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Abstract

A metric space (M,d) is said to have the small ball property (sbp)
if for every ε0 > 0 there exists a sequence (rn) of positive numbers
with rn ≤ ε0 for every n and lim rn = 0 such that M is the union of
the closed balls B(xn, rn), n = 1, 2, . . . for suitable elements xn of M .

In joint work with V. Kadets this property has been investigated
systematically, some facts will be reviewed at the beginning of the
present note.

The main results here concern two quantitative versions of this
notion. We assign to M the infimum of the ε0 with the above property.
Surprisingly, for many natural subsets of Banach spaces this infimum
is either zero (which corresponds to the sbp-case) or one. We also
investigate the positive sequences (rn) for which sequences (xn) exist
such that the union of the B(xn, rn) covers M . The special case when
this collection consists of all positive (rn) is of particular interest since
a long time. It is known that results into this direction can depend
on the underlying set theory.
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1 Introduction

In many parts of mathematics one needs a notion to express the fact that
some subset is “small” or “negligible”. It depends, of course, on the particu-
lar structure of the sets under consideration which approach is appropriate.
“Small” can mean that the measure is zero, that the set is of first category,
that the Hausdorff dimension is zero or something else. Interesting con-
nections between the classical notions of smallness are discussed in [8], for
more recent results we refer the reader to chapter 6 of [2].

In a joint paper ([1]) of Vladimir Kadets and the author another notion
of smallness has been studied. The definition can be found in the abstract, it
applies to arbitrary metric spaces. The main results of [1] are the following:

1. The unit ball of an infinite dimensional Banach space does never have
the sbp. However, there are incomplete spaces with an sbp unit ball.

2. If X is the bidual of an infinite dimensional Banach space then the
collection of extreme points of the unit ball of X fails to have sbp.

3. σ-precompactness implies sbp, but the converse doesn’t hold.

4. If K has sbp then this is not necessarily true for K ×K.

In this note we provide quantitative refinements of this approach. Here are
the relevant definitions:

Definition 1.1 Let (M,d) be a metric space and A a subset of M .
(i) Consider the collection of all ε0 > 0 such that there exist a sequence

(rn) of positive numbers with rn ≤ ε0 and lim rn = 0 and suitable
xn ∈ M such that A ⊂

⋃
n B(xn, rn); here B(x, r) denotes the

closed ball with center x and radius r.
We denote by sbpM (A) the infimum of these ε0.

(ii) Let SM (A) be the collection of decreasing sequences (rn) of strictly
positive numbers such that A ⊂

⋃
n B(xn, rn) for suitable xn ∈ M .

If SM (A) contains all positive decreasing sequences, then A is said
to have the Borel property.

Borel has asked in [3] whether only the countable subsets of [ 0, 1 ] can satisfy the
previous condition. This question has attracted the attention of many mathemati-
cians, a final answer has been given in Laver’s paper [6] where one also finds a
sketch of the history of the subject: The assertion “Borel’s conjecture is true” is
consistent, i.e., the answer depends on the underlying set theory.
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The sbp-function will be discussed in section 2 , in section 3 we investi-
gate the sets SM (A) and the Borel property.

2 Properties of the function sbpM(·)

General properties

The collection of the admissible ε0 in the definition of sbpM (A) is always
nonempty since we deal only with bounded sets A. (This boundedness
condition will also be tacitly assumed in the sequel.) The function sbpM (·)
is obviously monotone, also it is clear that sbpM (A) ≤ r if A is contained
in a ball with radius r. Note that it might happen that sbpM (A) = r when
A is a ball B(x0, r): see proposition 2.3 below.
Here are some further properties:

Lemma 2.1 Let (M,d) be a metric space.
(i) For A ⊂ M and r > 0 one has sbpM (A) ≤ r iff one finds for any

sequence ε1 ≥ ε2 ≥ · · · with r ≥ ε1 and εn → 0 suitable finite sets
∆n ⊂ M such that

A ⊂
⋃
n

⋃
x∈∆n

B(x, εn).

(ii) If A1, . . . , Ak are contained in M , then

sbpM

(⋃
i

Ai

)
= sup

i
sbpM (Ai).

(iii) The preceding formula also holds for countably many Ai’s contained
in M if there is a k0 such that the Ai with i > k0 have the small
ball property. It is, however, not true in general.

(iv) Suppose that A ⊂ M ′ ⊂ M . Then

sbpM (A) ≤ sbpM ′(A) ≤ 2sbpM (A).

It is not true in general that sbpM (A) = sbpM ′(A).

Proof: (i) This is obvious.
(ii) By monotonicity we have sbpM (Ai0) ≤ sbpM

(⋃
i Ai

)
for every i0 which

proves that
sbpM

(⋃
i

Ai

)
≥ sup

i
sbpM (Ai).
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Conversely, let ε0 > supi sbpM (Ai) be given. By assumption one finds
positive sequences (ri

n) tending to zero and bounded by ε0 and centers
xi

n such that Ai ⊂
⋃

n B(xi
n, ri

n) for every i. Any mixture of the ri
n with

associated centers xi
n gives rise to sequences (rn) and (xn) such that rn → 0,

rn ≤ ε0,
⋃

i Ai ⊂
⋃

n B(xn, rn). This proves the other inequality.
(iii) The inequality “≥” is again obvious, for the reverse inequality one has
to argue a little bit more subtly. Choose, for given ε0 > supi sbpM (Ai),
sequences (ri

n) and (xi
n) for i = 1, . . . , k0 as in the preceding proof and also,

for i > k0, sequences (ri
n) and centers (xi

n) such that limn ri
n = 0, ri

n ≤ ε0/i
and Ai ⊂

⋃
n B(xi

n, ri
n). Then again any mixture of the ri

n (i, n = 1, 2, . . .)
will tend to zero, it will be bounded by ε0 and

⋃
n,i B

(
xi

n, ri
n

)
will cover⋃

Ai.
In order to prove that equality does not hold in general consider any

infinite dimensional separable Banach space X. If B denotes the unit ball,
then – as will be shown later in proposition 2.3 – one has sbpX(B) = 1.
Therefore sbpX(C) = 2, if C stands for the ball with radius 2.

Since the space is separable C can be covered by a sequence (Bn) of
translates of B. Each of these translates satisfies sbpX(Bn) = 1, and this
proves our claim.
(iv) The first inequality is obvious. For the proof of the second suppose that
A ⊂

⋃
B(xn, rn), with rn ≤ ε0, rn → 0 and xn ∈ M . We may assume that

all B(xn, rn) meet M ′ (otherwise they are not necessary for the covering
of A), and therefore we can choose yn ∈ M ′ with d(xn, yn) ≤ rn. Then
it follows from the triangle inequality that A ⊂

⋃
n B(yn, 2rn), and this

proves the second part.
For an example where equality does not hold we consider a metric space

where there exists an uncountable set A consistig of elements of mutual
distance two such that A lies in a ball of radius one. (One could choose M
as the Banach space l1(S) over an uncountable index set S and A as the
collection of unit vectors.) Then sbpM (A) ≤ 1 but sbpA(A) = 2. (For a
more natural example see proposition 2.4.) �

Products
As it has been already noted, the product of two sbp-spaces needs not

be sbp. The counterexample K ⊂ X := l∞(l∞) in theorem 5.3 of [1] can
be used to show that also the function sbpX(·) behaves “badly” if products
are considered.

Proposition 2.2 The space K of [1], theorem 5.3, has the following prop-
erties:
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(i) K lies in a ball with radius 1/2.
(ii) sbpX(K) = 0, i.e., K has the small ball property.
(iii) If X ×X is provided with the maximum distance, then

sbpX×X(K ×K) = 1/2,

i.e., this number is as large as possible.

Proof: (i) K lies in the ball B(x, 1/2), where

x =
(
(1/2, 1/2, 1/2, . . .), (0, 0, 0, . . .), (0, 0, 0, . . .), . . .

)
.

(ii) This has been shown in [1], theorem 5.2.

(iii) It is clear that sbp(K × K) ≤ 1/2 since K × K lies in a ball with
radius 1/2. Let ε0 < 1/2 be given. We have to prove that K ×K cannot
be covered by a sequence of balls in X ×X for which the radii (rn) tend to
zero and are bounded by ε0.

Let such a sequence (rn) and centers c1, c2, . . . ∈ X × X be given, we
argue as in [1]. With the notation of this paper we have K×K =

⋃
i,j Ki×

Kj , where the Ki ×Kj have mutual distance one. Thus every ball Bn :=
B(cn, rn) will meet at most one Ki ×Kj . Choose m1 such that rn ≤ ε0/2
for n ≥ m1 and then an a1 with the property

(
Ka1 ×K1

)
∩

(⋃m1
n=1 Bn

)
= ∅.

We write Ka1 × K1 as the disjoint union of the sets Ka1 × K1n. The
mutual distance of these buildung blocks is 1/2 so that every Bn with
n > m1 meets at most one of these. Select an m2 > m1 so that rn ≤ ε0/2a1

for n > m2 and then a Ka1 ×K1a2 which is disjoint to the B1, . . . , Bm2 .
If this construction is continued, one gets an

x =
(
Φ(a1a3a5 . . .),Φ(a2a4a6 . . .)

)
such that x ∈ K ×K but x /∈

⋃
n Bn. �

Balls and spheres in Banach spaces

Unit balls in Banach spaces are always “big”:

Proposition 2.3 Let X be an infinite dimensional Banach space and BX

the closed unit ball of X. Then sbpX(BX) = 1, i.e. sbpX(BX) is as large
as possible.
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Remark: It has been kindly pointed out to us by the referee that this result
is also an immediate consequence of theorem 1 in [4].
Proof: It is clear that all ε0 ≥ 1 are admissible so that sbpX(B) ≤ 1.
Now let a number ε0 < 1 be given. We have to show that, whenever (rn)
is a sequences of positive numbers tending to zero and bounded by ε0, it is
impossible to find centers x1, x2, . . . in X such that BX ⊂

⋃
n B(xn, rn).

Let such a sequence (rn) and any x1, x2, . . . ∈ X be given. We choose
a positive δ such that ε0 + 2δ < 1 and then an index n1 with the property
that rn ≤ δ/10 for n ≥ n1.

The Riesz lemma allows us to find a y1 in BX such that ‖y1−xn‖ ≥ 1−δ
for every n ≤ n1; in particular we have

B(y1, δ) ∩B(xn, rn) = ∅

for these n.
Now we need the following consequence of the Riesz lemma: Whenever

K is a ball with radius r there are z1, z2, . . . in K such that

• B(zn, r/10) ⊂ B for all n, and

• ‖zn − zm‖ > 3r/10 for n 6= m.

We apply this to the ball B1 := B(y1, δ). Since rn ≤ δ/10 for n ≥ n1

we know that B(xn, rn) will meet at most one ball B(zi, δ/10), i = i(n),
for these n. Choose n2 > n1 such that rn ≤ δ/102 for n ≥ n2. By the
preceding observation there must be a ball1 B2 := B(zi, δ/10) which has
an empty intersection with the B(xn, rn) for n = n1 + 1, . . . , n2. One even
has B2∩B(xn, rn) = ∅ for all n ≤ n2 since B(xn, rn)∩B1 = ∅ and B2 ⊂ B1

hold.
It should be clear how to continue. We repeat the construction with B2

instead of B1 to get a B3 of radius δ/102 in B2 such that

B3 ∩
( n3⋃

n=1

B(xn, rn)
)

= ∅,

where n3 is such that rn ≤ δ/103 for n ≥ n3.
In this way we obtain a sequence BX ⊃ B1 ⊃ B2 ⊃ · · · of closed balls

the radii of which tend to zero such that

Bk ∩
( nk⋃

n=1

B(xn, rn)
)

= ∅,

1There are even infinitely many such balls.
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where n1 < n2 < · · · . By completeness there exists an x0 in
⋂

Bk ⊂ BX ,
and this x0 cannot be contained in

⋃
n B(xn, rn). This completes the proof.

�

With a similar proof one can provide a more natural example to the asser-
tion made in lemma 2.1:

Proposition 2.4 Let X be the Banach space l1 and S the unit sphere of
X. Then sbpX(S) = 1 and sbpS(S) = 2.

Proof: Let ε0 < 2 be given, (rn) a sequence tending to zero with rn ≤
ε0 and x1, x2, . . . any points in S. One has to find an x ∈ S with x /∈⋃

n B(xn, rn). Choose first a δ > 0 with ε0 + 2δ < 2 and then an n1 such
that rn ≤ δ/10 for n ≥ n1. The special structure of l1 allows us to find
y1 in the unit sphere such that ‖y1 − xn‖ ≥ 2 − δ for n ≤ n1; the vector
y1 could be chosen as a unit vector associated with a “large” index. Then
continue as in the preceding proof, this time working in the sphere. �

Remark: More generally it can similarly be shown that sbpS(S) = 21/p for
the unit sphere S in lp, where 1 ≤ p ≤ ∞.

Boundaries

We recall that a boundary of a Banach space X is a subset B of the
dual unit ball such that for every x ∈ X there exists x′ ∈ B such that
x′(x) = ‖x‖. It is an elementary exercise to show that the collection of
extreme functionals is a boundary.

It depends on the geometry of X how large boundaries must be. Con-
sider first the space X = c0. Then X ′ = l1, a space with countably many
extreme points: this shows that boundaries can have the small ball prop-
erty. On the other hand it is known ([7]) that the collection of extreme
points in infinite dimensional reflexive Banach spaces is always uncount-
able. Theorem 4.2 of [1] explains this different behaviour: boundaries for
infinite dimensional reflexive Banach spaces never have the small ball prop-
erty, in particular they have to be uncountable.

Here we will show more: boundaries in infinite dimensional reflexive spaces
are always “as big as possible”:

Proposition 2.5 Let X be an infinite dimensional reflexive Banach space
and B ⊂ X ′ a boundary. Then sbpX′(B) = 1.
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The proof will depend on the following lemma which is a refinement of
lemma 4.1 in [1]. (In [1] it was only necessary to deal with centers in BX′ ,
now they might be anywhere in X ′.)

Lemma 2.6 Let X be a Banach space and Y ⊂ X an infinite dimensional
closed affine subspace. Further let ∆ be a finite subset of X ′ and a and ε
numbers in ] 0, 1 [ such that there exists y0 ∈ Y with ‖y0‖ < a. Then there
is an infinite dimensional closed affine subspace W of Y such that

(i) there exists w0 ∈ W with ‖w0‖ < a + 2ε;
(ii) for every y′ ∈

⋃
x′∈∆ B(x′, ε) with ‖y′‖ ≤ 1 and every y ∈ BX ∩W

one has y′(y) < ‖y‖, i.e. none of these y′ recognizes ‖y‖.

Proof: Define Z as

Z := {y | y ∈ Y, x′(y) = x′(y0) for every x′ ∈ ∆}.

This is a closed infinite dimensional affine subspace of Y which contains y0.
The next steps are to select any w0 ∈ Z such that

‖y0‖+ 2ε < ‖w0‖ < a + 2ε

and an x′0 ∈ X ′ with ‖x′0‖ = 1 and x′0(w0) = ‖w0‖. Then we define

W := {y | y ∈ Z, x′0(y) = x′0(w0)};

we claim that W has the desired properties.

W is obviously a closed infinite dimensional affine subspace of Y , and
w0 ∈ W has the claimed property. Now let x′ ∈ ∆ and z′ with ‖z′‖ ≤ ε
and ‖x′ + z′‖ ≤ 1 be given. We have to show that x′ + z′ does not assume
its norm at any y ∈ W ∩BX .

Select any such y. Then, on the one hand, we have

‖y‖ ≥ |x′0(y)| = |x′0(w0)| = ‖w0‖ > ‖y0‖+ 2ε.

On the other hand we can obtain the following inequality:

(x′ + z′)(y) = x′(y) + z′(y)
= x′(y0) + z′(y)
= (x′ + z′)(y0) + z′(y)− z′(y0)
≤ ‖y0‖+ 2ε.
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This completes the proof of the lemma. �

We now turn to the proof of proposition 2.5 . Let B ⊂ BX′ be a bound-
ary for X. In order to show that sbpX′(B) = 1 we will use lemma 2.1(i): for
given ε0 < 1 we have to provide a sequence (εn) with εn → 0 and ε0 ≥ εn

such that for no choice of finite subsets ∆n ⊂ X ′ one can have

B ⊂
⋃
n

⋃
x′∈∆n

B(x, εn).

Choose for such an ε0 a sequence (εn) with ε0 + 2ε1 + 2ε2 + · · · < 1.
Suppose that ∆1,∆2, . . . are any finite subsets of X ′. First we apply the
preceding lemma with Y = Y1 := X, a = ε0, ε = ε1 and ∆ := ∆1. Let
Y2 ⊂ Y1 be the space W of this lemma, we note that Y2 ∩ BX 6= ∅ since
‖w0‖ < ε0 + 2ε1 < 1.

We continue with another application of the lemma, this time with
Y := Y2, a := ε0 + 2ε1 and ε := ε2. In this way we get a sequence
Y1 ⊃ Y2 ⊃ · · · of closed infinite dimensional affine subspaces of X with the
following properties:

• The sets Yn ∩BX are nonempty and decreasing.

• No y′ ∈ BX′ ∩
(⋃

x′∈∆n
B(x′, εn)

)
assumes its norm on Yn ∩BX .

Now the reflexivity of X comes into play. Since the Yn ∩ BX are weakly
compact one finds a y in the intersection of these sets. Since no y′ in

BX′ ∩
(⋃

n

⋃
x′∈∆n

B(x′, εn)
)

assumes its norm at y, the set
⋃

n

⋃
x′∈∆n

B(x′, εn) cannot cover a boundary.
This completes the proof of proposition 2.5. �

Remark: With a similar proof as in in the discussion of the small ball
property in section 4 of [1] even more can be shown: boundaries B in infinite
dimensional biduals satisfy sbp(B) = 1. The main technical difficulty is to
guarantee that the space W of lemma 2.6 can be chosen to be weak*-closed
if X is a dual space. This enables one to use the Alaoglu-Bourbaki theorem
in order to show that the intersection of the Yn ∩BX is nonempty.
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3 The sets SM(A) and the Borel property

General properties

To illustrate the definition we start with two simple examples.

1) First we consider A = [ 0, 1 ] as a subset of the metric space M = R. Let
(rn) be in SM (A), i.e. [ 0, 1 ] ⊂

⋃
n [xn − rn, xn + rn ] for suitable x1, x2, . . .

in R. It follows that

1 = λ(A) ≤
∑

n

λ
(
[xn − rn, xn + rn ]

)
= 2

∑
n

rn.

On the other hand, if positive rn satisfy 1 = 2
∑

n rn, we may put

x1 := 1− r1, xk := r2 + · · ·+ rk for k ≥ 2 ;

then [ 0, 1 ] =
⋃

n [xn − rn, xn + rn ], and it follows that

SM (A) = {(rn) | (rn) is decreasing, and
∑

rn ≥ 1/2}.

2) Let C := {0, 1}N be the Cantor set . As usual C is provided with the
following product metric: d

(
(xn), (yn)

)
is zero if the sequences (xn) and

(yn) are identical and 21−k otherwise, where k is the first index n with
xn 6= yn.

On this metric space we consider the product measure µ associated with
the uniform distribution on {0, 1}. This µ is a probability measure on C
for which a ball B = B(x, 2−k) satisfies µ(B) = 2−k (k = 0, 1, . . .). More
generally µ

(
B(x, r)

)
≤ r is true, and this implies that

∑
n rn ≥ 1 whenever

C ⊂
⋃

B(xn, rn) for suitable x1, x2, . . ..
We denote, for r > 0, by α(r) the largest number 2−k with k ∈ N0 and

2−k ≤ r; this is a useful definition here since one has B(x, r) = B
(
x, α(r)

)
for all x and r > 0. With this notation we may rephrase the preceding
observation as

SC(C) ⊂ {(rn) |
∑

n

α(rn) ≥ 1}.

Suppose that
∑

α(rn) > 1. Then there exists an m such that
∑m

n=1 α(rn) ≥
1 and it is easy to find centers z1, . . . , zm such that

C ⊂
m⋃

n=1

B
(
zn, α(rn)

)
⊂

m⋃
n=1

B(zn, rn).
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If, e.g., r1 = 1/2, r2 = r3 = 1/4 one could work with z1 = (0, 0, 0, . . .),
z2 = (1, 1, 1, . . .) and z3 = (1, 0, 0, . . .).

So far we have proved that SC(C) contains the positive decreasing (rn) with∑
α(rn) > 1 and is contained in the collection of the (rn) with

∑
α(rn) ≥ 1.

Even more can be said. If
∑m

n=1 α(rn) < 1 for every m and z1, z2, . . . are
abitrary, then

(⋃m
n=1 B(zn, α(rn))

)
m=1,2,...

is an increasing sequence of open
proper subsets of C so that – by compactness –

⋃
n B(zn, α(rn)) cannot

be all of C. In this way we arrive at a characterization of SC(C): A
decreasing sequence (rn) of strictly positive numbers belongs to this set iff∑

α(rn) > 1.

In the definition of SM (A) we have restricted our attention to decreasing
strictly positive sequences. This is a reasonable restriction since positive
sequences tending to zero have a decreasing rearrangemant. The following
statements are obviously true:

Lemma 3.1 Let (M,d) be a metric space and A,B bounded subsets of M
such that A ⊂ B .

(i) SM (B) ⊂ SM (A).
(ii) The collection SM (A) has, as a subset of the space s of all se-

quences, the following properties:

• Let (xn) ∈ s be strictly positive and decreasing. If (xn) con-
tains a subsequence which is in SM (A), then (xn) ∈ SM (A)
also holds.

• (xn) ∈ SM (A) and yn ≥ xn (all n) imply that (yn) ∈ SM (A).

Remark: It would be interesting to know which properties characterize
the sets SM (A). More precisely: Suppose ∆ ⊂ s is a collection of positive
decreasing sequences with the properties described in (ii). Is it true – and
if not, which additional properties are necessary – that there exist (M,d)
and A ⊂ M such that SM (A) = ∆?

The Borel property

In order to study the “size” of a set A by means of the collection SM (A)
it is necessary to know that it contains some nontrivial information. Clearly
one can decide whether A has the small ball property and one can also
calculate sbpM (A) if SM (A) is known. In this subsection we deal with
a very modest question: Does SM (A) recognize whether A is countable?
This is the Borel conjecture, the answer is rather complicated. Note that
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SM (A) is the collection S of all decreasing strictly positive sequences if A is
countable so that the problem can be rephrased by asking whether SM (A)
is a proper subset of S for uncountable A.

A canonical generalization of the ideas which have been used in the
discussion of [ 0, 1 ] and the Cantor set {0, 1}N immediately leads to the
following

Lemma 3.2 Suppose that there exists a probability measure µ on M with
the following properties:

(i) µ(A) > 0.
(ii) There is a function K : ] 0,+∞ [ → ] 0,+∞ [ with limr→0 K(r) = 0

such that µ
(
B(x, r)

)
≤ K(r) for arbitrary x and r.

Then SM (A) is a proper subset of S.

Proof: This is easy: A ⊂
⋃

B(xn, rn) implies 0 < µ(A) ≤
∑

n K(rn), and
since lim K(r)=0 this cannot be true for all positive sequences (rn). �

There remain many cases where this idea cannot be applied directly.
For example, what about the Cantor set when considered as a subset of
[ 0, 1 ] with the usual metric? Since the Lebesgue measure is zero one has
to argue differently. In fact, the preceding idea can be used to treat the
case of arbitrary uncountable compact sets:

Proposition 3.3 Let K be an uncountable compact metric space. Then
SM (K) cannot be all of S.

Proof: First we will prove the following

Claim: If L is an uncountable compact metric space then there exist an
ε > 0 and subsets L1, L2 of L with the following properties:

• Both L1 and L2 are uncountable and compact and the diameter is
bounded by ε.

• d(x, y) ≥ ε for x ∈ L1 and y ∈ L2.

Proof of the claim: Suppose that the assertion is false. We will prove that
L is countable.

Given ε > 0 we may cover L with compact subsets L1, . . . , Lk of diame-
ter at most ε. Suppose the first l of these sets are uncountable. Then they
must lie in some ball with center in L1 and radius 3ε since otherwise the
claim were true. This shows that for every ε our space is countable up to a
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possible subset of diameter 3ε. Iterating this this procedure we know that
L is a countable union of countable sets plus the intersection of possibly
uncountable subsets the diameters of which tend to zero. Then L must be
countable.

We now are ready for the proof of the proposition. By the claim one
finds positive ε1 > ε2 > · · · and uncountable compact subsets Li1i2...ik of
K for k = 1, 2, . . . and iκ ∈ {0, 1} with the following properties:

• The mutual distance of L0 and L1 is at least ε1, and the mutual
distance of Li1i2...ik−10 and Li1i2...ik−11 is at least εk for arbitrary k ≥ 2
and i1, . . . , ik−1.

• The diameter of Li1i2...ik is at most εk (all k and iκ).

• lim εn = 0.

The proof can now be completed easily. We note that for any (in) ∈ C the
intersection of the decreasing family (Li1i2...ik)k=1,2,... contains precisely one
point which we will call xi1i2...; here it is again essential that K is compact.

Define φ : C → K by (in) 7→ xi1i2.... It is then routine to show that φ is
one-to-one and continuous. Denote by ν the image measure of the measure
µ on C which we have defined above. By construction, a ball of radius εn

has measure 2−n. Therefore the assertion follows from lemma 3.2. �

The Borel property obviously passes to subsets. Thus it follows from
the preceding proposition that SM (A) will be different from S whenever
A contains an uncountable compact subset. This happens for “nearly all”
uncountable sets. To make this precise it is necessary to repeat some notions
from set theory.

Denote by N the space of sequences in N, i.e. N := NN; we provide
N with the product topology. Call a subset A of a Polish space analytic
if it is the continuous image of N . This is a very general class of sets, it
contains not only all Borel sets in arbitrary Polish spaces but even contin-
uous images of such sets (Lemma 39.2 in [5]). It can be shown that every
uncountable analytic set contains a homeomorphic image of the Cantor set
C: cf. theorem 94 and lemma 4.2 in [5]. Therefore, by proposition 3.3,
there are only countable sets which have the Borel property and are at the
same time analytic.

To phrase it differently: For all analytic sets A one may hope to find
essential properties of A encoded in SM (A). Recall, however, that we have
already noted that for sets which are not necessarily analytic this can not
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be guaranteed since the assertion “Every set with the Borel property is
countable” might be true or false depending on the model of set theory
under consideration (see [6]).
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