
Freie Universität Berlin

Institut für Informatik

Bachelorarbeit

Sign Language Recognition with Kinect

Simon Lang

slang@zedat.fu-berlin.de

Supervisors:

Prof. Dr. Raúl Rojas

Prof. Dr.Marco Block-Berlitz

September 2011

Abstract

A framework for general gesture recognition is presented and tested with isolated signs of
sign language. Other than common systems for sign language recognition, this framework
makes use of Kinect, a depth camera developed by Microsoft and PrimeSense, which
features easy extraction of important body parts. Recognition is done using hidden
Markov models with a continuous observation density. The framework also o�ers an
easy way of initializing and training new gestures or signs by performing them several
times in front of the camera. Results show a recognition rate of > 97% for eight out of
nine signs when they are trained by more than one person.

2

Eidesstattliche Erklärung

Hiermit versichere ich an Eides statt, diese Arbeit selbstständig und lediglich unter Be-
nutzung der angegebenen Quellen und Hilfsmittel verfasst zu haben. Ich erkläre weiter-
hin, dass die vorliegende Arbeit noch nicht im Rahmen eines anderen Prüfungsverfahrens
eingereicht wurde.

Berlin, den 27. September 2011

Simon Lang

Acknowledgements

First of all, I would like to thank my mentor Prof. Dr. Marco Block-Berlitz for supporting
me and supervising my bachelor thesis. I would also like to thank my supervisor Prof.
Dr. Raúl Rojas for his support.

Special thanks go to Fabian for performing and recording signs of German Sign Language,
Mario for drawing the �gure of the Urn and Ball Model, Anne for providing information
on sign language reading material, and Achim for his general support. Special thanks
also go to my sister Maren, my parents as well as all my friends for their support.

4

Contents

1 Motivation and Introduction 1

2 Related Work 3

2.1 Sign Language . 3
2.1.1 History . 3
2.1.2 Sublexical Components . 5
2.1.3 Sublexical Rules . 6
2.1.4 Grammar . 7

2.2 Kinect . 12
2.2.1 Existing Frameworks . 12
2.2.2 Limitations and Future Development 13

2.3 Hidden Markov Models . 15
2.3.1 Markov Chains . 15
2.3.2 Extending Markov Chains . 17
2.3.3 The Three Basic Problems . 19
2.3.4 Types of Models . 23
2.3.5 Continuous Observation Density 24
2.3.6 Scaling . 26
2.3.7 Multiple Observation Sequences . 28
2.3.8 Initialization . 28

2.4 Recognizing Sign Language . 30
2.4.1 Overview . 30
2.4.2 Common Problems . 32

3 Kinect-based Sign Language Recognition 35

3.1 Project Overview . 35
3.2 Implementation of Hidden Markov Models 37
3.3 Framework Implementation . 39
3.4 Initialization and Training . 41
3.5 Using the Framework . 44

4 Experiments and Evaluation 46

5 Conclusion and Future Work 50

Appendix 52

i

1 Motivation and Introduction

When Microsoft released Kinect in November 2010, it was mainly targeted at consumers
owning a Microsoft Xbox 360 console. With the slogan �You are the controller�, a
controller-free experience for �games and entertainment� was advertised, allowing the
user to interact with the system using gestures and speech [27, 28].

The device itself features an RGB camera, a depth sensor and a multiarray microphone,
and is capable of tracking users' body movement [29]. The interest in it was high among
developers and thus, shortly after its release an uno�cial open source driver was intro-
duced, followed by many Kinect-based projects and technical demos [36].

Since Kinect is able to track the user's full body, it seems natural to build a framework
for sign language recognition. In sign languages, manual features are used along with
facial expressions and di�erent body postures in order to express words and grammatical
features (p. 17 in [19]). Additionally, people and objects can be placed in front of a
signing person and referred to during a conversation (pp. 57 and 61 in [19]).

Even though Microsoft stated that �Kinect that is shipping this [2010's] holiday will
not support sign language�, a demo video by the Center for Accessible Technology in
Sign (CATS) shows how a few sign language sentences are recognized correctly on a
system with limited vocabulary [30, 31]. The demo, however, does not support handshape
recognition, and since sign language generally features di�erent handshapes, similar signs
cannot be distinguished.

The goal of this work is to create a framework for general gesture recognition that will be
used to recognize signs of sign language (see �gure 1.0.1). To achieve this, the framework
will make use of hidden Markov models that allow training and recognition of isolated
signs using only manual features.

Other systems capable of recognizing sign language rely on special gloves or ordinary RGB
cameras that require well-lit environments. These systems have di�erent advantages and
disadvantages that will be reviewed, but this work will not focus on a comparison to
those systems. Instead, an independent evaluation will show how it performs.

Finally, a conclusion will show the achievements of this work and what future work may
follow in order to improve this framework and eliminate existing issues.

References have usually been put at the end of a paragraph and refer to the entire
paragraph. When examples of signs are given, they are written in capital letters to
indicate that the according translation of the word to a sign language is meant.

1

1 Motivation and Introduction

Figure 1.0.1: Sign language recognition with Kinect

2

2 Related Work

This part will summarize all basics that help create a better understanding of sign lan-
guage and sign language recognition. Boyes Braem's �Einführung in die Gebärdensprache
und ihre Erforschung� [19] as well as Rabiner's �Tutorial on Hidden Markov Models and
Selected Applications in Speech Recognition� [20] are mainly used as references throughout
the next sections, among other work more speci�cally related to sign language recogni-
tion.

2.1 Sign Language

The term sign language is similar to the term language in that there are many of both
spread across di�erent regions of the world. Just like languages, sign languages have
evolved over a long time, they feature their own grammar and vocabulary, and thus they
are considered real languages (pp. 9-10 in [19]).

The major di�erence between both is that sign languages are signed and languages are
spoken, hence latter are also referred to as spoken languages in order to emphasize the
di�erence. Due to the fact that no sense of hearing is required to understand sign language
and no voice is required to produce it, it is the common type of language among deaf
people (ibid.).

This section will give a short overview on the history of sign language and its research,
followed by an introduction to the communication methods and grammatical features
many sign languages have in common.

2.1.1 History

Up until the late 1960s, sign languages were generally not considered real languages. In-
stead, as Boyes Braem states, most linguists never seriously analyzed them and assumed
they were just sets of gestures that could be loosely connected to express simple relations
(ibid.).

Wilbur claims this was due to the negative attitudes towards sign language that gener-
ally existed, speaking of a �lack of understanding of the nature of language itself, and the
related failure to separate language from speech�. Another factor was the lack of tradi-
tional sign language ortography which has led to the use of sign names not including all
necessary information for the appropriate signs. The example �John hit Bill� does not

3

2 Related Work

convey that the sign HIT would start and end at di�erent points when compared to �Bill
hit John�. Thus, many people compared these pseudo-translations to English, thinking
sign language were incomplete and inferior (pp. 2-4 in [21]).

William C. Stokoe, a professor and English lecturer at Gallaudet University in the United
States, concentrated on analyzing the American Sign Language (ASL) and was among
the �rst to explore the communication methods of the deaf with up-to-date linguistic
means. His work, however, was approached with scepticism, as even deaf people and
hearing people with a sign language as their mother tongue considered their language
underdeveloped and not a real language which could also be used for abstract communi-
cation that required higher education (pp. 10-11 in [19]).

Around the same time when Stokoe started his research on ASL, two other researchers,
namely Ursula Bellugi and her husband Edward Klima, began a study on sign language
during which they �lmed ASL gestures of deaf people and analyzed them. Both never had
any contact with deaf prior to their study and their aim was to analyze sign language from
a neutral point of view without preconceived opinions. They came to the conclusion that
ASL had its own grammar as well as most fundamental features that spoken languages
have (p. 12 in [19]).

Boyes Braem summarizes the most important modern �ndings about sign language as
follows:

� Sign language is a natural language that was not made up. Many deaf children
acquire it as their mother tongue from other children at school or from their parents,
which shows that the acquisition process is similar to that of spoken languages (p. 13
in [19]).

� Since it is a natural language, sign language is closely linked to the culture of the
deaf, which it originates from. Thus, knowledge about the culture is necessary to
fully understand sign language (ibid.).

� As mentioned above, there is not just a single sign language worldwide, but many
national variants. These national variants can even have regional dialects (p. 14 in
[19]).

� Unlike pantomime, sign language is not linked to iconic contents. Abstract thoughts
can be expressed just as well as in spoken languages (ibid.).

� Furthermore, sign languages are not incomplete variants of languages spoken in
the same region. Instead, they feature their own structure that can be completely
di�erent from that of the surrounding spoken languages (ibid.).

Even after the �rst results of modern sign language research were presented, they were
not immediately accepted among both deaf and hearing people. For generations, the
deaf were told their means of communication were not a real language and that they had
to learn the spoken language of the majority. Many of them accepted and adopted this
point of view and still thought of sign language as something inferior (pp. 11-12 in [19]).

4

2 Related Work

Figure 2.1.1: Signs for SAY (left) and ASK (right) (�gure taken from [19], p. 19)

Hence, it took a while for sign languages to be recognized as real languages. Ever since the
�rst modern studies by Stokoe and Klima and Bellugi, more and more research centers
outside the United States have been established and science continued while the barrier
to the modern view of sign language began to vanish (pp. 11-13 in [19]). In Germany, the
local sign language (German Sign Language, Deutsche Gebärdensprache) has been made
a legally recognized language in 2002 (� 6 (1) in [12]). As a result, speech and hearing
impaired people have the right to an interpreter when talking to public authorities (� 9 (1)
in [12]).

2.1.2 Sublexical Components

The means of communication in sign language are not limited to manual features, i. e.
hands and arms, but also include non-manual signals such as facial and eye expressions,
head and body posture, and mouth shape (p. 17 in [19]).

The manual components can be split into four parameters: handshape, palm orientation,
location, and movement. A sign cannot be made with any handshape nor can any loca-
tion be used. For example, in German-Swiss Sign Language, the manual signs for SAY
(German: sagen) and ASK (fragen) are the same except for the handshape, see �gure
2.1.1. In a similar way, signs exist that can only be distinguished by either orientation,
location, or movement (pp. 18-26 in [19]).

Furthermore, not every possible handshape is available in each sign language, just as not
every sound is available in each spoken language, e. g., two German pronounciations of
�ch� are unavailable in English and the English �th� sounds are not used in German. As a
result, a sign language can also be spoken with an accent, e. g., when signs from another
sign language are borrowed that require a handshape unavailable in the actually used
language. Instead, a known handshape replaces the unknown one (pp. 21-22 in [19]).

Although sign languages generally use di�erent sets of handshapes, there are six shapes

5

2 Related Work

Figure 2.1.2: The six basic handshapes (�gure taken from [19], p. 22)

Figure 2.1.3: Signing space (�gure taken from [19], p. 23)

that were found to be used in all known sign languages, as shown in �gure 2.1.2. Sup-
posedly, these are the �rst to be acquired by deaf children (p. 22 in [19]).

Another important feature is the signing space. It spans around the head, the belly, and
both arms and all signs are normally produced within that space (see �gure 2.1.3). Signs
can, however, also be made smaller or larger than usual, which represents the equivalent
to whispering and screaming in spoken languages, respectively. Within the signing space,
signs can be located directly at the body, near it, or at the other hand. A study by Liddell
and Johnson claims there are 18 signi�cant body locations for signs at the body, as shown
in �gure 2.1.4 (however, 20 are listed): both back and top of the head, forehead, temple,
nose, cheek, ear, mouth, lip, lower jaw, chin, neck, shoulder, sternum, chest, upper body,
upper arm, lower arm, belly, and leg (pp. 23-25 in [19]).

2.1.3 Sublexical Rules

The possible compositions of sign language components are limited by additional rules
in each sign language. For example, in German the combination �pf� is valid whereas in
English it is not. In a similar manner, several handshapes and other components can be
combined and others cannot (p. 27 in [19]).

6

2 Related Work

Figure 2.1.4: Signi�cant body locations (�gure taken from [19], p. 24)

Figure 2.1.5: A valid sign (left) and an invalid combination (right) (�gure taken from
[19], p. 28)

Many composition rules apply only to speci�c sign languages, but some can also be
applied universally. Two of these rules have been found by Robbin Battison, namely the
symmetry condition and the dominance condition. The symmetry condition implies that
if both hands move at the same time during a sign, they must use the same handshape.
Figure 2.1.5 shows a valid sign next to a combination that violates this rule [22].

The dominance condition implies that if both hands use di�erent handshapes, the dom-
inant hand is moving and the passive hand must stand still. Additionally, the passive
hand must feature one of the six basic handshapes shown in �gure 2.1.2 (ibid.).

2.1.4 Grammar

Sign languages feature the same universal linguistic functions that all other natural lan-
guages do. Although there exist features in some spoken languages that cannot be found

7

2 Related Work

Figure 2.1.6: Modi�cation of the sign MEET (translated version of the original �gure in
[19], p. 51)

in sign languages, such as articles (e. g. �the�) or copulae (e. g. �I am interested.�), the
lack of these features is not speci�c to sign languages as they cannot be found in some
spoken languages, such as Chinese, either. Yet, features such as the ability to reference a
person (e. g. I, she, you) or to indicate a tense (present, future, past) are indeed available
in all sign languages and all spoken languages (p. 45 in [19]).

A study by Bellugi and Fischer showed that native speakers of both English and a
sign language could produce about half as much signs per second as words per second.
However, the amount of information per second was about the same, which is due to
the fact that signs contain lots of information which can be conveyed concurrently, while
speech delivers information sequentially. Figure 2.1.6 shows several variations of the sign
MEET. Composed signs or pre- and su�xes, on the other hand, are very rarely used in
sign languages (pp. 46-52 in [19]).

An important component of expressing grammatical features is the location of signs. Sign

8

2 Related Work

language grammar includes four aspects that depend on the use of di�erent executing
locations:

� Marking the origin and destination of an action

� Pronominal reference

� Marking subject and accusative or dative object by means of the verb

� Indicating tense

Origin and destination, referencing objects and people

Many verbs are in�ected in order to convey additional information. As �gure 2.1.7 shows,
the verb GO is in�ected to indicate that the signing person will go from point A (STORE)
to point B (SCHOOL), i. e., the GO sign starts where STORE was signed and ends where
SCHOOL was signed. The �gure also illustrates how objects can be placed in front of a
signing person (pp. 55-58 in [19]).

If STORE or SCHOOL were used again later during the conversation, they could be
referenced by pointing at them using the INDEX sign, without the need to perform their
actual signs again. Similarly, an absent person that is referred to can be placed in front
of a signer, while present people are referenced by pointing at them directly (ibid).

Indicating tense

Di�erent executing locations are also used to indicate tense. In English and other lan-
guages, expressions like �tomorrow�, �last summer�, or �in �ve years� are used, and similar
signs can also be found in sign languages.

They generally follow speci�c rules, for example in Western European sign languages an
imaginary line is drawn through one's body like a path that has been walked. All signs
in front of the body refer to something in the future, while signs near the body indicate
present tense and backward-oriented signs are linked to a past event (pp. 69-70 in [19]).

Classifying signs

Some signs are modi�ed in order to show which type of subject or object they refer to.
They can classify things by several properties such as shape, size or weight. Figure 2.1.8
illustrates how the verb EAT is modi�ed to classify a small and rotund object as opposed
to something small and angular (pp. 75-90 in [19]).

A similar feature is used in Japanese where di�erent su�xes of counter words classify
what type of object is referenced, e. g. di�erent words for �two� would be used when
referring to small animals in contrast to human beings (p. 76 in [11]).

9

2 Related Work

Figure 2.1.7: In�ecting verbs and placing objects in the signing space (translated version
of the original �gure in [19], p. 56)

10

2 Related Work

Figure 2.1.8: Modi�cations of the verb EAT (translated version of the original �gure in
[19, pp. 81-82])

Non-manual features

So far, only manual components have been discussed, but the non-manual components
are also used to express important grammatical features. These include, but are not
limited to,

� non-manually expressed adjectives and adverbs,

� di�erent sentence types such as negation, a�rmation, question, relative and condi-
tional clauses, and

� mouth shapes (pp. 97-99 in [19]).

To further describe a noun or verb, non-manual adjectives or adverbs can be added while
signing. These include facial and eye expression, head and body posture, and mouth
shape. An example in �gure 2.1.9 shows how the sentence �The car drives by� is modi�ed
with an adverb to mean �The car drives by closely�. The modi�cation close/closely is
done by tilting the head towards the shoulder and moving the mouth corner in the same
direction (pp. 99-104 in [19]).

Questions that require yes or no as an answer are produced by signing exactly the same
sentence as a statement and additionally tilting the head forward with eyes wide open
and eyebrows raised. Other questions using question words (how, when, why, who, what,
where) involve signing the according question word �rst and keeping a speci�c facial
expression throughout the entire question. Negating or a�rming a question or statement
can be done by either signing the appropriate words for no or yes, or by repeating the
sentence while shaking the head or nodding, respectively (pp. 105-108 in [19]).

Finally, signs can be accompanied by mouth shapes. These can have, among others, a
distinguishing role (e. g. in some German-Swiss Sign Language dialects, BROTHER and
SISTER are signed the same way but with di�erent mouth shapes), a specifying role or
an emphasizing role. Sometimes, mouth shapes are isolated and not accompanied by
signs. This can happen if an according sign does not exist or is not known, e. g. the
name Susanna (pp. 117-118 in [19]).

11

2 Related Work

Figure 2.1.9: Non-manual adverb �closely� (�gure taken from [19], p. 102)

2.2 Kinect

Kinect, code-named Project Natal, was developed by Microsoft and PrimeSense and
released in November 2010. It features an RGB camera along with a microphone array
and a depth sensor using an infrared projector, and is thus capable of tracking a user's
full body independently from lighting conditions [33, 32, 29].

Kinect is primarily targeted at owners of a Microsoft Xbox 360 console and advertised
with the slogan �You are the controller�, promising a video game and entertainment
experience without the need for gamepads or other devices for interaction [27].

Beside its application on Xbox 360, several drivers exist that allow Kinect to be used on
PC and Mac. They have di�erent advantages and disadvantages and will be reviewed in
this section.

2.2.1 Existing Frameworks

Soon after Kinect was released, a company called Adafruit Industries that sells open
source hardware electronics, o�ered a bounty of 1,000 US dollars for the �rst who would
release �completely documented� drivers for Kinect �under an open source license� [34].
The bounty was later increased to 2,000 and then to 3,000 US dollars when Microsoft
indirectly replied to the o�er, stating that the company �does not condone the modi�ca-
tion of its products� and would �work closely with law enforcement [...] to keep Kinect
tamper-resistant� [35].

Less than a week later, Adafruit announced the winner of the contest and paid the
promised bounty. Additionally, 2,000 US dollars were donated to the Electronic Frontier

12

2 Related Work

Foundation (EFF) for defending digital rights and the �right [...] to do things like this
project�, in response to Microsoft's statement [36].

In an interview at NPR (National Public Radio) in the United States, however, a Mi-
crosoft spokesperson said that �Kinect was not actually hacked� since the driver �essen-
tially opens the USB connection, which [Microsoft] didn't protect by design�, and neither
Adafruit nor the contest winner would be sued for that [37]. It was later revealed that
Johnny Lee, former employee at Microsoft, was the one who initiated the contest while
still with the company, and asked Adafruit for help after his approach to have Microsoft
develop a driver failed [38].

The driver that emerged from this contest was named libfreenect and initially made
available for Linux only under the terms of either the Apache 2.0 license or optionally
version 2 of the GNU General Public License. It is still under development by the
OpenKinect community, and high-level features such as skeletal tracking are not yet
o�ered, but it has already been ported to Microsoft Windows and Mac OS X. Its current
capabilities include displaying Kinect's RGB and depth streams as well as using the built-
in microphone array and motorized tilt mechanism. Bindings are available for several
programming languages such as Python, C, C++, C# and Java [39, 40].

Another driver called OpenNI was released in December 2010 by PrimeSense, the manu-
facturer of Kinect's camera technology. It includes a feature-rich open source framework
licensed under the GNU Lesser General Public License, version 3, and can be combined
with closed source middleware called NITE for skeletal tracking and recognition of hand
gestures [41, 42]. An example of skeletal tracking is shown in �gure 2.2.1.

In June 2011, Microsoft released an o�cial SDK for Microsoft Windows. The Kinect for
Windows SDK Beta is for personal and academic, i. e. non-commercial, use only, and
features a rich API that o�ers similar features as OpenNI. It provides access to raw sensor
streams and skeletal tracking, and features bindings to several programming languages
such as C++, C# and Visual Basic. Microsoft plans to release the SDK in a commercial
version at a later date [45].

While skeletal tracking is supported by both OpenNI and the Kinect for Windows SDK,
platform-independency is o�ered by libfreenect and OpenNI. Currently, the latter is
often used in demos and applications that need both, since it combines the advantages
of skeletal tracking and platform-independency.

2.2.2 Limitations and Future Development

Although the two frameworks by Microsoft and PrimeSense o�er skeletal tracking, both
do not support recognition of single �ngers, and thus cannot distinguish handshapes.
Evoluce AG, a manufacturer of multitouch displays, announced a Multi-Gesture SDK
for Kinect and similar depth-sensing cameras to overcome this issue. The SDK will be
based on OpenNI and is said to support �nger gestures, among other features [46].

13

2 Related Work

Figure 2.2.1: Skeletal tracking with OpenNI

14

2 Related Work

A video by Dr. Natheer Khasawneh at Jordan University of Science and Technology
shows a Kinect demo for Arabic Sign Language recognition that is capable of tracking
the user's �ngers [47]. However, the application is not publicly available.

In addition to the basic libfreenect driver the OpenKinect community provides, an
OpenKinect Analysis Library is planned. Feature suggestions include hand tracking and
skeletal tracking [40].

Until these technologies are made available, the existing frameworks feature customiz-
ability and can be extended by manually processing the camera's depth stream.

2.3 Hidden Markov Models

Hidden Markov models (HMMs) are a type of stochastic model related to �nite state
machines (FSMs) and are often used in recognition of speech, handwriting, and also
sign language. This section will �rst describe basic Markov chains and how they can be
extended to HMMs, and then give an overview of the three basic problems that HMMs
come along with.

2.3.1 Markov Chains

A Markov chain, also called discrete Markov process or observable Markov model, can be
seen as a �nite state machine with N states, S1, S2, · · · , Sn, being in exactly one of these
states at any time. At regular intervals, the state will change according to a probability
associated with the current state, either to a di�erent state or back to the same state.
The time instants where state changes occur will be referenced as t = 1, 2, 3, · · · , whereas
qt will refer to the state at time t [20, 15].

An important restriction for Markov chains is that the probability of changing to a
speci�c state only depends on the current state and not its predecessor states, so the
matrix A of state transition probabilities can be written as

aij = P [qt+1 = Sj | qt = Si], 1 6 i, j 6 N (2.3.1)

where the normal stochastic constraints should be satis�ed, i. e.

aij > 0 (2.3.2)

and
N∑
j=1

aij = 1. (2.3.3)

Rabiner [20] brings up an example with a 3-state weather model as shown in �gure 2.3.1,
where the weather is one of the following: rain (state S1), cloudy (state S2), or sunny

15

2 Related Work

Figure 2.3.1: 3-state weather model (according to the example in [20])

(state S3). The state transition probability matrix could be

A = {aij} =

 0.4 0.3 0.3
0.2 0.6 0.2
0.1 0.1 0.8

 .

Given this model, for any observation sequence O a probability can be calculated. Let
state changes occur between each two days, making qt refer to the weather on day t. For
instance, given that the �rst day is sunny, the weather observation of six successive days
could be O = {S3, S3, S1, S3, S2, S2} (t = 1, 2, · · · , 6), and the probability for O could be
calculated as follows,

P (O |Model) = P [S3, S3, S1, S3, S2, S2 |Model]

= P [S3] · P [S3|S3] · P [S1|S3] · P [S3|S1] · P [S2|S3] · P [S2|S2]
= π3 · a33 · a31 · a13 · a32 · a22
= 1 · 0.8 · 0.1 · 0.3 · 0.1 · 0.6
= 1.44 · 10−3,

where π3 is the initial probability of the weather being sunny, which was taken for granted.
The general notation for initial state probabilities is

πi = P [q1 = Si] , 1 6 i 6 N. (2.3.4)

A strong limitation of Markov chains is that they rely on observable events (such as sun,
rain, clouds) and each state corresponds to exactly one such event, making it possible to

16

2 Related Work

Figure 2.3.2: Urn and Ball Model (�gure drawn by Mario Dederichs according to the
example in [20])

conclude the current state from an observation. In order to be applied to problems such
as recognition of speech, handwriting or sign language, however, a less restrictive model
is needed (ibid.).

2.3.2 Extending Markov Chains

In HMMs, each state produces one out of a set of observable events according to a
probablistic function associated with that state, rather than producing the same �xed
event each time. Thus, an observation does no longer imply the current state, it can only
hint at it � the process of state transition is now hidden [20, 15].

Another example Rabiner [20] brings up, was introduced by Jack Ferguson et al. and is
called The Urn and Ball Model, shown in �gure 2.3.2. There are N large urns in a room
that hold a large number of colored balls each, and each ball has one out of M distinct
colors. The process for generating observations involves a genie who picks an initial urn
according to some random procedure. He or she randomly chooses a ball from that urn,
and its color is noted down for observation. The ball is put back in the urn and a new urn
is selected according to a stochastic process associated with the current urn. This ball
choosing and urn selection process is now repeated and will generate a �nite observation
sequence of colors.

When modelling an HMM for this example, the N large urns correspond to the N states.
The process of picking an initial urn i marks the initial state probability πi (see equation
2.3.4), and selecting a new urn corresponds to the state transition probability aij as
de�ned in equation 2.3.1, given that the genie switches from urn i to urn j.

Since the M observation symbols are, unlike in Markov chains, no longer strictly linked
to a speci�c state each, they have to be considered separately. They are denoted as

17

2 Related Work

V = {v1, v2, · · · , vM}. Consider the above example with M = 4, then V could be
V = {red, green, blue, yellow} for instance.

Additionally, a set of probability distributions for observation symbols in each state is
needed, which is denoted as B = {bj(k)}, where

bj(k) = P [vk at t | qt = Sj], 1 6 j 6 N

1 6 k 6M. (2.3.5)

Following the above example, consider there are four balls in urn 1, one of each color,
and ten balls in urn 2, seven of them red, two green and one blue. The probability
distributions would be

b1(k) = 0.25 , k = 1, 2, 3, 4

b2(k) =

0.7 , k = 1

0.2 , k = 2

0.1 , k = 3

0 , k = 4

.

Finally, an observation sequence can be referenced as

O = O1O2 · · ·OT , (2.3.6)

where each Ot (t = 1, · · · , T) is a symbol from V , i. e. an observation sequence in the
above example could be O = v1v1v1v4v2v3v2 (red, red, red, yellow, green, blue, green).
Observation sequences are generated as follows [20]:

1. Use the initial state distribution π to choose the initial state q1 = Si.

2. Set t = 1.

3. Use the symbol probability distribution bi(k) in state Si to choose the current
observation symbol Ot = vk.

4. Choose a new state qt+1 = Sj using the state transition probability distribution aij
of state qt = Si.

5. Set t = t+ 1 and return to step 3 if t < T , else terminate.

Using the three probability distributions, i. e. those for state transitioning, symbol choos-
ing, and initial state choosing, an HMM can be denoted as

λ = (A,B, π). (2.3.7)

18

2 Related Work

2.3.3 The Three Basic Problems

Given this compact notation, Rabiner summarizes the three basic problems of HMMs as
follows [20]:

1. Given a model λ = (A,B, π) and an observation sequence O = O1O2 · · ·OT , deter-
mine the probability of O being generated when λ is used, i. e. e�ciently calculate
P (O|λ).

2. Determine the optimal state sequence Q = q1q2 · · · qT , i. e. the one that is most
likely to be traversed, given an obversation sequence O and a model λ.

3. Determine how to adjust the parameters of λ in order to maximize P (O|λ).

These problems are also known as the evaluation problem, the decoding problem, and the
optimizing problem, as explained detailedly below [20, 15].

Solution to the First Problem

This problem can be seen as determining how well the given model corresponds to a given
observation sequence. This is useful when choosing between one out of several competing
models, e. g. in sign language recognition where each word matches an HMM, the HMM
λi with the highest P (O|λi) would determine the recognized word [20, 15].

The easiest way of solving the problem would involve enumerating all possible state
sequences of the same length T as the observation sequence, calculating the probability
for each and then summing up all these probabilites to determine P (O|λ). However,
this calculation method would be very ine�cient, and thus the more e�cient Forward-
Backward Procedure is used [20].

It de�nes the forward variable αt(i) as the probability of a partial observation sequence
O1O2 · · ·Ot up to t < T with the model being in state Si at time t,

αt(i) = P (O1O2 · · ·Ot, qt = Si |λ). (2.3.8)

The problem can now be solved inductively through

1. Initialization,

α1(i) = πibi(O1) , 1 6 i 6 N (2.3.9)

2. Induction,

αt+1(j) =

[
N∑
i=1

αt(i) · aij

]
· bj(Ot+1) , 1 6 t 6 T − 1

1 6 j 6 N (2.3.10)

19

2 Related Work

Figure 2.3.3: Forward-Backward Procedure (original �gure in [13])

3. Termination,

P (O|λ) =
N∑
i=1

αT (i). (2.3.11)

Figure 2.3.3 outlines how the induction step works. In each step, the probability of each
previous partial observation sequence is multiplied with the associated state transition
probability. The products are summed up and multiplied with the symbol probability for
the current observation symbol. That way, at each step all previous partial observation
sequence probabilities merge into each new such probability. This is possible because
the process of choosing a next state only depends on the current state and not any
predecessor states. Finally, the termination sums up the results of the last step (ibid.).

In a similar way, a backward variable βt(i) can be de�ned as the probability of a partial
observation sequence Ot+1Ot+2 · · ·OT from t + 1 to T with the model being in state Si
at time t:

βt(i) = P (Ot+1Ot+2 · · ·OT | qt = Si, λ) (2.3.12)

Just as with the forward variable, the problem can also be solved using the backward
variable:

1. Initialization,

βT = 1 , 1 6 i 6 N (2.3.13)

2. Induction,

βt(i) =

N∑
j=1

aij · bj(Ot+1) · βt+1(j) , t = T − 1, T − 2, · · · , 1

1 6 i 6 N (2.3.14)

20

2 Related Work

3. Termination,

P (O|λ) =
N∑
j=1

πj · bj(O1) · β1(j). (2.3.15)

In order to calculate P (O|λ), only one of these methods is necessary. However, for
attempting to solve the third problem of HMMs, both the forward and the backward
variable are needed (ibid.).

Solution to the Second Problem

The second problem tries to decode the hidden part of the HMM, i. e. the state sequence
Q = q1q2 · · · qT given the model and an observation sequence O = O1O2 · · ·OT . The
state sequence cannot be determined with absolute certainty, so the problem is solved as
good as possible using the Viterbi Algorithm.

The Viterbi algorithm de�nes δt(i) as the highest probability along a single path up to
time t 6 T . Additionally, a variable that keeps track of the state that was transitioned
to has to be de�ned, called ψt(i). This variable is needed because the desired result is
the actual state sequence with the highest probability, and not the highest probability
itself. The variables are de�ned inductively as follows (ibid.):

1. Initialization:

δ1(t) = πi · bi(O1) , 1 6 i 6 N (2.3.16)

ψ1(i) = 0 (2.3.17)

2. Induction:

δt(j) = max
16i6N

[δt−1(i) · aij] · bj(Ot) , 2 6 t 6 T

1 6 j 6 N (2.3.18)

ψt(j) = argmax
16i6N

[δt−1(i) · aij] , 2 6 t 6 T

1 6 j 6 N (2.3.19)

3. Termination:

p∗ = max
16i6N

[δT (i)] (2.3.20)

q∗T = argmax
16i6N

[δT (i)] (2.3.21)

4. State sequence backtracking:

qt∗ = ψt+1(q
∗
t+1), t = T − 1, T − 2, · · · , 1 (2.3.22)

21

2 Related Work

Figure 2.3.4: Illustration of ξt(i, j) (�gure taken from [13])

The Viterbi algorithm is similar to the calculation of the forward variable in the Forward-
Backward algorithm, except the maximum probability of the previous iteration is used
rather than the sum of previous probabilities. The actual state sequence can be extracted
using ψt(j) which depends on the calculations of δt−1(i) (ibid.).

Solution to the Third Problem

The third problem corresponds to training HMMs in order to make them recognize pre-
viously unknown data. There is no known way of analytically solving this problem, i. e.
maximizing P (O|λ). However, it can be maximized locally using iterative algorithms,
e. g. the Baum-Welch method [20, 15].

First, ξt(i, j) needs to be de�ned as the probability of being in state Si at time t and in
state Sjat time t + 1, given an observation sequence O and a model λ, as illustrated in
�gure 2.3.4, i. e.

ξt(i, j) = P (qt = Si, qt+1 = Sj |O, λ). (2.3.23)

Using the forward and backward variables from 2.3.10 and 2.3.14, ξt(i, j) can be written
as follows [20],

ξt(i, j) =
αt(i) · aij · bj(Ot+1) · βt+1(j)

P (O|λ)

=
αt(i) · aij · bj(Ot+1) · βt+1(j)∑N

i=1

∑N
j=1 αt(i) · aij · bj(Ot+1) · βt+1(j)

. (2.3.24)

22

2 Related Work

Another formular that is needed de�nes γt(i) as the probability of being in state Si at
time t, given an observation sequence O and a model λ, i. e.

γt(i) = P (qt = Si|O, λ). (2.3.25)

This can be expressed as

γt(i) =
N∑
j=1

ξt(i, j). (2.3.26)

If γt(i) is summed over time t, the result is the expected number of transitions from state
Si. In a similar manner, summing ξt(i, j) over time results in the expected number of
transitions from Si to Sj (ibid.):

T−1∑
t=1

γt(i) = expected number of transitions from Si (2.3.27)

T−1∑
t=1

ξt(i, j) = expected number of transitions from Si to Sj . (2.3.28)

Given these and the previous formulas, as well as an observation sequence O, the param-
eters of an HMM can be reestimated,

πi = expected number of times in state Si at time (t = 1) = γ1(i), (2.3.29)

aij =
expected number of transitions from state Sj to state Sj

expected number of transitions from state Si

=

∑T−1
t=1 ξt(i, j)∑T−1
t=1 γt(i)

, (2.3.30)

bj(k) =
expected number of times in state Sj and observing symbol vk

expected number of times in state Sj

=

∑
t∈[1,T]∧Ot=vk

γt(j)∑T
t=1 γt(j)

. (2.3.31)

This new HMM is called λ. Baum and his colleages have proven that the probability of
the sequence used for reestimating, given the new model λ, is either higher than or equal
to the probabiliy of the sequence, given the old model, i. e. P (O|λ) > P (O|λ). If both
probabilities are equal, then λ = λ (ibid.).

2.3.4 Types of Models

The type of HMMs assumed for all above formulas and theorems is the ergodic model
(shown in �gure 2.3.5 on the left). This model is the most general type where all states

23

2 Related Work

Figure 2.3.5: Ergodic model (l.) and LR-model (original �gures in [4])

are interconnected and the initial probability for each state can be any value (as long as
the stochastic constraints are satis�ed) [20].

Additional restrictions can be imposed on this type, which results in more speci�c models
such as the LR-model (�gure 2.3.5, on the right). This type can be of interest in language
recognition since it can represent how a signal changes over time. An example transition
probability matrix could be

A =

a11 a12 a13 0
0 a22 a23 a24
0 0 a33 a34
0 0 0 a44

 .

The reach R of such a model is de�ned as the number of states that a state Si can
reach (excluding Si itself) [20, 7, 4]. In the above example, the reach would be 2. These
properties can be formulated as

aij = 0 , j < i (2.3.32)

aij = 0 , j > i+R. (2.3.33)

Further constraints are imposed on the initial state probabilities, such that

πi =

{
1 , i = 1

0 , i > 1
(2.3.34)

There are more types of models that will not be discussed as they are not as important
for this thesis as ergodic and LR-models.

2.3.5 Continuous Observation Density

A downside of �nite observation symbol alphabets, as used before, is that in many appli-
cations of interest the observations are continuous vectors, e. g. vectors of real numbers.

24

2 Related Work

A possible solution to this problem lies in quantization, such that a symbol from the
alphabet close to the actual observation is used. However, the signal might be severely
degraded due to such a process, and thus a more convenient approach would be to use
continuous observation densities with HMMs, i. e. an in�nite alphabet of observation
symbols [20, 15, 8].

Due to this in�nite alphabet, continuous density HMMs (CD-HMMs) cannot use a dis-
crete probability density in each state. Instead, they make use of a probability density
function (pdf) which is usually a mixture of weighted logarithmically concave functions,
e. g. Gaussian distributions. Using a mixture model with M components, for an obser-
vation symbol vector O the probability distribution is expressed as follows [20, 8],

bj(O) =

M∑
m=1

cjm · f [O,µjm,Σjm] ,1 6 j 6 N. (2.3.35)

The logarithmically concave function f has a mean vector µjm and a covariance matrix
Σjm as additional arguments, both depending on the state Sj and current mixture m.
cjm are the weighting coe�cients, which satisfy the stochastic constraints,

M∑
m=1

cjm = 1 , 1 6 j 6 N (2.3.36)

cjm > 0 , 1 6 j 6 N, 1 6 m 6M (2.3.37)

since the pdf's area should be 1, i. e. it should be normalized [20].

The parameters and weighting coe�cients can also be reestimated to improve P (O|λ),
similar to equations 2.3.29-2.3.31, as follows,

cjk =

∑T
t=1 γt(j, k)∑T

t=1

∑M
k=1 γt(j, k)

, (2.3.38)

µjk =

∑T
t=1 γt(j, k) ·Ot∑T

t=1 γt(j, k)
, (2.3.39)

Σjk =

∑T
t=1 γt(j, k) · (Ot − µjk)⊗ (Ot − µjk)T∑T

t=1 γt(j, k)
, (2.3.40)

where ()T marks vector transposing, ⊗ the dyadic product, and γt(j, k) the probability
of being in state Sj with the kth mixture component for Ot at time t (ibid.),

γt(j, k) =

[
αt(j) · βt(j)∑N
j=1 αt(j) · βt(j)

]
·

[
cjk · f(Ot, µjk,Σjk)∑M

m=1 cjm · f(Ot, µjm,Σjm)

]
. (2.3.41)

This term equals γt(j) from 2.3.26 if the mixture is simple, i. e. M = 1 (and thus k = 1)
(ibid.).

25

2 Related Work

2.3.6 Scaling

When implementing HMMs, more issues emerge that need to be solved. One of these
issues is arithmetic under�ow during probability calculations. An example would be the
forward variable αt(i), which is a sum of terms of the following form,(

t−1∏
s=1

aqsaqs+1

t∏
s=1

bqs(Os)

)
, qt = Si

where in general the a and b terms are all signi�cantly less than 1. For large values of t,
this will result in result in very small numbers, eventually exceeding the precision range
of a computer (the backward variable β shows similar behavior). Thus, the α and β
variables have to be scaled in order to prevent under�ow [20].

The goal is to calculate a variableα̂ with

α̂t(i) =
αt(i)∑N
j=1 αt(j)

= Ctαt(i), (2.3.42)

i. e. to scale each αt by the sum of all αt. This is done by alternatingly calculating ᾱt

and α̂t for the current index t, where

ᾱ1(i) = α1(i), (2.3.43)

and then inductively

ct =
1∑N

i=1 ᾱt(i)
, (2.3.44)

α̂t(i) = ctᾱt(i), (2.3.45)

ᾱt+1(j) =
N∑
i=1

α̂t(i) · aij · bj(Ot+1). (2.3.46)

It can be seen that ᾱ is initialized with the non-scaled α1 and then each α̂t scales the
appropriate ᾱt by the sum over all ᾱt, which is denoted as scaling coe�cient ct. In each
new step, ᾱt+1 must be calculated �rst, using the scaled α̂t from the previous step [24].

The di�erence between Ct and ct for t > 1 (since C1 = c1) is that the former is calculated
using the sum of all αt while the latter uses the sum of all ᾱt. Rahimi (ibid.) also shows
how Ct can be expressed in terms of ct,

Ct =
1∑N

j=1 αt(j)
, (2.3.47)

ct =
1∑N

j=1 ᾱt(j)
, (2.3.48)

Ct =
t∏

s=1

cs. (2.3.49)

26

2 Related Work

The backward variable β is scaled by the same scaling coe�cients as α (ibid.),

β̄T (i) =βT (i), (2.3.50)

β̂t(j) =ctβ̄t(i), (2.3.51)

β̄t(j) =
N∑
i=1

aij · bj(Ot+1) · β̂t+1(i). (2.3.52)

It is also shown by Rahimi (ibid.) that the formulae for ξ and γ change to

ξt(i, j) =α̂t(i) · aijbj(Ot+1) · β̂t+1(j), (2.3.53)

γt(i) =α̂t(i) · β̂t(i) ·
1

ct
. (2.3.54)

The probability of an observation sequence given the model, i. e. P (O|λ) is no longer
calculated by summing up all α̂T as in equation 2.3.11, since α̂T are scaled. P (O|λ)
could instead be calculated using the following property derived from equations 2.3.47
and 2.3.49,

CT =
1∑N

j=1 αT (j)
=

1

P (O|λ)
(2.3.55)

⇔
T∏
t=1

ct =
1

P (O|λ)
(2.3.56)

⇔ P (O|λ) =
1∏T

t=1 ct
. (2.3.57)

However, since P (O|λ) would be out of range, log(P (O|λ)) is calculated instead,

log(P (O|λ)) =−
T∑
t=1

log(ct). (2.3.58)

The re-estimation formula for aij can now be written as

aij =

∑T−1
t=1 α̂t(i) · aijbj(Ot+1) · β̂t+1(j)∑T−1

t=1

∑N
j=1 α̂t(i) · aijbj(Ot+1) · β̂t+1(j)

. (2.3.59)

Re-estimation of bj or the probability distribution function parameters is done equally
by just replacing each α and β by α̂ and β̂ , respectively [20, 24].

Rabiner also mentions the use of logarithms for the Viterbi state sequence. Since its
calculation consists of a product of probabilities, the logarithms of each of these factors
can be summed up [20].

27

2 Related Work

2.3.7 Multiple Observation Sequences

Rabiner [20] brings up another issue that occurs when training an HMM separately with
single observation sequences when there is only a small number of observations for a state.
This generally applies to recognition of handwriting, speech and sign language and needs
to be solved. The re-estimation formulae are changed to comply with a set of K obser-
vation sequences, i. e. Θ = [O(1), O(2), · · · , O(K)], where each O(k) = O

(k)
1 O

(k)
2 · · ·O

(k)
Tk

.
The goal now is to maximize

P (Θ|λ) =
K∏
k=1

P (O(k)|λ)

=

K∏
k=1

Pk. (2.3.60)

Van Oosten [4] shows how to build new re-estimation formulas for scaled HMMs with
multiple observation sequences as input,

πi =

∑K
k=1 γ

(k)
1 (i)∑N

j=1

∑K
k=1 γ

(k)
1 (j)

, (2.3.61)

aij =

∑K
k=1

∑Tk−1
t=1 α̂

(k)
t (i) · aij · bj(O(k)

t+1) · β̂
(k)

t+1(j)∑K
k=1

∑Tk−1
t=1 α̂

(k)
t (i) · β̂(k)t (i) · 1

c
(k)
t

, (2.3.62)

bj(l) =

∑K
k=1

∑
t∈[1,Tk−1]∧Ot=vl

α̂
(k)
t (i) · β̂(k)t (i) · 1

c
(k)
t∑K

k=1

∑Tk−1
t=1 α̂

(k)
t (j) · β̂(k)t (i) · 1

c
(k)
t

. (2.3.63)

For continuous-density HMMs, new values for µ and Σ can be calculated as follows,

µjn =

∑K
k=1

∑Tk
t=1 γ

(k)
t (j, n) ·O(k)

t∑K
k=1

∑Tk
t=1 γ

(k)
t (j, n)

, (2.3.64)

Σjn =

∑K
k=1

∑Tk
t=1 γ

(k)
t (j, n) · (O(k)

t − µjn)⊗ (O
(k)
t − µjn)T∑K

k=1

∑Tk
t=1 γ

(k)
t (j, n)

, (2.3.65)

where γ(k)t (j, n) simpli�es to γ(k)t (j) if the mixture is simple [20, 24, 4]. Van Oosten [4]
explicitly uses µ for calculating Σ, while Rabiner does not clarify whether µ or µ is used.

2.3.8 Initialization

Training and other basics of hidden Markov models have already been discussed. How-
ever, another very important part is initialization, i. e. determining the initial parameters
of an HMM. There are several approaches that deal with this matter.

28

2 Related Work

Liu et al. [10] propose three di�erent ways of automatic initialization,

� Single random initial models,

� Multiple random initial models,

� Directly computed models.

The use of single random initial models is discouraged, as HMMs highly depend on their
initial values. This is due to the Baum-Welch algorithm only being able to �nd a local
rather than a global maximum, and thus the worse the initial choice is, the worse the
trained HMM will perform.

The second approach attempts to solve this issue by generating multiple random models
for initialization, distributed evenly in space. It is expected that several models near the
global maximum can be found, which leads to the best possible results after performing
Baum-Welch training.

As Liu et al. (ibid.) conclude, directly computing the initial model is the most convenient
approach in �nding the global maximum. However, they only provide formulas for HMMs
with a �nite number of observation symbols and do not cover continuous observation
densities.

Kelly et al. [7] summarize di�erent ways of initialization that are applicable to continuous
observation densities. They describe one such approach to be manually labeling obser-
vation sequences, splitting them in a pre-de�ned number of states and then computing
initial parameters for these states.

They re�ne this process by additionally automating the labeling of observation sequences,
with the aim of keeping human intervention at a minimum. The goal is to �nd an HMM
with the best combination of (S,R), where S is the number of states and R the reach of
a state, i. e. the number of states that a state can transition to in an LR-model.

This is done by iterating over possible values for S and R. First, one out of K previously
recorded observation sequences is chosen at random, which will be calledO(r). A principal
component analysis is performed on the sequence, then the k-means clustering algorithm
is used on the principal components in order to divide the observations into clusters.
Lastly, the S − 1 indices are found that best divide the observation sequence into S
states.

For each of these states, the covariance matrix Σ and mean vector µ are calculated, then
the newly created model is trained using the remaining K−1 observation sequences. The
Viterbi algorithm helps determining the most likely state sequence of previously chosen
observation sequence O(r), which is then used to re-align the initial S states. After this
whole process, di�erent values for S and R are chosen in order to �nd a pair (S,R) which
provides the best possible HMM (ibid.).

29

2 Related Work

2.4 Recognizing Sign Language

Automatic sign language recognition involves two major processes, namely extracting
(detecting) features and interpreting (recognizing) them, as well as several problems that
come along with these two. Features that can be extracted to help understanding sign
language include facial expression, head posture, body posture, hand an arm location,
handshape, and hand orientation [19]. However, it is not necessary to extract all these
features, as good results can also be achieved by only seeing a subset of them (p. 26 in
[19]).

The process of recognition usually relies on hidden Markov models [8, 6, 15, 17], while
di�erent technology has been used to detect features. This section will give an overview of
previous work on both processes and then outline common problems and their solutions.

2.4.1 Overview

Early work in extracting sign language features by Takahashi and Kishino ([18]) in 1991
relied on wired gloves the user had to wear. The system was capable of recognizing
handshapes, but ignored any other features and was limited to �nger spelling, requiring
all words to be spelt rather than signed.

Their experiments showed that 30 out of 46 pre-de�ned gestures of the Japanese kana
manual alphabet could be recognized. For speci�c gestures, additional information such
as ��ngertips touching� were required, but not supplied by the gloves (ibid.).

A later approach in 1995 by Starner and Pentland [17] featured real-time recognition
of American Sign Language from video and made use of HMMs. It required the user
to wear solid colored gloves for better stability. Several restrictions were imposed, for
instance some features of ASL (referencing objects by pointing at them, as well as all
facial features) were ignored, and only sentences of a speci�c type (�personal pronoun,
verb, noun, adjective, same personal pronoun�) were regarded.

The system had a word accuracy of 99.5% of 395 sentences on training with grammar
restrictions enabled, and 92% with grammar restrictions disabled. A problem with dis-
abled restrictions was multiple insertion of the same sign, even if it was only signed once
(ibid.).

Vogler and Metaxas ([15]) used 3D data for their system in 1998 by setting up a system
of three orthogonally placed webcams, see �gure 2.4.1. After recovering the body parts
from video, the data were used as input for HMMs for continuous (rather than isolated)
signer-dependent sign language recognition. They experimented with 2D data input and
the results showed that by using 3D data, a higher word accuracy could be achieved
(ibid.).

In 2007, Dreuw et al. [9] proposed a signer-independent system for sign language recog-
nition based on speech recognition techniques, using a single webcam and thus 2D in-
formation, without the need for any gloves. After several optimazations, the word error

30

2 Related Work

Figure 2.4.1: Vogler and Metaxas' method using three orthogonally placed webcams (�g-
ure taken from [15])

rate could be decreased to 17.9% on a vocabulary of 104 signs signed by three speakers
(ibid.).

Unlike previous works that concentrated on manual features only, a more recent approach
in 2009 by Kelly et al. [6] also incorporates a non-manual feature, namely head movement.
The system relies on a single webcam and the user wearing colored gloves for continuous
sign recognition. Testing of the framework consisted of 160 video clips of unsegmented
sign language sentences and a small vocabulary of eight manual signs and three head
movement gestures. A detection ratio of 95.7% could be achieved (ibid.).

The Center for Accessible Technology in Sign (CATS) shows a demo on how Kinect is used
in CopyCat, achieving a 98.8% sentence recognition accuracy on a six-word vocabulary
and awaiting any number of signs [31, 44]. CopyCat is a platform for deaf children,
designed to help �develop working memory and language skills while they play the game�,
normally using a 2D camera in combination with wired gloves [43].

A larger ongoing project called SignSpeak is EU-funded and was introduced by Dreuw et
al. [3]. It is being built on previous work, uses an ordinary 2D camera and aims at trans-
lating continuous sign language to text, supporting a large vocabulary and recognizing
both manual and non-manual features [2, 3].

31

2 Related Work

Figure 2.4.2: 3D to 2D reduction in Nam and Wohn's work (�gure taken from [16])

2.4.2 Common Problems

There are several problems that need to be overcome when building a system for sign
language recognition, such as

� how to extract features, i. e. how to acquire data of body parts, and combine them,

� how to handle statistical variations in the way signs are performed, either by dif-
ferent signers or by the same signer, and

� how to deal with movement epenthesis, i. e. the movement inbetween two signs in
continuous sign language recognition.

This part will review previous work on the topic that deals with approaches on how to
solve the �rst two issues [31, 9, 6, 17, 18, 15]. The problem of movement epenthesis
recognition will not be regarded as this work concentrates on isolated sign recognition.

Extracting Features

The problem of feature extraction has already been partly discussed in section 2.4.1.
Early approaches using data gloves focus on recognizing handshapes rather than move-
ment and can thus only be used for �nger spelling [18]. Since movement is one of the
most important parts of sign language (p. 26 in [19]), these systems cannot be used alone
for sign language recognition.

Later approaches rely on 2D cameras for feature extraction, some of requiring users to
wear solid colored gloves, others detecting skin color [6, 9, 17, 15]. While most of them
use a single camera and cannot identify handshapes, the solution of Vogler and Metaxas
[15] has three orthogonally placed webcams acquire 3D data, resulting in more accurate
recognition.

In 1996, Nam and Wohn ([16]) built a system for hand gesture recognition where 3D
data of the user's hands are acquired and reduced to 2D coordinates by projecting them
on a plane, as �gure 2.4.2 shows.

Most work concentrates on extracting manual features only, while the system of Kelly et
al. [6] also takes account of head movement using face tracking, and manages to achieve

32

2 Related Work

Figure 2.4.3: Optimal state model for Vogler and Metaxas' work (�gure taken from [15])

a high detection ratio. Since non-manual signs are independent from manual signs, they
are processed independently and the information are combined after recognition (ibid.).

The Kinect demo of CopyCat also shows high accuracy using skeletal tracking even
without regarding di�erent handshapes [31, 44].

By additionally detecting facial expressions, as planned for the ongoing SignSpeak project
[2], some important grammatical features and non-manual adverbs (pp. 99-104 in [19])
can be taken into account.

Handling Statistical Variations

Even if signed by the same person, a sign is hardly ever performed twice in exactly the
same way. These statistical variations, both intra- and inter-personal, need to be handled
for convenient sign recognition. This is usually done by introducing HMMs, as previous
work shows [6, 15, 16, 17].

Due to their state-based character, changes of a sign over time as well as varying durations
of the same sign can be described. Vogler and Metaxas determined the optimal state
model for their work to be an LR-model with reach 2, as shown in �gure 2.4.3 [15].

Output probabilities are determined by a logarithmically concave function in contin-
uous density HMMs, or by a weighted mixture of such. Kelly et al. [6] use an M -
dimensional multivariate normal distribution for M-dimensional observation vectors Ot =
{o1, o2, · · · , oM},

N (Ot;µ,Σ) =
1

(2π)
M
2 · |Σ|

1
2

· exp(−1

2
(Ot − µ)T · Σ−1(Ot − µ)), (2.4.1)

where Ot is part of an observation sequence O = O1O2 · · ·OT , µ represents the mean
vector and Σ the covariance matrix. The elements o1, · · · , oM of the feature vector Ot

may represent data from feature extraction, such as �right hand position� or �left shoulder
position� (ibid.).

Kelly et al. also use di�erent HMMs for each hand, and another independent HMM for
head gestures. They propose the 5-dimensional feature vector to consist of the hand posi-
tion relative to the eyes (RPx, RPy), the direction of hand movement (Vx, Vy), and the dis-
tance between both hands (DH), resulting in a feature vectorOt = (RPx, RPy, Vx, Vy, DH)
(ibid.). Training an HMM for a speci�c sign is done as described in section 2.3.8.

33

2 Related Work

34

3 Kinect-based Sign Language

Recognition

The goal of this work is to implement a framework for recognition of isolated signs. More
generally, this framework will be able to recognize any isolated gestures, but will be
tested with signs of German Sign Language (DGS, Deutsche Gebärdensprache).

One di�erence as compared to gestures is the similarity among several signs. While
gesture recognition usually deals with arti�cially created gestures to control devices or
software, these gestures can vary greatly among each other, and thus can be distinguished
more easily. Moreover, gestures are generally less complex than signs and do not involve
as many di�erent handshapes, nor do they include movement of lips or the head.

These features will not be recognized in this work either. However, in order to allow for
high recognition rates, experiments with other features will be made that are o�ered by
Kinect and are uncommon in recognition systems with 2D cameras.

3.1 Project Overview

The framework created as part of this work is called Dragon�y � Draw gestures on the
�y � and mainly consists of two classes that users can integrate in their software. These
classes are DepthCamera and Dragon�y. The former serves as an interface to OpenNI,
i. e. it updates the camera image and supplies data of the skeleton joints � the body
parts �, while the latter processes these data for gesture recognition. The major part of
the framework is shown in the class diagram in �gure 3.1.1.

For gesture recognition, the framework makes use of continuous density HMMs, which
were implemented as part of this thesis as well. The implementation o�ers features
such as automatic initialization, Baum-Welch re-estimation with multiple observation
sequences, and serialization.

ObservationSeqProbs are associated with both HMMs and observation sequences. The
name is an abbreviation for �observation sequence probabilities�, as they link the data
between an observation sequence and an HMM by calculating the (logarithmical) prob-
ability of the sequence given the model. They are also capable of computing the Viterbi
state sequence.

In addition, the framework includes an own implementation of the k-means clustering
algorithm. However, since it only accounts for a small part, its classes are not listed in

35

3 Kinect-based Sign Language Recognition

Figure 3.1.1: UML class diagram of Dragon�y

36

3 Kinect-based Sign Language Recognition

the diagram nor will they be explained in detail. The functionality is described in [5]
and various other sources.

The major parts of the framework is descibed more detailedly throughout this chapter.

3.2 Implementation of Hidden Markov Models

The HMM implementation comprises probabilities for observation sequences, HMMs
themselves, and states of HMMs. An HMM can be created either completely manually �
by de�ning every single parameter by hand �, partly manually by giving an observation
sequence and split indices, or automatically with just observation sequences as input. The
number of states and the name have to be de�ned for any of these methods. Alternatively,
HMMs can be loaded from a �le using the static loadFromFile function.

Each state of an HMM is represented by an HMMState object that contains its state
number. Since only continuous density HMMs are regarded, they feature a mean vector µ
and a covariance matrix Σ, as explained in 2.3.5. The logarithmically concave probability
density function used is a simple-mixture (i. e. M = 1) multivariate Gaussian function1:

N (Ot;µ,Σ) =
1

(2π)
M
2 · |Σ|

1
2

· exp(−1

2
(Ot − µ)T · Σ−1(Ot − µ)).

Partly manual creation works as follows:

� Provide a name, the number of states N , and one observation sequence. Also
provide N − 1 split indices that show at which points in time state changes occur.

� Set initial probabilities π � since an LR-type HMM is used,

π0 = 1

πi = 0 , i > 0.

� Calculate transition probabilities A. WhenN−1 split indices are input, an LR-type
HMM with N states and reach R = 1 will be created, where

aii =
#observations in state Si − 1

#observations in state Si
, 0 6 i < N − 1

ai(i+1) = 1− aii , 0 6 i < N − 1

a(N−1)(N−1) = 1

aij = 0 , 0 6 j < i ∨ j > i+ 1.

� Set up S point clouds using the split indices. The mean vector µ and covariance
matrix Σ of each such point cloud are calculated and set up for the approprate
state.

1The Vision Numerics Libraries are used for vector operations, available at http://vxl.sourceforge.net/

37

3 Kinect-based Sign Language Recognition

Automatic creation is similar, however split indices are no longer provided. Some of the
steps proposed by Kelly et al. [7] (described in section 2.3.8) are used, however they did
not provide a way of determining split indices. Thus, an ergodic model is used with this
initialization method.

� Provide a name, the number of states N , and a set of observation sequences. Other
than the method proposed by Kelly et al., this approach uses all given observation
sequences instead of one randomly chosen sequence.

� Create a point cloud with every single observation from every sequence as a point.

� Perform k-means clustering on the point cloud, initial prototypes are chosen ran-
domly among its points. Empty clusters are avoided by determining a new proto-
type from the biggest cluster. The point chosen is the one farthest away from that
cluster's prototype.

� Sort the resulting clusters � each cluster represents a state. The �rst observation se-
quence of the set is used to determine what clusters its points belong to. Whichever
cluster is encountered next that has not been encountered before, is chosen as the
next state.

� Calculate the transition probability distribution A using data from all observation
sequences, where

aij =
#transitions from Si to Sj

#transitions from Si
, 0 6 i, j < N.

� Compute the initial probability distribution π, where

πi =
#observation sequences starting in Si

#observation sequences
, 0 6 i < N.

� Set each state's µ to the mean vector of the corresponding cluster.

� Determine Σ for each state by calculating the covariance matrix for each corre-
sponding cluster.

After initializing an HMM, an ObservationSeqProbs object (�sequence probabilities� or
�probabilities�) can be created for each observation sequence.

This object links an observation sequence to an HMM and wraps calculation of several
probabilities around it, such as the scaled forward and backward variables, and thus
also the logarithmic probability of the sequence given the HMM. By creating sequence
probabilities for several HMMs using the same observation sequence, it can be determined
which HMM best matches the given sequence.

The Viterbi state sequence can also be calculated by probabilities objects. This is done
using logarithms to prevent under�ows, since the terms can be very close to 0 (see section
2.3.6).

38

3 Kinect-based Sign Language Recognition

With a set of sequence probabilities, an HMM can be re-estimated using the Baum-Welch
algorithm, as explained in sections 2.3.3, 2.3.5 and 2.3.7.

Additional implementation issues were encountered during re-estimation, when some
sequence probabilities could not be calculated due to under�ow, although scaled HMMs
are being used. Since generally only a small amount of sequences is critical and cannot be
used for re-estimation, these sequences are �ltered. The reestimate method returns
the number of these critical sequences. That way, functions calling reestimate know
whether it was successful, and can work around the issue in case the amount of critical
sequences is too high.

The HMM implementation o�ers a static function called createBestHMM that will be
explained in section 3.4.

3.3 Framework Implementation

To create an instance of the framework, a DepthCamera object is needed. This is the
actual interface to OpenNI and could easily be replaced by a similar implementation that
uses a di�erent library for skeleton data. A DepthCamera can either display the camera's
current depth stream, or play a previously recorded �le which is automatically looped.
In addition, the depth stream can also be recorded to a �le. The update method should
be called in a loop as it updates the camera's image.

A DepthCamera supplies the framework with data of the users' joint positions � these are
three-dimensional vectors containing the coordinates of each body part, e. g. left hand,
right elbow, or head. They can be processed and then serve as observations.

The framework itself also o�ers an update-method which needs to be called at each
frame. It stores the current joint positions as well as those of the previous three updates
for each user. The update-method is descibed in �gure 3.3.1, however for simpli�cation,
this graphic only shows the process for one user.

Observations are recorded2 for every user separately, and consist of an N -dimensional
feature vector. This can be data such as velocity or absolute position of each hand, or
distance between hands, among others.

Determining whether observations should be recorded or not works by de�ning a thresh-
old for the strong hand (e. g. the right hand). Whenever that hand is above the given
threshold, for example the torso's Y-position, observations are recorded at each frame
and stored in a local matrix. When the hand is below the threshold, recording is stopped
and the matrix is no longer updated with observations. Several of these matrices are
stored in a list called obsSeqs, an abbreviation for �observation sequences�.

requestObservationRecordingToggle can be called if the user does not wish to
have observations recorded. This method immediately toggles observation recording as

2Recording observations does not mean recording the camera's depth stream, both can be done inde-

pendently.

39

3 Kinect-based Sign Language Recognition

Figure 3.3.1: Statechart diagram of the update-method (for one user)

40

3 Kinect-based Sign Language Recognition

soon as the user is below the de�ned threshold, and automatically deletes the un�nished
observation sequence in case it was called while recording.

If HMMs have already been added to the framework, every time the user's hand moves
below the threshold, sequence probabilities of the newly recorded sequence are calculated
for each existing HMM. The probability of the same sequence, given each model, is
calculated, and the results are compared. This allows determining the model that best
matches the sequence.

To make use of this information, a system for callback functions has been implemented.
Since HMMs must have distinct names, these can be uniquely associated with a sig-
nal3 using a hashmap. A signal can be linked to or unlinked from an HMM by calling
addEventOnGesture or removeEventOnGesture, respectively, providing both the
HMM's name and a pointer to the callback function.

HMMs support serialization and can easily be saved to a �le using saveHMMToFile.
The appropriate method to load an HMM is called loadHMMFromFile.

For easier testing, an extended feature vector sequence has been implemented, which is
not shown in the above �gures. These extended vector sequences work exactly as the
ordinary observation sequences, and are stored in a list similar to obsSeqs. They are
also updated at each frame, however a much larger number of features can be stored.

The list of these sequences can be saved at any time, and loading it extracts a smaller
amount of features, from which ordinary observation sequences can be generated. This
way, testing can be done much faster, since any OpenNI recording of a depth stream
can be played once and HMMs can be created with several di�erent feature vectors by
extracting di�erent parts of the extended vector.

3.4 Initialization and Training

Creating new gestures and training them is done successively in one of several provided
ways. They rely on a function called createBestHMM that is similar to parts of the
method by Kelly et al. as described in 2.3.8, but also modi�es and extends it.

HMMs are created by providing a maximum number of states, a set of observation
sequences � used for initialization and re-estimating � and a set of negative test sequences
that do not contain the actual gesture to be trained. An example of one out of several
similar training sequences is shown in �gure 3.4.1.

Cross validation splits observation sequences into sequences actually used for training
(two third), and positive test sequences the model should recognize correctly without
having them used for training (one third). Additionally, a set of existing HMMs that
represent di�erent gestures can be provided.

3The boost C++ libraries provide signals as an implementation of the observer pattern.

41

3 Kinect-based Sign Language Recognition

Figure 3.4.1: Example training sequence of the sign PAKET (packet)

The algorithm then initializes and trains several HMMs using the training sequences,
and determines the optimal HMM given the rest of the data, according to an optimality
criterion that must be de�ned as well. In detail, the algorithm works as follows:

1. Split provided observation sequences into training and positive test sequences ac-
cording to one of the ways shown in �gure 3.4.2. Two third are used for training
and one third for positive testing.

2. Initialize with S = 1 states. Set the best HMM to NULL and the best value for
each optimality criterion to the worst possible value.

3. Create M = 5 HMMs, each with S states, from the given set of training sequences
using automatic initialization. During this initialization, k-means clustering is per-
formed which may deliver di�erent results each time due to random initial proto-
types. Hence, the creation process is repeated several times.

4. Re-estimate these HMMs by the Baum-Welch algorithm, using the same training
sequences as input.

5. Set m = 1.

6. Among the M created HMMs, choose the one at position m.

7. If at least half of the observation sequences could not be processed due to under�ow,
discard this HMM and go to step 10.

8. Determine the values for all optimality criteria given the newly created model and
all provided data, such as positive and negative test sequences, and HMMs of other
gestures.

9. Update the best value for each optimality criterion. If this HMM is better than
the stored best HMM according to the chosen criterion, de�ne it as the new best
HMM.

42

3 Kinect-based Sign Language Recognition

Figure 3.4.2: Sequences used as input for HMM initialization

10. Increment m. If m 6M , go to step 6.

11. Increment S. If S 6 N (where N is the maximum number of states), go to step 3.

12. If any the three split combinations is left, split observation sequences accordingly
and go to step 2.

13. Return the best HMM (which is NULL in case the procedure failed to create any
HMM at all).

This procedure guarantees to deliver a re-estimated HMM that best matches the given
data for the chosen criterion, depending on how well k-means clustering performs. Pos-
sible optimality criteria are best recognition rate, highest variance, and lowest negative
above worst positive rate.

The �rst only uses positive test sequences and tests them with the newly created HMM
and all other HMMs. Negative test sequences are neglected. Each positive test sequence
is tested with all HMMs and the number of correct results is saved and then summed up.
A test result is correct when the sequence given the new HMM has a higher probability
than the sequence given any other HMM. The summed number is divided by the total
number of tests, and the resulting recognition rate is to be maximized.

The second criterion calculates the average logarithmic probability of all negative test
sequences given the new model, and subtracts it from the average logarithmic probabil-
ity of all positive test sequences given that model. Gestures of the new model can be
distinguished from other gesture more clearly the higher this value is.

Determining the lowest negative above worst positive rate is done by saving the lowest
probability of any positive test sequence given the new model � i. e. of the worst positive
test sequence. Then, probabilities of all negative test sequences are calculated for the
model. The number of negative test sequences, with a probability higher than that of the
worst positive test sequence, is divided by the total number of negative test sequences.
The lower this value gets, the better the success rate of the new HMM is.

For equal values of the third criterion, the second criterion is used to determine which
HMM is better. HMMs should be created by saving the extended feature vector and
using the trainHMMFromFiles method.

However, the list of locally saved observation sequences can also be used to create a new
HMM by calling addNewHMMFromLocalObservations from outside the update-
method. This method processes the data inside obsSeqs for use with createBestHMM.

43

3 Kinect-based Sign Language Recognition

Since no negative sequences can be provided this way, the best recognition rate criterion
is used.

3.5 Using the Framework

The framework is meant to be integrated into other software that uses its supplied meth-
ods accordingly. However, a small application for testing has been created as part of this
work in order to demonstrate the usage.

The application incorporates a part of OpenNI that displays the camera's depth stream
in an OpenGL window using GLUT4.

Other features include the ability to set up a depth camera for displaying as well as
recording its stream, or playing a previously recorded �le, by either passing --record
or --play. The framework is updated at 60 frames per second, and the keyboard can
be used for additional controls.

Pressing p pauses or resumes the stream, the numbers 1 to 4 toggle observation recording
for the appropriate user. Recorded observations can be used to create an HMM by
pressing t, and HMMs can be loaded or saved by pressing l or s, respectively. The above
mentioned extended feature vector sequences can be saved by pressing o and loaded by
pressing i. Extracting a smaller set of features, however, is currently hard-coded, as
using trainHMMFromFiles is.

Whenever needed, the application will ask for input on the console. Pressing Esc termi-
nates the program. An example of the application and its output, after performing the
sign DANKE (thank you) once and GIRAFFE twice, can be seen in �gure 3.5.1.

The source code of this framework as well as the testing application can be found on the
appended disc.

4The OpenGL Utility Toolkit, available at http://www.opengl.org/resources/libraries/glut/.

44

3 Kinect-based Sign Language Recognition

Figure 3.5.1: Example output after performing three signs

45

4 Experiments and Evaluation

With a testing application ready, sign language experiments have been started. Using
the extended feature vector, several features have been saved. These are:

� 2-dimensional positions of both hands relative to the neck (xabs, yabs),

� The distance between both hands,

� 2-dimensional movement of both hands (xrel, yrel), i. e. their position relative to
the position two updates before,

� 2-dimensional positions of both elbows relative to the neck,

� The absolute velocity of each hand, i. e. v =
√
x2rel + y2rel,

� The absolute distance of each hand to the neck, i. e. d =
√
x2abs + y2abs, and

� 2-dimensional normalized velocity of each hand, which is calculated as follows:

(vx, vy) =

(0, 0) , xrel = 0 ∧ yrel = 0(
xrel

|xrel|+ |yrel|
,

yrel
|xrel|+ |yrel|

)
, else

.

Isolated experiments have been made to determine the most suitable feature vector,
which is seven-dimensional and consists of (xabs, yabs) for both hands, vright, vleft, and
the x-position of the right elbow. The elbow's position helps distinguish signs where the
hand is near the head, but di�erently rotated, such as in the sign BERLIN as compared
to VERSTEHEN (to understand). The elbow is then either close to the body or spread
out.

With the determined feature vector, a selection of nine signs has been performed by a
signer of DGS, and for each sign an HMM has been created. These signs are tested with
separate recordings of the same signer. Another test is done by a non-�uent signer who
has been taught the signs. It shows how the HMMs perform when used by a person which
has not trained them. In a second run, the same nine signs are trained with sequences
of both signers and then tested by them.

The results of these three tests will be evaluated. In both runs, HMMs are initial-
ized automatically with up to ten signs. The signs used are BERLIN, DANKE (thank
you), GIRAFFE, KOCHEN (to boil), KREUZBERG, MITTE, NEUKÖLLN (districts
in Berlin), PAKET (packet), and VERSTEHEN (to understand). Six of these signs are

46

4 Experiments and Evaluation

Figure 4.0.1: Results of the DGS signer testing the previously trained signs

performed with one hand (both persons' right hands), the other three are performed with
two hands. Information on how to perform these signs is included in the appendix.

The results have been normalized to a value between 0 and 1 by arti�cially de�ning the
best possible probability as b = −700 and setting it to 1, and then normalizing all other
values x by

x 7→ b

x
.

Each test consists of 30-45 test sequences. To keep the data simple, it is reduced to the
important parts. All �gures show the recognition rate of each sign at the bottom, and a
box plot.

If a sign was recognized correctly, the box plot shows the distance between the (normal-
ized) probability of the recognized sign and the probability of the second best sign. In
case a sign was not recognized correctly (indicated by the label 'incorrect '), the distance
between the recognized sign's probability and the actually performed sign's probability
is shown.

Figure 4.0.1 shows results of the �rst run with tests of the same signer of DGS who has
trained the signs beforehand.

Except for DANKE and NEUKÖLLN, all signs are recognized with a rate of 100%.
The three two-handed signs (KOCHEN(Wasser), MITTE and PAKET) show a higher

47

4 Experiments and Evaluation

Figure 4.0.2: Results of the non-�uent signer testing the DGS signer's trained signs

distance to the second best sign than the rest, except NEUKÖLLN which at the same
time features the worst recognition rate of 93,9%. Incorrect recognitions are usually close
to the actually performed signs' probabilities.

Results of the non-�uent signer testing the DGS signer's trained signs are shown in �gure
4.0.2.

It can be seen that the results are signi�cantly worse. The �rst three signs could not be
recognized at all, while the two-handed signs, as well as NEUKÖLLN and VERSTEHEN
show a rather high recognition rate. Recognizing KREUZBERG rather than something
else is very close. Distances to the second best signs are generally lower than in the �rst
test.

The �nal test run uses a di�erent set of HMMs, trained not only by the signer of DGS,
but also by the non-�uent signer. Results are shown in �gure 4.0.3.

The recognition rates are much better than in the second test, although the distances
to the second best signs are generally lower than in the �rst test. The signs o�ering
the highest distances � KOCHEN(Wasser), MITTE, NEUKÖLLN and PAKET � are the
same as in the �rst test.

The only exception is the HMM for DANKE which features the worst performance � all
of its tests have a logarithmic probability of −∞, and thus ∞ distance to the second
best sign. This may be due to the way DANKE is performed, which mainly involves
z-movement of the strong hand as compared to the other signs.

48

4 Experiments and Evaluation

Figure 4.0.3: Results of the third test run with signs trained by both signers

The overall results show that using only a single person for training, the trained HMMs
are very signer-dependent. This can be avoided by training HMMs with observation
sequences of several people performing signs di�erently. However, the recognition rates
are not yet optimal and could be improved by testing yet more feature vectors and having
more than two signers train each HMM, but also by improving other parts of the software.

49

5 Conclusion and Future Work

This work has shown that Kinect and depth cameras in general are well-suited for sign
language recognition. They o�er 3D data of the environment without a complicated
camera setup and e�ciently extract the users' body parts, allowing for recognition of not
just hands and head, but also other parts such as elbows that can further help distinguish
similar signs.

Another advantage is the independency of lighting conditions, as the camera uses infrared
light. All body parts are detected equally well in a dark environment and there is no
need for the user to wear special-colored gloves or wired gloves.

As part of this work, a framework for isolated gesture recognition has been created, and
tested with signs of German Sign Language. It features hidden Markov models with
continuous observation density, and initialization methods for HMMs that deliver the
best suited model from k-means clustering results, given an optimality criterion as well
as positive and negative testing data. The models need to be scaled in order to prevent
under�ow, and are trained with multiple observation sequences using the Baum-Welch
algorithm.

Experiments have shown that when training signs with only one signer, the resulting
HMMs are very signer-dependent, and �ve out of nine signs are only recognized reliably
by the person who has trained them.

In a subsequent experiment, the same nine signs have been initialized and trained using
observation sequences of two people. The results show a more convenient recognition rate,
with eight of nine signs being recognized at least at 97,7%. The remaining sign could not
be recognized at all, which is likely due to the fact it involves mainly z-movement rather
than x- and y-movement.

Accurately recognizing sign language, however, not only involve tracking hands. There
are signs that only di�er in facial expression or handshape and are similar otherwise. Fa-
cial expression, body posture and head movement are often used to express grammatical
features that are essential for continuous sign language recognition.

A technical demo and an announced commercial framework are supposed to feature �nger
detection and may improve future sign language recognition. Facial expressions can be
recognized using Kinect's integrated RGB camera, however this would require a well-lit
environment.

Finally, the next step is to enhance the developed framework to feature continuous sign
language recognition. This involves detecting a sign's start and end position, as well as

50

5 Conclusion and Future Work

movement epenthesis as described by Kelly et al. [7] in order to distinguish between
hand movement within a sign and between two signs.

In conclusion, this work shows that the approach of sign language recognition with depth
cameras is worth further consideration and features its own advantages, while leaving
room for improvement of both the developed framework itself as well as underlying
technology.

Parts of these results have been submitted at the International Conference on Arti�cial
Intelligence and Soft Computing 2012 [1].

51

Appendix

Information on how to perform the signs trained in the framework is provided below.
The signs BERLIN, PAKET and VERSTEHEN are only available as videos which can
be found on the included disc. The sign DANKE can be found at [26].

NEUKÖLLN is performed by putting the hand near the heart and moving it in a very
small circle. KREUZBERG is composed of the signs KREUZ and BERG. The former
can be found on the included disc. The remaining signs are shown in �gures 0.1 to 0.4.

Figure 0.1: The sign GIRAFFE in DGS (�gure taken from [25])

52

Appendix

Figure 0.2: The sign KOCHEN(Wasser) in DGS (�gure taken from [25])

Figure 0.3: The sign BERG in DGS (�gure taken from [25])

Figure 0.4: The sign MITTE in DGS (�gure taken from [25])

53

Bibliography

[1] Lang S., Block-Berlitz M., Rojas R.: �Sign Language Recognition with Kinect�, IN:
International Conference on Arti�cial Intelligence and Soft Computing (ICAISC),
2012 (to appear)

[2] Martínez Ruíz G. (CRIC): �Scienti�c understanding and vision-based technological
development for continuous sign language recognition and translation, System Spec-
i�cations and the Corpus Needs (v2)�, SignSpeak Minor Public Deliverable, 2010

[3] Dreuw P., Forster J., Gweth Y., Stein D., Ney H., Martínez G., Vergés-Llahí J.,
Crasborn O., Ormel E., Du W., Hoyoux T., Piater J.,Moya J.M., Wheatley M.:
�SignSpeak � Understanding, Recognition, and Translation of Sign Languages�, IN:
4th Workshop on the Representation and Processing of Sign Languages: Corpora
and Sign Language Technologies, Language Resources and Evaluation Conference
(LREC), 2010

[4] van Oosten J.-P.: �Can Markov properties be learned by hidden Markov modelling
algorithms? �, Master Thesis supervised by Prof. Dr. Lambert Schomaker and Dr.
Marco Wiering, Department of Arti�cial Intelligence at University of Groningen,
The Netherlands, 2010

[5] Block-Berlitz M.: �Java Intensivkurs � In 14 Tagen lernen Projekte erfolgreich zu re-
alisieren�, ISBN: 978-3-64203-954-6, 2nd edition, Springer-Verlag Berlin Heidelberg,
2009

[6] Kelly D., Delannoy J.R., McDonald J., Markham C.: �A Framework for Continuous
Multimodal Sign Language Recognition�, IN: Proceedings of the 2009 International
Conference on Multimodal Interfaces, ISBN: 978-1-60558-772-1, ACM, pp. 351-358,
2009

[7] Kelly D., McDonald J., Markham C.: �Recognizing Spatiotemporal Gestures and
Movement Epenthesis in Sign Language�, IN: 13th International Machine Vision and
Image Processing Conference (IMVIP '09), ISBN: 978-0-76953-769-2, IEEE Com-
puter Society Washington, DC, USA, 2009

[8] Cheng C., Sha F., Saul L.K.: �Matrix Updates for Perceptron Training of Con-
tinuous Density Hidden Markov Models�, IN: Proceedings of Twenty Sixth Interna-
tional Conference on Machine Learning (ICML-09), ISBN: 978-1-60558-516-1, ACM,
pp. 153-160, 2009

[9] Dreuw P., Rybach D., Deselaers T., Zahedi M., Ney H.: �Speech Recognition Tech-
niques for a Sign Language Recognition System�, IN: INTERSPEECH 2007, 8th

54

Bibliography

Annual Conference of the International Speech Communication Association (ISCA
2007), pp. 2513-2516, 2007

[10] Liu N., Davis R. I. A., Lovell B.C., Kootsookos P. J.: �E�ect of Initial HMM Choices
in Multiple Sequence Training for Gesture Recognition�, IN: Proceedings of the In-
ternational Conference on Information Technology: Coding and Computing (ITCC
'04), ISBN: 978-0-76952-108-4, Vol. 2, IEEE Computer Society, pp. 608-613, 2004

[11] Dittrich G., Kiyomi T., Tanaka Y.: �Minna no nihongo I: Übersetzungen & gram-
matikalische Erklärungen�, ISBN: 978-4-88319-239-7, 3A Corporation, 2002

[12] Gesetz zur Gleichstellung behinderter Menschen (Behindertengleichstellungsgesetz -
BGG), Bundesministerium der Justiz, Ausfertigungsdatum: 27.04.2002

[13] Li X., Parizeau M., Plamondon R., �Training Hidden Markov Models with Mul-
tiple Observations � A combinatorial Method�, IN: IEEE Transactions on PAMI,
Vol. PAMI-22, No. 4, pp. 371-377, 2000

[14] Starner T., Weaver J., Pentland A.: �Real-Time American Sign Language Recogni-
tion Using Desk and Wearable Computer Based Video�, IN: IEEE Transactions on
Pattern Analysis and Machine Intelligence, Vol. 20, No. 12, pp. 1371-1375, 1998

[15] Vogler C., Metaxas D.: �ASL Recognition Based on a Coupling Between HMMs
and 3D Motion Analysis�, IN: Proceedings of the Sixth International Conference on
Computer Vision, ISBN: 978-8-17319-221-0, Narosa Publishing House, pp. 363-369,
1998

[16] Nam Y., Wohn K.:�Recognition of Space-Time Hand-Gestures using Hidden Markov
Model �, IN: Proceedings of the ACM Symposium on Virtual Reality Software and
Technology, pp. 51-58, 1996

[17] Starner T., Pentland A.: �Real-Time American Sign Language Recognition from
Video Using Hidden Markov Models�, IN: ISCV '95 Proceedings of the Interna-
tional Symposium on Computer Vision, ISBN: 978-0-81867-190-6, IEEE Publica-
tions, U. S., pp. 265-270, 1995

[18] Takahashi T., Kishino F.: �Hand Gesture Coding Based On Experiments Using A
Hand Gesture Interface Device�, IN: ACM SIGCHI Bulletin, Vol. 23, No. 2, pp. 67-
73, 1991

[19] Boyes Braem P.: �Einführung in die Gebärdensprache und ihre Erforschung�, ISBN:
978-3-92773-110-3, 1st edition, SIGNUM-Verlag, IN: Internationale Arbeiten zur
Gebärdensprache und Kommunikation Gehörloser, No. 11, 1990

[20] Rabiner L.R.: �A Tutorial on Hidden Markov Models and Selected Applications in
Speech Recognition�, IN: Proceedings of the IEEE, Vol. 77, No. 2, pp. 257-286, 1989

[21] Wilbur R.B.: �American Sign Language and Sign Systems�, ISBN: 978-0-83910-994-
5, 1st edition, University Park Press, 1979

[22] Battison R.: �Lexical Borrowing in American Sign Language�, ISBN: 978-0-93213-
002-0, Linstok Press, 1978

55

Bibliography

[23] Szczepanski M.: �GebLex � ein Gebärdenlexikon�, dictionary of German Sign Lan-
guage, version 1.3, 2011

[24] Rahimi A.: �An Erratum for 'A Tutorial on Hidden Markov Models
and Selected Applications in Speech Recognition� ', website of Ali Rahimi
at MIT Media Laboratory, http://xenia.media.mit.edu/~rahimi/rabiner/rabiner-
errata/rabiner-errata.html, 2000

[25] �Das Vokabelheft (Allgemeines Gebärdenwörterbuch)�, online dictionary of Ger-
man Sign Language at University of Hamburg, http://www.sign-lang.uni-
hamburg.de/alex/index.html

[26] �Wikisign � DGS�, online dictionary of German Sign Language,
http://dgs.wikisign.org/wiki/Spezial:Alle_Seiten

[27] O�cial Microsoft Xbox website, introduction of Kinect, http://www.xbox.com/en-
US/kinect

[28] �Countdown to Kinect: 17 Controller-Free Games Launch in November�, Microsoft
News Center, https://www.microsoft.com/presspass/press/2010/oct10/
10-18mskinectuspr.mspx

[29] Kinect Fact Sheet, Microsoft News Center, June 2010,
http://www.microsoft.com/presspass/presskits/xbox/docs/KinectFS.docx

[30] �Kinect Downgraded To Save Money, Can't Read Sign Language�, News at
Kotaku, http://kotaku.com/5609840/kinect-dumbed-down-to-save-money-cant-read-
sign-language

[31] �CopyCat and Kinect�, overview of the CopyCat Kinect demo on
the website of the Center for Accessible Technology in Sign (CATS),
http://cats.gatech.edu/content/copycat-and-kinect

[32] �PrimeSense Supplies 3-D-Sensing Technology to 'Project Natal' for Xbox 360�, Mi-
crosoft News Center, https://www.microsoft.com/Presspass/press/2010/mar10/03-
31PrimeSensePR.mspx

[33] � 'Kinect for Xbox 360' is O�cial Name of Microsoft's
Controller-Free Game Device�, Microsoft News Center,
https://www.microsoft.com/Presspass/Features/2010/jun10/06-
13KinectIntroduced.mspx

[34] �The Open Kinect project - THE OK PRIZE - get $3,000 bounty for
Kinect for Xbox 360 open source drivers�, Adafruit Industries blog,
http://www.adafruit.com/blog/2010/11/04/the-open-kinect-project-the-ok-prize-
get-1000-bounty-for-kinect-for-xbox-360-open-source-drivers/

[35] �Bounty o�ered for open-source Kinect driver�, CNET News,
http://news.cnet.com/8301-13772_3-20021836-52.html

[36] �WE HAVE A WINNER - Open Kinect driver(s) released - Winner will use $3k for
more hacking - PLUS an additional $2k goes to the EFF!�, Adafruit Industries blog,

56

Bibliography

http://www.adafruit.com/blog/2010/11/10/we-have-a-winner-open-kinect-drivers-
released-winner-will-use-3k-for-more-hacking-plus-an-additional-2k-goes-to-the-e�/

[37] �How The X-Box Kinect Tracks Your Moves�, interview at National Public
Radio with Shannon Loftis (Studio Manager at Microsoft Game Studios and
Good Science Studios), Alex Kipman (Director of Incubation for Xbox at Mi-
crosoft), et al., http://www.npr.org/2010/11/19/131447076/how-the-x-box-kinect-
tracks-your-moves

[38] �Windows Drivers for Kinect, Finally!�, blog of Johnny Chung Lee, former em-
ployee at Microsoft, http://procrastineering.blogspot.com/2011/02/windows-drivers-
for-kinect.html

[39] �History - OpenKinect�, Wiki at OpenKinect.org, homepage of the libfreenect driver,
http://openkinect.org/wiki/History

[40] �Roadmap - OpenKinect�, Wiki at OpenKinect.org, homepage of the libfreenect
driver, http://openkinect.org/wiki/Roadmap

[41] �PrimeSense� Establishes the OpenNI� Standard and Developers' Initia-
tive to Bring the World of Natural Interaction� to Life� - OpenNI
News blog, http://openni.org/news/5-primesense-establishes-the-openni-standard-
and-developers-initiative-to-bring-the-world-of-natural-interaction-to-life

[42] �NITE Middleware�, introduction of NITE Middleware on the o�cial PrimeSense
website, http://www.primesense.com/?p=515

[43] �CopyCat�, overview of the CopyCat platform on the website of the Center for
Accessible Technology in Sign (CATS), http://cats.gatech.edu/content/copycat

[44] �American Sign Language Recognition using Kinect Skeleton fea-
tures�, demo video of the CopyCat Kinect demo on YouTube,
http://www.youtube.com/watch?v=qFH5rSzmgFE

[45] �Microsoft Releases Kinect for Windows SDK Beta
for Academics and Enthusiasts�, Microsoft News Cen-
ter, https://www.microsoft.com/presspass/press/2011/jun11/06-
16MSKinectSDKPR.mspx

[46] �Multi-Gesture SDK for Kinect�/Asus Xtion Pro�/PrimeSensor��, o�cial
blog of Evoluce AG, http://www.evoluceblog.com/2011/05/multi-gesture-sdk-for-
kinect%E2%84%A2asus-xtion-pro%E2%84%A2-primesensor%E2%84%A2/

[47] �Integrating Speech and Hearing Challenge Individu-
als�, YouTube channel of Dr. Natheer Khasawneh,
http://www.youtube.com/user/knatheer#p/a/u/1/vVL398dUU5Q

All websites were visited on September 27, 2011.

57

