is the implementation of Ted Dunning’s approaches. The implementation has

got some customization.

A filtering capacity has been added to the classifier. All transition probabilities must be higher than a

certain threshold value. This is not the same as CVectSPClassifier!

Instead of the “Laplace Sample Correction”, a minimal probability min_prob is used. It is computed by

19

The minimal probability is the threshold used for filtering divided by some scalar. No remarkable effects

founded for the scalar! The same applies for the Laplace Sample Correction.

7.3.1 Constructor

The standard constructor is defined as

CMarkovClassifier (double threshold, double dMinProbScl = 100.0, unsigned

min_n =1, unsigned max_n =5)

threshold is the threshold value used for filtering. dMinProbScal is the scalar used to compute the

min_prob value. The two last parameters specify the under and upper bound of N-grams type to be

used: [].

7.3.2 The index file

Same as CVectSPClassifier. The min_prob scalar is not stored!

7.3.3 The model file

Same as CVectSPClassifier. The transition probability is saved instead of the frequency.

20

III Evaluation
The training corpus consists of various documents of 7 different languages collected from the Project

Gutenberg7. The documents have been inspected manually. All line breaks have been removed as well

as anything written in foreign languages such as the document header and the license information. The

table below illustrates the training size of each language:

Language (ISO 639) Training size in MB

deu 2.78
eng 3.40
fra 4.03
ita 4.97
nld 4.58
pol 0.371
por 0.291
spa 5.81

For the testing purpose, documents from various sources (Golem8, Heise9, Tageschau10, BBC11, NYT12,

CNN13, Guardian14, Le Monde15, Nouvel Obs16, Corriere Della Sera17, La Repubbilca18, El Pais19, ABC20) has

been collected. All line breaks have been removed. No further inspection or filtering was applied.

Samples have been automatically generated from each document. No random seed “srand()” were

used, resulting in the same sample-set for all evaluations. There might be test samples containing more

foreign languages than the native languages.

Word boundaries were ignored when extracting a sample of length k. E.g. extracting a sample of length

k=20, the string is split after 20 characters: “is string will be cu” (from “This string will be cut”). In this

way, the test samples are not error-free but the length of the test-samples is more precisely and leads to

more comparable results. Test samples of length 20 to 80 were used in all evaluation. The first approach

implemented and evaluated was the N-Gram Profile. With test-samples of 80 characters, it already

achieved a precision of about 99%. That’s the reason for the length of the sample.

7 http://www.gutenberg.org/wiki/Main_Page
8 http://www.golem.de
9 http://www.heise.de
10 http://www.tagesschau.de
11 http://www.bbc.co.uk
12 http://www.nytimes.com
13 http://www.cnn.com
14 http://www.guardian.co.uk
15 http://www.lemonde.fr
16 http://tempsreel.nouvelobs.com
17 http://www.corriere.it
18 http://www.repubblica.it
19 http://www.elpais.com
20 http://www.abc.es

21

The training corpus as well as the testing corpus is encoded with UTF-16LE.

To make the method more comparable the feature extraction method of Cavnar & Trenkle is used for all

3 approaches. This is called “TokAndCount” since the test documents are tokenized and then the

features are extracted. Afterward the NoSpace feature extraction method for OCR replaces the

“TokAndCount” method. In the end, the new and old feature extraction method were used to identify

erroneous test-samples.

8 Compare the 3 approaches
The result of the first evaluation is presented in the chart below.

Figure 5: Compare 3 approaches using TokAndCount

Dunning’ approach does perform a bit better than Cavnar’ & Trenkle’ approach when dealing with test-

samples shorter than 70 characters. Starting by 70, NG-Profile takes the lead. With just 80 characters a

precision of about 99% could be achieved. The full result is listed in the table below.

string-length markov ngprof vect-sp

20 0.803127 0.783900 0.585857

30 0.902947 0.888600 0.692929

40 0.948126 0.939000 0.744751

50 0.969112 0.967000 0.780754

60 0.981896 0.980900 0.813831

70 0.988342 0.989200 0.839107

75%

80%

85%

90%

95%

100%

20 30 40 50 60 70 80

p
re

ci
si

o
n

 in
 %

string length in characters

markov

ngprof

vect-sp

22

80 0.991557 0.993300 0.856997

8.1 Related Work

The two scientist Muntsa Padrós and Llúıs Padrós compared Dunning’ approach “Markov Model” with

Damashek’ “Trigram Frequency Vectors Technique” and Cavnar’ & Trenkle’ “Ad-hoc Ranking“. The

following parameters have been evaluated: the training size, test size, number of distinguished

languages and the languages set (similarity of the languages).

Based on their result, a system, trained with 50K words, is sufficient since the precision does not rise

significantly with a higher training size. The number of distinguishable languages affects the precision.

Especially, the similarity of the chosen languages (languages set). E.g. Spanish and Catalan (85%) since

the dialect of the two languages are very similar. Dunning’s approach always achieved the highest

precision - especially when dealing with small texts. The authors numbered the minimum required

number of character for a precision of 95% (99%, if we exclude Cavnar’ N-Gram Profile Technique) at

500; cf. (Padró Cirera and Padró Cirera 2004, 3, 4, 6).

9 Compare TokAndCount with NoSpace
In this test, the counting method “TokAndCount” and the new counting method “NoSpace” is

compared:

Figure 6: Compare TokAndCount with NoSpace

75%

80%

85%

90%

95%

100%

20 30 40 50 60 70 80

p
re

ci
si

o
n

 in
 %

string length in characters

markov - tok&count

markov - nospace

ngprof - tok&count

ngprof - nospace

vect-sp - tok&count

vect-sp - nospace

23

The new counting method does increase the precision of NG-Profile and Markov from around 80% to

about 90%. For test-samples shorter than 60 characters, the two leading approach does performs better

with “NoSpace”. But Starting with 60 Dunning’ approach is overtaken.

However, Cavnar & Trenkle’ approach using “NoSpace” takes the leads overall. In Contrast to the other

two, “NoSpace” does reduce the precision of the vector space model.

 markov ngprof vect-sp

string-length TokAndCount NoSpace TokAndCount NoSpace TokAndCount NoSpace

20 0.803127 0.903983 0.783900 0.913645 0.585857 0.419134

30 0.902947 0.946975 0.888600 0.948368 0.692929 0.530096

40 0.948126 0.965029 0.939000 0.968879 0.744751 0.597892

50 0.969112 0.974417 0.967000 0.981527 0.780754 0.647966

60 0.981896 0.979466 0.980900 0.988293 0.813831 0.693605

70 0.988342 0.982357 0.989200 0.992911 0.839107 0.728299

80 0.991557 0.984263 0.993300 0.995076 0.856997 0.756339

10 Identify noise tainted samples
In this test, 20% of each test-sample was automatically replaced with numbers. Adding whitespace

would be affectless since they are dropping them anyway in case of adding whitespace by extending the

string length. Just replacing a character with whitespace seems quite unrealistic since an OCR

application rather misclassifies a character than drop it. The chart below illustrates the result

Figure 7: Identify noise tainted samples

60%

65%

70%

75%

80%

85%

90%

95%

100%

20 30 40 50 60 70 80

p
re

ci
si

o
n

 in
 %

string length in characters

ngprof - nospace

ngprof - tok&count

markov - nospace

markov - tok&count

vect-sp - nospace

vect-sp - tok&count

24

Using the NoSpace-counting method, Markov performs slightly better than NG-Profile when dealing

with test-samples shorter than 60 and tainted with noise. Starting by 60, NG-Profile takes the lead.

Using the TokAndCount-counting method, Markov and NG-Profile performs almost similar. In

comparison to the NoSpace counting method, the precision is around 20% lower. In practice, the

precision is even lower when additional false-whitespace is part of the document.

 ngprof markov vect-sp

string-length NoSpace TokAndCount NoSpace TokAndCount NoSpace TokAndCount

20 0.722634 0.574331 0.727697 0.576462 0.444697 0.364166

30 0.815724 0.662400 0.827145 0.663069 0.512490 0.424055

40 0.875021 0.727462 0.882972 0.724703 0.564310 0.477421

50 0.910131 0.774159 0.916710 0.770062 0.607614 0.520041

60 0.938028 0.810455 0.937345 0.809531 0.644097 0.556103

70 0.954228 0.837972 0.949945 0.836586 0.676234 0.592745

80 0.966386 0.861586 0.957524 0.860862 0.703145 0.619448

11 Compare computing time
Beside the precision, the computing time has been evaluated regardless the loading time of the classifier

itself. The time measured including the time required to generate a document model and the

classification itself. The result is illustrated in the chart below.

Figure 8: Compare computing time

0.00

0.50

1.00

1.50

2.00

2.50

20 30 40 50 60 70 80

co
m

p
u

ti
n

g
ti

m
e

 in
 m

s

string length in characters

markov - nospace

markov - tok&count

ngprof - nospace

ngprof - tok&count

vect-sp - nospace

vect-sp - tok&count

25

The counting method TokAndCount performs faster than the NoSpace counting method. Dunning

approach using the NoSpace requires the most computing time. The fastest approach is the Vector

Space Model using TokAndCount. But all in all it is still within a couple of milliseconds.

 markov ngprof vect-sp

string-length NoSpace TokAndCount NoSpace TokAndCount NoSpace TokAndCount

20 0.5134960 0.2356380 0.5359850 0.2316520 0.2294950 0.0370197

30 0.7956820 0.3245870 0.7188480 0.3235170 0.5327670 0.0500000

40 1.0710200 0.4092810 0.9005650 0.4144500 0.8278260 0.0610580

50 1.3423600 0.4905020 1.0816300 0.4988490 1.1186700 0.0704424

60 1.6112500 0.5680050 1.2582800 0.5787870 1.4044200 0.0788504

70 1.8780300 0.6448840 1.4534100 0.6568730 1.6864900 0.0863582

80 2.1477000 0.7188140 1.6579900 0.7341610 1.9683800 0.0932807

26

IV Conclusion / Future Work
In the present thesis, the 3 main approaches of language identification have been discussed:

1. Ad-hoc Ranking

2. Vector Space Model

3. Bayes Decision Rules and Markov Chain

The 3 approaches are implemented and compared in a new framework “MiLiD”. In contrast to previous

works, same feature extraction methods (TokAndCount and NoSpace) and types (N-grams; N ranging

from 1 to 5) are used in the comparisons to achieve more comparable results.

As shown, the Ad-hoc Ranking and Bayes Decision Rules and Markov Chain perform best. In case the

samples are error-free, only 20 characters are required in combination with the counting method

NoSpace to achieve a precision of about 91% when classifying 7 different languages including English,

German, Spain, and so on.

The NoSpace feature extraction method is proposed by the present thesis for erroneous samples given

by OCR. The approach drops all kind of information that are too error-prone to OCR. Alternatively, a

system could use OCR documents to train the classifier. But this would bind the language classifier to a

specific OCR algorithm.

Though Cavnar & Trenkle’ approach and Dunning’ approach have practically the same precision, I would

recommend the first approach regarding to the memory usage as well as computing time.

As demonstrated in the present thesis, more features won’t necessarily cause higher precisions than less

features when dealing with short documents. In future work, additional information filtering can be

applied to remove N-grams that occur in all supported languages on almost the same rank. In addition,

the precision might increase if bigrams and trigrams are solely used instead of all N-grams, N ranging

from 1 to 5, since they are more suitable for short documents as reported in related works.

27

Bibliography
Artemenko, Olga, and Margaryta Shramko. Entwicklung eines Werkzeugs zur Sprachidentifikation in

mono- und multilingualen Texten. Master Thesis, Hildesheim: University of Hildesheim,

Information Science, 2005.

Cavnar, William B., and John M. Trenkle. "N-Gram-Based Text Categorization." In In Proceedings of

SDAIR-94, 3rd Annual Symposium on Document Analysis and Information Retrieval, 161--175.

Michigan: CiteSeerX, 1994.

Damashek, Marc. "Gauging similarity with n-grams: Language-independent categorization of text."

Science 267 (February 1995): pp. 843 - 848.

Dunning, Ted. Statistical Identification of Language. Technical Report, New Mexico State University:

CiteSeerX, 1994.

Ferreira da Silva, Joaquim, and Gabriel Pereira Lopes. "Identification of Document Language is Not yet a

Completely Solved Problem." In CIMCA '06: Proceedings of the International Conference on

Computational Inteligence for Modelling Control and Automation and International Conference

on Intelligent Agents Web Technologies and International Commerce, 212. Washington, DC: IEEE

Computer Society, 2006.

Grothe, Lena, Ernesto William, De Luca, and Andreas Nürnberger. "A Comparative Study on Language

Identification Methods." In Proceedings of the Sixth International Language Resources and

Evaluation (LREC'08), edited by Nicoletta Calzolari, et al. European Language Resources

Association (ELRA), 2008.

Lins, Rafael Dueire, and Paulo Gonçalves Jr. "Automatic language identification of written texts." In

Proceedings of the 2004 ACM symposium on Applied computing (SAC '04), 1128 - 1133. New

York, NY: ACM, 2004.

Ljubešid, Nikola, Nives Mikelid, and Damir Boras. "Language Identification: How to Distinguish Similar

Languages?" University of Zagreb, Department of Information Sciences. 2007.

http://infoz.ffzg.hr/ljubesic/nlnmdb_iti07.pdf (accessed January 16, 2010).

Padró Cirera, Montserrat, and Lluís Padró Cirera. "Comparing methods for language identification." In

Procesamiento del lenguaje natural, 155-161. Barcelona: Sociedad Española para el

Procesamiento del Lenguaje Natural, 2004.

Poutsma, Arjen. "Applying Monte Carlo Techniques to Language Identification." In In Proceedings of

Computational Linguistics in the Netherlands (CLIN), 179--189. SmartHaven, Amsterdam:

Rodopi, 2001.

28

Prager, John M. Linguini: Language Identification for Multilingual Documents. Vol. 2, in Thirty-Second

Annual Hawaii International Conference on System Sciences, 2035. Los Alamitos, CA: IEEE

Computer Society, 1999.

Eidesstaatliche Erkla rung

Ich erkläre hiermit eidesstattlich, dass ich diese Bachelorarbeit selbstständig und ohne unzulässige Hilfe

angefertigt habe.

Die verwendeten Quellen sind im Literaturverzeichnis vollständig angegeben.

Berlin, den 8. Juni 2010

Do, Hoang Viet

